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We discuss how the chirality of a nonlinear medium affects the process of optical parametric amplification when
optical pulses are used for the pump and signal waves. A set of six coupled nonlinear equations is derived for the
circularly polarized components of the pump, signal, and idler pulses, after including the electric dipolar and chiral
contributions to the linear and nonlinear susceptibilities of the medium. Our equations include differential group
delay and group-velocity dispersion between orthogonal circular polarization states, introduced by the chirality.
The Manley–Rowe relations for the pulsed nonlinear process are presented, including their corrections due to
nonlocal interactions imposed by the chirality. Numerical solutions reveal novel features such as the possibility of
fast intrapulse polarization state flipping and differential phase-matching. ©2025 Optica Publishing Group. All rights,

including for text and datamining (TDM), Artificial Intelligence (AI) training, and similar technologies, are reserved.
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1. INTRODUCTION

In optical parametric amplification (OPA) [1], three waves
interact within a nonlinear medium in such a way that a con-
tinuous exchange of energy occurs between the pump, signal,
and idler waves. When a pair of pump and signal beams, of
angular frequencies ω3 and ω2, respectively, is launched into
the nonlinear medium, the parametric process allows for an
amplification of the signal, meanwhile generating an idler wave
at angular frequencyω1 =ω3 −ω2. In a setup involving optical
pulses, not only does the classical phase-matching [2] come
into play but also the different group velocities and dispersion-
induced broadening of the three pulses. Just to mention a few
examples, quasi-phase-matching [3], chirped-pulse amplifi-
cation [4], and soliton pulse compression [5] have been used
for balancing the mismatch among phases and group veloc-
ities of pulses involved in the OPA process. In this respect, a
chiral medium presents an interesting opportunity by provid-
ing differential additions to the phase and group velocities of
orthogonal circular polarizations [6–8].

The differential aspect of phase and group velocities in a
chiral medium originates from an interplay between light and
matter described by the semi-classical interaction Hamiltonian
ĤI =−( p̂ j E j + Q̂ij∂E j/∂xi ), where p̂ j and Q̂ij are the
quantum–mechanical local electric dipolar and nonlocal elec-
tric quadrupolar operators acting in a classical field E j [9].
Additionally, the nonlinear coupling coefficients between

the pump, signal, and idler waves are also modified in a chiral
medium to include nonlocal effects. The differential nonlocal
corrections to orthogonal circularly polarized modes in a non-
linear optical regime are expressed as functions of the magnitude
of the respective wave vectors. These corrections act on the
amplitudes of the fields, besides the differential correction terms
for their phase.

Of particular interest for such chiral effects are crystals of
point-symmetry group 23 (cubic) and 32 (trigonal, uniaxial),
which exhibit isotropic behavior when rotated around their
z axis. Not possessing any center of inversion, these crystals
exhibit the required chirality as well as second-order optical
susceptibilities supporting parametric interaction. Examples of
other media that satisfy this criterion are nematic liquid crystals
[10,11] and optically active sodium bromate [12,13].

In this work, we discuss the impact of chirality on the OPA
process when the pump, signal, and idler waves are supplied
as optical pulses. Section 2 presents the linear and nonlinear
contributions to the electric polarization density in a chiral non-
linear medium, which are used in Section 3 to obtain a set of six
coupled nonlinear equations for the circularly polarized com-
ponents of the three pulses. Our equations explicitly include the
differential group delay and group-velocity dispersion between
these two components, induced by the chirality. This set of
equations is solved numerically in Section 4 to study the OPA
process with emphasis on changes in the state of polarization.
The main results are summarized in Section 5.
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2. LINEAR AND NONLINEAR CONTRIBUTIONS

To simplify the problem, we consider three planar quasi-
monochromatic fields co-propagating along the z axis inside
a medium of point-symmetry group 32. When expressed in
a left/right circularly polarized (LCP/RCP) basis with basis
vectors e± = (ex ± iey )/

√
2, the total electric field can be

written as

E(z, t)=
3∑

j=1

Re[(e+E+ω j
(z, t)+ e−E−ω j

(z, t)) exp(−iω j t)],

(1)
with j = 1, 2, 3 designating the idler, signal, and pump waves,
respectively, whose frequencies satisfy the conditionω1 +ω2 =

ω3 for the OPA process.
As point-symmetry group 32 does not possess a center of

inversion, the axial tensor γijkl for nonlocal and nonlinear inter-
action shares the same nonzero and independent elements as the
third-order polar tensor χijkl for local (electric dipolar) inter-
actions [9]. In this situation, the electric polarization density of
the medium for the LCP and RCP states takes the form [6,14]

P±ω1,2
= ε0

(
n2

1,2 − 1± iγ1,2
∂

∂z

)
E±ω1,2

+ ε0

(
p1,2 ± iq1,2

∂

∂z

) (
E∓ω3

E±∗ω2,1

)
, (2a)

P±ω3
= ε0

(
n2

3 − 1± iγ3
∂

∂z

)
E±ω3

+ ε0

(
p3 ± iq3

∂

∂z

) (
E∓ω1

E∓ω2

)
, (2b)

where the coefficients are expressed in terms of the elements of
the local (χij, χijk) and nonlocal (γijk, γijkl) electric susceptibility
tensors in standard notation [2] as

n2
j = 1+ χxx(−ω j ;ω j ), γ j = γxyz(−ω j ;ω j ),

p1,2 = 21/2χxxx(−ω1,2;ω3,−ω2,1),

p3 = 21/2χxxx(−ω3;ω1, ω2),

q1,2 = 21/2γxxyz(−ω1,2;ω3,−ω2,1),

q3 = 21/2γxxyz(−ω3;ω1, ω2), (3)

where Kleinman symmetry [9] of the permutation was assumed.
The physical interpretation of the terms in Eq. (2) is as fol-

lows. The linear part of the polarization density depends on
the refractive indices n j , originating from the local electric
dipolar interaction between light and matter, while the chirality
parameter γ j originates from the nonlocal electric quadrupolar
interaction, and where j = 1, 2, 3 denotes the idler, signal, and
pump wave interactions with the medium, respectively. The
second-order nonlinear part depends on p j and q j , denoting
the local electric dipolar and nonlocal electric quadrupolar
contributions, respectively. The nonlinear contribution to the
RCP and LCP polarization density at the pump frequency is

exclusively via the pair of LCP and RCP idler and signal fields of
opposite polarization state.

3. MODEL FOR WAVE PROPAGATION

In the process of solving Maxwell’s equations, it is often
convenient to separate the linear and nonlinear contri-
butions to the electric polarization density in Eq. (2) as
P±ω j
= P (L)±

ω j
+ P (NL)±

ω j
, where the linear part can be used to

define an effective propagation constant, here including non-
local interactions. To simplify the analysis, for the moment
limiting the description to continuous waves, we ignore diffrac-
tion effects and apply the plane-wave approximation. Using the
form of the electric field in Eq. (1), its LCP and RCP compo-
nents associated with plane waves propagating along the z axis
inside a chiral nonlinear medium satisfy(

∂2

∂z2
+ k2

j ± 2iα j
∂

∂z

)
E±ω j
=−µ0ω

2
j P (NL)±
ω j

, (4)

where the electric dipolar and nonlocal parts of the propagation
constants for j = 1, 2, 3 are given by

k j = k(ω j )=
ω j n j

c
, α j = α(ω j )=

ω2
jγ j

2c 2
. (5)

Whenever the nonlinear source terms are neglected, Eq. (4) sup-
ports forward-propagating solutions in the form

E±ω j
= A±ω j

exp(i(k j ∓ α j )z). (6)

By substituting Eq. (6) into Eq. (4), we obtain three frequency-
domain equations for the field envelopes associated with the
idler, signal, and pump pulses. These can be converted to the
time domain after expanding both k j and α j around the central
frequencies ω j as Taylor series and retaining terms up to the
second order.

Using Eq. (6) as an ansatz for the separation of the spatial
natural harmonic oscillation, the time-domain equations for
the pulsed envelopes of the LCP and RCP components of
three waves, subject to nonlinear interaction within the chiral
medium in the presence of group velocity dispersion, are found
to yield(

∂

∂z
+ (k′1 ∓ a ′1)

∂

∂t
+

i
2
(k′′1 ∓ a ′′1 )

∂2

∂t2

)
A±ω1

= iκ±1 A∓ω3
A±∗ω2

exp(i(1k ±1α)z), (7a)(
∂

∂z
+ (k′2 ∓ a ′2)

∂

∂t
+

i
2
(k′′2 ∓ a ′′2 )

∂2

∂t2

)
A±ω2

= iκ±2 A∓ω3
A±∗ω1

exp(i(1k ±1α)z), (7b)(
∂

∂z
+ (k′3 ± a ′3)

∂

∂t
+

i
2
(k′′3 ± a ′′3 )

∂2

∂t2

)
A∓ω3

= iκ∓3 A±ω1
A±ω2

exp(−i(1k ±1α)z), (7c)

where the first- and second-order electric dipolar dispersion
coefficients for the three waves are defined as
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k′j =
d

dω

(
ωn(ω)

c

)∣∣∣∣
ω j

, k′′j =
d2

dω2

(
ωn(ω)

c

)∣∣∣∣
ω j

, (8)

where their respective corrections for the nonlocal interaction in
a similar way are defined as

a ′j = 2
dα(ω)

dω

∣∣∣∣
ω j

, a ′′j = 2

(
d2α(ω)

dω2
− 2k′j

d
dω

α(ω)

k(ω)

)∣∣∣∣
ω j

.

(9)
In Eq. (7),1k = k3 − k2 − k1 is the electric dipolar phase mis-
match, and1α = α1 + α2 + α3 is the nonlocal correction, with
nonlinear coupling coefficients

κ±1 =
k1

2n2
1

[p1 − q1(α3 + α2)∓ q1(k3 − k2)], (10a)

κ±2 =
k2

2n2
2

[p2 − q2(α3 + α1)∓ q2(k3 − k1)], (10b)

κ±3 =
k3

2n2
3

[p3 − q3(α1 + α2)∓ q3(k1 + k2)]. (10c)

In these coupling coefficients, p j are the regular terms, resulting
from the electric–dipolar interaction model in a perturbation
analysis of the density operator [2], while q j stems from the
nonlocal interaction.

Whenever the group-velocity dispersion, altering the shape
and duration of pulses, is negligible compared to the spatial
and temporal changes in their amplitudes, Eq. (7) allows for
an interpretation of the energy transfer rate between the idler,
signal, and pump waves through the relation

1

κ±1

(
∂

∂z
+ (k′1 ∓ a ′1)

∂

∂t

)
|A±ω1
|
2

=
1

κ±2

(
∂

∂z
+ (k′2 ∓ a ′2)

∂

∂t

)
|A±ω2
|
2

=−
1

κ∓3

(
∂

∂z
+ (k′3 ± a ′3)

∂

∂t

)
|A∓ω3
|
2. (11)

This constitutes the Manley–Rowe relation [2] for three-wave
mixing involving three pulses, including the reduced transfer
rate in cases where the overlap between the idler, signal, and
pump pulses is affected by the difference in LCP and RCP group
velocities v±g j = (k

′

j ∓ a ′j )
−1.

For numerical purposes, it is convenient to transform the sys-
tem [Eq. (7)] into a normalized and dimensionless form, using
two new variables ζ and s defined as

ζ = |k′′3 |z/τ
2
0 , s = (t − k′3z)/τ0, (12)

where τ0 is the characteristic initial time duration of the pump
pulse. The spatial coordinate ζ is here normalized against the
dispersion length LD = τ

2
0 /|k

′′
3 |, while the normalized time s

is expressed in a reference frame moving at the average group
velocity of pump pulses. This way, we describe temporal changes
of the signal and idler pulses with respect to the pump pulse. We
further define the normalized field envelopes u±j for the idler,
signal, and pump pulses as

u±j =
τ 2

0

|k′′3 |

(
κ±1 κ

±

2 κ
∓

3

κ±j

)1/2

A±ω j
, j = 1, 2, 3, (13)

and further define the dimensionless phase mismatch related to
the normalized spatial coordinate ζ as

1φ± = (1k ±1α)τ 2
0 /|k

′′

3 |. (14)

With the preceding set of parameters and variables, Eq. (7) is
transformed into the normalized and dimensionless form:(

∂

∂ζ
+
(k′1 ∓ a ′1 − k′3)τ0

|k′′3 |
∂

∂ s
+ i

(k′′1 ∓ a ′′1 )
2|k′′3 |

∂2

∂ s 2

)
u±1

= iu∓3 u±∗2 exp(i1φ±ζ ), (15a)(
∂

∂ζ
+
(k′2 ∓ a ′2 − k′3)τ0

|k′′3 |
∂

∂ s
+ i

(k′′2 ∓ a ′′2 )
2|k′′3 |

∂2

∂ s 2

)
u±2

= iu∓3 u±∗1 exp(i1φ±ζ ), (15b)(
∂

∂ζ
±

a ′3τ0

|k′′3 |
∂

∂ s
+ i

(k′′3 ± a ′′3 )

2|k′′3 |
∂2

∂ s 2

)
u∓3

= iu±1 u±2 exp(−i1φ±ζ ). (15c)

In this form, the first-order temporal derivative term in the
equation for the pump results from group-velocity gyrotropy.
Whenever a ′3 6= 0 in Eq. (15c), the two circularly polarized com-
ponents of the pump pulse travel with different group velocities
inside the chiral medium. As a result, these two components,
although overlapping perfectly before entering the medium,
separate from each other, which, for large distances of propa-
gation, will separate the RCP or LCP components spatially,
affecting the OPA process.

As for the corresponding Manley–Rowe relations [Eq. (11)],
in the normalized space and time coordinates, following the
pump pulse, they yield(

∂

∂ζ
+
(k′1 ∓ a ′1 − k′3)τ0

|k′′3 |
∂

∂ s

)
u±1

2

=

(
∂

∂ζ
+
(k′2 ∓ a ′2 − k′3)τ0

|k′′3 |
∂

∂ s

)
u±2

2

=−

(
∂

∂ζ
±

a ′3τ0

|k′′3 |
∂

∂ s

)
u∓3

2
. (16)

In these relations for energy transfer, the coefficients of the nor-
malized temporal derivatives express the effects of walk-off of the
idler (k′1 − k′3) and signal (k′2 − k′3) pulses relative to the pump,
including the differential effect of gyrotropy (∓a ′j ).

4. NUMERICAL RESULTS

The set of coupled nonlinear and partial differential equations
[Eq. (15)] can be solved with the well-known split-step Fourier
method [15,16], using the matrix formulation

∂u±(ζ, s )
∂ζ

= (D± + iN±)u±(ζ, s ), (17)
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where u± = (u
±

1 , u±2 , u∓3 )
T, and D± and N± are the two

[3× 3]matrices

D± =

 D±1 0 0
0 D±2 0
0 0 D∓3

 ,N± =
0 0 N±2

0 0 N±1
0 N±∗1 0

 , (18)

with operators in normalized time

D±j =−
(k′j ∓ a ′j − k′3)τ0

|k′′3 |
∂

∂ s
− i

(k′′j ∓ a ′′j )

2|k′′3 |
∂2

∂ s 2
(19)

and

N±j = u±∗j (ζ, s ) exp(i1φ±ζ ). (20)

The diagonal operator D± =D±(∂/∂ s ), taking care of all dis-
persive effects, is applied in the Fourier domain, conjugate of
normalized time, where ∂/∂ s →−iωs becomes an imaginary
number. The off-diagonal matrixN± =N±(u±), governing the
nonlinear effects, is applied most easily in the ζ space.

In order to solve Eq. (17), we need to specify the dispersion
and chiral parameters of the medium appearing in Eq. (15) at
the wavelengths of the idler, signal, and pump pulses. Keeping
in mind a trigonal chiral crystal of point-symmetry group
32, the group velocities of the three pulses are taken to be
0.99/k′1 = 0.99/k′2 = 1/k′3 = 2.0× 108 m/s so that they
travel at nearly the same speed and keep overlapping within the
chiral crystal. The dispersion coefficients for the group veloc-
ity are assumed to be the same for three pulses, with the value
k′′j = 10.0× 10−21s2/m for j = 1, 2, 3. Chiral corrections to
these coefficients are chosen as a ′j = 3.0× 10−4k′j and a ′′j = 0.
We also need to specify the phase-mismatch associated with the
OPA process, consisting of two parts. We chose1k = 0 for the
electric dipolar part and1α = 400.0 m−1 for the chiral part to
illustrate the importance of chiral phase matching. The preced-
ing parameter values are reasonable for qualitative discussion,
but they do not correspond to an actual experiment.

We also need to specify the pump and signal pulses that would
be launched into the crystal in any OPA experiment. Again,
both the shape and width of pulses can vary from experiment to
experiment. We chose sech-shape for both pulses with an initial
full-width at half maximum of τ0 = 10 ps. We also assume
both pulses to be linearly polarized initially and excite the LCP
and RCP components inside the chiral crystal with the same
amplitude. The normalized peak amplitude of the pump pulses
depends on the nonlinear coupling parameters, as shown in
Eq. (13), and should be high enough to amplify the signal pulse
considerably. Mathematically, the chosen initial conditions for
the signal and pump at ζ = 0, used for solving Eq. (15), are

u±2 (0, s )= 0.5 sech s , u±3 (0, s )= 2.5 sech s , (21)

together with u±1 (0, s )= 0. The differential phase-matching
condition creates a differential contribution to the LCP and
RCP coherence lengths L±C = π/(1k ±1α), from which
the beat length between subsequent points of equal phase-
matching conditions for the LCP and RCP modes is obtained as
LB = π/(21α).

The OPA process in a chiral nonlinear crystal is known to
modify the state of polarization (SOP) of the three waves while

Fig. 1. Intensity profiles of the idler, signal, and pump pulses at sev-
eral distances within the chiral crystal used for OPA; ζ = 1 corresponds
to a distance of about 1 cm for the parameters used here.

transferring energy from the pump to the signal and idler [14].
In the case of pulsed OPA, we expect the SOP to also become
nonuniform across each pulse. To quantify such polarization
changes, we make use of the Stokes parameters of the idler,
signal, and pump waves defined as [17]

S0 j = |u
+

j |
2
+ |u−j |

2, S1 j = 2Re[u+∗j u−j ],

S3 j = |u
+

j |
2
− |u−j |

2, S2 j = 2Im[u+∗j u−j ], (22)

where S3 j/S0 j provides the ellipticity of the polarization ellipse
for j = 1, 2, 3. Notice that S0 j (s ) provides the total normalized
power at time s for each pulse. Using its definition, the pump’s
peak power is 25 times larger than the signal’s peak power for the
input choice in Eq. (21).

Figure 1 shows the evolution of idler, signal, and pump pulses
by plotting their total intensity S0 j ( j = 1, 2, 3) as a function
of normalized time at several distances within the chiral crystal,
with the curves at ζ = 0 showing the initial shape of pulses.
The corresponding SOP changes are shown in Fig. 2, where the
ellipticities S3 j are mapped as a function of time. As expected,
energy is transferred from the pump pulse to the signal pulse
while also generating an idler pulse. While the pump pulse
broadens because of group velocity dispersion inside the crystal,
the idler and signal pulses develop a three-peak structure after
ζ = 1, a value that corresponds to a distance of about 1 cm for
the parameters used here. The origin of this structure lies in
slightly different group velocities of the signal and idler com-
pared to the pump pulse, whose LCP and RCP components also
travel at different speeds. Different parts of the signal and idler
pulses overlap with the pump components and create two side
peaks, in addition to the original central peak at s = 0. At a dis-
tance ζ = 2, the three peaks of the signal pulse have comparable
amplitudes. Splitting of the original signal pulse into a triplet
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Fig. 2. Same as Fig. 1, except that the ellipticity of the SOP, normal-
ized against the peak intensity of the pulse, is mapped as a function of s
at the same five distances.

effectively depends on the temporal separation introduced by
different group velocities of the LCP and RCP modes over the
coherence length LC, with consideration taken for the pulse
broadening imposed by the group velocity dispersion. This
process provides an efficient energy transfer from the pump to
the signal while allowing the LCP and RCP modes to slip out of
the spatial coverage of the pump pulse, effectively stopping the
parametric interaction as soon as the triplet has been formed.

The results shown in Fig. 2 clearly indicate that the initially
linear SOP of the pump and signal pulses quickly change to
elliptical ones due to the effects of chirality. What is remark-
able is that the SOP also becomes different across the temporal
profile of both pulses. The pump’s ellipticity remains small
and exhibits a single peak at the pulse’s center. In contrast, the
ellipticity of the signal and idler pulses mimics the three-peak
structure of the shape of these pulses. Combined with the pos-
sibility of tuning the signal’s wavelength, this rapid modulation
of the SOP opens a new direction for measuring the orbital and
spin angular momenta in pump–probe experiments.

The preceding results for 10 ps wide pump pulses yield
a relatively short equivalent Gaussian dispersion length of
LD = τ

2
0 /|k

′′

j | = 10 mm, a distance over which the temporal
walk-off between the LCP and RCP modes due to different
group velocities is relatively small, as is also the group veloc-
ity mismatch between the idler, signal, and pump. We next
consider the situation where the group velocity mismatch
between the LCP and RCP components of the three pulses
dominates over dispersion-induced pulse broadening. We keep
all parameters the same except for the following changes. First,
the pump and signal pulses are shortened to yield a FWHM
duration of τ0 = 0.5 ps, and we allow a lower dispersion of
k′′j = 1.0× 10−23 s2/m, resulting in a dispersion length of

Fig. 3. Intensity profiles of the idler, signal, and pump pulses
mapped at several distances for the case in which polarization-mode
dispersion dominates over the temporal walk-off effects.

LD = 25 mm. Second, we assume a slightly lower differ-
ence in group velocity 0.9975/k′1 = 0.9975/k′2 = 1/k′3 =
2.0× 108 m/s, with associated chiral parameters a ′j =
2.0× 10−3k′j for j = 1, 2, 3, being larger by a factor of 7
compared to the earlier results. Again, for the sake of illustration
of principle, we chose 1k = 0 for the electric dipolar part, but
reduced the chiral differential contribution to1α = 50.0 m−1.

It should be noted that the values of k′′ differ considerably for
the long and short pulses used for numerical simulations. For
any dispersive chiral crystal (or liquid), k′′ would be zero at a spe-
cific wavelength, known as the zero-dispersion wavelength. In
practice, the wavelength of a pump laser can be chosen close to
or far from the zero-dispersion wavelength of the chiral medium
to realize different values of the parameter k′′. As the zero-
dispersion wavelength of a chiral medium is expected to vary
with the choice of the chiral crystal, the pump’s wavelength may
also vary over a wide range from the visible to the near-infrared
region.

The solutions to Eq. (17) under these altered conditions are
shown in Figs. 3 and 4. As previously, the signal pulse broadens
as it is amplified, but it does not split into three parts; instead, a
remarkable fast intrapulse flipping of the SOP of the three pulses
occur, as demonstrated in Fig. 4. As seen there, the elliptical
SOP flips between the LCP and RCP states over the duration of
all three pulses. Again, this process is a result of a large temporal
overlap between the pump and signal pulses during parametric
interaction. Even though the LCP and RCP signal pulses slip
relative to each other during this interaction over a coherence
length LC, they keep overlapping sufficiently in this specific case
with a lower pulse broadening.

Depending on the magnitude of the group-velocity differ-
ence 1vg j = 2a ′j/(k

′2
j − a ′2j ) and the circular birefringence
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Fig. 4. Same as Fig. 3, except that ellipticity of the SOP is mapped as
a function of s at the same five distances.

Fig. 5. SOP trajectories of the normalized Stokes parameters
(S1(s ), S2(s ), S3(s ))/S0(s ) for the signal pulse as a function of
normalized time s , relative to the inertial frame of the pump pulse,
mapped onto the Poincaré sphere covering the duration of a signal
pulse at five normalized distances in the range from ζ = 0 to 2, in the
same configuration as in Figs. 3 and 4.

1α, intrapulse polarization state flipping may take a straight
or helicoidal path on the Poincaré sphere. This is illustrated
in Fig. 5, where the SOP changes across the signal pulse are
displayed on the Poincaré sphere at the same five distances. The
SOP trajectories for the signal pulse make use of the Stokes
parameters (S1(s ), S2(s ), S3(s ))/S0(s ) that depend on the
normalized time s . The trajectories in Fig. 5 are extracted as
the segments in normalized time s covering the span in which
the signal intensity S0(s ) exceeds one percent of its maximum
value for each value of ζ . Recalling that ζ = 1 corresponds to a
distance of propagation of 25 mm, the results shown in Figs. 3–5

are applicable to low-dispersive waveguides doped with a chiral
nonlinear material.

5. CONCLUSION

In this work, we have shown how chirality affects the OPA
process in a nonlinear optical medium when the pump, signal,
and idler waves are launched in the form of optical pulses. A set
of six coupled nonlinear equations was derived for the circularly
polarized components of the pump, signal, and idler pulses, after
including both the electric dipolar and nonlocal contributions
to the linear and nonlinear susceptibilities of the medium. Our
equations for wave propagation include differential group delay
and group-velocity dispersion induced by the chirality of the
medium. Numerical solutions to the pulsed OPA process in a
chiral crystal reveal novel features such as a three-peak structure
of the signal and idler pulses and fast intrapulse flipping of their
polarization states.

We have also demonstrated the possibility of employing the
chirality of a nonlinear medium for differential phase matching
between orthogonal circular polarization states, with the beat
length determining the period of alternating and recurring
conditions between the polarization states for parametric gen-
eration. The Manley–Rowe relations for the pulsed nonlinear
process show the interplay between the polarization state and
group-velocity deviations between the quasi-monochromatic
fields, including the resulting differential walk-off effects
between LCP and RCP modes.

In cases where the pulse duration of the signal is significantly
different from that of the pump pulse, the flanks of the signal
will act as seeds for starting the parametric process of energy
transfer. However, a strong signal peak within the regime of effi-
cient phase-matching will cut a significant portion of its overlap
with the pulse. In this respect, the chirality will have the impact
of a differential sliding overlap for the LCP and RCP modes,
resulting in pulses with circular polarization states of different
polarity on their leading and trailing flanks. This fast intrapulse
flipping between the two circular polarization states suggests
spintronic pump and probe experiments, where fast switching
of a frequency-tuned signal may be used in conjunction with
another light source as a pump.
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