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Abstract: Graded-index fibers have been used in recent years to make high-power fiber lasers and
amplifiers. Such fibers exhibit self-imaging, a phenomenon in which any optical beam periodically
reproduces its original shape in undoped fibers (no gain). In this work, we employed analytic and
numerical techniques to study how self-imaging affects the evolution of a signal beam inside a
nonlinear graded-index fiber amplifier, doped with a rare-earth element and pumped optically to
provide gain all along its length. We also exploited the variational technique to reduce the computing
time and to provide physical insights into the amplification process. We compared the variational and
fully numerical results for the two pumping schemes (clad pumping and edge pumping) commonly
used for high-power fiber amplifiers and show that the variational results are reliable in most cases of
practical interest. The stability of the signal beam undergoing amplification is examined numerically
by launching a noisy Gaussian beam at the input end of the amplifier. Our results show that the
quality of the amplified beam should improve in the case of edge pumping when a narrower pump
beam provides an optical gain that varies considerably in the radial direction of the fiber. Such an
improvement does not occur for the clad pumping scheme, for which the use of a relatively wide
pump beam results in a nearly uniform gain all along the fiber.

Keywords: nonlinear effect; ytterbium-doped fiber laser; fiber laser amplifier

1. Introduction

Graded-index (GRIN) fibers were studied as early as 1970 in the context of optical
communications, owing to their smaller differential modal delays compared to multimode
step-index fibers [1]. More recently, GRIN fibers have been used to enhance the capacity
of telecommunication systems through mode-division multiplexing [2] and for studying
intriguing nonlinear effects such as the formation of multimode solutions [3], the creation
of dispersive waves over a wide spectral range [4,5], the spatiotemporal mode-locking of
lasers [6–8], and the generation of a supercontinuum [9–11]. Furthermore, Krupa et al. have
shown that the nonlinear Kerr effect and periodic self-imaging are the driving mechanisms
for the onset of geometric parametric instability [12] and for observing spatial beam clean-
up in GRIN fibers [13].

Ytterbium-doped multimode fibers are used extensively when making high-power
lasers and amplifiers because of their relatively wide central cores. Recently, the use of
GRIN fibers has attracted attention for such amplifiers and lasers. GRIN fibers provide
better beam quality compared to step-index fibers, owing to the phenomena of spatial
beam clean-up [14,15]. A mode-based analysis shows that GRIN fibers are instrumental in
improving the output beam’s quality [16,17]. However, the modal approach becomes less
useful for a high-powered fiber amplifier when many modes of the GRIN fiber are excited
by the pump and signal beams. By adopting the concept of wave thermalization, it was
shown in a recent study that the improvement in beam quality is associated with nonlinear
phase locking among the modes of a fiber [18].
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Non-modal numerical studies of GRIN-fiber amplifiers have also been carried out
in recent years [19,20]. This approach, in general, requires solutions to multidimensional
coupled differential equations and is, by necessity, resource-intensive. Even though a
detailed numerical analysis may be needed in some situations, more physical insight can
be gained by adopting a simpler approach. An approximate analytical treatment used
recently [21] ignored an important nonlinear effect known as self-phase modulation (SPM).

Our aim in this study is to develop a numerical model of GRIN fiber amplifiers
that includes most of the relevant amplification physics and provides useful results on a
relatively fast time scale. Our work is based on a reasonable model for the pump-induced
local gain inside a doped GRIN fiber and also includes the relevant nonlinear effects.
Further, we consider both the edge and clad pumping schemes and compare them. We also
develop a variational approach, used earlier for high-power Raman amplifiers [22], and
validate it by comparing its results with those provided by the multidimensional numerical
model. We found that in most practical cases, the evolution of an optical beam inside
a GRIN fiber amplifier can be modeled much faster by solving a few coupled ordinary
differential equations. Our approach provides considerable physical insight and should be
useful for designing and analyzing experiments on high-power amplifiers based on doped
GRIN fibers.

This article is organized as follows. We present in Section 2 the numerical model we
used for studying the amplification of a signal beam, launched into a GRIN fiber amplifier
that was pumped optically to produce the optical gain. We also discuss the simplifications
that we made to obtain a partial differential equation satisfied by the slowly varying
amplitude of the signal beam. We performed a stability analysis in this section to ensure that
the amplifying beam maintained its spatial structure. The propagation equation was solved
approximately in Section 3 using a semi-analytical variational approach, resulting in four
coupled ordinary differential equations describing the evolution of four beam parameters
inside the GRIN fiber. These equations are solved in Section 4 for two specific pumping
schemes, and the results are compared with those obtained by solving the multidimensional
equation numerically. We summarize our main conclusions in Section 5.

2. Theory

We considered a GRIN fiber with a parabolic refractive index profile and a uniform
density of dopants along the radial direction. When such a fiber is pumped with a high-
power laser, the gain can still vary radially and axially because of a nonuniform inversion
of the dopants, as shown schematically in Figure 1. Two pumping schemes were used in
practice. In the side-pumping scheme, a wide pump beam was launched into a double-clad
fiber, resulting in a nearly uniform gain all along the fiber. In the case of edge pumping, a
narrower pump beam was launched at the front end of the amplifier, resulting in a local
gain G(ρ, z) that varied both radially and axially all along the fiber’s length.

2.1. Propagation Equation for the Signal Beam

In this work, we considered both pumping schemes by including the local gain G(ρ, z)
through the imaginary part of the refractive index. The real part of the refractive index
included the parabolic radial variations, together with the Kerr nonlinearity. The resulting
expression for the refractive index becomes

n(ρ, z) = ncore

(
1 − 1

2
b2ρ2

)
+ n2|Es|2 − i

G(ρ, z)
2ncorek0

, (1)

where ρ =
√

x2 + y2 is the radial distance from the center of the GRIN fiber and ncore is
the refractive index at ρ = 0 (see Figure 1b). The index gradient b is defined as b =

√
2∆/a,

where a is the core’s radius, typically 50 µm, and ∆ is the relative core–cladding index
difference defined as ∆ = 1 − nclad/ncore = 0.01. For these values, b = 2.8 × 103 m−1.
The Kerr coefficient n2 has a value of 2.7 × 10−20 m2/W for silica fibers. The gain G(ρ, z)
depends on the local density of dopants and in general varies with both ρ and z. The
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signal to be amplified is taken in the form of a quasi-continuous beam with a narrow
spectrum centered at ω0. The wave number k0 in Equation (1) is defined at this frequency
as k0 = ω0/c, where c represents the speed of light in a vacuum.

y

x

z

(a)

(c)

(b)

Signal Beam
Core

Figure 1. Schematic of a GRIN fiber amplifier with (a) radially varying gain and (b) a parabolic index
profile. (c) Schematic showing how the signal beam evolves in a periodic fashion inside such a GRIN
fiber because of self-imaging provided by the parabolic index profile.

The electric field associated with the signal beam satisfies the Helmholtz equation:

∇2Es + n2(ρ, z)k2
0Es = 0. (2)

We write Es in the form Es = p̂As(ρ, z)eiksz, where p̂ is the polarization unit vec-
tor, ks = ncorek0, and As(ρ, z) is the slowly varying amplitude of the signal. A paraxial
approximation then leads to the following equation for the slowly varying amplitude:

i
∂As

∂z
+

∇2
⊥As

2ks
− 1

2
ksb2ρ2 As + n2k0|As|2 As =

i
2
[G(ρ, z)− αl ]As, (3)

where ∇2
⊥ is the transverse part of the Laplacian operator and αl accounts for the lin-

ear loss inside the GRIN fiber. In this equation, the effects of diffraction, index gra-
dient, and self-phase modulation (SPM) are included through the second, third, and
fourth terms, respectively.

Before solving Equation (3), a suitable form of the gain function G(ρ, z) is needed. In
general, G(ρ, z) is found by solving a set of dopant-related rate equations for a pump beam,
whose absorption leads to population inversion [15,20,23]. Although such an approach
may be necessary for fitting the experimental data, our objective here is to develop a
semi-analytical model of the beam’s amplification that contains all essential physics with
reasonable accuracy. We expect the gain to follow the radial shape of the pump beam,
which we assume to be Gaussian, and write the gain function G(ρ, z) in the form

G(ρ, z) = G0(z) exp

(
− ρ2

ρ2
g

)
, (4)

where the peak gain G0(z) can vary with distance and the parameter ρg is related to the
pump beam’s spot size.
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2.2. Stability of Noisy Gaussian Beams

In the absence of gain and linear loss, the solution to Equation (3) can be written in the
following form [24]:

As(ρ, z) =
√

Is0/ fs exp
[
−ρ2/2w2

s0 fs + iθs(ρ, z)
]
, (5)

where Is0 is the input peak intensity of the signal beam, with fs and Cs defined as

fs(z) = cos2(bz) + C2
s sin2(bz), Cs =

√
1 − h/(bksw2

s0). (6)

Here, h = Ps0/Pc, where Ps0 is the input power and Pc = 2πncore/(n2k2
s ) is the critical

power at which the beam collapse occurs owing to self-focusing. Notice that the beam
evolves periodically (with a period zp = π/b).

In the case of a fiber amplifier, the beam continues to evolve periodically but its ampli-
tude increases with distance. Such an amplifying beam may face significant distortions that
affect its stability. Hence, it is important to investigate the stability of the signal beam as it
is being amplified. For this purpose, we propagate the signal beam by solving Equation (3)
numerically, after adding distributed random noise, the peak value of which can be as
much as 20% of the peak amplitude of the input signal. Figure 2 shows the evolution of
such a noisy Gaussian beam inside a GRIN fiber amplifier over six self-imaging periods
(ξ = bz) for the two pumping schemes, (a) side pumping and (b) edge pumping. The
beam’s spatial profile is shown in the upper panel at four distances using the contour plots
in the xy plane.

(a) (b)
Figure 2. Evolution of a noisy Gaussian beam inside a GRIN fiber amplifier over a distance of
6 periods (ξ = 6π): (a) side pumping and (b) edge pumping. We scaled the x and y coordinates using
the beam’s input width ws0. The beam’s spatial profile is shown in the upper panel at four distances.

Several features are noteworthy in Figure 2. First, a noisy signal beam remained stable
for both pumping schemes as it was amplified inside a GRIN fiber, while undergoing
periodic self-imaging. In both cases, speckle noise added at the input end (ξ = 0) was
reduced significantly, ensuring the stability of the signal beam under amplification. Also,
note that the beam was amplified more (dotted line showing the peak amplitude) in the
case of side pumping compared to edge pumping. The reason is that the gain was nearly
constant over the length of the GRIN fiber in the former case but decreased with distance
in the latter case. This feature suggests that SPM-mediated self-focusing may lead to the
beam’s collapse in the side-pumping case when the doped fiber is relatively long.

3. Analytical Approach

Using the explicit form of the gain profile in Equation (4), we can numerically solve
Equation (3) to simulate the amplification of the signal beam. However, numerical simula-
tions are found to be quite time-consuming for fibers longer than a few meters. A numerical
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approach also hinders physical insight and does not reveal which parameters are most
relevant for the narrowing of the signal beam to occur. For these reasons, we adopted
the variational method [25] for solving Equation (3). Such an analytic approach has been
used successfully, despite the gain and loss terms that make the underlying system non-
conservative [26]. The success of the variational method depends on the choice of a suitable
ansatz for the beam’s shape. The method relies on the assumption that the functional form
of the beam’s shape remains intact in the presence of small perturbations, even though its
parameters that appear in the ansatz (amplitude, width, phase-front curvature, etc.) evolve
with propagation.

As a first step, we can normalize Equation (3) using ξ = bz, r = ρ/ws0, and
ψs = As/

√
Is0 and rewrite it as

i
∂ψs

∂ξ
+

δ

2

(
∂2ψs

∂r2 +
1
r

∂ψs

∂r

)
− 1

2δ
r2ψs + γ|ψs|2ψs =

i
2
[g(r, ξ)− αs]ψs. (7)

Here, ws0 and Is0 are the spot size and peak intensity of the input beam; we can
introduce two dimensionless parameters as

δ = (wg/ws0)
2, γ = ωsn2 Is0/(cb), (8)

where wg = 1/
√

bks is the width of the fundamental mode of the GRIN fiber. As wg is close
to 5 µm for most GRIN fibers, one expects δ < 1 in practice. The gain and loss coefficients
are normalized as g(r, ξ) = G(ρ, z)/b and αs = αl/b.

To implement the variational method, we can treat the terms on the right side of
Equation (7) as a small perturbation,

ϵ =
1
2
[g(r, ξ)− αs]ψs, (9)

and use g(r, ξ) = g0(ξ) exp(−r2/r2
g) with rg = ρg/ws0. In the case of edge pumping, the

peak gain g0(ξ) at the core’s center is expected to decrease exponentially because of the
pump’s absorption, i.e., g0(ξ) = ga exp(−αgξ), where ga is the peak gain at the input end
of the GRIN fiber and αg is the absorption coefficient of the pump beam. In the case of side
pumping, we assume that the fiber’s core is pumped uniformly from the cladding side, and
set αg = 0.

The Lagrangian density Ld corresponding to Equation (7) has the form [27]

Ld =
i
2

r
(
ψs∂ξ ψ∗

s − ψ∗
s ∂ξ ψs

)
+

δ

2
r|∂rψs|2 −

γ

2
r|ψs|4 +

r3

2δ
|ψs|2 + ir(ϵψ∗

s − ϵ∗ψs), (10)

where ∂ξ ≡ ∂/∂ξ and ∂r ≡ ∂/∂r. We chose a Gaussian form for ψs because the signal
is often in the form of a Gaussian beam. It is important to include the curvature of the
wavefront and use the form

ψs(r, ξ) = ψs0(ξ) exp
[
− r2

2r2
s (ξ)

+ ids(ξ)r2 + iϕs(ξ)

]
, (11)

where the four parameters ψs0, rs, ds, and ϕs correspond to the beam’s amplitude, width,
wavefront curvature, and phase, respectively. All of them are allowed to vary with ξ.

Using the preceding ansatz and following the standard Rayleigh–Ritz optimization
procedure [27], we obtained the reduced Lagrangian, L =

∫ ∞
0 Lddr, by integrating over r.

The result was found to be

L =
1
2

ψ2
s0r2

s

(
dϕs

dξ

)
+

[
2δd2

s +
1
2δ

+
dds

dξ

]
ψ2

s0r4
s

2
+

δ

4
ψ2

s0 −
γ

8
ψ4

s0r2
s + i

∫ ∞

0
r(ϵψ∗

s − ϵ∗ψs)dr. (12)
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Next, we employed the Euler–Lagrange equation, ∂ξ(∂uξ
L) = ∂uL, where u is one of the

beam’s parameters (ψs0, rs, ds, ϕs) and uξ = ∂u/∂ξ. Using this equation, we obtained the
following four coupled equations governing the evolution of the beam’s four parameters
along the amplifier’s length:

dψs0

dξ
= −2δdsψs0 −

1
2

αsψs0 +
g0(ξ)

2
(1 + 2σ2)

(1 + σ2)2 ψs0, (13a)

drs

dξ
= 2δdsrs −

g0(ξ)

2
σ2

(1 + σ2)2 rs, (13b)

dds

dξ
= −2δd2

s −
1
2δ

+
δ

2r4
s
− γ

4

(
ψs0

rs

)2
, (13c)

dϕs

dξ
= − δ

r2
s
+

3
4

γψ2
s0, (13d)

where σ = rs/rg. We used them to obtain an equation for the beam’s power Ps = πψ2
s0r2

s .
From the definition of Ps, we obtain the relation ∂ξ Ps = 2πψs0rs

[
rs∂ξψs0 + ψs0∂ξrs

]
. Now,

using Equation (13a,b), we can write

dPs

dξ
= −αsPs +

g0(ξ)

(1 + σ2)
Ps. (14)

The preceding set of ordinary differential equations (ODEs) provides a stable fixed
point such that rs =

√
δ in the absence of gain, loss, and SPM. The fixed point corresponds

to an input Gaussian beam whose width is matched to the fundamental mode of the GRIN
fiber. In this situation, a single mode of the GRIN fiber is excited, and the beam evolves
without any change in its width. When the input beam is wider and SPM is included, the
beam’s width follows an oscillatory pattern [24]. When the gain is also included, the beam
is amplified but its width still evolves in a periodic fashion. In this case, the preceding set
of ODEs can be solved numerically much faster than Equation (7). In some situations, the
accuracy of the resulting solution needs to be checked by solving Equation (7) directly.

It is possible to obtain a single differential equation for the beam’s width (rs) in
some specific cases. For this purpose, we took the derivative of Equation (13b) and used
Equation (13b,c) to eliminate ds from the resulting equation. In the absence of SPM (γ = 0),
rs was found to satisfy the following equation:

d2rs

dξ2 = −rs +
δ2

r3
s
−
[

2
(1 + σ2)

drs

dξ
−

αg

2
rs

]
g0(ξ)F (σ), (15)

where F (σ) = σ2/(1 + σ2)2. In obtaining this equation, we neglected a higher-order term
associated with ga because of its negligible contribution. Equation (15) offers considerable
physical insight as it shows how different physical processes affect the beam’s amplification
inside a GRIN fiber amplifier.

It is useful to consider the case of a passive GRIN fiber without any gain (g0 = 0). In
this case, Equation (15) can be solved analytically and has the following solution [24]:

rs(ξ) = [cos2(ξ) + δ2 sin2(ξ)]1/2. (16)

This shows that rs varies periodically with ξ such that the signal beam recovers its
initial shape at distances z = mzp, where m is an integer and zp = π/b is the self-imaging
period of the GRIN fiber with a typical value of 0.6 mm. Figure 1c shows schematically the
periodic evolution of such a beam inside the core of a GRIN fiber. For a fiber amplifier with
finite values of g0, the last term in Equation (15) perturbs the solution in such a way that
the width keeps oscillating with the same periodicity but does not return to its input value
after each period. Depending on the amplifier design, the width may become smaller at the
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amplifier’s output end. As discussed later, such beam narrowing results in an improvement
to the beam’s quality.

4. Results and Discussion

In this section, we solve Equation (13a–d) with the fourth-order Runge–Kutta method
and study the evolution of the four parameters under different pumping conditions. In
parallel, we check the accuracy of the variational solution by solving Equation (7) numeri-
cally with the standard split-step Fourier method using 210 Fourier points and a ξ-step of
10−3. In both cases, we employ the same values of the parameters given in Table 1. The γ
and δ values are for a realistic GRIN fiber with a = 50 µm and ∆ = 0.01. The peak gain
ga at the input end depends on the pumping level. We chose a relatively high value to
ensure significant amplification over relatively short fiber lengths (Ga = 0.28 mm−1 for
ga = 0.1). The initial values used for solving Equation (13a–d) were ψs0 = 1, rs = 1, ds = 0,
and ϕs = 0. We consider both the side and edge pumping cases shown schematically in
Figure 3.

Table 1. Parameter values used in numerical simulations.

Parameters Symbols Values

Normalized nonlinear coefficient γ 4 × 10−6

Width ratio δ 0.09
Normalized gain amplitude ga 0.1

Input signal power Ps0 100 W
Input beam’s width ws0 15 µm

Linear loss of GRIN fiber αl 2 × 10−3 m−1

Pump Pump

Signal Signal

(a) (b)

Figure 3. Schematic of two pumping schemes: (a) side pumping and (b) edge pumping.

4.1. Case I: Side Pumping from Cladding

First, we consider the case of a double-clad GRIN fiber that is side-pumped using
a relatively wide pump beam (see Figure 3a). We used ρg = 75 µm, which corresponds
to a full width of 125 µm for the input pump beam. In this pumping scheme, the gain
does not change much along the fiber’s length and we used g0(z) = ga. The variational
results for the beam’s amplitude, width, phase-front curvature, and phase are shown
in Figure 4 as solid lines and compared with full numerical results (solid dots) over a
distance that corresponds to nine self-imaging periods. An excellent agreement between
the numerical and variational results seen in Figure 4 indicates that our variational analysis
was able to capture all essential features of the signal beam being amplified inside a GRIN
fiber amplifier.

Several features are noteworthy in Figure 4. First, as expected, all parameters of the
signal beam (except its phase) oscillated because of self-imaging occurring in any GRIN
fibers. As expected, the beam’s amplitude increased considerably after each period because
of the pumping-induced gain provided by the dopants. However, the beam’s width almost
recovered its initial value after each period, indicating no narrowing over the short length
(<1 cm) used for these simulations. Although the phase-front curvature oscillated in a
periodic fashion, the phase itself decreased in a monotonic fashion.
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(a) (b)

(c) (d)

Figure 4. Comparison of the variational (lines) and numerical (dots) predictions for side pumping:
(a) amplitude, (b) width, (c) phase-front curvature, and (d) phase of the signal beam for αg = 0 (see
Table 1 for other parameters). The top part in (a) shows periodic self-imaging of the signal beam in
the y = 0 plane. The beam’s 3D evolution is shown in the top part of (b).

4.2. Case II: Edge Pumping from One End of the Fiber

Next, we consider the case of edge pumping of a single-clad GRIN fiber that is edge-
pumped using a narrower pump beam (see Figure 3b). We used ρg = 30 µm, which
corresponds to a full width of 50 µm for the input pump beam. The new feature, in this
case, is that the peak gain decreases with distance as g0(ξ) = ga exp(−αgξ) owing to the
absorption of pump power inside the GRIN fiber. As in Figure 4, variational results for the
beam’s amplitude, width, phase-front curvature, and phase are shown in Figure 5 as solid
lines and compared with full numerical results (solid dots) over a distance that corresponds
to nine self-imaging periods.

(a) (b)

(c) (d)

Figure 5. Same as Figure 4 except that the variational (lines) and numerical (dots) results are compared
in the case of edge pumping using αg = 0.05. Other parameters are identical to those used in Figure 4
and given in Table 1.

A comparison of Figures 4 and 5 shows that the signal beam evolves in a qualitatively
similar fashion for both pumping schemes, as it is amplified inside the GRIN fiber amplifier.
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However, some important quantitative differences can also be seen in the two figures. One
can note in part (a) that the peak amplitude is smaller by more than a factor of two near
ξ = 30 in the case of edge pumping because the gain in this case decreases with distance
because of the pump’s absorption. An interesting feature in part (b) is that the beam’s
width does not recover its initial value after each self-imaging period, becoming smaller as
the beam is amplified more and more. Smaller width values indicate that the amplified
beam becomes narrower even after the relatively short distance used for Figure 5. Much
more narrowing is expected to occur for longer distances. This feature suggests that edge
pumping is useful for improving the quality of the amplified beam.

4.3. Average Behavior

Rapid self-imaging oscillations that occur in all GRIN fibers make it harder to draw
conclusions about the beam’s evolution in real amplifiers whose lengths are long enough
that thousands of oscillations can occur. For this reason, we averaged the two most relevant
parameters (amplitude and width) of the signal beam over such rapid oscillations. The
average values were calculated by numerically integrating the beam’s amplitude and width
over five self-imaging periods. The averaged values, ⟨ψs0⟩ and ⟨rs⟩, are shown in parts
(a) and (b) for the clad pumping case and in parts (c) and (d) for the edge pumping case.
Clearly, the two cases behaved quite differently when the fiber’s length is close to 1 m.
In all cases, variational results (solid lines) agreed well with full numerical simulations
(solid dots).

In the case of clad pumping, the amplitude ⟨ψs0⟩ increases monotonically. At the same
time, beam narrowing occurred owing to Kerr-induced self-focusing. Indeed, the beam’s
collapse seemed to occur after 100 periods as the signal beam’s power approached the criti-
cal level needed for catastrophic self-focusing. This behavior is somewhat artificial because
we used relatively large values of the gain, while ignoring its saturation. Nevertheless, one
must be aware of the possibility of a beam’s collapse in high-power GRIN-fiber amplifiers.

In the case of edge pumping, the amplitude ⟨ψs0⟩ increased initially but began to
decrease after some distance (see Figure 6c). This decrease is due to exponential reduction
in the gain with distance occurring because of the pump’s absorption by the dopants. At
some point, the dopant-provided gain became smaller than the fiber’s loss, and the signal’s
power began to decrease. For the same reason, although the average beam width ⟨rs⟩
initially decreased, it saturated at longer distances, as seen in part (d). The initial decrease
was not due to self-focusing but resulted from a smaller gain in an edge-pumped amplifier
away from the core’s center. The solution to Equation (15) is also shown by a dashed line
in parts (b) and (d). It agrees with the variational and numerical results, except at large
distances in part (b). This is expected because Equation (15) does not include the effect
of SPM.

In most experiments, the quality of the output beam is judged by measuring its so-
called M2 factor. For this reason, we calculated the M2 factor (related to the full width
of the beam’s intensity at the 1/e2 point) as a function of gain and input signal power by
exploiting our variational results. In Figure 6e, we show how the quality factor improves
with increasing gain for the two pumping schemes. In the case of clad pumping (blue
curve), a rapid decrease in M2 for high gain is due to the nonlinear collapse of the beam,
which is unlikely to occur in practice. Figure 6f shows how M2 varies with the input signal
power for ga = 0.1. In the case of edge pumping, the beam’s quality improves at higher
input powers, but this effect does not occur for clad pumping. These trends are consistent
with recent experiments [14].
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(a) (b)

(c) (d)

(e) (f)

Figure 6. Changes with distance in the averaged (a,c) amplitude and (b,d) width of the signal beam
in the case of clad pumping (top row) and edge pumping (bottom row). Variational results are shown
by lines while solid dots corresponding to numerical simulations. Dashed lines in (b,d) show the
solution of Equation (15). Beam’s quality factor M2 (e) as a function of ga for Ps0 = 100 W and (f) as
a function of input signal power for ga = 0.1. The blue and red lines correspond to clad and edge
pumping, respectively; solid dots are for numerical simulations.

4.4. Simulations for a Realistic High-Power Amplifier

For our last example, we considered an edge-pumped GRIN fiber amplifier with realistic
normalized parameters: g0 = 2.82 × 10−4, αg = 1.06 × 10−4, and αs = 3.5 × 10−7. As the
amplifier’s length exceeded 10 m in practice, we ran our simulations over a distance of about
20 m. Figure 7 shows the evolution of (a) the amplitude ψs0, (b) its average over five self-
imaging cycles, (c) the average width ⟨rs⟩, and (d) the amplification factor Ps/P0. As expected,
ψs0 evolves periodically with increasing amplitude owing to the beam’s amplification. The
inset in part (a) shows periodic self-imaging on a magnified scale. The averages amplitude of
the beam in part (b) increases first but saturates after some distance because of the pump’s
absorption along the fiber’s length. Part (c) shows that the beam’s width is reduced first by
about 10%, but it saturates when amplification becomes negligible at long distances. The
dashed line in part (c) shows the solution of Equation (15) for comparison. In plot (d), the
signal’s power Ps in parts (d) increases with distance, initially owing to amplification, but
saturates eventually because of the loss of pump power at large distances. The net gain at the
end of the fiber is about 10 dB for the parameters used in this simulation. In all cases, the
variational results (solid line) agree well with full numerical simulations (solid dots). It is
important to stress that full numerical simulations took more than a day to complete, while
variational calculations were over in a few minutes using the same computer.

With the verification of the accuracy of variational results, we can employ our analysis
for a parametric study of amplifier characteristics. Figure 8 illustrates how the relative
signal power (Ps/P0) and beam quality (M2/M2

0) vary for edge (left column) and clad
(right column) pumping schemes at the output of the GRIN amplifier as a function of ws0
(top row) and ρg (bottom row). To avoid SPM-induced collapse for the constant gain clad
pumping system, the fiber length is limited to 5 m.

Interestingly, for both pumping schemes, the signal’s output power reached the maxi-
mum when ws0 = wg (≈6 µm), marked with a vertical dashed line in Figure 8. Also, the
amplification of the signal improved with increasing radial gain width (ρg), but the beam’s
quality degraded for both the pump schemes. Similar to Figure 6, the edge pumping
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scheme showed an improvement in beam quality, while clad pumping provided more
amplification. Further, in both the cases [see parts (c) and (d)], an increase in the radial gain
width resulted in higher amplification but deterioration in the beam quality. These results
should be useful for optimizing the device design. Parameter values used for the realistic
numerical simulations in Figures 7 and 8 are provided as a Table A1 in Appendix A.

(b)

(c) (d)

(a)

Figure 7. Comparison of the variational (lines) and numerical (solid dots) predictions for a 20-m-
long GRIN fiber amplifier with realistic parameter values given in the text. (a) Evolution along
the fiber’s length of the beam’s (a) amplitude ψs0, (b) its average value, (c) average width ⟨rs⟩, and
(d) amplification factor. Inset in part (a) shows periodic self-imaging on a magnified scale.

(a) (b)

(c) (d)

Edge Pumping Clad Pumping

Figure 8. Variation of the relative signal power and beam quality (M2 factor) as a function of input
signal width ws0 (a,b) and radial gain width ρg (c,d) for edge (left column) and clad (right column)
pumping schemes.

5. Conclusions

Graded-index fibers have been used in recent years for making high-power fiber lasers
and amplifiers. Such undoped fibers exhibit periodic focusing and self-imaging that restore
any optical beam to its original shape after distances shorter than 1 mm. In this work, we
employed analytical and numerical techniques to study how the self-imaging phenomenon
affects the evolution of a signal beam inside a nonlinear graded-index fiber amplifier, doped
with a rare-earth element and pumped optically to provide gain all along its length.
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We developed a fully numerical model based on a multidimensional nonlinear Schrödinger
equation that includes both the nonlinear Kerr effect and the optical gain provided by the
dopants. We also exploited the variational technique to reduce the computing time and
to provide physical insights into the amplification process. This provided a simple set
of ordinary differential equations describing the evolution of four parameters associated
with a Gaussian input beam. We compared the variational and fully numerical results
for the two pumping schemes (clad pumping and edge pumping) commonly used for
high-power fiber amplifiers and showed that the variational results are reliable in most
cases of practical interest.

The stability of the signal beam undergoing amplification was examined numerically
by launching a noisy Gaussian beam at the input end of the amplifier. It was found
that a noisy beam not only remained stable but that its noise was even reduced with the
beam’s amplification. We discussed in considerable detail how the parameters of a signal
beam changed along the fiber’s length as the beam was amplified inside a GRIN fiber after
including most relevant effects such as diffraction, self-imaging, and nonlinear self-focusing.
We included the radial and axial variations of the pumping-induced optical gain using
a simple model that neglected gain saturation. Our results show that the quality of the
amplified beam should improve in the case of edge pumping when a narrower pump beam
provides an optical gain that varies considerably in the radial direction of the fiber. Such an
improvement did not occur for the clad pumping scheme, for which the use of a relatively
wide pump beam resulted in a nearly uniform gain all along the fiber. Our investigation
provided considerable physical insight into the amplification process inside an active GRIN
fiber and revealed which parameters should be controlled to realize the narrowing of the
amplified beam, a feature that improved the beam’s quality at the amplifier’s output.
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Appendix A

Table A1. List of parameters used for the realistic numerical analysis presented in Figures 7 and 8.

Parameter Symbol Value [Units]

Core radius a 50 [µm]
Relative index difference ∆ 0.01
Refractive index gradient b 2.8 × 103 [m−1]

Kerr coefficient n2 2.7 × 10−20 [m2 W]
Operating wavelength λ0 1060 [nm]

Fundamental mode width wg 6.4 [µm]
Input signal beam width ws0 15 [µm]

Radial gain width ρg 30 [µm] (edge pumping)
75 [µm] (clad pumping)

Peak gain coefficient G0 0.8 [m−1]
Gain decay coefficient αg 0.3 [m−1]
Linear loss coefficient αs 1 × 10−3 [m−1]

Signal input power P0 100 [W]
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