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Abstract: The concept of space–time duality in optics was originally based on the mathe-
matical connection between the diffraction of beams in space and the dispersion of pulses in
time. This concept has been extended in recent years from the temporal analog of reflection
for optical pulses to photonic time crystals in a medium where refractive index varies with
time in a periodic fashion. In this review, I discuss how the concept of space–time duality
and the use of nonlinear optics has led to many advances in recent years. Starting from the
historical origin of space–time duality, time lenses and their applications are reviewed first.
Later sections cover phenomena such as soliton-induced temporal reflection, time-domain
waveguiding, and the formation of spatiotemporal Bragg gratings.
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1. Introduction
In the context of optics, space–time duality was noticed first by Tournois in 1964 [1]

and a few years later by Akhmanov et al. [2]. It is based on the mathematical equivalence,
under some conditions, of two equations governing the diffraction of beams in space and
the dispersion of pulses in time. However, it was only after 1988 that space–time duality
was used to develop the concept of a time lens and such lenses were used for temporal
imaging [3–5]. As the name suggests, a time lens plays the role of a conventional lens in the
time domain and can be used for making the analog of a microscope for imaging a time-
varying signal. For this reason, devices acting as time lenses have attracted considerable
attention for optical signal processing [6–9].

In recent years, the concept of space–time duality has been extended in several directions.
An example in nonlinear optics is provided by the spatial and temporal solitons. The un-
derlying equation describing them is the nonlinear Schrödinger (NLS) equation [10]. Spatial
and temporal solitons form when this equation includes the diffractive or dispersive effects,
respectively, [11]. In the context of the Kerr frequency combs, adoption of the Lugiato–Lefever
equation that was developed originally for spatial cavity solitons led to the observation of
temporal cavity solitons [12].

The temporal analog of the phenomenon of reflection, which occurs at any spatial
interface separating two media of different refractive indices, constitutes another example
of space–time duality [13–15]. In this analog, a temporal interface separates two intervals
of different refractive indices in the same medium. It turns out that a moving temporal
interface, which changes the refractive index of a dispersive medium in a region moving
at a constant speed [16], is easier to realize in practice. When an optical pulse interacts
with this moving interface inside a dispersive medium, it splits into two parts, whose
frequencies are shifted such that they travel at different speeds [17–20]. These two parts
correspond to reflected and transmitted pulses and are temporal analogs of the reflection
and refraction at a spatial interface [15]. It is also possible to realize the temporal analog of
total internal reflection and to use it for time-domain waveguiding [17].
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Wave propagation in a medium whose refractive index varies spatially has a long history.
Such an inhomogeneous medium is useful in different contexts such as graded-index fibers [21],
Bragg gratings [22], and photonic crystals [23]. Recent attention to time-varying media [24–26],
where the refractive index varies with time, constitutes another example of space–time duality.
It has led to novel concepts such as photonic time crystals [27–29] and spatiotemporal Bragg
gratings [30].

In this review, I discuss how the concept of space–time duality and the use of nonlinear
optics has led to multiple advances in recent years. Section 2 reviews the historical origin
of space–time duality by focusing on the phenomena of spatial diffraction and temporal
dispersion. Time lenses and their applications are reviewed in Section 3. The focus of
Section 4 is on the temporal analog of reflection and refraction for optical pulses at a
moving temporal boundary inside a dispersive medium. The use of nonlinear effects for
creating such boundaries is discussed in Section 5. Optical solitons, forming inside an
optical fiber through the Kerr effect, are used to discuss the temporal analogs of spatial
reflection, waveguides, and Fabry–Perot resonators. Section 6 is devoted to the case of
periodic temporal modulations of a medium’s refractive index, leading to the formation of
spatiotemporal Bragg gratings and photonic time crystals.

2. Origin of Space–Time Duality
Diffraction and dispersion are fundamental concepts in optics [31,32]. Any optical

beam spreads in space because of diffraction, and an optical pulse spreads in time because
of dispersion [33]. The initial concept of space–time duality was based on the mathematical
equivalence of wave-propagation equations governing these two phenomena under specific
conditions [1,2]; it has been extended further in recent years.

Consider propagation of electromagnetic waves in a linear dispersive medium. As it
is simpler to solve Maxwell’s equations in the frequency domain, it is common to employ
the Fourier transform of the electric field in the form

Ẽ(r, ω) =
∫ ∞

−∞
E(r, t) eiωt dt, (1)

and solve the resulting Helmholtz equation,

∇2Ẽ + k2(ω)Ẽ = 0, (2)

where k(ω) = n(ω)ω/c, n(ω) is the refractive index of the medium at the frequency ω

and c is the speed of light in vacuum. This equation can be used for continuous-wave (CW)
beams or pulsed beams by choosing a suitable range of frequencies.

Let us first consider a CW beam with a narrow spectrum (nearly monochromatic) cen-
tered at a specific frequency ω0. In this case, k = n(ω0)ω0/c becomes constant. Choosing
the z axis along the beam’s direction, one can introduce the slowly varying amplitude A(r)
of the electric field as

Ẽ(r, ω0) = p̂ A(x, y, z) exp(ikz), (3)

where p̂ is a unit vector representing the beam’s state of polarization. If we use Equation (3)
in Equation (2) and neglect the second derivative ∂2 A/∂z2 in the paraxial approximation,
A(x, y, z) is found to satisfy

2ik
∂A
∂z

+
∂2 A
∂x2 +

∂2 A
∂y2 = 0. (4)

This equation governs the diffraction of CW beams in a homogeneous medium with the
refractive index n(ω0) at its frequency ω0.
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Spatial spreading of a CW beam depends on its initial spot size—narrower beams
spread much more rapidly than wider beams [31]. If the spot size of a beam is elliptical
such that its width is much wider in the y direction, the beam will mostly diffract in the x
direction, and its size in the y direction will not change. The same thing happens when the
beam is confined to a planar waveguide that guides it in the y direction. In both cases, the
y derivative can be ignored in Equation (4) to obtain the following simpler equation:

∂A
∂z

− i
2k

∂2 A
∂x2 = 0. (5)

The situation is more complicated for a beam in the form of a short pulse with a
relatively wide spectrum. In the most general case, diffraction and dispersion occur
simultaneously, resulting in the so-called space–time coupling, and one must solve a
four-dimensional problem. The problem is simplified considerably when such pulses are
launched into a single-mode waveguide such as an optical fiber. In this case, the beam does
not spread spatially because of its confinement, and we can focus on the dispersion-induced
spreading of pulses in time.

To include the dispersive effects, we seek solutions of Equation (2) in the form

Ẽ(r, ω) = p̂ F(x, y)B̃(z, ω), (6)

where F(x, y) is the spatial form of the single mode supported by the waveguide. Using this
form in Equation (2) and the resulting modal solution F(x, y), B̃(z, ω) is found to satisfy

∂2B̃
∂z2 + β2(ω)B̃ = 0, (7)

where β(ω) = n̄(ω)ω/c and n̄(ω) is the effective index of the single mode.
Dispersive effects are included by expanding β(ω) in a Taylor series around ω0 and

retaining terms up to second order:

β(ω) ≈ β0 + β1Ω +
β2

2
Ω2, (8)

where Ω = ω − ω0 and βm = (dmβ/dωm)ω=ω0 for m = 0, 1, 2. The parameter β1 is
related inversely to the group velocity, while β2 governs its dispersion and is known as the
group-velocity dispersion (GVD) parameter [33].

Similar to the CW case, one can introduce the slowly varying amplitude Ã as B̃(z, ω) =

Ã(z, ω) exp(iβ0z). Neglecting its second derivative with respect to z, Ã satisfies

2iβ0
∂Ã
∂z

+ [β2(ω)− β2
0]Ã = 0. (9)

Using β2(ω) − β2
0 ≈ 2β0[β(ω) − β0] with the expansion in Equation (8), we obtain the

simple differential equation

∂Ã
∂z

= iβ1ΩÃ +
iβ2

2
Ω2 Ã. (10)

This equation can be converted back to the time domain by using the inverse Fourier transform

A(z, t) =
1

2π

∫ ∞

−∞
Ã(z, Ω) e−iΩt dΩ. (11)
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Noting that −iΩÃ is the Fourier transform of ∂A
∂t , Equation (10) in the time-domain takes

the form
∂A
∂z

+ β1
∂A
∂t

+
iβ2

2
∂2 A
∂t2 = 0. (12)

The β1 term in this equation can be eliminated using a reference frame moving with the
pulse. Introducing t′ = t − β1z as a new time variable, we obtain

∂A
∂z

+
iβ2

2
∂2 A
∂t′2

= 0. (13)

Equation (13) governs the dispersion-induced spreading of pulses in the time domain.
It should be compared with Equation (5), which governs the dispersion-induced spreading
of CW beams in space. The concept of space–time duality stems from the mathematical
equivalence of these two equations. The parameter 1/k appearing in Equation (5) is
replaced with the parameter −β2 in Equation (13). While k = 2π/λ0 is always positive,
β2 can be positive or negative, depending on the wavelength λ0. The important point is
that one should expect similar qualitative behavior to occur in the spatial and temporal
cases. As an example, it is well known that a Gaussian beam maintains its Gaussian shape
as it diffracts in space, even though its width changes because of diffraction [32]. The same
statement can be made for Gaussian pulses dispersing and broadening in time inside a
dispersive medium [33].

As another example of the usefulness of the concept of space–time duality, Figure 1a
shows the diffraction pattern of a narrow slit. The solution of Equation (5) shows that
A(z, x) becomes the Fourier transform of the input field A(0, x) (up to a phase factor) at
a distance far from the plane z = 0, a feature known as the far-field diffraction [31]. As
seen in Figure 1b, this feature implies that the shape of an optical pulse at the end of a
long dispersive fiber would mimic the spectrum of that pulse [8]. As a result, time-domain
measurements of a pulse’s shape at the fiber’s output can provide all frequency-domain
information of the optical pulse launched into it. This technique, known as dispersive
Fourier transform (DFT), provides single-shot spectra of optical pulses and has proven
extremely useful in several areas that include biomedical imaging for observing in real time
spectral changes occurring inside a medium [34–36].

Figure 1. (a) The far-field diffraction pattern of a narrow slit providing Fourier transform of the input
field. (b) The temporal analog showing that the shape of a pulse resembles its spectrum after a long
dispersive medium.
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3. Time Lens and Its Applications
As mentioned in the introduction, space–time duality was used as early as 1988 to

develop the concept of a time lens and to use such lenses for temporal imaging [3–5]. A
time lens may not resemble a conventional lens, but it performs the same function as a lens
in the time domain. As seen in Figure 2a, a lens has curved surfaces such that its thickness
changes along the transverse dimensions. When a plane wave passes through this lens, its
phase front becomes curved because of a spatially varying phase shift ϕl(x, y) imposed by
the lens that leads to its focusing. For a convex lens, this phase shift can be written as [32]

ϕl(x, y) = kdc − k(x2 + y2)/2 f , (14)

where dc is central thickness of the lens of focal length f . Clearly, a time lens should add a
time-dependent phase shift to the incoming pulse that varies as t2. The important question
is, what is the analog of the focal length for a time lens? To answer this and other related
questions, let us solve Equation (13).

Figure 2. (a) The focusing of an optical beam by a lens. (b) The narrowing of a pulse by a time lens
using a dispersive medium.

As Equation (13) is linear, we can solve it with the Fourier-transform method. Using
the Fourier transform relation in Equation (11), Ã satisfies an ordinary differential equation

∂Ã
∂z

=
iβ2

2
ω2 Ã, (15)

where we replaced Ω with ω for notational simplicity. Its solution is given by

Ã(z, ω) = Ã(0, ω) exp
(

i
2

β2zω2
)

. (16)

Thus, GVD modifies the phase of each spectral component of the pulse by an amount that
scales with frequency as ω2. Even though such phase changes do not affect the optical
spectrum, they can modify the pulse shape. It is useful to think of any dispersive medium
of length L as a spectral filter and write Equation (16) in the form

Ã(L, ω) = Ã(0, ω)h̃(ω), h̃(ω) = exp
(

i
2

β2Lω2
)

, (17)

where h̃(ω) governs the action of this spectral filter.
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By taking the inverse Fourier transform indicated in Equation (11), the solution of
Equation (13) is found to be

A(L, t) =
1

2π

∫ ∞

−∞
Ã(0, ω)h̃(ω)e−iωt dω, (18)

where Ã(0, ω) is obtained from

Ã(0, ω) =
∫ ∞

−∞
A(0, t)eiωt dt. (19)

Evoking the convolution theorem, the preceding solution can also be written in the time
domain as

A(L, t) =
∫ ∞

−∞
h(t − t′)A(0, t′) dt′, (20)

where the impulse response of the filter h(t) is obtained from

h(t) =
1

2π

∫ ∞

−∞
h̃(ω)e−iωt dω. (21)

Using the form of h̃(ω) in Equation (17), the impulse response h(t) is found to be

h(t) = (iβ2L)−1/2 exp

(
− it2

2β2L

)
, (22)

where the frequency integration was carried out using

∫ ∞

−∞
exp(−ax2 ± bx) dx =

√
π

a
exp

(
b2

4a

)
. (23)

The impulse response in Equation (22) depends on a single parameter D = β2L,
representing the net group-delay dispersion (GDD) over the medium’s length L. This
suggests that all properties of a dispersive medium should depend on D, including the
temporal analog of the focal length of a lens. Thus, the phase shift imposed by a time lens,
the temporal analog of Equation (14), should have the form [9]

ϕl(t) = ϕ0 + t2/2D f , (24)

where ϕ0 is a constant phase and D f is the focal GDD of the time lens. A time-varying phase
can be related to the frequency chirp imposed on the pulse. Using δω(t) = −(dϕl/dt), a
quadratic time dependence implies a linear chirp δω(t) = −t/D f .

The device used in 1988 as a time lens was a phase modulator [3]. Such devices impose
a sinusoidal phase shift on an optical wave, when a microwave signal is used to modulate
the refractive index of a suitable electro-optic material, such as a lithium niobate (LiNbO3)
crystal (or waveguide). In this situation, the input and output fields are related as

Aout(t) = Ain(t) exp[iϕm cos(2π fmt + θ)], (25)

where ϕm is the maximum phase shift, fm is the modulation frequency, and θ is a phase that
depends on how the modulator is biased. Choosing this phase as θ = π, and expanding
the cosine function in a Taylor series around t = 0, we obtain

Aout(t) = Ain(t) exp[−iϕm + 1
2 ϕm(2π fm)

2t2]. (26)
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Thus, a short pulse whose intensity peaks at t = 0 undergoes a phase shift in the form
given in Equation (14) such that D f = (4π2ϕm f 2

m)
−1. The phase shift is quadratic only if the

pulse width T0 is considerably shorter than the modulation period 1/ fm. For a modulator
operating at 10 GHz, T0 should not exceed 10 ps. Several nonlinear techniques have been
used in recent years for making time lenses with improved properties [9].

Consider the temporal analog of focusing shown in Figure 2b. In the temporal case,
a relatively wide pulse is chirped first by a time lens and then transmitted through a dis-
persive medium whose length is chosen to satisfy the relation D = β2L = D f . In this case,
the output field is obtained from Equation (20) using A(0, t) = Ap(t) exp(it2/2D f ), where
Ap(t) governs the pulse shape and the quadratic phase is imposed by the time lens. The
integration can be conducted for Gaussian-shape pulses. Using Ap(t) = A0 exp(−t2/2T2

0 ),
the input can be written in the form of a chirped Gaussian pulse as

A(0, t) = A0 exp

[
−1 + iC

2

(
t

T0

)2
]

, (27)

where the chirp parameter C = −(T2
0 /D f ) is negative and T0 is related to the full-width

at half-maximum of the pulse as Tp = 1.665T0. By taking the Fourier transform of A(0, t),
we obtain

Ã(0, ω) = A0

(
2πT2

0
1 + iC

)1/2

exp

[
−

ω2T2
0

2(1 + iC)

]
. (28)

The propagation of a chirped Gaussian pulse through a dispersive medium has been
studied in the context of fiber-optic communication systems [33]. Substituting Equation (28)
into Equation (18) and using Equation (23), frequency integration can be performed to obtain:

A(L, t) =
A0√

Q
exp

[
− (1 + iC)t2

2T2
0 Q

]
, (29)

where Q = 1 + (C − i)β2L/T2
0 . This equation shows that a Gaussian pulse remains

Gaussian on propagation, but its width, chirp, and amplitude change as dictated by
the factor Q. Specifically, the chirp changes from its initial value C to become C1 =

C + (1 + C2)β2L/T2
0 . The width of the output pulse becomes minimum when the pulse

becomes unchirped. Using C1 = 0 with C = −(T2
0 /D f ) and D = β2L = D f , this condition

is reduced to

D =
D f T4

0

D2
f + T4

0
≈ D f , (30)

assuming that D f ≪ T2
0 . At the focal distance, the pulse is compressed by a factor of |Q|. It

is easy to show that the minimum width of the pulse is given by Tmin = D/T0. Pulses can
be compressed by a large factor by a time lens for small values of the ratio D f /T2

0 .
Spatial lenses are used routinely for imaging in devices such as cameras and micro-

scopes. In the simplest situation, a single lens of focal length f images an object placed at a
distance s1 on its one side. The image may be magnified (or reduced) and is produced at a
distance s2 that satisfies the following imaging condition:

1
s1

+
1
s2

=
1
f

. (31)

Time lenses were used for time-domain imaging starting in 1988 and follow an anal-
ogous scheme. The object takes the form of a time-varying signal. This signal is passed
through a dispersive medium with D1 = β2L1, before it is chirped by a time lens with
the focal GDD D f . Its imaging occurs when the chirped signal passes though a second
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dispersive medium with D2 = β2L2. As one would expect from space–time duality, the
imaging condition satisfies a relation that is identical to that in Equation (31):

1
D1

+
1

D2
=

1
D f

. (32)

Other imaging properties such as magnification factor follow the same duality scheme. One
application of temporal imaging is to stretch ultrashort pulses so much that their shape can
be measured using a photodetector. It is important to mention that higher-order dispersion
terms, neglected in Equation (8), can produce “imaging abberations” for ultrashort pulses. As
the applications of time lenses related to imaging and optical signal processing have been
discussed in several past reviews [7–9], I focus on more recent advances in what follows.

4. Temporal Reflection and Refraction
Wave propagation in a dielectric medium whose refractive index varies spatially has

been studied for a long time, as it is useful for analyzing optical components such as
graded-index fibers [21], Bragg gratings [22], and photonic crystals [23]. Recent attention
to time-varying media [24–26], where the refractive index varies with time, constitutes
a new example of space–time duality. Even though the phenomena covered in the next
few sections extend the original concept considerably, and some may prefer to call them
analogs, I like to unite them under the umbrella of space–time duality.

4.1. Temporal Boundary in a Dispersive Medium

The simplest situation occurs when the refractive index is changed suddenly at a specific
time in a spatially uniform fashion, resulting in a boundary that is the temporal analog of
the spatial interface between two dielectric media. Just as the reflection and refraction of an
optical beam occurs at a spatial interface, optical pulses must experience the temporal analog
of these two phenomena [13–15]. As it is difficult to produce rapid index changes all across a
medium on femtosecond time scales, experiments have involved low frequencies using water
waves or microwaves [37,38]. Further, effects of chromatic dispersion should be included for
any dielectric medium with a time-varying refractive index.

It turns out that these issues can be addressed with the technique of traveling-wave
modulation, which changes the refractive index of a dispersive medium in a region that
moves at a constant speed [16]. The simplest case, shown schematically in Figure 3,
corresponds to a moving boundary (thick black line) with different refractive indices on its
two sides. When an optical pulse interacts with this boundary inside a dispersive medium,
it splits into two parts, whose frequencies are shifted such that they travel at different
speeds [17–20]. These two parts correspond to transmitted and reflected pulses and are
temporal analogs of the reflection and refraction at a spatial interface [15].

One should ask why temporal reflection requires a frequency shift of pulses, whereas
spatial reflection manifests as a change in the direction of the propagation of the incident
beam. The answer is related to the conservation law that must be satisfied. At a spatial
interface, space translation symmetry is broken. As a result, the energy of the photons is
conserved, but their momenta are not. Recall that a photon’s momentum depends on its
direction of propagation. This is why reflected and refracted waves propagate in directions
different from that of the incident wave. At a temporal boundary, time translation symmetry
is broken. Thus, we expect the momentum to be conserved, but the energy of the photons
can change. As a photon’s energy h̄ω depends on the wave’s frequency, it is the frequency
of an incoming wave that changes during temporal reflection and refraction [13].
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Figure 3. The temporal analogs of reflection and refraction at a temporal boundary (tilted black
line) with different refractive indices on its two sides. Arrows indicate the incident, reflected, and
transmitted waves.

In the case of a moving index boundary, both translation symmetries are broken,
and neither energy nor momentum is conserved. However, in a moving frame in which
index modulation becomes stationary, the refractive index does not depend on the spatial
coordinate z. As the space translation symmetry is preserved in this frame, momentum of
all photons is conserved. Noting that the momentum of a photon of energy h̄ω is related to
the propagation constant as h̄β(ω) at any frequency, β(ω) must remain conserved at all
frequencies. This requirement can be used to study how the wavelength of a probe pulse
changes as it propagates through a time-varying medium [15].

4.2. Mathematical Model

We can use the propagation of Equation (12) for studying temporal reflection by
adding a term to its right side representing the impact of a moving temporal boundary:

∂A
∂z

+ β1
∂A
∂t

+
i
2

β2
∂2 A
∂t2 = iβbu(t − z/vm)A, (33)

where βb = k0δn, δn is the index change at the temporal boundary moving at the speed vm,
and u(t) is the step function. It is useful to work in a frame in which boundary appears
stationary. Introducing a new time variable as T = t − z/vm, Equation (33) becomes

∂A
∂z

+ ∆β1
∂A
∂T

+
iβ2

2
∂2 A
∂T2 = iβbu(T)A, (34)

where ∆β1 = β1 − 1/vm is related to speed of the pulse relative to that of the boundary.
This equation is useful for studying a wide variety of spatiotemporal effects occurring
inside a dispersive medium. It is linear because probe pulses are assumed to be not too
energetic. For intense pulses, a nonlinear term of the form iγ|A|2 A should be added to this
equation [10].

Even without the nonlinear term, Equation (34) resembles the NLS equation because
of the time-dependence of the last term. For this reason, it can be solved numerically with
the same techniques used for solving the NLS equation. One such technique, known as
the split-step Fourier method, alternates between the time and frequency domains for
including the modulation and dispersive effects, respectively, [10]. Another technique
converts Equation (34) to the frequency domain and employs the Runge–Kutta algorithm.
We refer to Ref. [10] for further details.



Photonics 2025, 12, 611 10 of 23

Before solving Equation (34) numerically, it is useful to introduce normalized vari-
ables as τ = T/T0 and ξ = z/LD, where T0 is related to the width of input pulses and
LD = T2

0 /|β2| is the dispersion length. The resulting equation becomes

∂A
∂ξ

+ d
∂A
∂τ

+
i s
2

∂2 A
∂τ2 = iCbu(τ)A (35)

where d = ∆β1LD, s = sgn(β2), and Cb = δn(k0LD) are three dimensionless parameters.
In the moving frame, the temporal boundary remains at τ = 0.

As an example of temporal reflection and refraction in a dispersive medium, Figure 4
shows the results obtained by solving Equation (35) numerically using d = 20, s = 1, and
Cb = 100, values appropriate for a silica fiber [15]. The probe pulse at the input end is
assumed to have a Gaussian shape such that A(0, τ) = A0 exp[− 1

2 (τ − τs)2] with τs = −5.
Temporal evolution shows how the pulse splits into its reflected and refracted parts when
it arrives at the boundary (vertical dashed line) where the refractive index increases by a
small amount (< 10−7 for the parameter values used). Both parts experience frequency
shifts such that their spectra are red-shifted). The magnitude of frequency shift is small for
the transmitted pulse but exceeds 6/T0 for the reflected pulse. The reflected part does not
cross the boundary because of its much larger frequency shift. Blue shifts can occur when
β2 is negative at the wavelength of probe pulses.

Figure 4. The temporal reflection and refraction of a Gaussian pulse at a temporal boundary fixed
at τ = 0 (dashed line) in the moving frame. Spectra show frequency shifts occurring for the two
processes. In both cases, colors show intensity variations on a 50 dB scale.

Spectral shifts can be calculated by invoking the conservation of momentum in the
moving frame in which boundary is stationary. This requires β(ω) to remain unchanged
for the reflected and transmitted parts from its initial value at every frequency within the
probe’s spectrum. Let Ωr and Ωt be the frequency shifts when the probe’s frequency is
ω0 + Ω. The conservation of momentum provides the following expression for these two
shifts [15,19],

Ωr = −Ω − (2∆β1/β2). (36)

Ωt = −∆β1

β2
+

1
β2

[(∆β1 + β2Ω)2 − 2βbβ2]
1/2. (37)

It is remarkable that both frequency shifts do not depend on the probe’s parameters.
They can be positive or negative (blue or red shifts) depending on the signs of the fiber’s
parameters involved.

It is possible to obtain analytic expressions for the reflection and transmission co-
efficients at a given frequency. By matching the boundary conditions on the two sides
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of the temporal boundary, these are found to depend on the frequency shifts given in
Equations (36) and (37) as follows [19]:

R(Ω) =
Ωt − Ω
Ωr − Ωt

, T(Ω) =
Ωr − Ω
Ωr − Ωt

. (38)

4.3. Time-Domain Total Internal Reflection

The expression in Equation (37) indicates the possibility of total internal reflection
(TIR) of the probe pulse at a moving boundary. To see this clearly, let us focus on the central
frequency of the pulse and set Ω = 0 in Equation (37) to obtain

Ωt = −∆β1

β2
+

1
β2

[(∆β1)
2 − 2βbβ2]

1/2. (39)

For small values of index change, frequency shifts are real. However, Ωt becomes a complex
quantity when δn is large enough to satisfy the relation 2βbβ2 > (∆β1)

2. In this situation,
only a reflected pulse is produced at a shifted wavelength. This temporal analog of TIR
differs from the conventional TIR in one respect. While spatial TIR requires light to travel
from a high-index region to a low-index one, temporal TIR has no such restriction. This is
because the dispersion parameter β2 in Equation (43) can take both positive and negative
values, depending on the wavelength of incident light. When βb is negative, β2 should also
be negative for the TIR to occur.

As an example of TIR, numerical results shown in Figure 5 were obtained under the
same conditions used for Figure 4, except that the value of Cb was larger by a factor of
three. As seen there, the probe pulse undergoes TIR at the temporal boundary (vertical
dashed line), and its spectrum shifts by more than 6/T0. The index change required for
this phenomenon to occur is less than ×10−6 at probe wavelengths near 1 µm. Simulations
show that, similar to the spatial case, an evanescent wave exists on the other side of the
temporal boundary.

Figure 5. TIR of a Gaussian pulse in the time domain. The figure was produced under the same
conditions as Figure 4 except for a larger index change at the boundary (Cb = 300).

In the case of a spatial interface, TIR is accompanied with the Goos–Hänchen effect,
which corresponds to a shift of the reflected beam’s center relative to its position expected
for normal reflection. Based on the concept of space–time duality, such a shift to occur
in the temporal case as well. It was found in 2022 that this is indeed the case [39]. The
following analytic expression provides a temporal shift of the TIR pulse:

∆τGH =
2 sgn(∆β1)β2√
2βbβ2 − (∆β1)2

. (40)
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Numerical simulations based on Equation (34) show clearly such a temporal shift. As an
example, a 6 ps wide Gaussian pulse undergoing TIR inside an optical fiber was found to
exhibit a Goos–Hänchen shift of about 0.52 ps. This shift agrees well with the predicted
value based on Equation (40) for the parameter values used for simulations.

5. Solitons as Moving Boundaries
A moving index boundary can be realized using the optical Kerr effect. In this case,

intense pump pulses are launched into a nonlinear dispersive medium, such as an optical
fiber [10]. Owing to the Kerr effect, the fiber’s refractive index increases with intensity
by a small amount n2 I, where n2 is the Kerr coefficient. Thus, pump pulses increase the
refractive index in a time window set by their width, and this window moves at the speed
of pump pulses. When a probe pulse, moving at a different speed because of its different
wavelength, interacts with this index window, a reflected pulse is generated at a wavelength
shifted from that of the probe [18].

In general, pump pulses launched into an optical fiber become distorted because of
the dispersive and nonlinear effects, resulting in a high-index region that does not maintain
itself over the fiber’s length. This problem can be solved by making use of optical solitons,
forming when pump pulses are launched at a wavelength longer than the zero-dispersion
wavelength of the fiber so that the GVD is anomalous at the pump’s wavelength [10].
Formation of solitons requires that the width and peak power (Ts and Ps) of pump pulses
are chosen such that N2 = γpPsT2

s /|β2p| = 1, where N is the soliton’s order and β2p is
the GVD a the pump’s wavelength. The nonlinear parameter γp is related to the Kerr
coefficient n2 as γp = ωpn2/(cAeff), where Aeff is the effective area of the single mode
supported by the fiber.

The shape of the soliton inside the fiber does not change under such conditions, and its
power varies with time as P(t) = Ps sech2(T/Ts). The fiber’s refractive index n increases by
a small amount (typically < 10−6) over the soliton’s duration and is the largest at the peak
of the soliton. This increase in n creates a spatiotemporal boundary, moving at the speed of
pump pulses. A probe pulse sees this increase through βb = 2γP(t), where γ is the probe’s
nonlinear parameter [10]. The factor of two results from the nonlinear phenomenon of
cross-phase modulation (XPM).

5.1. Soliton-Induced Temporal Reflection

The probe’s evolution is governed by Equation (34) after βbu(T) on its right side is
replaced by the XPM term as follows:

∂A
∂z

+ ∆β1
∂A
∂T

+
iβ2

2
∂2 A
∂T2 = 2iγPssech2(T/Ts)A. (41)

This equation can be written in a normalized form of Equation (35) as

∂A
∂ξ

+ d
∂A
∂τ

+
i s
2

∂2 A
∂τ2 = iCxsech2(τ/τs)A, (42)

where τs = Ts/T0 and Cx = 2γPsLD. The parameter τs compares the soliton’s width to
that of the probe. The parameter Cx governs the XPM-induced interaction between the
two pulses. This equation can be solved numerically to study the interaction of a probe
pulse with a pump soliton inside a dispersive fiber. In the moving fame, the soliton’s peak
remains fixed at τ = 0.
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When a soliton is used to form a moving boundary, the refractive index increases
only over its duration. The situation differs considerably from that of a sharp boundary
discussed in Section 4.2 because a soliton provides two interfaces at its leading and trailing
edges with finite rise and fall times. In spite of this, temporal reflection exhibits similar
features in the two cases. As an example, Figure 6 shows the temporal reflection and
refraction of a Gaussian pulse from a soliton 10 times narrower than the pulse (τs = 0.1)
using d = 20 and Cx = 300. Time-domain TIR occurs for values of Cx larger than 400.
The impact of a boundary’s sharpness on temporal reflection was studied in 2021 using a
transfer-matrix approach with a staircase model [20]. The results show that TIR persists
even for shallow boundaries with long rise times.

Figure 6. The same as Figure 4, except that a soliton 10 times shorter than the pulse plays the role of the
temporal boundary. A dashed vertical line marks the location of the soliton’s peak in the moving frame.

It turns out that the reflectivity of a soliton can be found in an analytic form with
a simple trick. We can remove the second term in Equation (41) by shifting ω0 from the
probe’s central frequency to the one for which d = 0. With this shift in the reference
frequency, Equation (42) takes the form of the Schrödinger equation:

i
∂A
∂ξ

=
s
2

∂2 A
∂τ2 + V(τ)A. (43)

where A(ξ, τ) is the wave function and V(τ) = −Cxsech2(τ/τs) plays the role of a potential
barrier. Notice that ξ plays the role of time and τ plays the role of a spatial coordinate.
Even though Equation (43) does not contain h̄, as expected for a classical problem, it is
useful because one can use relevant quantum results with only minor changes. It shows
that the time-reflection problem is analogous to the scattering of a quantum particle from
a potential barrier. This analogy is another type of space–time duality where the time
evolution of a quantum particle is mapped to the spatial evolution of optical waves.

The observation of temporal reflection from a soliton requires a short pump pulse
and a probe pulse traveling at nearly the same speed at a different wavelength. In a 2012
experiment [40], performed using a short microstructured fiber (only 1.1 m long), the zero-
dispersion wavelength of the fiber was near 710 nm. This feature allowed the use of 105 fs
pulses, emitted by a Ti–sapphire laser operating at 810 nm. Each pulse was launched such
that it formed an optical soliton in the anomalous-GVD region of the fiber. Probe pulses were
launched in the normal-GVD region of the fiber at wavelengths near 620 nm and traveled
at nearly the speed of pump pulses. When the wavelength of probe pulses was varied from
595 to 645 nm, either a blue shift or a red shift was observed for the “reflected” pulse at the
output end of the fiber, depending on whether the probe was traveling slower or faster than
the soliton. The observed frequency shifts matched predictions based on Equation (38).
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5.2. Time-Domain Waveguides

Optical waveguides are devices that confine light spatially to their core region through
TIR at the core-cladding interfaces [32,41]. Similarly to the spatial case, time-domain TIR
can be used to provide the temporal analog of optical waveguides. In the temporal case, a
pulse would be confined within a moving time window, where the refractive index differs
from the regions outside of that window [17]. When a probe pulse is located in the middle
of two fundamental solitons acting as mirrors, it travels first toward one of these solitons
and is totally reflected from it. The spectrum of the reflected pulse is shifted such that it
slows down and moves away from this soliton. When the pulse arrive at the second soliton,
it is reflected again through TIR, and its center frequency shifts back to the original value.
This process repeats itself, trapping the pulse between the two solitons.

Figure 7 reveals how such a waveguide functions by solving Equation (42) numerically,
after it was modified to include the impact of both solitons:

∂A
∂ξ

+ d
∂A
∂τ

+
i s
2

∂2 A
∂τ2

= iCx

[
sech2

(
τ − q

τs

)
+ sech2

(
τ + q

τs

)]
. (44)

It shows the temporal (left) and spectral (right) evolution along the length of a dispersive
medium when a Gaussian-shaped probe pulse of width T0 is located initially in the middle
of two solitons, separated by 10 T0. In normalized units, Equation (44) was solved with the
initial amplitude A(0, τ) = exp(−τ2/2) using parameter values d = 40, s = 1, τs = 0.1,
and Cx = 1800. Two solitons, with their peaks located at q = ±5 (vertical dashed lines
in Figure 7), were 10 times shorter than T0. As expected, the spectrum of pulse confined within
the waveguide’s core shifts back and forth after TIR occurring at the high-index boundaries
provide by two solitons. As a practical example, when T0 = 5 ps for probe pulses at a
wavelengths near 1.1 µm, the required fiber’s length is around 1 km. The wavelength of 0.5 ps
pump pulses should be near 1.5 µm to ensure anomalous GVD needed for the two solitons.

Figure 7. The evolution of the shape (left) and spectrum (right) of a Gaussian pulse inside a temporal
waveguide formed by two solitons acting as high-index boundaries where TIR can occur. Vertical
dashed lines mark the core region of this waveguide.

It is important to emphasize that the solitons are not essential for making temporal
waveguides. A waveguide is formed whenever two boundaries form a time window where
the refractive index differs from that outside the window. One should analyze whether such
waveguides support temporal modes that are analogous to the spatial modes of planar
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waveguides. Modifying the right side of Equation (34) to include the two boundaries
located at T = ±Tb, we obtain

∂A
∂z

+ ∆β1
∂A
∂T

+
iβ2

2
∂2 A
∂T2

= iβb[u(T + Tb)− u(T − Tb)]A. (45)

To find the temporal modes, we look for solutions of Equation (45) within the time window
−Tb < T < Tb in the form

A(z, T) = M(T) exp[i(Kz − ΩT)], (46)

where M(T) is the temporal shape of the mode, K is the eigenvalue for this mode, and Ω is
a frequency shift occurring because of the ∆β1 term in Equation (45).

Substituting Equation (46) into Equation (45) and equating the real and imaginary
parts, we obtain

(∆β1 + β2Ω)
dM
dT

= 0, (47)

d2M
dT2 +

2
β2

(
K − Ω∆β1 −

β2Ω2

2
− βb

)
M = 0. (48)

From Equation (47), the frequency shift for all modes is found to be Ω = −∆β1/β2. Using
this value of Ω in Equation (48), the modes are found by solving

d2M
dt2 +

2
β2

(
K +

(∆β1)
2

2β2
− βb

)
M = 0. (49)

This eigenvalue equation provides temporal shapes of modes for specific eigenvalues K.
At this point, one can follow the same procedure used for spatial waveguides to find

the temporal profiles of different modes [17]. Similarly to the spatial case, one can introduce
a dimensionless parameter as

V =
√
(2βbT2

b )/β2. (50)

This parameter determines the number of modes supported by a temporal waveguide
of width 2Tb. In analogy with the spatial case, the waveguide supports m modes when
V < (m + 1)π/2. In particular, a temporal waveguide supports only a single mode (m = 0)
if it is designed such that V < π/2.

A clear evidence of the formation of a temporal waveguide by two solitons was seen
in a 2015 experiment through a pump–probe type experiment [42]. A 29 m long photonic
crystal fiber was employed with its zero-dispersion wavelength near 980 nm. Pump pulses
were 250 fs wide, and their wavelength was tunable from 1000 to 1500 nm. Probe pulses
were considerably wider, and their 802 nm wavelength was in the normal-GVD region of
the fiber. Each pump pulse was split into two pulses, separated by 3.6 ps, using the setup
similar to a Michelson interferometer. Probe pulses were synchronized such that each was
located in the center of a pair of pump pulses at the input end of the fiber.

5.3. Temporal Fabry–Perot Resonators

A conventional Fabry–Perot resonator (FPR) consists of two partially reflecting mirrors
enclosing a medium of constant refractive index n. The transmission spectrum of such a
device is in the form of a frequency comb and exhibits a periodic resonances occurring
at frequencies νm = mc/(2nLr), where m is an integer and Lr is the resonator’s length.
Such devices are routinely used for spectral analysis in many applications. As we have
seen, solitons inside an optical fiber act effectively as mirrors in the time domain. One can
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construct the temporal analog of an FPR by using two such solitons separated in time by
constant interval. Such a device was analyzed in a 2021 study using a matrix approach [43].

When a probe pulse is incident at such an FPR, it can be transmitted or reflected,
depending on whether its spectrum falls within or outside of a resonance peak. Figure 8
shows this behavior for an FPR made with two 80 fs solitons, separated by 1.4 ps. The
temporal evolution of a relatively wide Gaussian pulse (width 20 ps) was simulated
numerically in two cases. The probe’s spectrum fits within a transmission peak in case
(a) but falls in between two peaks in case (b). Part (d) shows the location of the pulse’s
spectrum in the two cases within the transmission spectrum of the FPR. Time-varying
index changes induced by two solitons are shown in part (c). As expected, the probe pulse
is transmitted when its spectrum falls within a transmission peak. In contrast, it is mostly
reflected when its spectrum falls in the middle of two transmission peaks. Experimental
observation of a such a soliton-based time-domain FPR was lacking at the time of writing
but would be of considerable interest.

Figure 8. The temporal evolution of a 20 ps Gaussian pulse when its spectrum is (a) centered at a
transmission peak and (b) falls outside of it. (c) An index change induced by solitons. (d) The location
of the pulse’s spectra within the transmission spectrum. Adapted with permission from [43] © Optica
Publishing Group.

6. Periodic Index Variations
Wave propagation in a medium whose refractive index varies spatially has a long

history. When the refractive index varies in the transverse directions only, it is useful for
making optical waveguides such as graded-index fibers [21]. In the opposite limit, where
the refractive index varies periodically along the direction of propagation, devices such as
Bragg gratings [22] and photonic crystals [23] have found a multitude of applications.

The concept of space–time duality suggests that wave propagation in a medium whose
refractive index varies with time should exhibit novel features with useful applications.
Recent studies of time-varying media have shown that this is indeed the case [24–26]. The
specific situation in which the medium’s refractive index varies periodically along the
direction of propagation has led to novel concepts such as photonic time crystals [27–29]
and temporal Bragg gratings [30,44]. Two cases should be distinguished in practice. In
one case, periodic index variations must occur over the entire length of the medium on the
time scale of a single cycle. In the second case, index variations occur in a section of the
medium that moves at a finite speed. The later scheme is easier to implement because it
allows index changes to occur on a longer time scale (but shorter than pulses involved).
Further, dispersive effects must be included. We consider the second case first.
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6.1. Spatiotemporal Bragg Gratings

As we saw in Section 5, a single soliton acts as a time-domain mirror, and two such
mirrors can be used for making a time-domain waveguide. The temporal analog of a Bragg
grating occurs when multiple solitons inside a dispersive medium, equally separated in
time, act as partially reflecting mirrors. However, as solitons are moving at the speed of
pump pulses, the Bragg grating also moves at the same speed inside the medium containing
these solitons. The properties of such spatiotemporal Bragg gratings (STBGs) were studied
recently [30]. The case of a non-moving Bragg grating was considered in Ref. [44] without
including the dispersive effects of the medium.

In the case of a spatial index modulation, Bragg gratings exhibit a photonic band gap
in the energy or frequency domain, centered at the Bragg frequency set by the period of
index modulation. In contrast, as is well known, temporal periodicity of the refractive
index produces momentum (or wave-number) gaps in the band structure of a photonic
time crystal [27–29]. This is expected from the discussion of space–time duality if we recall
that energy and momentum conservation laws are switched in the space and time domains.
In contrast to spatial crystals, which exhibit energy gaps in their band structure, photonic
time crystals exhibit momentum gaps in their band structure.

We can find momentum gaps by replacing Equation (42) with

∂A
∂ξ

+
i s
2

∂2 A
∂τ2 =

iCx

τ2
1

∑
m

sech2
(

τ − m
τ1

)
A, (51)

where the sum is over all pulses within the soliton train and two neighboring solitons of
width Ts are separated in time by Td such that τ1 = Ts/Td. The parameter τ = T/Td is
normalized using this separation (and not the width Ts). The d term in Equation (42) was
removed by choosing the reference frequency as the frequency for which ∆β1 vanishes.
The preceding equation has the same mathematical form as the Schrödinger equation for
an electron moving in a periodic potential. Using A(ξ, τ) = eiκξ B(τ) with s = 1, we can
write it as an eigenvalue problem with a suitable Hamiltonian:

ĤB = κB, Ĥ = −1
2

d2

dτ2 + V(τ), (52)

where V(τ) is the periodic potential on the right side of Equation (51). Notice that ξ plays
the role of time and κ is the analog of energy in quantum mechanics.

From the Floquet theorem, B(τ) has the form B(τ) = e−iΩτ Ā(τ), where Ω is the
Floquet frequency and Ā(τ) is a periodic function with the period τp of the soliton train
(τp = 1 in normalized units). We only need to solve Equation (52) in the interval [0, τp]. For
given values of B and B′ = dB/dτ at one end, this equation provides the values of B and
B′ at the other end in the form (

B(τp)

B′(τp)

)
= M

(
B(0)
B′(0)

)
, (53)

where the elements of transfer matrix M are found by solving Equation (52) two times
with the initial conditions (i) B = 1, B′ = 0 and (ii) B = 0, B′ = 1. It is easy to show
that exp(−iΩτp) is an eigenvalue of M. For a given value of κ, Ω may be real or complex.
Solutions with real Ω correspond to propagating states, while those with complex Ω
represent evanescent states.
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The real and imaginary parts of Ω are plotted in Figure 9 as a function of κ for τ1 = 0.1 (top)
and τ1 = 0.05 (bottom). The combination κτ2

1 /2 was used because its value of 1 corresponds
to the barrier height produced by each soliton. As seen in Figure 9, the real part of Ω vanishes
in certain ranges of κ. These regions correspond to the momentum gaps of the grating. Several
features are noteworthy in this figure. The number of momentum gaps depends on the value of τ1

and increases as τ1 is reduced. For larger values of κ, propagation bands become wider compared
to the momentum gaps.

Figure 9. Band structure of a temporal grating for τ1 = 0.1 (top) and 0.05 (bottom). The real (solid
line) and imaginary (dashed line) parts of Ω are plotted as a function of κ. Adapted with permission
from [30] © Optica Publishing Group.

Figure 10 shows the reflection of Gaussian pulse f when κ falls inside a momentum
gap of the temporal grating [30]. The pulse is launched with the amplitude,

A(0, τ) = exp
[
− (τ − τs)2

2τ2
0

− iΩiτ

]
, (54)

using τ0 = 10, τs = −45, and Ωi = 7.63π. The bottom panel displays spectral evolution
of this pulse. The soliton train contained 21 pulses, spaced such that τ1 = 0.1, and was
confined to the region −10 < τ < 10, marked by two vertical dashed lines. As seen
in Figure 10, probe pulse begins to interact with the grating at a distance ξ = 1 through the
temporal interface located at τ = −10. However, as κi = Ω2

i /2 falls in the momentum gap,
the probe pulse is totally reflected by the STBG. It is mostly transmitted through when the
κ value falls outside of a momentum gap.
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Figure 10. Total reflection of a probe pulse when κ falls inside a momentum gap of an STBG. Temporal
(top) and spectral (bottom) evolution is shown along the fiber’s length. Adapted with permission
from [30] © Optica Publishing Group.

6.2. Photonic Time Crystals

We briefly consider photonic time crystals (PTCs), devices where temporal index
modulation occurs in a periodic fashion over their entire length on a single-cycle time
scale [27–29]. The most striking feature of a PTC is the possibility of parametric amplifica-
tion, possible because energy is not conserved in a thermodynamically open system. As we
saw in Figure 9, PTCs exhibit momentum gaps, where the frequency of two eigenmodes
flips from real to complex values. Using Im(Ω) = ±iΓ for the eigenvalues, the oscillatory
part e−iΩt grows exponentially as eΓt for one of these modes and results in its amplification.
Energy for amplification comes from the source used for periodic temporal modulation
of the refractive index. Figure 11 compares how the amplitude of a wave evolves in the
spatial and temporal periodic systems. In the case of a spatial photonic crystal, optical
power decays exponentially for any mode whose frequency falls in the energy gap of
the crystal. In contrast, optical power can grow inside a photonic time crystal exhibiting
momentum gaps.

The band structure of PTCs can be found using methods based on plane-wave ex-
pansion or transfer matrices [29]. The second method allows one to obtain the Floquet
frequency ωF in an analytic form for a PTC made of temporal slabs whose refractive index
alternates between two values (n1 and n2) in a periodic fashion. An example of the band
structure is shown in Figure 12, where the real and imaginary parts of Ω are plotted using
n1 = 1 and n2 =

√
5. The modulation frequency ωm is used to normalize both ωF and

the wave number k. The variable kc/ωm, used along the x axis, corresponds to the wave’s
frequency relative to the modulation frequency ωm. Similarly to Figure 9, the Floquet
frequency becomes complex in each k gap, resulting in parametric amplification of the
wave passing through such a PTC.

A general theory of such parametric amplification is complicated because multiple
modes are excited inside the PTC at different frequencies when a single plane wave at
a frequency ω0 is launched into it. The problem is simplified considerably if only two
dominant modes are considered. This approximation holds well when the frequency of
incident wave satisfies the resonance condition ω0 = ωm/2. In this situation, the frequen-
cies of the two counter-propagating coupled modes are ωF ± ωm/2, and the underlying
wave-mixing process is phase-matched. Further, the mode amplitudes A1 and A2 satisfy
the coupled-mode equations [29]

dA1

dt
= iηA∗

2 ,
dA2

dt
= iηA∗

1 , (55)
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where losses have been ignored and the coupling parameter η depends on the contrast of
periodic index modulation.

Figure 11. A schematic of (a) spatial and (b) temporal crystals exhibiting periodic variations in their
dielectric constants. Dashed line shows that the amplitude of a wave grows inside a photonic time
crystal. Adapted from [24] © CC BY.

Figure 12. The band structure of a PTC formed using stepwise temporal modulation at a frequency
ωm. The real (solid line) and imaginary (dashed line) parts of ωF are plotted as a function of
kc/ωm. The shaded regions show the momentum gaps. Adapted with permission from [29] © Optica
Publishing Group.
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The preceding coupled-mode equations can be solved easily by noting that both A1

and A2 satisfy the same equation: d2 A1
dt2 = |η|2 A1. Using the initial conditions, A1(0) = A0

and A2(0) = 0, the modal powers are found to grow exponentially with time as

|A1((t)|2 = A2
0 cosh2(|η|t), |A2((t)|2 = A2

0 sinh2(|η|t). (56)

Thus, the input beam is amplified as it is transmitted through the PTC and its power
increases by a factor of exp(2|η|t)/4 after time such that |η|t > 3.

It is worth noting that two coupled equations similar to those in Equation (55) are
also obtained for the nonlinear process of backward parametric amplification [45–47] in
the undepleted-pump approximation. In this case, a signal beam with the amplitude A1

is launched into a nonlinear crystal together with an intense pump beam. An idler beam
propagating in the backward direction is generated through a three-wave mixing process
when the phase-matching condition is satisfied. No pump beam is requited in the case of
a PTC, and the idler is generated by the process that modulates its refractive index in a
periodic fashion. Parametric amplification in this situation occurs only when the incident
frequency is close to one half of the modulation frequency (ω0 = ωm/2).

7. Concluding Remarks
This review has focused on the concept of space–time duality in optics and its applica-

tions. Although this concept was originally based on the analogy between the diffraction of
beams in space and the dispersion of pulses in time, it has been extended considerably in
recent years. The first part of the review used time lenses and their applications as a simple
example of the temporal analog of conventional lenses.

Novel phenomena emerge when optical pulses propagate through a nonlinear disper-
sive medium whose refractive index is modulated, both in space and time, in a traveling-
wave fashion. Using optical fibers as an example of such a medium, we discussed the
temporal analog of reflection at a moving index interface. A probe pulse incident at such
an interface splits into two parts with different optical spectra such that the reflected part
never crosses the interface. When the index change is large enough, the temporal analog
of total internal reflection occurs, which allows one to construct time-domain waveguides
that confine pulses to within a time window of fixed duration.

The use of nonlinear optics for creating moving index boundaries has allowed novel
temporal analogs to be observed experimentally. The use of solitons through the Kerr effect
indicates that such effects can be observed in silica fibers by employing a pump–probe
configuration. A single solitons acts as a time-domain mirror that can be used to produce
large spectral shifts through temporal reflection. Two closely spaced solitons can be used
to make a temporal waveguide that confines probe pulses through multiple total internal
reflections at both solitons. Two such solitons can also produce the temporal analog of a
Fabry–Perot resonator by acting as partially reflecting mirrors.

An even more exotic temporal structure can be created by launching a periodic train of
pump pulses that travel as fundamental solitons inside an optical fiber. Such a train of solitons
induces periodic temporal modulations of the fiber’s refractive index, leading to the formation
of spatiotemporal Bragg gratings. Such a device exhibits the so-called momentum gaps that
are temporal analogs of the frequency band gaps forming in spatially periodic gratings. A
probe pulse is totally reflected from this type grating when the momentum of its photons lies
inside of a momentum gap. A photonic analog of Anderson localization can also occur when
some disorder is introduced into such periodic photonic time crystals.

It is important to stress that it was not possible to include all examples of space–time
duality in this review because of space limitations. For example, spatial and temporal
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solitons are space–time duals, and this duality has been exploited in the context of Kerr
frequency combs [12]. Some aspects of self-imaging in graded-index fibers [21] and the for-
mation of multimode solitons in such fibers [48] are also related to space–time duality if we
recall that spatial self-imaging is the dual of temporal oscillations of a harmonic oscillator.
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