

Overview

- The pairwise likelihoods of string-fret (S/F) combinations are estimated using a large collection of symbolic tablature [1].
- A novel inhibition loss incorporating the estimated likelihoods is proposed for deep learning based models.
- The output layer of a baseline guitar tablature transcription model [2] is re-formulated and augmented with the inhibition loss.

Guitar Tablature Transcription

Generate a 6-hot vector $y_{s,f,n}$ for each frame n in a piece of audio, where 1s correspond to the chosen fret class $f \in \{-1, 0, 1, ..., F\}$ for each string $s \in \{1, ..., 6\}$. We use $c \in \{1, ..., C\}$ interchangeably to denote combinations of string and fret (S/F), where $C = 6 \times (F+2)$.

6 - e		 	 	 1	 	1	 	
• _								
В								
G								
							Ŭ	
D								
A								
1 C								
1 - C	۹						 	I

Output Layer Formulation

Contemporary tablature transcription models [2, 3] apply the **softmax** activation across fret classes for each string at the output layer.

$$L_{CCE} = -\frac{1}{N} \sum_{n=1}^{N} \sum_{s=1}^{6} \log \left(z_{s,f',n} \right)$$
(1)

This treats transcription as 6 independent classification tasks, ignoring the typically high correlation between the S/F combinations making up a fingering. We re-formulate the output layer using **sigmoid ac**tivations, allowing us to introduce a novel inhibition loss.

$$L_{BCE} = -\frac{1}{N} \sum_{n=1}^{N} \sum_{c=1}^{C} t_{c,n} \log (z_{c,n}) + (1 - t_{c,n}) \log (1 - z_{c,n})$$
(2)

Datasets

DadaGP [1]

- Large collection of *GuitarPro* files featuring tablature for many popular full-length songs.
- Includes artists spanning many musical styles, with a bias toward rock and metal.
- We process all guitar tracks in standard tuning, yielding 33967 pieces of symbolic tablature.

GuitarSet [4]

- Comprises roughly 3 hours of acoustic guitar audio with string-level note annotations.
- Features 6 guitarists playing 2 unique interpretations over 30 different chord progressions.

A Data-Driven Methodology for Considering Feasibility and Pairwise Likelihood in Deep Learning Based Guitar Tablature Transcription Systems Frank Cwitkowitz¹, Jonathan Driedger², and Zhiyao Duan¹

¹Audio Information Research Lab, University of Rochester, ²Chordify

Estimating Pairwise Likelihood

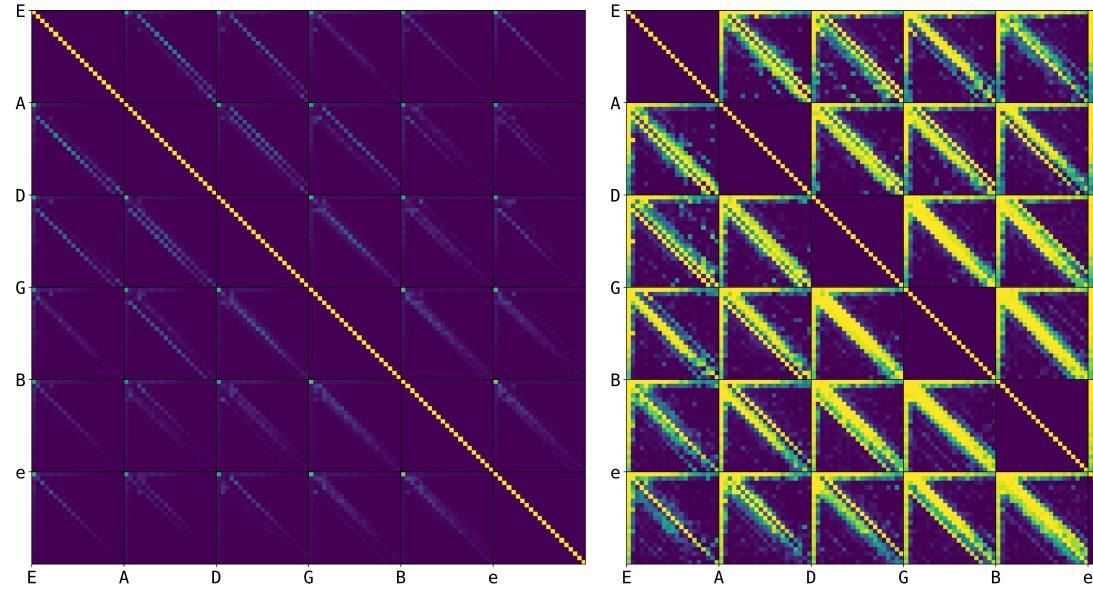
We can estimate the pairwise likelihood of two S/F combinations c_i and c_j using an arbitrary collection of symbolic tablature data (*e.g.*, DadaGP [1]). Given the symbolic tablature for a single track, we compute the intersection over union (IoU) of frame-level occurrences for all pairs of S/F combinations.

$$inter(i,j) = \sum_{n=1}^{N} t_{c_i,n} \wedge t_{c_j,n} \quad union(i,j) = \sum_{n=1}^{N} t_{c_i,n} \vee t_{c_j,n}$$

Let $\mathcal{T}'(i, j)$ be the set of tracks where c_i and c_j , independently, each occur in at least one frame. The IoU of the pair is averaged across these valid tracks

$$IoU(i,j) = \frac{1}{|\mathcal{T}'(i,j)|} \sum_{t \in \mathcal{T}'(i,j)} \frac{inter(i,j)_t}{union(i,j)_t},$$

where $|\mathcal{T}'(i,j)|$ is the cardinality of $\mathcal{T}'(i,j)$. Note this is only valid for pairs where $|\mathcal{T}'(i,j)| > 0$. We set IoU(i,j) = 0 for all pairs where $|\mathcal{T}'(i,j)| = 0$.



Inhibition Loss

We introduce a novel loss term to inhibit the co-activation of unlikely pairs:

$$L_{inh} = \frac{1}{2N} \sum_{n=1}^{N} \sum_{i=1}^{C} \sum_{j=1}^{C} z_{c_i,n} z_{c_j,n} w(c_i, c_j).$$

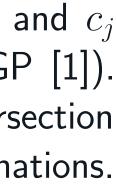
The product for every combination of activations is taken and scaled by an inhibition weight, a penalty between 0 and 1 for producing high activations for the combinations in the pair in a single frame. The result is summed over all combinations. We set the inhibition weights to be the complement of the pairwise likelihoods estimated using Equation (4), boosted with parameter b:

$$w(c_i, c_j) = (1 - IoU(i, j))^b.$$

Including a scaling term λ for balancing the two terms, the total loss becomes

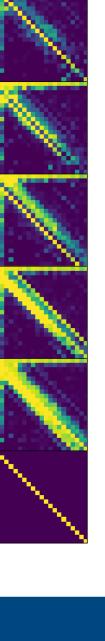
$$L_{total} = L_{BCE} + \lambda L_{inh}.$$

Experiments



(3)

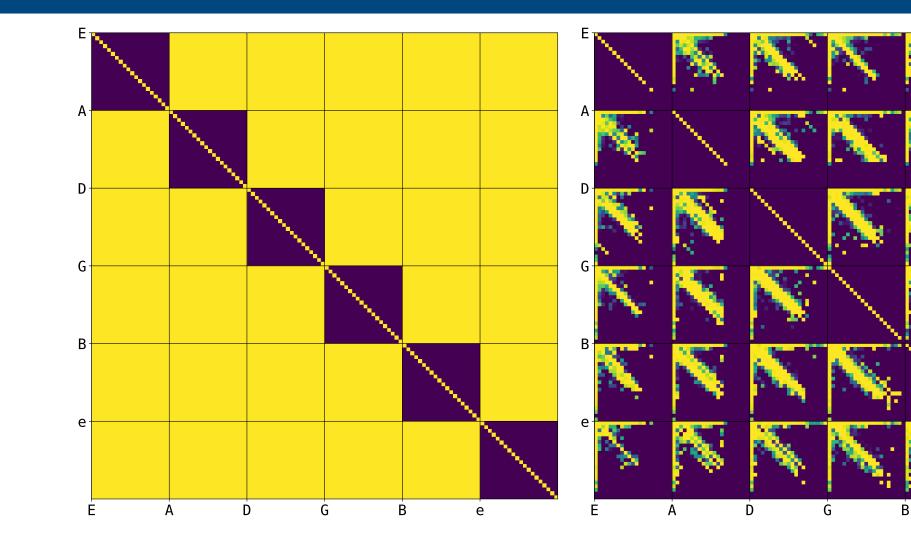
(4)



(5)

(6)

()



• Employ TabCNN [2] as a baseline model for guitar tablature transcription.

- Train and evaluate on GuitarSet [4] following 6-fold cross-validation schema [2].
- Experiment with holding out an extra dataset split for validation.
- Experiment with inserting a uni-directional LSTM before the output layer.
- Experiment with variations of the proposed output layer formulation.
- Adopt the metrics proposed in [2], but average across tracks, then folds.
- Compute inhibition losses L_{inh} (b = 1) and L_{inh}^+ ($b = 2^7$) on final predictions.
- Count number of duplicate pitch $E_{d.p.}$ and false alarm $E_{f.a.}$ errors.

Tablature Output Layer	p_{tab}	r_{tab}	f_{tab}	p_{pitch}	r_{pitch}	f_{pitch}	TDR	Linh	L_{inh}^+	$E_{d.p.}$	$E_{f.a.}$
Softmax	0.809	0.692	0.742	0.910	0.762	0.825	0.903	8.87	0.132	21.4	359.8
Softmax w/ Val.	0.775	0.696	0.730	0.895	0.781	0.830	0.886	9.01	0.152	34.2	442.5
Softmax w/ Val./Rec.	0.783	0.757	0.768	0.879	0.835	0.854	0.905	9.27	0.158	24.3	489.6
Sigmoid $(\lambda = 0)$	0.782	0.757	0.767	0.878	0.836	0.854	0.902	9.27	0.154	20.0	503.3
Sigmoid w/ S ($\lambda = 1$)	0.789	0.761	0.773	0.881	0.836	0.856	0.907	9.25	0.155	19.5	485.8
Sigmoid w/ D ($\lambda = 1$)	0.787	0.743	0.763	0.880	0.821	0.847	0.902	9.19	0.147	12.0	481.8
Sigmoid w/ D^+ ($\lambda = 1$)	0.782	0.754	0.766	0.876	0.833	0.852	0.902	9.25	0.143	13.8	496.6
Sigmoid w/ D^+ ($\lambda = 10$)	0.781	0.755	0.766	0.867	0.829	0.845	0.907	9.26	0.132	10.6	504.6

The lack of a solid increase in tablature performance when using the inhibition objective can most likely be attributed to the small size of GuitarSet [4], the presence of some noisy labels which include duplicate pitch errors, and the difference between the distribution of DadaGP [1] and GuitarSet [4]. Overall, we argue that the lower $E_{d.p.}$ and L_{inh}^+ suggests that models trained with D and D^+ produce tablature which is more feasible to play and more consistent with DadaGP [1].

Acknowledgements & References

This work is partially funded by National Science Foundation grants IIS-1846184 and DGE-1922591. All of the code is available at https://github.com/cwitkowitz/guitar-transcription-with-inhibition. [1] Pedro Sarmento et al. "DadaGP: A Dataset of Tokenized GuitarPro Songs for Sequence Models". In: Proceedings of ISMIR. 2021. [2] Andrew Wiggins and Youngmoo Kim. "Guitar Tablature Estimation with a Convolutional Neural Network". In: Proceedings of ISMIR. 2019. [3] Eric J Humphrey and Juan P Bello. "From Music Audio to Chord Tablature: Teaching Deep Convolutional Networks to Play Guitar". In: Proceedings of ICASSP. 2014.

[4] Qingyang Xi et al. "GuitarSet: A Dataset for Guitar Transcription". In: Proceedings of ISMIR. 2018.

