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This Work

> Propose extensions to classic filterbank learning approach

> Employ module as frontend to the task of piano transcription

o Replace Mel Spectrogram stage in simple model



Features for MIR

> Commonly assume transforms like STFT, CQT, etc.,

are the best representation of audio for DNNs

o May not be the case for all MIR tasks

Frequency Response




Complex Filterbanks

> These transforms are just complex filterbanks with fixed weights!

> (Can represent these with neural networks

o Fine-tune or learn weights from random initialization
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Filterbank Learning (Classic Approach)

> Learn real and imaginary parts independently (or just real)

> Combine into a single magnitude response with L, pooling

Feature Map




Pitfalls

> Learned filters are not analytic
o Not shift-invariant

o Small hop-size required

o Energy at negative frequencies

Filter Weights (u = 166)

FFT Response (u =166)
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Pitfalls

Filter Weights (u=71)

> Learned filters are often noisy

o No localized frequency response

o Very hard to interpret

FFT Response (u=71)
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Proposed Techniques

> Only learn the real part of filter and infer imaginary part

o Hilbert transform yields imaginary counterpart to a signal

m Such that the resulting filter is analytic (shift invariant)

> Apply variational dropout as regularization to induce sparsity

o Add Gaussian noise with |earned variance to response




Experiments

>

>

Frontend to Onsets & Frames piano transcription model
Train on MAESTRO and evaluate on MAESTRO/MAPS
Experiment with different variations/initializations

Conduct an ablation study on proposed techniques



Classic + Random

FFT Response V Filters
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Hilbert + Random

FFT Response V Filters
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Hilbert + Random + Variational Dropout

FFT Response V Filters
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Hilbert + Random + Variational Dropout

Filter Weights (i = 31) - Filter Weights (= 167)
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Hilbert + Random + Variational Dropout
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Hilbert + Random + Variational Dropout
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Discussion

>

>

>

Learned filterbanks underperform standard spectral features
Random-initialization on-par with VQT initialization

Lots of interesting observations from filter visualization



Summary

> Investigated several variations of a complex filterbank learning

module as a frontend for a simple piano transcription model

> Techniques to learn analytic filters and to enforce sparsity

All code is available at
https://github.com/cwitkowitz/sparse-analytic-filters

Many more filters can be viewed at https://arxiv.org/abs/2108.10382
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https://arxiv.org/abs/2108.10382

