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Abstract: This review focuses on phenomena such as temporal reflection, total internal reflection,
and waveguiding from ultrashort solitons forming inside a nonlinear dispersive medium such as
an optical fiber. The case of wider solitons, moving at a constant speed inside the fiber, is discussed
first to introduce the basic concepts. In the case of short solitons, the phenomenon of intrapulse
Raman scattering shifts their spectrum toward longer wavelengths and decelerates them as they
propagate through an optical fiber. These features lead to several novel effects such as temporal
focusing and waveguiding by a single variable-speed Raman soliton. Recent experimental results are
also discussed in this context.
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1. Introduction

Considerable attention has been paid recently to optical waves propagating in a
medium whose refractive index (or electric permittivity) varies with time [1–6], although
such a medium was studied as early as 1958 [7]. In most cases, the refractive index of
the time-varying medium is assumed to be modulated temporally in a spatially uniform
fashion on the time scale of a single cycle of the optical field incident on it. By changing
the medium’s refractive index in a periodic fashion, it is even possible to form a photonic
time crystal [8–10]. As it is difficult to produce rapid index changes all across a medium
on femtosecond time scales, experiments have involved low frequencies using water
waves [11], microwaves [12], or ultra-cold atoms [13]. Further, the effects of chromatic
dispersion, neglected in most theoretical studies, should be considered for any dielectric
medium with a time-varying refractive index.

The technique of traveling-wave modulation provides a solution to such issues. In
this case, changes in the refractive index of a dispersive medium move at the speed of the
traveling wave used to create them [14–16]. Since the refractive index of the medium varies
both in space and time, we refer to it as a spatiotemporal dispersive medium. The simplest
situation, shown schematically in Figure 1, corresponds to a moving boundary (thick black
line) with different refractive indices on its two sides. When an optical pulse interacts
with this boundary inside a dispersive medium, it splits into two pulses, whose spectra
are shifted such that they travel at different speeds [16–19]. These pulses represent the
transmitted and reflected pulses and are temporal analogs of the reflection and refraction at
a spatial interface [14]. This type of temporal reflection does not require index modulation
to occur on a single-cycle time scale. Further, it is possible to obtain a temporal analog of
total internal reflection and to use it for time-domain waveguiding [16].

A moving index boundary can be obtained using the optical Kerr effect. In this case,
intense pump pulses are launched into a nonlinear dispersive medium, such as an optical
fiber, to propagate as optical solitons [20]. The fiber’s refractive index increases in a time
window set by the width of the solitons, and this window moves at the speed of pump
pulses. When a probe pulse, moving at a different speed because of its different wavelength,
interacts with this high-index window, a reflected pulse is generated at a wavelength shifted
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from that of the probe [17]. A pump–probe configuration has been used for nonlinear fiber
optics in many different contexts and was used to obtain an optical analog of the event
horizon associated with a black hole [21–24].

Figure 1. Temporal analogs of reflection and refraction at a moving temporal boundary (thick black
line) with different refractive indices on its two sides. Arrows indicate the incident, reflected, and
transmitted pulses.

When the width of pump pulses exceeds a few picoseconds, the shape and width of
solitons do not change with propagation along an optical fiber. However, shorter pump
pulses (width of 100 fs or less) are often employed in practice because their use reduces
the length of fiber needed for experiments. In this situation, higher-order effects begin
to affect the solitons. The most relevant higher-order nonlinear effect turned out to be a
phenomenon known as intrapulse Raman scattering [20]. This effect shifts the soliton’s
spectrum toward longer wavelengths in a continuous fashion, which, in turn, causes the
soliton to decelerate as it propagates down the fiber. The net effect is that the speed of the
moving temporal boundary keeps decreasing inside the fiber. This review focuses on the
impact of such a boundary on temporal reflection and time-domain waveguiding.

This review is organized as follows. Section 2 focuses first on the case of relatively
wide solitons, moving at a constant speed inside the fiber, and introduces the basic concepts
behind time-domain reflection and waveguiding. Section 3 shows how these phenomena
are modified for shorter solitons by including the impact of intrapulse Raman scattering.
Temporal waveguiding of a probe pulse by two short solitons is also considered in this
section. The focus of Section 4 is on a new kind of waveguiding, where multiple temporal
reflections from a single decelerating soliton guide the probe pulse along its trajectory.
Numerical simulations and experiments reveal that different spectral shifts induced during
such reflections can be used to deduce the internal trajectory of the soliton from the data
taken at the output end of a fiber. The main conclusions are summarized in Section 5.

2. Solitons Acting as Mirrors

In general, pump pulses launched into an optical fiber become distorted because of
the dispersive and nonlinear effects, resulting in a high-index region that does not maintain
itself over the fiber’s length. This problem can be solved by making use of optical solitons,
forming when pump pulses are launched at a wavelength longer than the zero-dispersion
wavelength of the fiber so that the group-velocity dispersion (GVD) is anomalous at the
pump’s wavelength.

2.1. Temporal Reflection

In this section, we consider the case of picosecond pump pulses, which can form ideal
solitons that travel at a constant speed inside an optical fiber. Such pulses evolve according
to the well-known nonlinear Schrödinger (NLS) equation [20],

∂Ap

∂z
+

iβ2p

2
∂2 Ap

∂T2 = iγp|Ap|2 Ap, (1)
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where Ap is the slowly varying amplitude, T = t − z/vp is time measured in a frame
moving at the speed vp of pump pulses, and β2p is the GVD parameter at the pump’s
wavelength. The formation of solitons requires β2p to be negative. It also requires that the
width and peak power (Ts and Ps) of pump pulses are chosen such that N2 = γPsT2

s /|β2p| = 1,
where N is the soliton’s order. The nonlinear parameter γp is related to the Kerr coefficient
n2 as γ = ωpn2/(cAeff), where Aeff is the effective area of the single mode supported by
the fiber. The fiber’s losses are neglected in Equation (1), as lengths shorter than 1 km are
employed in practice.

When Equation (1) is solved with the initial condition, Ap(0) =
√

Ps sech(T/Ts), and
Ps is chosen such that N = 1, each pump pulse forms a fundamental soliton, whose shape,
width, and peak power do not change with z. In this situation, the fiber’s refractive index n
increases by a small amount (typically < 10−6) over the soliton’s duration and is the largest
at the peak of the soliton. This increase in n creates a spatiotemporal boundary, moving at the
speed of pump pulses. A probe pulse sees this increase through βb = 2γ|Ap|2 [20], where the
factor of two results from the nonlinear phenomenon of cross-phase modulation (XPM).

The probe’s evolution is governed by an equation similar to Equation (1), after the
nonlinear term on its right side is replaced with the XPM term as follows:

∂A
∂z

+ ∆β1
∂A
∂T

+
iβ2

2
∂2 A
∂T2 = 2iγ|Ap|2 A, (2)

where ∆β1 = β1 − 1/vp accounts for the speed difference between the pump and probe
pulses. The parameters β2 and γ are taken at the probe’s wavelength. It is useful to
introduce two normalized variables, such as τ = T/T0 and ξ = z/LD, where LD = T2

0 /|β2|
is the dispersion length. The resulting equation for the probe pulse is

∂A
∂ξ

+ d
∂A
∂τ

+
i
2

∂2 A
∂τ2 = iCxsech2(τ/τs)A, (3)

where d = ∆β1LD, τs = Ts/T0, and Cx = 2γPsLD are three dimensionless parameters. This
equation is solved numerically to study the evolution of a probe pulse and its interaction
with a pump soliton inside a silica fiber. In the moving fame, the soliton’s peak remains
fixed at τ = 0.

Figure 2 shows the temporal reflection and refraction of a Gaussian probe pulse using
d = 30 and Cx = 500, occurring when it collides with a soliton whose width is 10 times
shorter than its own width (τs = 0.1). For comparison, the bottom part shows what
happens when the soliton is wider by a factor of two (τs = 0.2). When a soliton is used
to form a spatiotemporal boundary, its width plays an important role because it dictates
the sharpness of this boundary. A shorter soliton produces a sharer boundary. One may
naively think that reflection would be reduced for a wider soliton. However, as seen in
Figure 2, the opposite happens: reflectivity increases from 75% to nearly 95% when the
width of the soliton doubles. When the soliton-induced index change is large enough, the
temporal analog of total internal reflection (TIR) occurs, which can be exploited for making
time-domain waveguides. A temporal analog of Goos–Hänchen shift also occurs during
this phenomenon.

The impact of a boundary’s sharpness on temporal reflection was studied in 2021 using
a transfer-matrix approach with a staircase model [19]. The results show that the frequency
range over which reflection can occur is reduced as the rise time increases. However,
TIR persists even for shallow boundaries with long rise times. This feature suggests that
solitons can be used as time-domain mirrors even when pump pulses have relatively long
rise and fall times.
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Figure 2. The reflection and refraction of a Gaussian pulse by a soliton that is 10 times (top) or
5 times (bottom) shorter than the pulse. The temporal (left) and spectral (right) intensities are shown
along the fiber’s length in both cases on a 40 dB colormap. A dashed vertical line marks the location
of the soliton’s peak in the moving frame.

2.2. Reflectivity of a Soliton

It turns out that the reflectivity of a soliton can be found in an analytic form with a
simple trick. We can remove the second term in Equation (3) by shifting ω0 from the probe’s
central frequency to the one for which d = 0. With this shift in the reference frequency ω0,
Equation (3) takes the form of a standard Schrödinger equation:

−i
∂A
∂ξ

= −1
2

∂2 A
∂τ2 + V(τ)A. (4)

where A(ξ, τ) is the wave function and V(τ) = Cxsech2(τ/τs) plays the role of a potential
barrier.

Although Equation (4) resembles the Schrödinger equation of quantum mechanics (ξ
plays the role of time), it does not contain h̄ as expected for a classical problem. Neverthe-
less, it is useful because one can use relevant quantum results with only minor changes.
Specifically, Equation (4) shows that the time-reflection problem is analogous to the scatter-
ing of a quantum particle from a potential barrier. As the potential V does not depend on ξ
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in Equation (4), known solutions of the reflection and transmissions coefficients for specific
barrier shapes can be directly applied to this classical problem.

For the “sech-shape” potential, the reflectivity of a plane wave, with the frequency
shift δi from the reference frequency, can be written as [25]:

R(δi) =

[
1 +

sinh2(D)

cosh2(π
√

B − 1/2)

]−1
, (5)

where B = 8Cxτ2
s and D = πδiτs. Besides δi, R depends on the soliton’s width, which sets

the width of the potential barrier. The dependence of R on the frequency shift is shown in
Figure 3 for three values of B. For all reasonable values of B, reflectivity is nearly 100% in
the range −4 < D < 4, or for frequency shifts such that |δi| < 1/τs. This feature suggests
that the use of narrower solitons would enhance the reflectivity over a wider frequency
range. However, as we shall see later, Raman scattering becomes important for short pump
pulses and needs to be taken into account.

Figure 3. The frequency dependence of the reflectivity of a soliton for three values of the parameter B.

The reflectivity of a probe pulse can be found by considering each of its spectral
components separately and integrating over all frequencies. For example, the amplitude of
the reflected pulse after its generation can be calculated using

Ar(τ) =
1

2π

∫ ∞

−∞

√
R(δi)eiϕr Ã(δi)eiδiτdδi, (6)

where Ã(δi) is the Fourier transform of the probe pulse and ϕr is the phase of the reflec-
tion coefficient.

2.3. Soliton-Based Waveguides

Similarly to the spatial case, time-domain TIR can be used to provide the temporal ana-
log of optical waveguides, which confine beams spatially to a high-index core, sandwiched
between two cladding layers. In the temporal case, a pulse would be confined within a
moving time window, where the refractive index differs from the regions outside of that
window [16]. When a probe pulse is located in the middle of two fundamental solitons
acting as mirrors, it travels first toward one of these solitons and is totally reflected from
it. The spectrum of the reflected pulse is shifted such that it slows down and moves away
from this soliton. When the pulse arrives at the second soliton, it is reflected again through
TIR, and its center frequency shifts back to the original value. This process repeats itself,
trapping the pulse between the two solitons.
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Figure 4 shows how such a waveguide functions by solving the NLS Equation (3)
numerically, after it was modified to include the impact of both solitons:

∂A
∂ξ

+ d
∂A
∂τ

+
i
2

∂2 A
∂τ2 = iCx

[
sech2

(
τ − q

τs

)
+ sech2

(
τ + q

τs

)]
. (7)

It depicts the temporal (left) and spectral (right) evolution along the fiber’s length when a
Gaussian-shape probe pulse of width T0 is located initially in the middle of two solitons,
separated by 10 T0. In normalized units, Equation (7) was solved with the initial amplitude
A(0, τ) = exp(−τ2/2) using the parameter values d = 40, τs = 0.1 and Cx = 1000.
Two solitons, located at q = ±5, were 10 times shorter than T0. The probe’s width is
not limited to any specific value. As an example, when T0 = 1 ps for probe pulses at a
wavelengths near 1.1 µm, the required fiber’s length is under 100 m. The wavelength of
100 fs pump pulses should be near 1.5 µm to ensure the anomalous GVD needed for the
two solitons.

Figure 4. Evolution of the shape (left part) and spectrum (right part) of a Gaussian pulse inside a
temporal waveguide formed by two solitons that act as 100% reflecting mirrors. Dashed vertical lines
mark the core region of this waveguide.

3. Impact of Raman Scattering

So far, pump pulses have been assumed to form ideal solitons whose shape, width,
and spectrum do not change with propagation inside an optical fiber. This is the case when
pump pulses are not too short and their width exceeds a few picoseconds. However, shorter
pump pulses (width 100 fs or less) are often employed in practice because their use reduces
the length of fiber needed for experiments.

When an ultrashort pump pulse is used to create a moving index boundary, higher-
order dispersive and nonlinear effects begin to affect the shape and spectrum of the soliton
used to form this boundary. The most relevant higher-order nonlinear effect turns out to be
a phenomenon known as intrapulse Raman scattering [20]. The spectrum of a femtosecond
pump pulse is wide enough that its high-frequency components can transfer energy to
the low-frequency components of the same pulse through Raman amplification. This
process causes the soliton’s spectrum to shift toward longer and longer wavelengths as it
propagates along the fiber. In the presence of anomalous GVD, a red-shift in the soliton
causes it to slow down (decelerate) along the fiber’s length. The net effect is that the
spatiotemporal boundary formed by the soliton does not remain stationary in any inertial
frame moving with a constant speed. This section focuses on the impact of such a boundary
on temporal reflection and waveguiding.
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3.1. Evolution of Short Pump Pulses

The NLS Equation (1), governing the evolution of picosecond pump pulses inside an
optical fiber, needs to be modified to include the effects of intrapulse Raman scattering.
This is accomplished by changing the dispersive and nonlinear terms in this equation as
follows [20]:

∂Ap

∂z
+ ∑

m≥2
im−1 βmp

2
∂m Ap

∂Tm = iγp Ap

∫ ∞

−∞
R(t′)|Ap(z, T − t′)|2dt′, (8)

where the sum includes multiple dispersion term,s and the nonlinear response function
R(t) has the form

R(t) = (1 − fR)δ(t) + fRhR(t). (9)

The first term in this equation corresponds to the Kerr effect. The second term accounts for
the Raman effect through its fractional contribution fR (about 18% for silica fibers); consult
Ref. [20] for a functional form of the Raman response function hR(t).

Equation (8) can be solved numerically to reveal how intrapulse Raman scattering
affects a soliton. An example is shown in Figure 5, where the evolution of the shape and
spectrum of a 100 fs pump pulse is shown over the 60 m length of a silica fiber using
β2p = −16 ps2/km, β3p = 0.1 ps2/km, and γp = 1.3 W−1/km, values appropriate at
a wavelength near 1.5-µm (terms with m > 3 were ignored). The initial amplitude was
Ap(0, T) =

√
Ps sech(T/Ts), and the peak power Ps was chosen to ensure the formation of

a fundamental soliton. As expected, the soliton’s spectrum in part (b) shifts continuously
toward the red side because of intrapulse Raman scattering. As a result of this shift, the
soliton slows down, resulting in a bent trajectory, seen in part (a) of Figure 5. We refer
to such a speed-changing soliton as the Raman soliton. If intrapulse Raman scattering
is ignored by setting fR = 0 in Equation (9), the soliton’s trajectory would be vertical,
indicating a constant speed of the soliton in the moving frame used here.

Figure 5. (a) The temporal and (b) spectral evolution of a 100 fs wide pump pulse inside a 60 m long
silica fiber in the presence of intrapulse Raman scattering.

One can also solve Equation (8) with the variational method to obtain approximate
analytic expressions for the spectral and temporal shifts of a Raman soliton. The solution
has the form [20]

Ap(z, T) =
√

Ps sech
(

T − qs

Ts

)
e−iΩsT+iϕs . (10)

This shows that the Raman soliton’s shape and width, governed by |Ap(z, T)|2, do not
change, even though its peak shifts because of speed changes and its spectrum shifts
toward the red side. Moreover, the Raman-induced frequency and temporal shifts vary
with distance z and are given by

Ωs = −
8TR|β2p|z

15T4
s

, qs =
4TRβ2

2pz2

15T4
s

, (11)
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where TR is a constant whose value (about 3 fs) depends on the Raman response function as
TR =

∫ ∞
0 t hR(t) dt. The frequency shift varies linearly with z, but the temporal shift varies

as z2. This is indeed what is observed in Figure 5. Notice also that both shifts depend on
the soliton’s width as 1/T4

s , indicating that they increase rapidly as solitons become shorter.

3.2. Temporal Reflection and Focusing

To achieve temporal reflection, the speed difference between the pump and probe
pulses should be relatively small [14]. One way to achieve this is to notice that a single-
mode silica fiber has its zero-dispersion wavelength around 1310 nm, where β2 vanishes.
As β2 has different signs on the opposite sides of this wavelength, for any wavelength of
the pump, a wavelength exists on the opposite side that has the same group velocity. For
example, if we choose the pump’s wavelength at 1500 nm, the group velocity at 1145 nm
matches that of the pump pulse. In practice, the wavelength of probe pulses should be in
the range of 1145 ± 20 nm to ensure relatively high reflectivity.

One way to model the probe’s evolution is to solve Equation (8) with the initial condition

Ap(0, t) = As(0, t) + A(0, t) exp(−i∆ωt), (12)

where As and A are the envelope of the pump and probe pulses at z = 0, and ∆ω is the
frequency shift between the two pulses. This solution provides Ap(z, t) at various distances
inside the fiber. The pump and probe pulses can be separated by using a bandpass filter in
the spectral domain. This approach requires long computing times because its temporal
resolution scales inversely with ∆ω and should be < 1 fs in practice.

When the spectra of pump and probe pulses are widely separated, one can employ
Equation (8) to obtain two coupled NLS equations for the pump and probe pulses by using

Ap(z, t) = As(z, t) + A(z, t) exp[i(∆βz − ∆ωt)], (13)

where ∆ω = ω0 − ωp is the frequency shift in the probe from the pump and ∆β is the corre-
sponding change in its propagation constant. Substituting Equation (13) into Equation (8)
and separating the terms in the two spectral regions, we obtain the following two equations:

∂As

∂z
+ ∑

m≥2
im−1 βmp

2
∂m As

∂Tm = iγ(1 − fR)(|As|2 + 2|A|2)As

+ iγ fR

∫ ∞

−∞
hR(t′)(|As|2 + |A|2)As(t − t′)dt′,

(14)

∂A
∂z

+ ∑
m≥1

im−1 βm

2
∂m A
∂Tm = iγ(1 − fR)(|A2

| + 2|As|2)As

+ iγ fR

∫ ∞

−∞
hR(t′)(|As|2 + |A|2)A(t − t′)dt′.

(15)

The preceding equations can be simplified when probe pulses are much less intense
than pump pulses (often the case in practice). In this situation, we retain the XPM term
in Equation (15) but neglect the self-phase modulation term. As probe pulses are often
wider than pump pulses, we can neglect higher-order dispersive effects for them. For the
same reason, hR(t′) in Equation (15) can be replaced with a delta function and the integral
evaluated analytically. The probe’s equation then takes the following simpler form [26]:

∂A
∂z

+ ∆β1
∂A
∂T

+
iβ2

2
∂2 A
∂T2 = i(2 − fR)γ|As(z, T)|2 A. (16)

For the pump pulse, we can use Equation (8) when it is not affected by the probe pulse in a
significant fashion.
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To study the temporal reflection of a probe pulse from a Raman soliton, Equations (8) and (16)
were solved numerically in a 2022 study [26] with the same parameter values used for
Figure 5. The shape of the probe pulse at the input end of the fiber was Gaussian:

A(0, T) = exp
[
− (T − Td)

2/2T2
0

]
, (17)

with T0 = 1 ps and Td = 2.5 ps. The parameter ∆β1 accounted for the probe’s wavelength
being longer by 10 nm from the speed-matching wavelength at 1145 nm of the silica fiber
for 1500 nm pump pulses.

Figure 6 shows the evolution of a probe pulse and its temporal reflection from the
Raman soliton, whose trajectory follows the dashed line. The probe pulse, delayed initially
by 2.5 ps, travels faster than the soliton and catches up with it at a distance of about
10 m. After that distance, most of its energy is reflected; only a small fraction (<10%) is
transmitted and appears on the other side of the pump pulse. The spectrum of the reflected
pulse seen in part (b) is not only shifted by about 6 THz; it is also considerably wider than
that of the probe pulse. Such spectral broadening does not occur for picosecond pump
pulses, for which intrapulse Raman scattering plays a minor role. Notice also what happens
in the time domain. The reflected pulse is narrower than the incident probe pulse and
narrows further with propagation, exhibiting a kind of temporal focusing.

The behavior seen in Figure 6a can be understood as the temporal analog of a beam’s
focusing from a curved mirror and is another example of the concept of space–time duality.
Since the soliton’s trajectory is curved in a parabolic fashion, the probe pulse is “focused in
time” as it is reflected by a parabolic mirror. More precisely, when the probe pulse interacts
with the soliton through XPM, it becomes chirped and its spectrum broadens. With further
propagation, this chirped pulse is compressed by the GVD of the fiber, resulting in temporal
focusing. Compression by a factor of 10 was observed numerically [26] for wider probe
pulses (T0 = 2.5 ps).

Figure 6. (a) The temporal and (b) spectral evolution of a 1 ps wide probe pulse reflecting from a
0.1 ps wide soliton. The dashed line shows the trajectory of the soliton. Adapted from Ref. [26].

3.3. Time-Domain Waveguiding

One should ask how intrapulse Raman scattering affects the formation of temporal
waveguides, discussed in Section 2.2. As noted in Section 2.2, when two solitons moving
with a constant speed travel inside an optical fiber, a probe pulse can be trapped between
them by the TIR occurring at each soliton. However, if the speed of both solitons changes
with distance because of Raman-induced spectral shifts, it is not evident that a waveguide
can still form.

This issue was addressed in a 2023 study [27] by solving Equation (8) with an input in
the form

Ap(0, T) =
√

Ps

(
sech[(T − 1

2 Tg)/Ts] + eiπ/2sech[(T + 1
2 Tg)/Ts]

)
, (18)
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where Tg is the initial spacing (gap) between the two pump pulses of width Ts, whose peak
powers were chosen such that they formed two fundamental solitons. The time gap Tg
was much larger than the width Ts of the two solitons to prevent any nonlinear interaction
between them [20]. The 90◦ phase shift between the two solitons was introduced to reduce
their interaction further. The probe was still a Gaussian pulse with the initial amplitude
given in Equation (17), but it was located in the middle of the two solitons (Td = 0).

As a specific example, the pump–probe equations were solved numerically using
Ts = 0.2 ps, T0 = 1 ps, Tg = 5 ps, β2 = −β2p = 14 ps2/km, and γ = 2 W−1/km. Figure 7
shows the evolution of the pump (top) and probe (bottom) pulses over a 1 km long fiber,
both in the time and frequency domains. As expected, the spectrum of pump pulses (part b)
red-shifts because of intrapulse Raman scattering (spectral fringes result from interference).
In the time domain (part a), the trajectories of both solitons are bent in a parabolic fashion
because of deceleration caused by spectral red-shifts.

Figure 7. Temporal and spectral evolutions of the pump (a,b) and probe (c,d) pulses over a 1 km long
fiber. The probe pulse is trapped within the temporal waveguide formed by two Raman solitons.
Adapted from Ref. [27].

The evolution of the probe pulse in part (c) shows clearly that the probe is trapped
within the temporal waveguide formed by two Raman solitons. In the absence of pump
pulses, the probe’s trajectory would be vertical, its spectrum would remain unchanged, and
its width would increase because of dispersion. As the two solitons form a waveguide, the
probe pulse is trapped between them and is forced to decelerate with them. In the spectral
domain (part d), the probe’s spectrum shifts toward higher frequencies (a blue-shift), and
this shift is required for its speed to decrease. An interesting feature is that, although the
pump’s spectrum red-shifts linearly with distance, the probe’s spectrum does not do so and
exhibits a zigzag pattern toward the blue side. It turns out that the waveguide formed by
the two Raman solitons is the temporal analog of a spatial waveguide with a curved core.

An approximate analytic treatment of such temporal waveguides has been carried
out by working in a non-inertial frame in which both Raman solitons appear station-
ary [27]. Noticing that the Raman-induced time delay of the soliton in Equation (11) varies
quadratically with distance, one can introduce a new time variable:

τ′ = τ − aξ2, a = 4TR(β2pLD)
2/(15T0T4

s ). (19)

In this frame, the Raman solitons are stationary but Equation (4) is transformed into

−i
∂A
∂ξ

= −1
2

∂2 A
∂τ′2 − 2iaξ

∂A
∂τ′ + V(ξ, τ′)A. (20)



Photonics 2024, 11, 1189 11 of 20

One can find temporal modes of this eigenvalue equation in the adiabatic approxima-
tion [27]. The term containing a leads to coupling among various waveguide modes,
similar to the coupling introduced by the bending of a curved spatial waveguide. The
resulting coupled-mode equations are useful for gaining physical insight into the numerical
results shown in Figure 7.

3.4. Experimental Status

In general, the observation of temporal reflection from a soliton requires a short pump
pulse and a probe pulse traveling at nearly the same speed at a different wavelength.
However, even before this process was identified, it had occurred in many experiments
on supercontinuum generation [28], where a higher-order soliton breaks into many funda-
mental solitons, which generate dispersive waves that can play the role of a low-energy
probe pulses [20]. More direct evidence of temporal reflection has been seen in experiments
that interpret it as reflection from an optical analog of the “event horizon” created by a
soliton [21–24]. In these experiments, a high-index region, created inside an optical fiber by
a soliton, reflects the probe with substantial frequency shifts.

As an example, one may cite the 2012 experiment [23], performed using a short
microstructured fiber (only 1.1 m long), whose zero-dispersion wavelength was in the
visible region near 710 nm. This feature allowed the use of 105 fs pulses at 810 nm for
forming the Raman solitons in the anomalous-GVD region of the fiber. Probe pulses were
launched in the normal-GVD region of the fiber at wavelengths near 620 nm so that they
traveled at nearly the speed of pump pulses. When the wavelength of probe pulses was
varied from 595 to 645 nm, either a blue-shift or a red-shift was observed for the reflected
pulse, depending on whether the probe was traveling slower or faster than the soliton.
These features agree with the discussion in Sections 2.2 and 3.2.

Clear evidence of the formation of a temporal waveguide by two Raman solitons
was seen in a 2015 experiment through a pump–probe-type experiment [29]. A 29 m long
photonic crystal fiber was employed with its zero-dispersion wavelength near 980 nm. The
pump pulses were 250 fs wide, and their wavelength was tunable from 1000 to 1500 nm.
The probe pulses were considerably wider, and their 802 nm wavelength was in the normal-
GVD region of the fiber. Each pump pulse was split into two pulses, separated by 3.6 ps,
using a setup similar to a Michelson interferometer. The probe pulses were synchronized
such that each was located in the center of a pair of pump pulses at the input end of
the fiber.

The peak power of the pump pulses was adjusted in the experiment to ensure that
they propagated through the fiber as Raman solitons. Each probe pulse was found to
be trapped within the so-called “solitonic cage”, formed by the two Raman solitons that
surrounded it. Even though the trapping was not interpreted as a temporal waveguide,
spectral measurements showed clearly how the wavelength of the probe pulses shifted
back and forth, in a fashion similar to that seen in Figure 4. Both the numerical and
experimental results reported in Ref. [29] agree with the discussion of temporal waveguides
in Sections 2.3 and 3.3. Such a waveguide is formed because of periodic TIR of the probe
from the two solitons that surround it.

In a more recent experiment [30], temporal refraction of a probe soliton by a nonuni-
form train of solitons (called the soliton gas) was observed. When the probe passed through
such a train of solitons, its frequency shifted owing to its refraction by the soliton train.
The disordered nature of a soliton train can also lead to the temporal analog of Anderson
localization under suitable conditions [31,32].

4. Waveguiding with a Single Soliton

As we saw in Section 2.3, a temporal waveguide generally requires two solitons,
separated in time by a fixed interval, so that a probe pulse can remain confined between the
two solitons. The discussion in Section 3.3 revealed how two Raman solitons, whose speed
does not remain constant because of intrapulse Raman scattering, can still confine a probe
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pulse between them through multiple reflections. However, a new kind of waveguiding
has been discovered in the case of Raman solitons. It was found that a single Raman soliton
can also guide a probe pulse along its trajectory through multiple reflections, and recent
experiments have confirmed such predictions [33].

In the experiments, a short photonic crystal fiber (PCF) was used as a nonlinear
dispersive medium for forming the temporal waveguide with a single Raman soliton. As
the zero-dispersion wavelength of this PCF was 738 nm, short pump pulses were obtained
from a mode-locked laser operating at 800 nm. Probe pulses were launched at a wavelength
on the opposite side of the PCF’s zero-dispersion wavelength such that their speed nearly
matched the speed of the pump pulses.

4.1. Numerical Simulations

Figure 8 shows the results obtained numerically by solving the pump–probe equations,
given in Equations (14) and (15), with the parameter values appropriate for the PCF used
in the experiments. The 800 nm pump pulse was 110 fs wide and was launched with a
137 fs probe pulse at 683 nm. Both pulses had nearly the same speed at the input end of the
fiber. The energy of the pump pulse was high enough to form a fourth-order soliton. The
energy of probe pulses was a small fraction of this energy.

Figure 8. Numerical simulations (top) showing the Raman-induced guiding of a probe pulse by
a single Raman soliton along its trajectory. The spectral evolution (bottom) shows the red and
blue-shifts of the pump and probe pulses along the fiber’s length. Adapted from Ref. [33].

Several things are noteworthy in Figure 8. First, the higher-order soliton undergoes
fission within the first 20 cm of the fiber (top panel) such that an ultrashort fundamental
soliton is formed [20]. This soliton undergoes a large spectral redshift (>40 THz, see
bottom panel) through intrapulse Raman scattering. The speed of the Raman soliton keeps
decreasing because of its deceleration, resulting in a bent trajectory in the time domain. The
probe pulse follows this trajectory through multiple temporal reflections while changing
its frequency in a zigzag fashion toward the blue side (see bottom panel). At the end of
the fiber, the spectra of both pulses have shifted by about 40 THz. In the time domain, the
probe pulse remains close to the Raman soliton but does not overlap with it.

One can view the Raman-induced waveguiding process as a cascade of temporal
reflections along the fiber’s length. As the pump pulse slows down near the front end of
the fiber, the probe reflects from it for the first time, and its spectrum blue-shifts to match
the speed of pump pulse at that time. As the pump pulse keeps slowing down, a second
reflection occurs that shifts the probe’s frequency further to the blue side. This process
keeps repeating along the fiber’s length. Such a cascade of temporal reflections ensures
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that the pump and probe pulses move together along the entire length of the fiber. This
interpretation is justified by the zigzag pattern of the probe’s blue-shifts seen in Figure 8.

4.2. Experimental Results

Figure 9 shows the experimental setup used in Ref. [33] to observe the waveguiding
of probe pulses by a single Raman soliton. An optical parametric amplifier (OPA) provided
683 nm probe pulses that were combined with 800 nm pump pulses, delayed suitably using
a translation stage. The resulting beam was focused onto a 3.75 m long PCF, and its output
was characterized with a spectrometer. A linear polarizer before the PCF ensured that the
two pulses had the same polarization direction, which was aligned with a principal axis of
the PCF. A half-wave plate was used in the pump’s path to change the peak power of the
pump pulses.

Figure 9. Schematic of experimental setup. BPF: bandpass filter; HWP: half-wave plate; LP: linear polarizer.

Figure 10 shows the spectra measured at the PCF’s output in three different situations.
When only pump pulses were launched, the spectrum [blue trace in part (a)] contained
two dominant peaks, one centered at the input wavelength of 800 nm and the other at
866 nm. The 866 nm peak corresponds to the Raman soliton, formed after a short distance
into the PCF. Intrapulse Raman scattering had the greatest impact on this soliton, and its
spectrum was red-shifted by 66 nm at the PCF’s output end. When only probe pulses were
launched at 683 nm, a single peak at this wavelength was observed [red trace in part (a)],
as expected for such low-energy pulses.

When both the pump and probe pulses were launched together into the PCF, the
output spectrum, shown in part (b) of Figure 10, had a new blue-shifted peak at 631 nm
that contained a large fraction of the probe’s energy. The 52 nm blue-shift in the probe was
induced by the Raman soliton, which guided the probe pulse along its own trajectory, as
seen in Figure 8. According to numerical simulations, the probe’s blue-shift increased in
a discrete step-like fashion inside the PCF. This feature can be understood by recalling
that the probe pulse reflects from the Raman soliton several times in a cascaded fashion
(see Figure 8). The spectral shift is different each time because it depends on the speed of
the Raman soliton at the location where the collision of the probe with the Raman soliton
occurs inside the fiber.

The trapping of weak pulses (dispersive waves) by optical solitons has been noted in
several different contexts, including supercontinuum generation [34–39]. The blue-shift in
a probe pulse, trapped by a Raman soliton, was observed as early as 2002, using a relatively
long dispersion-shifted fiber [34]. However, it was not realized that this trapping was due
to multiple reflections of the probe pulse from a decelerating Raman soliton with a curved
trajectory. As seen in Figure 8, Trapping of weak pulses (dispersive waves) the probe pulse
follows the trajectory taken by the Raman soliton by shifting its frequency to the blue side
through multiple reflections such that the two pulses move at nearly the same speed and
thus appear trapped.
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Figure 10. The measured spectra when (a) only the pump or probe pulse and (b) both the pump and
probe pulses were sent through the PCF. Adapted from Ref. [33].

4.3. Probing of Soliton’s Trajectory

As seen in Figure 5, the trajectory of a Raman soliton bends toward the right side be-
cause of its deceleration induced by a linearly increasing red-shift in the soliton’s spectrum.
Such temporal and spectral shifts in a Raman soliton, occurring inside any optical fiber,
cannot be measured directly, unless one employs a cut-back method in which the fiber’s
length is reduced successively by cutting it. Such a technique is not only cumbersome but
also destroys the fiber.

The experimental setup shown in Figure 9 can be used to deduce the temporal and
spectral shifts in a Raman soliton at any distance within the fiber from the spectral measure-
ments made only at the end of the fiber. Figure 11 shows the underlying idea schematically
using three probe pulses with different initial delays. Even though only a single temporal
reflection takes place, the resulting spectral shifts at the output of the fiber are different
because these shifts depend on the speed of the Raman soliton at the precise location where
probe pulse collides with the Raman soliton inside the fiber. The three probe pulses differ
only in their relative delays from the pump pulse launched into the fiber. The wavelength
of each reflected pulse at the fiber’s output depends on the probe’s initial relative delay at
the input end. By varying this relative delay and measuring the reflected pulse’s spectrum
as a function of the delay, one can deduce how the frequency and speed of the Raman
soliton evolve inside the fiber.

Figure 11. A schematic showing the temporal reflection of three probe pulses by a Raman soliton for
different initial delays.
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As an example, Figure 12 shows the numerically simulated output spectra of a 645 nm
probe pulse for initial relative delays in the range of 0 to 2.5 ps. For small delays, temporal
reflection leads to the blue-shifted peak seen on the left. As the delay becomes larger,
the probe’s blue-shift becomes smaller and eventually disappears. This behavior can be
understood from Figure 11. As the delay increases, the collision between the probe and
soliton occurs after a longer distance into the fiber. When the delay is large enough, the
two never collide, and temporal reflection ceases to occur.

Figure 12. The output spectra of a 645 nm probe pulse for different initial pump–probe delays (probe
pulses were delayed). The dashed line corresponds to the probe’s peak. Adapted from Ref. [40].

In a 2023 experiment [40], the measured output spectra matched the pattern seen in
Figure 12 reasonably well. However, probe pulses at three different probe wavelengths
were needed to cover the entire trajectory of the Raman soliton. The delay dependence of
the reflected pulse’s wavelength at the PCF’s output was used to deduce the speed of the
Raman soliton at the location of its collision with the probe pulse, which, in turn, was used
to calculate the soliton’s red-shift at that location. The results agreed well with theoretical
predictions based on Equation (11).

4.4. Impact of Soliton’s Parameters

The results discussed so far in this section were obtained for pump pulses of a specific
width, assuming that they were nearly chirp-free. Also, the probe pulses were delayed
initially and were traveling faster than the pump pulses. One should ask what happens
when input pump pulses are chirped and have a different width. One can also change the
wavelength of a probe pulse such that they are launched ahead of the pump pulse and
travel slower than pump pulses. This section focuses on a few specific situations to reveal
novel effects that may occur.

As an example, Figure 13 shows the numerical results for 655 nm probe pulses (spectral
width of 5 nm) launched with 800 nm pump pulses (width 30 fs) that were delayed initially
by 0.33 ps into the same PCF used for the experiments in Section 4.2. Nothing happens to
the probe pulse, until it collides with the Raman soliton at a distance of 0.25 m, resulting
in temporal reflection. The reflected pulse travels faster than the probe pulse because its
spectrum has been red-shifted by more than 20 THz from that of the probe. The wide
spectral peak, appearing after 0.25 m and located near 435 THz in Figure 13, corresponds
to this reflected pulse. In the time domain, this pulse spreads with further propagation
because of a large normal GVD of the fiber at its wavelength.

The transmitted part of the probe pulse collides with the pump pulse a second time at
a distance of about 2.5 m, producing a blue-shifted reflected pulse. The reason behind the
blue-shift can be understood when we take into account the Raman-induced deceleration of
the Raman soliton. During the first collision, this soliton is traveling faster than the probe.
In contrast, it slows down so much at a distance of 2.5 m that its speed becomes smaller
than that of the probe. The nature of frequency shift during temporal reflection depends
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on the relative probe-soliton speed (sign of ∆β1); a blue-shift occurs when probe travels
faster than the pump [14]. As we saw earlier, such multiple reflections lead to guiding of
the probe pulse by the Raman soliton [33].

Figure 13. The temporal (left) and spectral (right) evolution of a probe pulse simulated numerically
over the fiber’s length. The pump pulse was delayed initially by 0.33 ps.

Recall that spectral shifts produced during temporal reflections depend on the location
within the fiber where the pump and probe pulses collide. This location can be controlled
by changing the initial relative delay between the two pulses. Figure 14 shows the probe’s
spectra obtained numerically for different pump–probe delays. Three main spectral bands
can be seen in this figure. The central band, located near 650 nm, corresponds to the input
probe pulse. The blue-shifted spectral band on the left results from trapping (or guiding)
of the probe by the soliton through multiple reflections. The red-shifted spectral band
on the right corresponds to the reflected pulse generated during the first collision of the
probe. This red-shift becomes smaller for loner delays because the Raman soliton slows
down as it propagates down the fiber. A larger initial delay forces the collision to occur
at a longer distance, where the soliton’s speed is closer to that of the probe, resulting in
a smaller frequency shift. Experiments carried out with a PCF using the setup shown in
Figure 9 confirm the behavior seen in Figure 14.

Figure 14. The simulated output spectra of a 645 nm probe pulse for different initial pump–probe
delays. The pump pulses were delayed in this case. Adapted from Ref. [41].

The case of chirped pump pulses is also interesting. In a 2024 experiment [41], a pulse
shaper based on two prisms and a mirror was used for this purpose. The measured width
of chirped pump pulses (about 100 fs) corresponded to adding 1130 fs2 of GVD to each
800 nm pump pulse. The experimental results for such chirped pump pulses are shown in
Figure 15 using 655 nm probe pulses delayed suitably from pump pulses. Figure shows the
probe’s output spectra, measured by varying its initial delay from the pump in the 0 to 1 ps
range, on a 20 dB intensity scale.
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Figure 15. The measured probe spectra for chirped pump pulses as relative pump–probe delay is
varied from 0 to 1 ps. Adapted from Ref. [41].

The experimental probe spectra in Figure 15 show features similar to those seen in
Figure 14 for unchirped pump pulses, with some differences resulting from the chirping of
pump pulses. Although three spectral bands are seen in both cases, a new spectral band
appears near 700 nm in Figure 15 for small pump–probe delays. Clearly, a Raman soliton
evolves differently because of an initial chirp imposed on the pump pulse. To confirm
this, numerical simulations were performed using the measured shape and phase of input
pump pulses, and the results are shown in Figure 16.

Figure 16. The simulated probe spectra in the experimental situation of Figure 15.

A comparison of the probe spectra in Figure 16 with the experimental results in
Figure 15 shows relatively good agreement. In both cases, two reflected spectral bands
are seen on the red side of the 655 nm probe band when the relative pump–probe delay
is small. In both simulations and experiments, the red-shift in the main reflection peak
decreases as the delay is increased, and this peak eventually merges with the spectrum
of the incident probe pulse. The second reflection peak in Figure 16 at wavelengths near
700 nm is present for only small delays and disappears as the delay increases. This is also
what was observed experimentally in Figure 15.

Numerical simulations were used to verify that double reflection indeed occurs for a
pump–probe delay of <0.2 ps. The temporal and spectral evolution of the probe pulse is
shown in Figure 17 over the first 1 m of the PCF for a pump–probe delay of 0.15 ps. As seen
in this figure, the probe collides with the pump pulse within the first 10 cm of the PCF. At
this point, the probe pulse splits into three parts. Only a small fraction of the probe’s energy
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is transmitted. Most of its energy appears in the form of two reflected pulses, whose spectra
are red-shifted by different amounts (about 20 and 40 THz). As both pulses are traveling
in the normal-GVD region of the fiber, their speeds increase by different amounts. The
process of double reflection can be understood from Ref. [42], where it was found that an
intense chirped pulse splits into two soliton-like pulses. Collision of the probe with these
two closely spaced solitons is responsible for the two reflection pulses seen in Figure 17.
The main conclusion is that temporal reflection is quite sensitive to parameters such as the
width, chirp, and initial delay of pump pulses.

Figure 17. Temporal (left) and spectral (right) evolution of probe pulses showing double temporal
reflection in the experimental situation of Figure 15.

5. Concluding Remarks

This review focused on novel phenomena that emerge when ultrashort optical pulses
propagate through a nonlinear dispersive medium, such as an optical fiber. These phe-
nomena occur when pump pulses propagate as optical solitons and modulate the fiber’s
refractive index through the optical Kerr effect, both in space and time, in a traveling-wave
fashion. When the width of the pump pulses exceeds a few picoseconds, the shape, width,
and spectrum of the solitons do not change with propagation along an optical fiber. This
case was discussed first to introduce basic concepts such as the temporal reflection, total
internal reflection, and time-domain waveguiding of probe pulses launched into the same
fiber at a wavelength different from that of the pump.

Shorter pump pulses (width 100 fs or less) are often employed in practice because
their use reduces the length of fiber needed for experiments. In this situation, higher-order
effects begin to affect the shape and spectrum of each soliton. The most relevant higher-
order nonlinear effect is the process of intrapulse Raman scattering. This process shifts
the soliton’s spectrum toward longer wavelengths in a continuous fashion, which, in turn,
causes it to decelerate, as the soliton propagates down the fiber. Such a slowing down of the
Raman soliton affects both the temporal reflection of probe pulses and their waveguiding
when two closely spaced Raman solitons are used to confine them. At the same time, it can
lead to novel effects such as temporal focusing of the reflected probe and waveguiding by
a single variable-speed Raman soliton. Recent experimental results were also discussed in
this context.

As a potential application of temporal refection and waveguiding, it was shown that
temporal reflection can be used to deduce the spectral shifts in and speed changes of a
Raman soliton, occurring all along an optical fiber, from the spectral measurements made
only at the end of that fiber. Another application of temporal refection would be to shift the
wavelength of low-energy pulses toward the blue side in a tunable fashion using intense
pump pulses at a different wavelengths. Although four-wave mixing can also be used for
this purpose, its use requires phase matching. Intrapulse Raman scattering does not require
phase matching and shifts the wavelength of weak probe pulses toward the blue side by
transferring the pump’s red-shift to the probe as a blue-shift.
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