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ABSTRACT is a more advanced problem, which we dsllulti-pitch

Tracking (MPT)
This paper presents a novel system for multi-pitch track-  Multi-pitch tracking is similar to stream organization in
ing, i.e. estimate the pitch trajectory of each monophonic Auditory Scene Analysis (ASA) [5], which is described as
source in a mixture of harmonic sounds. The system con-a grouping process of distinct acoustic events into a sin-
sists of two stages: multi-pitch estimation and pitch tra- gle perceptual entity, i.e. a stream. In [5], Bregman de-
jectory formation. In the first stage, we propose a new scribes two main grouping processes in stream organiza-
approach based on modeling spectral peaks and non-peaion. Simultaneous groupinig to “integrate components
regions to estimate pitches and polyphony in each singlethat occur at the same time in different parts of the spec-
frame. In the second stage, we view the pitch trajectory trum”. Sequential groupings to “put together events that
formation problem as a constrained clustering problem of follow one another in time”. It is noted that MPE involves
pitch estimates in all the frames. Constraints are imposedonly simultaneous grouping, where harmonics of a sound
on some pairs of pitch estimates, according to time andsource are integrated into a single pitch. Based on MPE,
frequency proximity. In clustering, harmonic structure is note formation also involves sequential grouping, where
employed as the feature. The proposed system is tested ofyroximate pitches are integrated in a small time scale into
10 recorded four-part J. S. Bach chorales. Both multi-pitch notes. MPT also involves sequential grouping, but in a
estimation and tracking results are very promising. In ad- much larger time scale, i.e. the whole music piece.
dition, for multi-pitch estimation, the proposed system is  \yti-pitch tracking is closely related to monaural source
shown to outperform a state-of-the-art multi-pitch estima- separation, which in fact estimates more information, i.e.
tion approach. the timbre of each source. A number of source separation

systems [6—8] are built on multi-pitch estimation results.

1. INTRODUCTION Other methods [9] usually train prior source models from

solo excerpts. Those methods [10, 11] not relying on pitch

Multi-pitch analysis is a fundamental research problems in estimation results nor prior source models utilize the same

music information retrieval (MlR) Pitch anaIySiS results amount of information as MPT, but they are On|y tested on
can provide helpful information for many other applica- mixtures of two or three sounds.

tions, such as automatic music transcription, audio source Multi-pitch tracking is a difficult problem. Even for

separation, content-based music search, etc. This tasky mans; only highly trained musicians have the ability to
however, remains challenging and existing methods do Nty ¢k concurrent pitch trajectories in listening. Therefore,

match human ability in either accuracy or robustness. some researchers proposed to only detect the main melody
Due to the complexity of multi-pitch analysis, researchersine and bass line of a polyphonic music [12, 13].
try to break it into different subproblems#dulti-pitch Es-

timation (MPE)[1, 2] usually refers to estimating pitches
and the number of concurrent pitches (polyphony) in each
single time frame. Based on MPHEpte Formation3, 4]
forms notes using pitch estimates in adjacent frames.
These two subproblems are important, however, they do

To our knowledge, few systems address the multi-pitch
tracking problem. Kameoka et al. [14] proposed a multi-
pitch analyzer based on harmonic temporal structured clus-
tering that jointly estimates pitch, intensity, onset and dura-
tion of each underlying source. Chang et al. [15] presented
. = . a multi-pitch tracking system that and tracks pitches into
not constitute the whole multi-pitch analysis problem. In note contours using Hidden Markov Models. Although

a piece of polyphqmc music consisting °f,se",era' gound these methods track concurrent pitch trajectories of mul-
sources (usually different instruments), estimating p'tCheStipIe sound sources, they are only evaluated in the multi-

and finding the pitch trajectory for each underlying source, pitch estimation and note formation level [14, 15]. La-

grange and Tzanetakis [16] proposed a sound source sepa-
Permission to make digital or hard copies of all or part of this work for ration method that streams spectral peaks. It was not, how-
personal or classroom use is granted without fee provided that copies areever, evaluated on pitch tracking performance [16].
not made or distributed for profit or commercial advantage and that copies  |n this paper, we propose a system to address the MPT
bear this notice and the full citation on the first page. problem. Our system differs from previous systems in sev-
© 2009 International Society for Music Information Retrieval. eral ways. We start with multi-pitch estimation, where we
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Note Formation (Secton 3.5) ] tional independence between peaks, given a set of FOs. In
[ Pitch trajectory/note sequence for each source | addition, we consider the probability that a peakdsmal
(caused by some harmonic) spurious(caused by other

reasons). Then the peak likelihood is defined as

Figure 1. System overview. K
Loea®) = []p(fr axl6) @)
propose a new method that models spectral peaks and non- k=1
peak regions. Given pitch estimates for individual frames, K
we cast pitch trajectory formation as a constrained clus- 11D _p(fr:axls,0) P (skl0) (3)
tering problem, where each cluster corresponds to a trajec- k=1 s
tory. Harmonic structure is used as the feature of each pitch
in clustering. Finally, note formation happens after pitch
trajectories are formed, instead of forming notes and then
placing them in streams, as previous systems have done.
Figure 1 shows the system structure. We address th
MPT problem in two stages. The first stagemsilti-pitch
estimation(Section 2), where pitches and polyphony in
each frame are estimated, and then refined using estimate
in neighboring frames. The second stageiteh trajec-
tory formation (Section 3). Initial pitch trajectories are
formed by grouping pitch estimates across frames accord-
ing to pitch height. Within each initial trajectory, pitch es-
timates that are close in frequency and contiguous in time
are grouped to fornmotelets Final pitch trajectories are
obtained through constrained clustering of pitch estimates,
where must-link constraints are imposed on pitch pairs in p(fe,ar|Fo) = p(felFo)p(aklfr, Fo)  (4)
each notelet and cannot-link constraints are imposed on — p(dilFo) p (an| fi, ha) )
pitch pairs of concurrent notelets. From the view of Audi- PR%k[T0) PRk Tk, ik

tory Scene Analysis, the first stage is simultaneous group-ywhereqd, — fi — Fy — 12log, hy, is the frequency de-

whereK is the number of detected peaks;is the binary
variable to indicate whether theth peak is normald, =
0) or spurious § = 1).

In modelingp (fx, ax|sk = 0,8), we notice that a nor-
Cmal peak may be generated by several FOs when their har-
monics overlap at the peak position. In this case, how-
ever, the probability is conditioned on multiple FOs, which
feads to a combinatorial problem in training we wish to
avoid. Instead, we adopt the binary masking assumption
[17], i.e. each peak is generated by only one FO, the one
having the largest likelihood to generate the peak. Thus
p (fx, ax|sk = 0,0) is approximated byhax roce p(fr, ax|Fo)-
For eachFy € 6, a harmonic numbet,, is calculated as
the nearest harmonic position B§ from f;. Then,

ing and the second stage is sequential grouping. viation of thek-th peak from its corresponding harmonic
position in the logarithmic frequency domain.
2 MULTI-PITCH ESTIMATION In modelingp (fx, ax|sx = 1, 8), 6 can be ignored, since

spurious peaks are assumed to be unrelated to FOs:
2.1 Multi-pitch Estimation In A Single Frame

. o . . p(fr,ak|sk =1,0) = p(fi,arlsk = 1) (6)
In multi-pitch estimation, we break the music audio into 46

ms frames with a 10 ms hop size. We estimate polyphony = To model Lnon-peak regiok®), it is noted that instead of
and pitches in each time frame, but do not group estimatestelling us where FOs or their ideal harmonics should be,
across adjacent frames into notes or trajectories. We viewthe non-peak regions tell us where they should not be. A
this problem (given polyphonyV) as a Maximum Likeli- good set of FOs would predict as few harmonics as pos-
hood parameter estimation problem in the frequency do-sible in the non-peak regions. Therefore, we define the
main. The parameters to be estimated are the set of pitcheson-peak region likelihood in terms of the probability of



From polyphonic (random chord) data

P(s1|0) approximated withP(sg), then learned as the proportion of spurious peaks
p(di|Fo) approximated witlp(dy,), then learned as a GMM from normal peaks
p(ak|fx, hi) learned non-parametrically from normal peaks
o(fr,arlsk = 1) learned as a 2-D single Gaussian from spurious peaks

From monophonic (individual note) data
P(ep, = 1|Fp) learned non-parametrically from normagaks

Table 1. Model parameters that are learned from the training data.

not detecting any harmonic in the non-peak regions, given returned as the polyphony estimate:
an assumed set of FOs. Again, with the conditional inde-
pendence assumption of non-peak regions, the likelihood N = min n,

be defined as: 2
can be defined as: st. A(n)>T-A(M) (8)

Lion-peak regioht) = FH19 H L= P(en=1[F) (7) whereA(n) = c(é”) — ﬁ(él) is the maximum increase
O et of likelihood that could be achieved when the polyphony is
set to ben. M is the maximum allowed polyphony which

whereNN is the polyphonygy, is a binary variable that in-  is setto 9 in all experimentd is a learned threshold which

dicates whether thé-th harmonic ofF; is detected;Fnp is set to 0.88 ( a value chosen by a machine learner us-
is the set of frequencies in the non-peak regidiiss the ing the monophonic and polyphonic training data). This
largest harmonic number we consider. polyphony estimation method works well on a large data

A harmonic not being detected in the non-peak region set containing both music pieces and block musical chords
is because the corresponding peak in the source signal wawith polyphony from 1 to 6.
weak or not present (e.g. even harmonics of clarinet). There-
fore, this probability can be learned from monophonic train- 2.2 Refine Pitch Estimates Using Neighboring Frames

ing data, e Fh.e monophonic notes used to generate theI'here are often insertion, deletion and substitution errors
polyphonic training d"’_ltfa_' _ _ in the multi-pitch estimation of a single frame. We pro-
The above probabilities are learned in monophonic or hse 4 refinement method using estimates in neighboring
polyphonic training data, as described in Table 1. The frames: For each frame we build a weighted histogram
monophonic_ train_ing data are monophonic notes se!ectedin the frequency domain, where each bin corresponds to
from the University of lowa data sét The polyphonic 4 semitone in the pitch range. Then, a triangular weight-
training data are random_lym|xed chords of poI_yphony from ing function centered at is imposed on a neighborhood
210 6, generated by mixing the above mentioned mono- uf 4 \whose radius is frames. The refined polyphony esti-
phonic notes. Spectral peaks and non-peak regions are demate v s calculated as the weighted average of polyphony
tected and collected in all the frames of the training data. ggtimates in all the frames in this neighborhood. T¥e
Ground-truth FOs are obtained by YIN [18], a single pitch pjns with the highest histogram values are selected to re-
detection algorithm, on each note prior to mixing. The fre- construct refined pitch estimates. For each of these bins, if
quency deviation of each peak from the nearest harmoniCinere is an original pitch estimate in framhat falls inside
of any ground-truth FO is calcullated. If the deviation is Ie;s this bin, the original pitch estimate is used as the refined
than a quarter-tone, the peak is labeled normal, otherwiseyjtch estimate. Otherwise, the refined pitch estimate is cal-
spurious. The “a quarter-tone” threshold is used here wasgjated as the weighted average frequency of all the pitch
selected in accordance with the standard tolerance used iRstimates in this neighborhood that fall inside this bin. In
measuring correctness of FO estimation. our system, the radiusis set to 9 frames. This method

So far, given a set of F08, its likelihood £(8) can be  removed a number of inconsistent estimation errors.
calculated in Eq. (1). The search space of the maximum

likelihood solutiond, however, is very large. We constrain
this problem with a greedy search strategy. We start from

an empty seéo. In each iteration, we add an FO estimate Given pitch estimates in all frames, we view pitch trajec-
N an+1 . . . 1 1 1
to 6" to get a new sef L that gets maximum likelihood tory formation as a constrained clustering problem, where

among all the possible values of the newly added FO. This 82ChPitch trajectorycorresponds to a cluster.
iteration terminates whem = N, the given polyphony.

If the polyphony is not given, we need to decide when
to terminate. Sincél(én) increases with, we propose a  Constrained clustering [19,20] is a class of semi-supervised
simple threshold-based method. The minimum number of learning algorithms that make use of domain knowledge
FOs that achieves a likelihood greater than the thresiBold during clustering. Constraints can be imposed on different

levels, where the instance level is the simplest and most
1 http://theremin.music.uiowa.edu/ common one. In instance-level constraints, there are two

3. PITCH TRAJECTORY FORMATION

3.1 Constrained Clustering




basic forms:must-linkandcannot-link A must-link con- This results in an initial set of track assignments that
straint specifies that two instances should be assigned tds reasonably correct. By assigning trajectory labels on a
the same cluster. A cannot-link constraint specifies that frame-by-frame basis, assuming a fixed small humber of
two instances should not be assigned to the same cluster. trajectories, and only forming notelets from within sets of
For our pitch trajectory formation problem, we adopt adjacent pitch estimates of the same trajectory, we greatly
these two constraints. A must-link is imposed between two reduce the space searched. This provides a reasonable start-
similar pitches in adjacent frames, since they probably be-ing point and bypasses the NP-completeness problem.
long to the same trajectory. A cannot-link is imposed be-  Before showing how we improve on this initial solution
tween two pitches within a frame, due to our assumption by minimizing Eq. (9), we first explain the feature we use.
that sources are monophonic. We then formulate the clus-
tering problem to minimize the intra-class distanteas 3.3 Harmonic Structure

the K-means algorithm does: .
gor Feature vectors in Eg. (9) should have the property that

K they are close in the same trajectory and far in different tra-
T=>">" lxi—cil? (9)  jectories. Pitch height is not suitable because the underly-
k=1z,€Ty ing pitch estimates may show octave errors and the melodic

lines overlap in range. Harmonic structure has been proven
i ' - ~ to be a good choice [10, 11] for music played by harmonic
vector in trajectoryl’; andcy is the mean feature vector i jhstruments, which is defined as the vector of relative am-
trajectoryTy; || - || denotes the Euclidean distance. plitudes of harmonics of a pitch. Harmonic structures of
Wagstaff et al. [19] proposed a constrained K-means the same instrument are similar, even if their pitches and
clustering algorithm, which iteratively changes the cluster | qness are different. On the other hand, different instru-
labels of all points, without violating any constraint. For  ments usually have very different harmonic structures [10].
our multi-pitch tracking problem, however, this algorithm e calculate harmonic structure as follows: First, har-
does not work. The reason is that almost every pitch s-yonics of each pitch are found from spectral peaks. For
timate has must-links or cannot-links to other points, so it 4yerjapping harmonics of different pitches, the peak like-
is almost impossible to change a pitch’s label without vio- |ihood in Eq. (4) is used to distribute energy to each pitch.

lating any constraint. In addition, Davidson and Ravi [20] pyarmonic structures are then normalized to have the same
proved that finding a feasible solution, i.e. a label assign- ¢4 energy. The first fifty harmonics are used here.
ment without violating any constraint, of a clustering prob-

lem containing cannot-link constraints is NP-complete.
We now propose an iterative greedy algorithm that finds
a low-cost (in terms of Eg. (9)) assignment of pitches to We start from the initial set of pitch trajectories created in

whereK is the number of pitch trajectories; is a feature

3.4 Final Pitch Trajectory Formation

trajectories within a reasonable time. Section 3.2, where pitches are assigned trajectory labels
based on pitch height, and then placed into notelets based
3.2 Initial Pitch Trajectory Formation on time and pitch proximity. All pitch estimates compris-

] ing a notelet share the same trajectory label. All notelets
Although the general problem is NP-complete, we can re- ihat share a label form tajectory. We now consider re-

move some constraints to make it tractable. A trivial x- assigning notelets to different trajectories to minimize the
ample is to remove all constraints, where random label as-.yst function in Eq(9).

signment can be a solution.

Instead of random assignment, we utilize the intrinsic
structure of polyphonic music to assign initial labels. Note
that pitch trajectories (e.g. melody and baseline) are roughly
ordered in pitch, although sometimes they interweave. Since

there are at mosk™ pitches in each frame, we sort them ' -I_I I
from high to low and assign labels frohto K. R S S S

Then must-links are imposed on similar pitches that are
in adjacent frameand have the same initial trajectory la-
bel. The maximal must-link difference between pitches in
adjacent frames is set to 0.3 semitones (30 cents). Pitches )
connected by must-links form a short trajectory, which we Figureé 2. lllustration of a swap-set (the rounded rectan-
call anotelet since it is supposed to be some part of a gle) for a notelet (the bol'd sollld line). Solid and dashed
note. Once notelets are formed, cannot-links are imposedN€S represent notelets in trajectofy and 7;, respec-
between all pitches in two notelets that overlap more than tiVely: Cannot-link relations are indicated by arrows.
30ms. We say that two such notelets are iceanot-link Suppose we want to change the trajectory of a notelet
relation. We allow the 30ms overlap within a melodic line from T}, to 7;. We cannot do this in isolation, since there
as it may be reverberation or ringing of a string. We chose may be a notelet iff; that overlaps and we assume mono-
conservative values for these parameters to ensure that theghonic pitch trajectories. We could simply swap the tra-
are reasonable for common real-world scenarios. jectories for two overlapping notelets. This, however may

Pitch

A 4

Time




For each notelet, with trajectoryTy, % Initial Final
Jo = cost of current trajectory assignments (Eqg. (9)) No. | Precision Recall Precision Recall
Jbest = Jo 1 66.9:-3.2 66.9:3.2 | 82.4+4.9 71.3t55
For each trajectoryf;, such thafl; # T} 2 52.3t6.5 52.146.5| 64.148.8 52.4:7.9
Find the swap-set betweédih andT}, containingn 3 61.0:8.5 59.3t8.7 | 78.3t11.5 70.812.7
J = (Eq. (9)) if we swap every notelet in the swap-set 4 81.8:5.0 65.3:7.4 | 82.6£5.4 73.9t5.8

If J < Jpestr Jvest = J, End

End Table 3. Frame-level evaluation results (Meggtd) for
If Jyest < Jo, Perform swap that producds..;, End each pitch trajectory. Track No. from 1 to 4 corresponds
End to the 4 parts of the quartets. “Initial” refers to the initial
pitch trajectory formation (Section 3.2); “Final” refers to
Table 2. The pitch trajectory formation algorithm. the final pitch trajectory formation (Secti@¥4)
cause a chain reaction, since the swap may cause new over- % Precision Recall
laps within a trajectory. Instead, we select two trajectories  KlapuriO6[1] 87.2£2.0 66.2£3.4
and pick a notelet from one of the trajectories. We then  Multi-pitch estimation(MPE) | 84.9£1.7 79.9+2.9
find all notelets in these two trajectori€g, andT; that Multi-pitch tracking(MPT) 88.6+1.7 77.0+3.5

connect tn via a path of cannot-link relations (defined in ) ) ) .
Section 3.2). We call this thewap-setas illustrated in Table 4. Frame-level evaluation results in the mixture in-

Figure 2. These are the notelets affected by a potential tra-St€ad of each trajectory.

Jseectt(;?é ZVV\\'/Zp b:;\’\t'gegt:]v;? ?zttﬁgttsﬁaﬁ"i:gﬁ:je:;l:n Ziév?ﬁeis called correct if it deviates less than a quarter-tone from
new tra'ectoprp are egvalua'éed with the cost functi())/h in E the pitch in the ground-truth pitch trajectory. Then preci-
J y . 9- sion and recall are calculated for each pitch trajectory by
(9). Table 2 describes the process we use to swap trajec-
i i i i . #cor #cor
tprles fo'r notelets until the'trajectorlles of all notelets reach Precision— Recall—
fixed points. In our experiment, this usually takes 3 to 4 #est #ref

rounds (where a round is a traversal of all notelets).

(10)

where #cor, #est and #ref are the number of correctly esti-
mated, estimated and reference pitches, respectively.

Table 3 presents the average frame-level evaluation re-
After pitch trajectories are formed, we form notes in each sults on the 10 pieces. The final tracking results are com-
trajectory from the notelets. Two notelets are considered pared with the initial tracking results obtained from Sec-
to be in the same note if the time gap between them is lesstion 3.2, which serves as a baseline obtained from multi-
than 100ms and their frequency difference is less than 0.3pitch estimation. For all four tracks, the proposed pitch
semitone. Then the pitches in the gap are reconstructedrajectory formation method significantly improves either
using the average frequency of the note. Notes of lengthprecision or recall from the baseline method. For Track 3,
less than 100ms are considered spurious and removed. Th#is improvement is up to 17.3% in precision and 11.5%
0.3 semitone parameter is the same as the one in imposind recall. In addition, in both initial and final tracking, re-
must-links. The 100ms parameter is set without tuning to sults of Track 1 and 4 are better than Track 2 and 3. This
adapt to the tempo and note lengths of the test music. is in accordance with previous researchers’ observations
that melody and baseline are easier to transcribe than other
source streams [12].

Table 4 presents the frame-level evaluation results. We
The proposed system was tested on 10 real music perforcompare our system with KlapuriO6 [1], a state-of-the-art
mances, totaling 330 seconds of audio. Each performancenulti-pitch estimation approach. We used Klapuri's code
was of a four-part Bach chorale, performed by a quartet and suggested parameter settings. We can see that the best
of instruments: violin (Track 1), clarinet (Track 2), tenor precision is obtained by MPT (Section 2+3), while the best
saxophone (Track 3) and bassoon (Track 4). Each musirecall is obtained by MPE (Section 2). KlapuriO6 gets a
cian’s part was recorded in isolation at 44.1 kHz, while the high precision, which is indistinguishable from MPT, but
musician listened to the others through headphones. Audiaits recall is much lower than both MPE and MPT. From
mixtures were created by summing the four tracks. In test- MPE to MPT, precision has a significant improvement of
ing, each piece was broken into 46 ms frames with center3.7%, while the two recalls are indistinguishable, consid-
times spaced every 10 ms. ering the variances. It indicates that pitch trajectory forma-

The ground-truth pitch trajectories of each testing piece tion improves the multi-pitch estimation results.
were estimated using YIN [18] with manual correctionson  We also evaluate our system at the note-level in the mix-
monophonic sound tracks prior to mixture. The ground- ture, as other researchers do [3,4,15]. Itis evaluated in two
truth notes (frequency, onset and offset) for each sourceways. In the first way (Onset), a note estimate is correct if
were obtained by segmenting its pitch trajectory manually. its frequency (average over all pitch estimates in this note)

We evaluate the proposed system at the frame-level. Fordeviates less than a quarter-tone from a ground-truth note,
each estimated pitch trajectory, a pitch estimatefiame and its onset time differs less than 50ms/100ms from the

3.5 Note Formation

4. EXPERIMENT



% Precision Recall AR 4]
Onset(50ms) 49448 58.0:4.8 76.72.8
Onset(50ms)+0f | 34.9+5.3 41.2t5.8 87.8:1.8
Onset(100ms) 65:64.7 77.4:3.1 73.A#3.1
Onset(100ms)+0f| 46.0£5.5 54.3t5.5 85.142.3

Table 5. Note-level evaluation results in the mixture in-
stead of each trajectory.

ground-truth onset time. The second way (Onset+Off) has[7
the same requirements for frequency and onset time, but
also requires that each offset time estimate deviate from the
true offset time by less than 20% of the true note duration.
Precision and recall are calculated by Eq. (10), where #cor,
#est and #ref are the number of correctly estimated, esti-
mated, and reference notes, respectivailyerage Overlap
Ratio (AOR)between correctly estimated notes and their
ground-truth notes is calculated as [

min{offset§ — max{onset$ (11)
max{offsetg — min{onset$) [10]

AOR = Average(

Given a correctly estimate note and its corresponding ground
truth note, “onsets” is the set of onset times for both the es-
timated and the and the true note and "offsets” is similarly
defined. “Average” is over all correctly estimated notes.
Table 5 shows the note-level evaluation results. In Onsdi 1]
(100ms), both precision and recall are promising, and AOR
value is high. This indicates that our system outputs good
note estimates in both frequency and duration (offset sulj12]
tracts onset). However, either reducing the onset thresh-
old from 100ms to 50ms or adding the offset criterion de-
creases precision and recall significantly. This indicates
that our system does not estimate the absolute onset/offggg)
times precisely. This is not a surprise, since our current
system does not have an onset/offset detection module. [14]

5. CONCLUSION

Wee presented a novel system for multi-pitch tracking. Our
system first estimates pitches and polyphony in each timi-5]
frame. Then pitch trajectories are formed by constrained
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