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ABSTRACT

This paper presents a novel system for multi-pitch track-
ing, i.e. estimate the pitch trajectory of each monophonic
source in a mixture of harmonic sounds. The system con-
sists of two stages: multi-pitch estimation and pitch tra-
jectory formation. In the first stage, we propose a new
approach based on modeling spectral peaks and non-peak
regions to estimate pitches and polyphony in each single
frame. In the second stage, we view the pitch trajectory
formation problem as a constrained clustering problem of
pitch estimates in all the frames. Constraints are imposed
on some pairs of pitch estimates, according to time and
frequency proximity. In clustering, harmonic structure is
employed as the feature. The proposed system is tested on
10 recorded four-part J. S. Bach chorales. Both multi-pitch
estimation and tracking results are very promising. In ad-
dition, for multi-pitch estimation, the proposed system is
shown to outperform a state-of-the-art multi-pitch estima-
tion approach.

1. INTRODUCTION

Multi-pitch analysis is a fundamental research problems in
music information retrieval (MIR). Pitch analysis results
can provide helpful information for many other applica-
tions, such as automatic music transcription, audio source
separation, content-based music search, etc. This task,
however, remains challenging and existing methods do not
match human ability in either accuracy or robustness.

Due to the complexity of multi-pitch analysis, researchers
try to break it into different subproblems.Multi-pitch Es-
timation (MPE)[1, 2] usually refers to estimating pitches
and the number of concurrent pitches (polyphony) in each
single time frame. Based on MPE,Note Formation[3, 4]
forms notes using pitch estimates in adjacent frames.

These two subproblems are important, however, they do
not constitute the whole multi-pitch analysis problem. In
a piece of polyphonic music consisting of several sound
sources (usually different instruments), estimating pitches
and finding the pitch trajectory for each underlying source,
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is a more advanced problem, which we callMulti-pitch
Tracking (MPT).

Multi-pitch tracking is similar to stream organization in
Auditory Scene Analysis (ASA) [5], which is described as
a grouping process of distinct acoustic events into a sin-
gle perceptual entity, i.e. a stream. In [5], Bregman de-
scribes two main grouping processes in stream organiza-
tion. Simultaneous groupingis to “integrate components
that occur at the same time in different parts of the spec-
trum”. Sequential groupingis to “put together events that
follow one another in time”. It is noted that MPE involves
only simultaneous grouping, where harmonics of a sound
source are integrated into a single pitch. Based on MPE,
note formation also involves sequential grouping, where
proximate pitches are integrated in a small time scale into
notes. MPT also involves sequential grouping, but in a
much larger time scale, i.e. the whole music piece.

Multi-pitch tracking is closely related to monaural source
separation, which in fact estimates more information, i.e.
the timbre of each source. A number of source separation
systems [6–8] are built on multi-pitch estimation results.
Other methods [9] usually train prior source models from
solo excerpts. Those methods [10,11] not relying on pitch
estimation results nor prior source models utilize the same
amount of information as MPT, but they are only tested on
mixtures of two or three sounds.

Multi-pitch tracking is a difficult problem. Even for
humans, only highly trained musicians have the ability to
track concurrent pitch trajectories in listening. Therefore,
some researchers proposed to only detect the main melody
line and bass line of a polyphonic music [12,13].

To our knowledge, few systems address the multi-pitch
tracking problem. Kameoka et al. [14] proposed a multi-
pitch analyzer based on harmonic temporal structured clus-
tering that jointly estimates pitch, intensity, onset and dura-
tion of each underlying source. Chang et al. [15] presented
a multi-pitch tracking system that and tracks pitches into
note contours using Hidden Markov Models. Although
these methods track concurrent pitch trajectories of mul-
tiple sound sources, they are only evaluated in the multi-
pitch estimation and note formation level [14, 15]. La-
grange and Tzanetakis [16] proposed a sound source sepa-
ration method that streams spectral peaks. It was not, how-
ever, evaluated on pitch tracking performance [16].

In this paper, we propose a system to address the MPT
problem. Our system differs from previous systems in sev-
eral ways. We start with multi-pitch estimation, where we



Figure 1. System overview.

propose a new method that models spectral peaks and non-
peak regions. Given pitch estimates for individual frames,
we cast pitch trajectory formation as a constrained clus-
tering problem, where each cluster corresponds to a trajec-
tory. Harmonic structure is used as the feature of each pitch
in clustering. Finally, note formation happens after pitch
trajectories are formed, instead of forming notes and then
placing them in streams, as previous systems have done.

Figure 1 shows the system structure. We address the
MPT problem in two stages. The first stage ismulti-pitch
estimation(Section 2), where pitches and polyphony in
each frame are estimated, and then refined using estimates
in neighboring frames. The second stage ispitch trajec-
tory formation (Section 3). Initial pitch trajectories are
formed by grouping pitch estimates across frames accord-
ing to pitch height. Within each initial trajectory, pitch es-
timates that are close in frequency and contiguous in time
are grouped to formnotelets. Final pitch trajectories are
obtained through constrained clustering of pitch estimates,
where must-link constraints are imposed on pitch pairs in
each notelet and cannot-link constraints are imposed on
pitch pairs of concurrent notelets. From the view of Audi-
tory Scene Analysis, the first stage is simultaneous group-
ing and the second stage is sequential grouping.

2. MULTI-PITCH ESTIMATION

2.1 Multi-pitch Estimation In A Single Frame

In multi-pitch estimation, we break the music audio into 46
ms frames with a 10 ms hop size. We estimate polyphony
and pitches in each time frame, but do not group estimates
across adjacent frames into notes or trajectories. We view
this problem (given polyphonyN ) as a Maximum Likeli-
hood parameter estimation problem in the frequency do-
main. The parameters to be estimated are the set of pitches

θ = {F 10 , ∙ ∙ ∙ , F
N
0 }. The observation is the spectrum,

which is represented as spectralpeaksand non-peak re-
gions. Peaks are detected using the peak detection algo-
rithm in [10]. The non-peak region is defined as the set
of frequencies falling more than a quarter-tone from any
observed peak.

For harmonic sounds, peaks typically appear only near
integer multiples of F0s. We try to find the set of F0s with
harmonics that maximize the probability of the occurrence
of observed peaks, and minimize the probability that they
have harmonics in non-peak regions.

Thus, the likelihood function can be defined as follows:

L(θ) = Lpeak(θ) ∙ Lnon-peak region(θ) (1)

To modelLpeak(θ), each detected peakk is represented
by its frequencyfk and amplitudeak. We assume condi-
tional independence between peaks, given a set of F0s. In
addition, we consider the probability that a peak isnormal
(caused by some harmonic) orspurious(caused by other
reasons). Then the peak likelihood is defined as

Lpeak(θ) =

K∏

k=1

p (fk, ak|θ) (2)

=

K∏

k=1

∑

sk

p (fk, ak|sk,θ)P (sk|θ) (3)

whereK is the number of detected peaks;sk is the binary
variable to indicate whether thek-th peak is normal (sk =
0) or spurious (sk = 1).

In modelingp (fk, ak|sk = 0,θ), we notice that a nor-
mal peak may be generated by several F0s when their har-
monics overlap at the peak position. In this case, how-
ever, the probability is conditioned on multiple F0s, which
leads to a combinatorial problem in training we wish to
avoid. Instead, we adopt the binary masking assumption
[17], i.e. each peak is generated by only one F0, the one
having the largest likelihood to generate the peak. Thus
p (fk, ak|sk = 0,θ) is approximated bymaxF0∈θ p(fk, ak|F0).
For eachF0 ∈ θ, a harmonic numberhk is calculated as
the nearest harmonic position ofF0 from fk. Then,

p (fk, ak|F0) = p (fk|F0) p (ak|fk, F0) (4)

= p (dk|F0) p (ak|fk, hk) (5)

wheredk = fk − F0 − 12 log2 hk, is the frequency de-
viation of thek-th peak from its corresponding harmonic
position in the logarithmic frequency domain.

In modelingp (fk, ak|sk = 1,θ), θ can be ignored, since
spurious peaks are assumed to be unrelated to F0s:

p (fk, ak|sk = 1,θ) = p (fk, ak|sk = 1) (6)

To modelLnon-peak region(θ), it is noted that instead of
telling us where F0s or their ideal harmonics should be,
the non-peak regions tell us where they should not be. A
good set of F0s would predict as few harmonics as pos-
sible in the non-peak regions. Therefore, we define the
non-peak region likelihood in terms of the probability of



From polyphonic (random chord) data
P (sk|θ) approximated withP (sk), then learned as the proportion of spurious peaks
p(dk|F0) approximated withp(dk), then learned as a GMM from normal peaks
p(ak|fk, hk) learned non-parametrically from normal peaks
p(fk, ak|sk = 1) learned as a 2-D single Gaussian from spurious peaks

From monophonic (individual note) data
P (eh = 1|F0) learned non-parametrically from normalpeaks

Table 1. Model parameters that are learned from the training data.

not detecting any harmonic in the non-peak regions, given
an assumed set of F0s. Again, with the conditional inde-
pendence assumption of non-peak regions, the likelihood
can be defined as:

Lnon-peak region(θ) =
∏

F0∈θ

∏

hF0∈Fnp
h∈1..H

1− P (eh = 1|F0) (7)

whereN is the polyphony;eh is a binary variable that in-
dicates whether theh-th harmonic ofF0 is detected;Fnp

is the set of frequencies in the non-peak regions;H is the
largest harmonic number we consider.

A harmonic not being detected in the non-peak region
is because the corresponding peak in the source signal was
weak or not present (e.g. even harmonics of clarinet). There-
fore, this probability can be learned from monophonic train-
ing data, i.e. the monophonic notes used to generate the
polyphonic training data.

The above probabilities are learned in monophonic or
polyphonic training data, as described in Table 1. The
monophonic training data are monophonic notes selected
from the University of Iowa data set1 . The polyphonic
training data are randomly mixed chords of polyphony from
2 to 6, generated by mixing the above mentioned mono-
phonic notes. Spectral peaks and non-peak regions are de-
tected and collected in all the frames of the training data.
Ground-truth F0s are obtained by YIN [18], a single pitch
detection algorithm, on each note prior to mixing. The fre-
quency deviation of each peak from the nearest harmonic
of any ground-truth F0 is calculated. If the deviation is less
than a quarter-tone, the peak is labeled normal, otherwise
spurious. The “a quarter-tone” threshold is used here was
selected in accordance with the standard tolerance used in
measuring correctness of F0 estimation.

So far, given a set of F0sθ, its likelihoodL(θ) can be
calculated in Eq. (1). The search space of the maximum
likelihood solutionθ̂, however, is very large. We constrain
this problem with a greedy search strategy. We start from

an empty set̂θ
0
. In each iteration, we add an F0 estimate

to θ̂
n

to get a new set̂θ
n+1

that gets maximum likelihood
among all the possible values of the newly added F0. This
iteration terminates whenn = N , the given polyphony.

If the polyphony is not given, we need to decide when
to terminate. SinceL(θ̂

n
) increases withn, we propose a

simple threshold-based method. The minimum number of
F0s that achieves a likelihood greater than the thresholdis

1 http://theremin.music.uiowa.edu/

returned as the polyphony estimate:

N = min
1≤n≤M

n,

s.t. Δ(n) ≥ T ∙Δ(M) (8)

whereΔ(n) = L(θ̂
n
) − L(θ̂

1
) is the maximum increase

of likelihood that could be achieved when the polyphony is
set to ben. M is the maximum allowed polyphony which
is set to 9 in all experiments;T is a learned threshold which
is set to 0.88 ( a value chosen by a machine learner us-
ing the monophonic and polyphonic training data). This
polyphony estimation method works well on a large data
set containing both music pieces and block musical chords
with polyphony from 1 to 6.

2.2 Refine Pitch Estimates Using Neighboring Frames

There are often insertion, deletion and substitution errors
in the multi-pitch estimation of a single frame. We pro-
pose a refinement method using estimates in neighboring
frames: For each framet, we build a weighted histogram
in the frequency domain, where each bin corresponds to
a semitone in the pitch range. Then, a triangular weight-
ing function centered att is imposed on a neighborhood
of t, whose radius isr frames. The refined polyphony esti-
mateN is calculated as the weighted average of polyphony
estimates in all the frames in this neighborhood. TheN
bins with the highest histogram values are selected to re-
construct refined pitch estimates. For each of these bins, if
there is an original pitch estimate in framet that falls inside
this bin, the original pitch estimate is used as the refined
pitch estimate. Otherwise, the refined pitch estimate is cal-
culated as the weighted average frequency of all the pitch
estimates in this neighborhood that fall inside this bin. In
our system, the radiusr is set to 9 frames. This method
removed a number of inconsistent estimation errors.

3. PITCH TRAJECTORY FORMATION

Given pitch estimates in all frames, we view pitch trajec-
tory formation as a constrained clustering problem, where
eachpitch trajectorycorresponds to a cluster.

3.1 Constrained Clustering

Constrained clustering [19,20] is a class of semi-supervised
learning algorithms that make use of domain knowledge
during clustering. Constraints can be imposed on different
levels, where the instance level is the simplest and most
common one. In instance-level constraints, there are two



basic forms:must-linkandcannot-link. A must-link con-
straint specifies that two instances should be assigned to
the same cluster. A cannot-link constraint specifies that
two instances should not be assigned to the same cluster.

For our pitch trajectory formation problem, we adopt
these two constraints. A must-link is imposed between two
similar pitches in adjacent frames, since they probably be-
long to the same trajectory. A cannot-link is imposed be-
tween two pitches within a frame, due to our assumption
that sources are monophonic. We then formulate the clus-
tering problem to minimize the intra-class distanceJ , as
the K-means algorithm does:

J =

K∑

k=1

∑

xi∈Tk

‖xi − ck‖
2 (9)

whereK is the number of pitch trajectories;xi is a feature
vector in trajectoryTk andck is the mean feature vector in
trajectoryTk; ‖ ∙ ‖ denotes the Euclidean distance.

Wagstaff et al. [19] proposed a constrained K-means
clustering algorithm, which iteratively changes the cluster
labels of all points, without violating any constraint. For
our multi-pitch tracking problem, however, this algorithm
does not work. The reason is that almost every pitch es-
timate has must-links or cannot-links to other points, so it
is almost impossible to change a pitch’s label without vio-
lating any constraint. In addition, Davidson and Ravi [20]
proved that finding a feasible solution, i.e. a label assign-
ment without violating any constraint, of a clustering prob-
lem containing cannot-link constraints is NP-complete.

We now propose an iterative greedy algorithm that finds
a low-cost (in terms of Eq. (9)) assignment of pitches to
trajectories within a reasonable time.

3.2 Initial Pitch Trajectory Formation

Although the general problem is NP-complete, we can re-
move some constraints to make it tractable. A trivial ex-
ample is to remove all constraints, where random label as-
signment can be a solution.

Instead of random assignment, we utilize the intrinsic
structure of polyphonic music to assign initial labels. Note
that pitch trajectories (e.g. melody and baseline) are roughly
ordered in pitch, although sometimes they interweave. Since
there are at mostK pitches in each frame, we sort them
from high to low and assign labels from1 toK.

Then must-links are imposed on similar pitches that are
in adjacent framesand have the same initial trajectory la-
bel. The maximal must-link difference between pitches in
adjacent frames is set to 0.3 semitones (30 cents). Pitches
connected by must-links form a short trajectory, which we
call a notelet, since it is supposed to be some part of a
note. Once notelets are formed, cannot-links are imposed
between all pitches in two notelets that overlap more than
30ms. We say that two such notelets are in acannot-link
relation. We allow the 30ms overlap within a melodic line
as it may be reverberation or ringing of a string. We chose
conservative values for these parameters to ensure that they
are reasonable for common real-world scenarios.

This results in an initial set of track assignments that
is reasonably correct. By assigning trajectory labels on a
frame-by-frame basis, assuming a fixed small number of
trajectories, and only forming notelets from within sets of
adjacent pitch estimates of the same trajectory, we greatly
reduce the space searched. This provides a reasonable start-
ing point and bypasses the NP-completeness problem.

Before showing how we improve on this initial solution
by minimizing Eq. (9), we first explain the feature we use.

3.3 Harmonic Structure

Feature vectors in Eq. (9) should have the property that
they are close in the same trajectory and far in different tra-
jectories. Pitch height is not suitable because the underly-
ing pitch estimates may show octave errors and the melodic
lines overlap in range. Harmonic structure has been proven
to be a good choice [10,11] for music played by harmonic
instruments, which is defined as the vector of relative am-
plitudes of harmonics of a pitch. Harmonic structures of
the same instrument are similar, even if their pitches and
loudness are different. On the other hand, different instru-
ments usually have very different harmonic structures [10].

We calculate harmonic structure as follows: First, har-
monics of each pitch are found from spectral peaks. For
overlapping harmonics of different pitches, the peak like-
lihood in Eq. (4) is used to distribute energy to each pitch.
Harmonic structures are then normalized to have the same
total energy. The first fifty harmonics are used here.

3.4 Final Pitch Trajectory Formation

We start from the initial set of pitch trajectories created in
Section 3.2, where pitches are assigned trajectory labels
based on pitch height, and then placed into notelets based
on time and pitch proximity. All pitch estimates compris-
ing a notelet share the same trajectory label. All notelets
that share a label form atrajectory. We now consider re-
assigning notelets to different trajectories to minimize the
cost function in Eq.(9).

Figure 2. Illustration of a swap-set (the rounded rectan-
gle) for a notelet (the bold solid line). Solid and dashed
lines represent notelets in trajectoryTk and Tl, respec-
tively. Cannot-link relations are indicated by arrows.

Suppose we want to change the trajectory of a noteletn

from Tk to Tl. We cannot do this in isolation, since there
may be a notelet inTl that overlapsn and we assume mono-
phonic pitch trajectories. We could simply swap the tra-
jectories for two overlapping notelets. This, however may



For each noteletn, with trajectoryTk
J0 = cost of current trajectory assignments (Eq. (9))
Jbest = J0
For each trajectoryTl, such thatTl 6= Tk

Find the swap-set betweenTl andTk containingn
J = (Eq. (9)) if we swap every notelet in the swap-set
If J < Jbest, Jbest = J , End

End
If Jbest < J0, Perform swap that producesJbest, End

End

Table 2. The pitch trajectory formation algorithm.

cause a chain reaction, since the swap may cause new over-
laps within a trajectory. Instead, we select two trajectories
and pick a noteletn from one of the trajectories. We then
find all notelets in these two trajectories,Tk andTl that
connect ton via a path of cannot-link relations (defined in
Section 3.2). We call this theswap-set, as illustrated in
Figure 2. These are the notelets affected by a potential tra-
jectory swap between two notelets. All notelets in a swap
set are swapped together, rather than individually, and the
new trajectory are evaluated with the cost function in Eq.
(9). Table 2 describes the process we use to swap trajec-
tories for notelets until the trajectories of all notelets reach
fixed points. In our experiment, this usually takes 3 to 4
rounds (where a round is a traversal of all notelets).

3.5 Note Formation

After pitch trajectories are formed, we form notes in each
trajectory from the notelets. Two notelets are considered
to be in the same note if the time gap between them is less
than 100ms and their frequency difference is less than 0.3
semitone. Then the pitches in the gap are reconstructed
using the average frequency of the note. Notes of length
less than 100ms are considered spurious and removed. The
0.3 semitone parameter is the same as the one in imposing
must-links. The 100ms parameter is set without tuning to
adapt to the tempo and note lengths of the test music.

4. EXPERIMENT

The proposed system was tested on 10 real music perfor-
mances, totaling 330 seconds of audio. Each performance
was of a four-part Bach chorale, performed by a quartet
of instruments: violin (Track 1), clarinet (Track 2), tenor
saxophone (Track 3) and bassoon (Track 4). Each musi-
cian’s part was recorded in isolation at 44.1 kHz, while the
musician listened to the others through headphones. Audio
mixtures were created by summing the four tracks. In test-
ing, each piece was broken into 46 ms frames with center
times spaced every 10 ms.

The ground-truth pitch trajectories of each testing piece
were estimated using YIN [18] with manual corrections on
monophonic sound tracks prior to mixture. The ground-
truth notes (frequency, onset and offset) for each source
were obtained by segmenting its pitch trajectory manually.

We evaluate the proposed system at the frame-level. For
each estimated pitch trajectory, a pitch estimate in aframe

% Initial Final
No. Precision Recall Precision Recall
1 66.9±3.2 66.9±3.2 82.7±4.9 71.3±5.5
2 52.3±6.5 52.1±6.5 64.1±8.8 52.4±7.9
3 61.0±8.5 59.3±8.7 78.3±11.5 70.8±12.7
4 81.8±5.0 65.3±7.4 82.6±5.4 73.9±5.8

Table 3. Frame-level evaluation results (Mean±Std) for
each pitch trajectory. Track No. from 1 to 4 corresponds
to the 4 parts of the quartets. “Initial” refers to the initial
pitch trajectory formation (Section 3.2); “Final” refers to
the final pitch trajectory formation (Section3.4)

% Precision Recall
Klapuri06[1] 87.2±2.0 66.2±3.4
Multi-pitch estimation(MPE) 84.9±1.7 79.9±2.9
Multi-pitch tracking(MPT) 88.6±1.7 77.0±3.5

Table 4. Frame-level evaluation results in the mixture in-
stead of each trajectory.

is called correct if it deviates less than a quarter-tone from
the pitch in the ground-truth pitch trajectory. Then preci-
sion and recall are calculated for each pitch trajectory by

Precision=
#cor
#est

Recall=
#cor
#ref

(10)

where #cor, #est and #ref are the number of correctly esti-
mated, estimated and reference pitches, respectively.

Table 3 presents the average frame-level evaluation re-
sults on the 10 pieces. The final tracking results are com-
pared with the initial tracking results obtained from Sec-
tion 3.2, which serves as a baseline obtained from multi-
pitch estimation. For all four tracks, the proposed pitch
trajectory formation method significantly improves either
precision or recall from the baseline method. For Track 3,
this improvement is up to 17.3% in precision and 11.5%
in recall. In addition, in both initial and final tracking, re-
sults of Track 1 and 4 are better than Track 2 and 3. This
is in accordance with previous researchers’ observations
that melody and baseline are easier to transcribe than other
source streams [12].

Table 4 presents the frame-level evaluation results. We
compare our system with Klapuri06 [1], a state-of-the-art
multi-pitch estimation approach. We used Klapuri’s code
and suggested parameter settings. We can see that the best
precision is obtained by MPT (Section 2+3), while the best
recall is obtained by MPE (Section 2). Klapuri06 gets a
high precision, which is indistinguishable from MPT, but
its recall is much lower than both MPE and MPT. From
MPE to MPT, precision has a significant improvement of
3.7%, while the two recalls are indistinguishable, consid-
ering the variances. It indicates that pitch trajectory forma-
tion improves the multi-pitch estimation results.

We also evaluate our system at the note-level in the mix-
ture, as other researchers do [3,4,15]. It is evaluated in two
ways. In the first way (Onset), a note estimate is correct if
its frequency (average over all pitch estimates in this note)
deviates less than a quarter-tone from a ground-truth note,
and its onset time differs less than 50ms/100ms from the



% Precision Recall AOR
Onset(50ms) 49.1±4.8 58.0±4.8 76.7±2.8
Onset(50ms)+Off 34.9±5.3 41.2±5.8 87.8±1.8
Onset(100ms) 65.5±4.7 77.4±3.1 73.7±3.1
Onset(100ms)+Off 46.0±5.5 54.3±5.5 85.1±2.3

Table 5. Note-level evaluation results in the mixture in-
stead of each trajectory.

ground-truth onset time. The second way (Onset+Off) has
the same requirements for frequency and onset time, but
also requires that each offset time estimate deviate from the
true offset time by less than 20% of the true note duration.
Precision and recall are calculated by Eq. (10), where #cor,
#est and #ref are the number of correctly estimated, esti-
mated, and reference notes, respectively.Average Overlap
Ratio (AOR)between correctly estimated notes and their
ground-truth notes is calculated as

AOR= Average

(
min{offsets} −max{onsets}
max{offsets} −min{onsets}

)

(11)

Given a correctly estimate note and its corresponding ground
truth note, “onsets” is the set of onset times for both the es-
timated and the and the true note and ”offsets” is similarly
defined. “Average” is over all correctly estimated notes.

Table 5 shows the note-level evaluation results. In Onset
(100ms), both precision and recall are promising, and AOR
value is high. This indicates that our system outputs good
note estimates in both frequency and duration (offset sub-
tracts onset). However, either reducing the onset thresh-
old from 100ms to 50ms or adding the offset criterion de-
creases precision and recall significantly. This indicates
that our system does not estimate the absolute onset/offset
times precisely. This is not a surprise, since our current
system does not have an onset/offset detection module.

5. CONCLUSION

Wee presented a novel system for multi-pitch tracking. Our
system first estimates pitches and polyphony in each time
frame. Then pitch trajectories are formed by constrained
clustering pitch estimates across frames. Our system achieved
promising results on ten real music pieces.

Currently, when clustering the pitches into trajectories,
only harmonic structure is used. Future work includes in-
corporating musicological information into clustering.

This work was supported by National Science Founda-
tion grant IIS-0643752.
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