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Overview

•The pairwise likelihoods of string-fret (S/F) combinations are esti-
mated using a large collection of symbolic tablature [1].

•A novel inhibition loss incorporating the estimated likelihoods is pro-
posed for deep learning based models.

•The output layer of a baseline guitar tablature transcription model
[2] is re-formulated and augmented with the inhibition loss.

Guitar Tablature Transcription

Generate a 6-hot vector ys,f,n for each frame n in a piece of audio,
where 1s correspond to the chosen fret class f ∈ {−1, 0, 1, ..., F} for
each string s ∈ {1, ..., 6}. We use c ∈ {1, ..., C} interchangeably to
denote combinations of string and fret (S/F), where C = 6× (F +2).
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Output Layer Formulation

Contemporary tablature transcription models [2, 3] apply the softmax
activation across fret classes for each string at the output layer.

LCCE = − 1

N

N∑
n=1

6∑
s=1

log (zs,f ′,n) (1)

This treats transcription as 6 independent classification tasks, ignoring
the typically high correlation between the S/F combinations making
up a fingering. We re-formulate the output layer using sigmoid ac-
tivations, allowing us to introduce a novel inhibition loss.

LBCE = − 1

N

N∑
n=1

C∑
c=1

tc,n log (zc,n) + (1− tc,n) log (1− zc,n) (2)

Datasets

DadaGP [1]

• Large collection of GuitarPro files featuring tablature for many popular full-length songs.

• Includes artists spanning many musical styles, with a bias toward rock and metal.

• We process all guitar tracks in standard tuning, yielding 33967 pieces of symbolic tablature.

GuitarSet [4]

• Comprises roughly 3 hours of acoustic guitar audio with string-level note annotations.

• Features 6 guitarists playing 2 unique interpretations over 30 different chord progressions.

Estimating Pairwise Likelihood

We can estimate the pairwise likelihood of two S/F combinations ci and cj
using an arbitrary collection of symbolic tablature data (e.g., DadaGP [1]).
Given the symbolic tablature for a single track, we compute the intersection
over union (IoU) of frame-level occurrences for all pairs of S/F combinations.

inter(i, j) =

N∑
n=1

tci,n ∧ tcj,n union(i, j) =

N∑
n=1

tci,n ∨ tcj,n (3)

Let T ′(i, j) be the set of tracks where ci and cj, independently, each occur in
at least one frame. The IoU of the pair is averaged across these valid tracks

IoU(i, j) =
1

|T ′(i, j)|
∑

t∈T ′(i,j)

inter(i, j)t
union(i, j)t

, (4)

where |T ′(i, j)| is the cardinality of T ′(i, j). Note this is only valid for pairs
where |T ′(i, j)| > 0. We set IoU(i, j) = 0 for all pairs where |T ′(i, j)| = 0.
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Inhibition Loss

We introduce a novel loss term to inhibit the co-activation of unlikely pairs:

Linh =
1

2N

N∑
n=1

C∑
i=1

C∑
j=1

zci,nzcj,nw(ci, cj). (5)

The product for every combination of activations is taken and scaled by an
inhibition weight, a penalty between 0 and 1 for producing high activations
for the combinations in the pair in a single frame. The result is summed over
all combinations. We set the inhibition weights to be the complement of the
pairwise likelihoods estimated using Equation (4), boosted with parameter b:

w(ci, cj) = (1− IoU(i, j))b. (6)

Including a scaling term λ for balancing the two terms, the total loss becomes

Ltotal = LBCE + λLinh. (7)

Experiments
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•Employ TabCNN [2] as a baseline model for guitar tablature transcription.

•Train and evaluate on GuitarSet [4] following 6-fold cross-validation schema [2].

•Experiment with holding out an extra dataset split for validation.

•Experiment with inserting a uni-directional LSTM before the output layer.

•Experiment with variations of the proposed output layer formulation.

•Adopt the metrics proposed in [2], but average across tracks, then folds.

•Compute inhibition losses Linh (b = 1) and Linh
+ (b = 27) on final predictions.

•Count number of duplicate pitch Ed.p. and false alarm Ef.a. errors.

Tablature Output Layer ptab rtab ftab ppitch rpitch fpitch TDR Linh Linh
+ Ed.p. Ef.a.

Softmax 0.809 0.692 0.742 0.910 0.762 0.825 0.903 8.87 0.132 21.4 359.8

Softmax w/ Val. 0.775 0.696 0.730 0.895 0.781 0.830 0.886 9.01 0.152 34.2 442.5

Softmax w/ Val./Rec. 0.783 0.757 0.768 0.879 0.835 0.854 0.905 9.27 0.158 24.3 489.6

Sigmoid (λ = 0) 0.782 0.757 0.767 0.878 0.836 0.854 0.902 9.27 0.154 20.0 503.3

Sigmoid w/ S (λ = 1) 0.789 0.761 0.773 0.881 0.836 0.856 0.907 9.25 0.155 19.5 485.8

Sigmoid w/ D (λ = 1) 0.787 0.743 0.763 0.880 0.821 0.847 0.902 9.19 0.147 12.0 481.8

Sigmoid w/ D+ (λ = 1) 0.782 0.754 0.766 0.876 0.833 0.852 0.902 9.25 0.143 13.8 496.6

Sigmoid w/ D+ (λ = 10) 0.781 0.755 0.766 0.867 0.829 0.845 0.907 9.26 0.132 10.6 504.6

The lack of a solid increase in tablature performance when using the inhibition
objective can most likely be attributed to the small size of GuitarSet [4], the presence
of some noisy labels which include duplicate pitch errors, and the difference between
the distribution of DadaGP [1] and GuitarSet [4]. Overall, we argue that the lower
Ed.p. and Linh

+ suggests that models trained with D and D+ produce tablature
which is more feasible to play and more consistent with DadaGP [1].
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