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We have studied, through a series of experiments and numerical simulations, how temporal reflection from an
intense pump pulse inside a photonic crystal fiber is affected by parameters of the pump pulse used to form a mov-
ing high-index boundary. We used femtosecond pump pulses, which slow down inside the fiber as their spectrum
red-shifts because of intrapulse Raman scattering. Temporal reflection of probe pulses occurs from such decelerat-
ing pump pulses. We changed the width and chirp of our pump pulses with a 4f pulse shaper capable of providing
both spectral filtering and frequency chirping. We found that temporal refection exhibited novel features, to our
knowledge, when pump pulses were made wider or chirped. In both cases, two or more reflected pulses were pro-
duced at different wavelengths in a specific range of the initial pump-probe delays. Numerical simulations reveal
that the origin of such novel features is related to the complex nonlinear evolution of pump pulses inside optical
fibers. ©2024Optica PublishingGroup

https://doi.org/10.1364/JOSAB.528062

1. INTRODUCTION

Considerable attention has been paid recently to wave propa-
gation in a time-varying medium [1–7]. In most studies, the
refractive index of the whole medium is assumed to be mod-
ulated on the single-cycle time scale, resulting in temporal
reflection and refraction with some frequency shift from the
incident wave [8–10]. By changing the medium’s refractive
index in a periodic fashion, it is even possible to form a pho-
tonic time crystal [11–13]. Although such temporal reflection
has been observed at low frequencies using water waves [14],
microwaves [15], or ultra cold atoms [16], it is hard to observe
this phenomenon at high frequencies lying in the optical region.

This issue can be resolved through traveling-wave modu-
lation, which changes the medium’s refractive index, both in
space and time, at the speed of the traveling wave [17–19]. The
simplest situation corresponds to a moving index boundary with
different refractive indices on its two sides. When an optical
pulse interacts with this type of boundary inside a dispersive
medium, it splits into two parts, whose frequencies are shifted
such that they travel at different speeds [20–23]. These two parts
correspond to transmitted and reflected pulses and are temporal
analogs of the reflection and refraction at a spatial boundary
[17]. This type of temporal reflection does not require index
modulation to occur on a single-cycle time scale, and it is also
possible to realize total internal reflection. In this paper, we

consider only the second type of temporal reflection occurring
at a moving refractive index boundary.

Temporal reflection from a moving index boundary has been
observed using the nonlinear effects and identified as the optical
analog of an event horizon [24–27]. In this case, a strong pump
pulse is sent into a dispersive nonlinear medium, such as an
optical fiber, and a change in the local refractive index is created
through the optical Kerr effect. Each pump pulse increases the
medium’s refractive index in a time window set by its width,
and this window moves at the speed of the pump pulse. When
a probe pulse, moving at different speed because of its different
wavelength, interacts with this index window, a reflected pulse
is generated at a shifted wavelength from that of the probe. In a
recent study [28], we used such wavelength shifts to deduce the
trajectory of a Raman soliton by sending an intense pump pulse
into a photonic crystal fiber (PCF) such that it formed a soliton
whose speed decreased with propagation because of intrapulse
Raman scattering [29].

Even though temporal reflection from a moving index
boundary is well understood by now [17,22], the situation is
different when a pump pulse is used to create a time window
whose shape and duration depend on the pump pulse itself.
Although one would expect the properties of a reflected pulse
to depend on the parameters of a pump pulse (such as its width
and chirp), this issue has not yet attracted much attention. In
this work, we carry out a detailed experimental and numerical
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study to understand how the width and chirp of a pump pulse
influence the temporal reflection process. Our results show that
both of these pump parameters affect significantly temporal
reflection of a probe pulse because of different evolution dynam-
ics of the pump pulse propagation inside the PCF used for our
experiments. As an example, multiple reflected pulses may be
generated at different wavelengths in some specific cases. Our
numerical simulations agree well with our experiments in all
cases we studied. The paper is organized as follows. Section 2
describes the physics behind temporal reflection together with a
pump-probe model that can be used to study this phenomenon
numerically. Section 3 provides details of our experimental
setup and discusses the ideal case of temporal reflection from
a pump pulse propagating as a fundamental soliton inside the
PCF. In Section 4, we discuss how temporal reflection is affected
when pump pulses are made wider through spectral filtering or
chirped using a dispersive delay line. The main conclusions are
summarized in Section 5.

2. PHYSICS AND MODELING OF TEMPORAL
REFLECTION

The simplest way to understand the phenomenon of temporal
reflection is to consider a sharp moving boundary inside a dis-
persive medium with different refractive indices on its two sides,
as shown in Fig. 1(a) schematically. An optical pulse, traveling
faster than this boundary, interacts with it and is split into two
parts, one of which corresponds to a reflected pulse that never
crosses the index boundary. Unlike the Doppler effect associated
with a moving medium, the reflected pulse still travels in the
forward direction, but it travels slower than the index boundary.
This effect is possible only in a dispersive medium and occurs
because of a change in the wavelength of the reflected pulse.
Some energy of the incoming pulse appears on the other side
of the boundary as a transmitted pulse, as shown in Fig. 1(a).
Under some conditions, the transmitted part can be completely
suppressed, resulting in the temporal analog of the total internal
reflection [17].

The central frequency of both the reflected and transmitted
pulses shifts from that of the incident pulse because a moving
boundary breaks the time-translation symmetry. The frequen-
cies of these pulses can be found by considering the phase
continuity relation [2]. In essence, during the reflection process,
the phase difference between the incident, reflected, and trans-
mitted waves should remain the same along the trajectory of the

boundary. This requirement leads to the following relation:

ωr −ωi

βr − βi
=
ωt −ωi

βt − βi
= vb, (1)

where vb stands for the speed of the index boundary andωk and
βk represent the frequency and the propagation constant of the
three waves for k = i, r , t . This relation is shown graphically in
Fig. 1(b), where the two curves represent the dispersion relations
of the medium on two sides of the boundary. The arrow points
to the frequency ωi of the incoming wave. To find the frequen-
cies of the reflected and transmitted waves, we use Eq. (1) to
draw a dashed line with the slope vb , and intersection of this line
with the two curves provides the corresponding frequencies.
In the example shown, no transmitted wave forms because the
dashed line does not intersect with the bottom curve. This situ-
ation corresponds to 100% reflection of the incident pulse and
produces a reflected pulse at the shifted frequency ωr such that
it moves slower than the boundary. It is worth noting that such
temporal reflection can only occur in a dispersive medium. It is
apparent from Eq. (1) that the frequency shifts of the reflected
and transmitted pulses depend on the speed vb of the boundary.
A larger mismatch between speeds of the incident pulse and the
boundary may lead to a larger frequency shift of the reflected
wave but this usually leads to a smaller reflectivity. In general, a
trade-off exists between the efficiency of the temporal reflection
and the magnitude of frequency shift.

To simulate the temporal reflection process inside an optical
fiber, we use the generalized nonlinear Schrödinger equation,
which includes all higher-order effects such as cubic dispersion
and intrapulse Raman scattering [29]. As the pump and probe
pulses used in our experiment have wavelengths far apart that
their spectra do not overlap, we can write the total electric field
in the form

E (z, ta )= Re (As (z, ta )e i[β(ωs )z−ωs ta ] + A p(z, ta )e i[β(ωp )z−ωp ta ]),

(2)
where ta is the time in the laboratory frame, ωs and ωp are the
reference frequencies of the pump (soliton) and probe pulses for
the definition of envelopes, and As and A p are the correspond-
ing envelopes. The reference frequencies do not need to be the
same as the central frequencies of the pulses. They only need to
lie near the pulse spectrum. Assuming that the probe’s energy
is small enough that its nonlinear effects can be neglected, the
following set of two coupled nonlinear equations describes the
propagation of two pulses quite accurately:

Fig. 1. (a) Schematic showing temporal reflection (blue line) of an incoming optical pulse (red line) from a moving boundary (thick black line) in a
dispersive medium. (b) Phase-continuity relation (dashed line) in the β −ω space. The blue and yellow lines show the dispersion curves on the oppo-
site sides of the moving boundary when the condition for total internal reflection is satisfied. This figure is taken from Ref. [28].
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(4)
where t = ta − z/vs is the reduced time in a frame moving with
the group velocity vs of the pump pulse and γ is the nonlinear
parameter. Dispersive effects are included through multiple
parameters defined as β

( j )
k = (d

kβ/dωk)|ω j ( j = s , p) at
the pump and probe’s reference frequencies. The parameter
1β1 = (dβ/dω)|ωp − (dβ/dω)|ωs is related to the differ-
ence of the pump and probe’s group velocity between the two
reference frequencies.

The effects of intrapulse Raman scattering are included in
Eq. (3) through the Raman term NR =

∫
∞

0 h R(t ′)|As (z, t −
t ′)|2dt ′, where h R(t) is the Raman response function. The
parameter f R sets the relative weight of the Raman contribu-
tion. We used the functional form of h R(t) with the f R value
given in Ref. [29]. We did not include the effects of self steep-
ening in our simulations because we found them negligible in
all cases we studied. The probe pulse is affected by the pump
through the cross-phase modulation term in Eq. (4).

It is worth discussing the validity of the assumption that
evolution of a pump pulse is unaffected by the probe pulse.
Experimentally, we kept energy of probe pulses relatively low.
We also compared the spectra of pump pulses recorded with and
without launching probe pulses and ensured that no observable
changes were induced by probe pulses. We can deduce a simple
rule of thumb that we can use to check if we would expect the
effect of a probe pulse on the pump pulse to be non-negligible.
The probe can affect the pump pulse through cross-phase
modulation, and it is a time derivative of the phase that is impor-
tant for the pump pulse’s evolution. Thus, we can compare the
ratio P/T for the pump and probe pulses, where P is the pulse’s
peak power and T is its temporal width. Equivalently, we can
compare the ratio E/T2 for the two pulses, where E stands for
pulse’s energy. For our experiment, this ratio was smaller for the
probe pulse by a factor of 50. This justifies the assumption made
in Eq. (3).

3. EXPERIMENTS AND SIMULATIONS

We used a 3.8-m-long PCF (IXblue, IXF-SUP-2-135) for
observing temporal reflection. Since its dispersive properties
are of paramount importance, we characterized this PCF by
measuring its group delay over a wide frequency range with the
technique of white-light interferometry [30,31]. The results
are shown in Fig. 2. The slope of this curve at any frequency
provides the value of β2 at that frequency. This slope or β2 van-
ishes at the zero-dispersion frequency (406 THz, or 739 nm)
where group delay is minimum. This frequency separates the
anomalous- and normal-dispersion regions depending on
whetherβ2 is negative or positive.

To create a moving time window with a larger refractive index
through the optical Kerr effect, we launch an intense short
pump pulse in the anomalous-dispersion region of the PCF.

Fig. 2. Measured group index of the PCF plotted as a function
of frequency. Its values at the frequencies of the pump, probe, and
reflected pulses are marked by three circles.

We also launch a much weaker probe pulse into the PCF at a
different wavelength. We chose 800 nm as the wavelength of
pump pulses because it lies in the anomalous region and allows
the formation of an optical soliton inside our PCF. The probe’s
wavelength was chosen in the normal-dispersion region such
that both pulses traveled with a small speed difference. In all
cases throughout this paper, we used probe pulses weak enough
that it has negligible impact on the propagation of the pump
pulse. As seen in Fig. 2, a probe pulse traveling slower than
the soliton produces a reflected pulse moving faster than the
soliton after its encounter with the soliton. By contrast, a probe
pulse traveling faster than the soliton produces a reflected pulse
moving slower than the soliton.

Figure 3(a) shows our experimental setup. A Ti:sapphire laser
regenerative amplifier (Coherent, Astrella) is used as a source
of femtosecond pulses. It generates 30–40-fs pulses of about
7 mJ of energy at a wavelength of 800 nm. A very small portion
of the energy is split off and used for the pump pulse. A half of
the energy is sent into an optical parametric amplifier (OPA)
that can generate pulses with tunable wavelength from 200 to
2000 nm. The probe pulses used in our experiment are from
this OPA. We set the OPA to work in the range of 600–700 nm
and placed a bandpass filter at the output of the OPA to limit the
spectral bandwidth to about 5 nm.

Pump pulses from the Ti:sapphire laser are sent into a pulse-
shaping setup shown in Fig. 3(b). This pulse is used as the
pump pulse for our experiment. It is a double-pass 4f system
containing two prisms, two lenses, and a mirror. One prism
separates spatially different spectral components of the pulse,
and the second prism brings them together after spectral fil-
tering through a tunable slit. A geometrical path difference of
different spectral components introduces some dispersion into
the system, which can be controlled by translating one of the
prisms [32]. A linear polarizer is placed in front of the PCF to
ensure that the polarization states of the pump and probe pulses
are aligned with the slow axis of the PCF. The group delay offset
caused by the linear polarizer is taken into account by calculat-
ing this offset based on the material and thickness. To ensure
that the two pulses have a fixed relative delay, a translation stage
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Fig. 3. Experimental setup. (a) Schematic of the experimental setup. OPA: optical parametric amplifier; BPF: band-pass filter; HWP: half-wave
plate; LP: linear polarizer; SHG: sum-frequency generation; BBO: barium borate. (b) Details of the pulse shaping part in (a). It is a double-pass 4f sys-
tem containing two prisms, two lenses, and a mirror. A tunable slit is placed at the Fourier plane of the 4f system for spectral manipulation. One of the
prisms is mounted on a translational stage for dispersion control.

was used. We also used a BBO crystal for sum frequency gener-
ation and temporal synchronization. The zero-delay position
corresponded to the maximum of the generated signal.

In this section, we focus on the ideal case where each pump
pulse forms a fundamental soliton, whose spectrum shifts
toward the red side with propagation inside the PCF because
of intrapulse Raman scattering. Numerical simulations are
based on the pump-probe coupled equations given in Section 2.
The pump pulse at the front end of the fiber has the form of a
fundamental soliton:

A1(0, t)=
√

P1 sech(t/T1), P1 = |β
(s )
2 |/(γT2

1 ). (5)

We used T1 = 17.3 fs to match the 30-fs width of our pump
pulses with an initial delay of 0.33 ps. The nonlinear coeffi-
cient γ = 105 W−1km−1. The probe pulse was in the form of
a Gaussian pulse with a 5-nm-wide spectrum centered at the
655-nm wavelength. Its energy was low enough that it did not
affect the pump pulse. The probe’s energy was kept small and
was only about 6% of that of the pump pulse in our experiments.

Figure 4 shows the numerical results by plotting the temporal
and spectral evolution over the PCF length for the pump (top)
and probe (bottom) pulses. The pump pulse maintains its width
because it forms a soliton whose spectrum shifts continuously
toward the red side as it propagates down the fiber. This red shift,
together with the anomalous dispersion, slows down the pump
pulse, resulting in a trajectory bent toward the right side. At the
output end of the fiber, the soliton’s spectrum has shifted by
more than 30 THz, and the 30-fs pump pulse has been delayed
by 6 ps. The interesting question is how such a decelerating
soliton affects the probe pulse, which would simply broaden in

the absence of the pump pulse, with no changes occurring in its
spectrum.

The bottom row in Fig. 4 shows clearly that the probe is
affected considerably by the pump pulse. Nothing happens
to the probe pulse, until the pump pulse traveling faster than
the probe collides with it near z= 25 cm, and a reflected pulse
is generated. This reflected pulse travels faster than the pump
pulse because its spectrum has been shifted by more than
20-THz shift from that of the probe, as predicted by Eq. (1).
The wide spectral peak, appearing after 0.25 m and located
near 435 THz, corresponds to the reflected pulse. In the time
domain, the reflected pulse spreads with further propagation
(the blue band tilted toward the left) because its spectrum lies in
the normal-dispersion region. This pulse never meets the pump
pulse because it travels much faster than the pump.

However, that is not the case for the probe pulse, which col-
lides with the pump pulse a second time at a distance of about
3 m. Interestingly, this collision produces a blue-shifted reflected
pulse. This surprising behavior can be understood once we take
into account Raman-induced deceleration of the pump pulse.
During the first collision, the pump pulse is traveling faster than
the probe. In contrast, the pump has slowed down so much at
a distance of 3 m that its speed becomes lower than that of the
probe. The collision forces the reflected pulse to travel slower
than the pump, which is accompanied by the blue shift. Such
multiple reflections leads to the trapping of the probe pulse by
the pump pulse [33,34]. In this following discussion, we focus
on the red-shifted portion of the probe pulse, occurring during
its first collision with the pump pulse.

It should be clear by now that the spectral shift introduced
during temporal reflection depends on the location within the
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Fig. 4. Numerical simulations showing the temporal (left) and spectral (right) evolution of the pump (top) and probe (bottom) pulses over the
PCF length. Pump pulse is launched at 800 nm and the probe’s wavelength is 655 nm. Two pulses are delayed initially by 0.33 ps.

PCF where the pump and probe pulses collide. This location
can be controlled by changing the probe’s wavelength as well as
the initial relative delay between the two pulses. Here, we keep
the probe’s wavelength fixed but change the relative delay over
a 1-ps range. The probe’s spectra, obtained numerically at the
PCF’s output end for different pump-probe delays, are shown
in Fig. 5 as a color plot in which spectral intensity is color-coded
on 20-dB scale. Three main spectral bands can be seen in this
figure. The central band located near 650 nm corresponds to
the probe pulse that is launched into the PCF together with
the pump pulse (whose spectrum is not shown for clarity). The
large spectral band on the right corresponds to the reflected
pulse, generated during the first collision of the pump and

Fig. 5. Numerical simulations showing how output probe spectrum
changes with the initial pump-probe delay. Positive delay implies that
the pump is trailing the probe. White dashed line is the central wave-
length of the input probe pulse.

probe. The spectral band on the left is marked trapping because
it corresponds to a probe trapped by the pump pulse through
multiple reflections. Note that the reflected pulse’s spectral red
shift becomes smaller for larger relative delays. This is because
the pump pulse is decelerating as it propagates down the fiber.
A larger delay forces the collision to occur at longer distances,
where the pump slows down so much that its speed mismatch
from the probe is decreased, resulting in a smaller frequency
shift. We have shown earlier that the delay dependence of the
reflected pulse spectrum can be used to deduce the decelerating
trajectory of the soliton [28].

Experimentally, we launched the pump and probe pulses
using the setup shown in Fig. 3 and ensured that the pump pulse
was intense enough to form a fundamental soliton. To achieve
this, the slit in the pulse shaper was made wide enough that the
pump’s spectrum was not filtered. A prism in the pulse shaper
was adjusted to compensate for the material’s dispersion. We
varied the initial delay of the pump pulse from the probe using
the translation stage in Fig. 3 and recorded the spectra at the
PCF’s output end with a spectrometer.

Figure 6(a) shows the probe’s spectra as the pump-probe
delay changes and Fig. 6(b) shows the input and output spectra
of the pump pulse for a specific delay. In Fig. 6(a), we exper-
imentally varied the delay by an increment of 0.02 ps, and
the data is plotted using the MATLAB function “pcolor”. In
Fig. 6(b), The input pump spectrum is centered at 800 nm but
most of its energy appears at the output end of the PCF in a
red-shifted peak centered near 865 nm. The 65-nm red shift of
this Raman soliton agrees with numerical simulations shown
in Fig. 4. We adjusted the pulse shaper to minimize the amount
of energy left in the original 800-nm region, which depends on
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Fig. 6. (a) Experimental spectra of the probe pulse at the PCF output obtained for different pump-probe delays. (b) Spectra of the pump pulse at
the input and output ends of the PCF.

the mismatch between the input pulse and the fundamental
soliton. In our experiments, the energy of the pump pulse cou-
pled into the PCF is estimated to be about 14.3 pJ, and 82%
of this energy is converted into a Raman soliton that evolves
as a fundamental soliton, (about 12 pJ at the output). In our
simulation, we found that an output Raman soliton that has the
same amount of Raman frequency shift would have an energy
of about 14 pJ, in reasonable agreement with the experimental
value. In simulations, we found that it is more suitable to adjust
the input pulse energy so that the output Raman soliton has the
same wavelength as in the experiment, since the Raman shift is
a more direct indication of the strength of the nonlinearity that
happened to the pulse.

The spectra in Fig. 6(a) were obtained for a probe pulse
whose spectrum was centered at 655 nm with 5-nm bandwidth.
This figure should be compared with numerical simulations
shown in Fig. 5. Even though the two figures look different, the
qualitative agreement is quite good. In both cases, a wide band
on the right corresponds to the reflected pulse, the amount of
red shift decreases as delay increases, and eventually the shift
becomes so small that the spectrum of the reflected pulse merges
with that of the probe. Further changes in the reflected pulse’s
spectrum occur in a continuous fashion as the delay is varied.
This is consistent with simulations shown in Fig. 5 and occurs
because the pump pulse, propagating as a fundamental soliton,
creates a smooth boundary of index change for the probe pulse
to reflect on.

We briefly comment on the items for which agreement is not
perfect between theory and experiment. For example, measured
wavelength of a reflected pulse for a given pump-probe delay
does not match with simulations. As we have pointed out in
Ref. [28], the value of this wavelength depends on the pump
pulse’s space-time trajectory, which is set by the Raman-induced
deceleration of the pump pulse. In general, it is difficult to
model accurately the effect of Raman scattering on an ultrashort
pump pulse, and the discrepancy can be attributed to that. It is
worth noting that there is a secondary reflected pulse in Fig. 6(a)
whose spectrum lies above that of the main reflected pulse. Its
origin was traced to an unusual shape of input probe pulses.
When we used the process of sum frequency generation for
synchronization, we found that each probe pulse has a smaller
subpulse trailing the main pulse by about 0.2 ps. This subpulse

also reflects off the pump pulse and creates the secondary reflec-
tion peak. As the secondary reflection spectral peak is mostly
a replica of the main peak, we will focus on it in the following
sections.

4. IMPACT OF WIDER OR CHIRPED PUMP
PULSES

In this section we focus on the impact of pump-pulse parameters
on the temporal reflection of a probe pulse. More specifically,
we consider two parameters, namely, the width and the chirp of
pump pulses, and compare the results with the ideal case of an
unchirped pump pulse launched with a width and energy such
that it propagates as a fundamental soliton inside our PCF.

A. Effect of Wide Pump Pulses

We make the pump pulse wider by cutting down its spectral
width by controlling the slit width inside the pulse shaper [see
Fig. 3(b)]. The width of pump pulses was close to 162 fs when
we reduced the spectral bandwidth to 11 nm. We used the
frequency-resolved optical gating (FROG) technique to meas-
ure the width of input pump pulses. We also adjusted pulse’s
energy such that we obtain the same amount of Raman-induced
red shift at the PCF’s output. The probe pulses remain the same
as before, and their spectrum is centered at 655 nm.

The experimental data for wider pump pulses is shown in the
top row of Fig. 7 in the same format used for the narrower pump
pulses in Fig. 6. The input pump spectrum in Fig. 7(b) is nar-
rower (width 11 nm). The output spectrum has again two peaks,
one at 800 nm, and the other at the red-shifted wavelength.
The only difference is that more energy remains in the 800-nm
region [37% of input energy compared to 12% in Fig. 6(b)].
This is because our wider pump pulse has a larger pulse energy
and forms a higher-order soliton after entering the PCF. After a
short distance, it breaks into multiple pulses of different widths
through a fission-like process [29]. The shortest pulse evolves
into a Raman soliton that shifts rapidly toward the red side.

The probe pulse spectra obtained when tuning the initial
pump-probe delay are shown in Fig. 7(a). When we compare
them to the probe spectra in Fig. 6, we notice similarities but also
important differences. In the case of narrower soliton-like pulses
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Fig. 7. Experimental results for wide pump pulses. (a) Spectra of probe pulses at the PCF output as the relative delay is varied. (b) Spectra of probe
pulses at the input and output ends of the fiber. (c) Output spectrum obtained for a pump-probe delay of 0.5 ps. Three of the five peaks correspond to
three reflected pulses.

shown in Fig. 6(a), a single reflected pulse is formed for any ini-
tial pump-probe delay. In contrast, multiple reflected pulses can
form for wider pump pulses in a limited range of pump-probe
delay. An example is shown in Fig. 7(c) for a specific delay of
0.5 ps. As seen there, temporal reflection results in three distinct
spectral peaks that correspond to three reflected pulses.

To understand the physics better, we performed numerical
simulations for wider pump pulses used in the experiment, and
the results are shown in Fig. 8. For better accuracy, we used the
shape of pump pulses deduced with the FROG technique for
our simulations. Energy of the pump pulse was set to 18 pJ to
ensure that the output Raman soliton matches with what we
experimentally observed. This energy is equal to the energy of an
N = 2.5 soliton with the same temporal FWHM (162 fs). The
simulations in Fig. 8(a) show features similar to those observed
experimentally in Fig. 7(a). In particular, multiple reflected
pulses indeed form for specific pump-probe delays.

In both the experiments and numerical simulations, we
observe a wide reflection peak around 700 nm for smaller
pump-probe delays. As we increase this delay, in both cases we
can identify a strong, narrow reflection peak near 680 nm for
a delay of 0.6 ps or more. Also, transition from one peak to the
other does not happen in a continuous fashion. This is different
from the result shown in Fig. 6(a) for a fundamental soliton. The
exact shape of the reflected spectrum also does not agree with the
simulations. This is most probably related to the actual shapes of

pump and probe pulses being different from those used in our
simulations.

Figure 8(c) shows the temporal and spectral evolution of
pump and probe pulses over the first 1-m length of the PCF.
We only show the first 1 m of propagation here because the
interaction of the pump pulse and probe pulse only takes place
in this region. The input delay is chosen as 0.35 ps for this case.
The pump pulse breaks into multiple pulses through soliton
fission at a distance of about 15 cm. During the fission stage,
the pump pulse has a complex intensity pattern, which pro-
duces a complex time dependence of the refractive index for
the probe pulse. In the case shown in Fig. 8(c), the probe pulse
interacts with different parts of the pump pulse at two distances,
resulting in two reflected pulses with different spectral shifts. By
comparing the results obtained for a fundamental soliton with
those obtained for a higher-order soliton, we can conclude that
the process of temporal reflection is sensitive to minute details
of the evolution of the pump pulse. This is the reason why the
output spectrum of probe pulses contains information about
propagation dynamics of the pump pulse.

B. Effect of Chirped Pump Pulses

We next consider the case of chirped pump pulses. A simple
way to chirp short pulses is to pass them though a dispersive
delay line that broadens each pulse while also introducing some
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Fig. 8. Simulation results for wide pump pulses. (a) Spectra of probe pulses at the PCF output as the relative delay is varied. (b) Shape and chirp of
the input pump pulse deduced with the FROG technique. (c) Evolution of the pump and probe pulses over the 1-m length of the PCF.

frequency chirp. We again use our pulse shaper for this purpose.
The slit in the pulse shaper remains fully open, and no spectral
filtering takes place. However, one of the prisms inside the pulse
shaper is adjusted to introduce some positive chirp on the pump
pulse. Before sending this pulse into the PCF, we characterize it
with our FROG setup. The measured width is about 97 fs and
corresponds to adding 1130 fs2 of group-delay dispersion to a
sech-shape pulse with 22-nm spectral width. The amount of
pump pulse energy that couples into the PCF is also adjusted to
ensure that the Raman soliton has the same 865-nm wavelength
at the PCF’s output as before.

The experimental results for chirped pump pulses are shown
in Fig. 9. Figure 9(a) shows the output probe’s output spec-
tra measured while varying the relative pump-probe delay.
Figure 9(b) compares the spectrum of the pump pulse at the
input and output ends of the PCF. Similar to the case of wide

pump pulses, chirping of the pump pulse increases energy
remaining at the input wavelength of 800 nm but by a smaller
amount.

The probe pulse spectra in Fig. 9(a) show a pattern different
from the two earlier cases where an unchirped pump pulse
forms a fundamental or a higher-order soliton. We expect these
differences to result from a different evolution pattern occurring
for chirped pump pulses. To confirm this expectation, we per-
formed numerical simulations using the measured shape and
phase of input pump pulses, and the results are shown in Fig. 10.
Figure 10(a) shows the output probe spectra as a function of
pump-probe delay. Figure 10(b) shows the shape and phase of
input pump pulses obtained with our FROG setup. Figure 10(c)
shows the temporal and spectral evolutions of the pump (top)
and probe (bottom) pulses over the first 1 m of PCF.
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Fig. 9. Experimental results for chirped pump pulses. (a) Measured probe spectra at the PCF output as the relative pump-probe delay is varied
from 0 to 1 ps. (b) Pump spectra at the input and output ends of the PCF.

Fig. 10. Simulation results for chirped pump pulses. (a) Spectra of probe pulses at the PCF output as the relative delay is varied. (b) Shape and chirp
of the input pump pulse deduced with the FROG technique. (c) Evolution of the pump and probe pulses over the 1-m length of the PCF.

A comparison of the simulated probe spectra with our exper-

imental results in Fig. 9(a) shows a relatively good agreement.

In particular, two reflected pulses are produced at different

wavelengths when the pump-probe delay is <0.2 ps. In both

simulations and experiments, the red shift of the main reflection

peak decreases continuously as the delay is increased, and this
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peak eventually merges with that of the incident probe pulse. We
also observe a secondary reflection peak at a longer wavelength,
but this peak exists only for smaller delays and disappears as
delay increases.

Temporal and spectral evolutions of the pump and probe
pulses are shown in Fig. 10(c) over the first 1 m of the PCF for a
pump-probe delay of 0.15 ps. As seen there, the pump pulse is
compressed considerably within the first 10 cm of PCF. At this
point, the pulse splits into two parts. The majority of its energy
forms a soliton that undergoes the Raman-induced red shift (red
curve). The other part with remaining energy moves toward the
left because it is blue-shifted and moves faster. This part does not
form a soliton and disperses rapidly as it propagates. The effect
that we observe here is related to the discussion in Ref. [35],
where it was found that an intense pulse with chirp can split
into two soliton-like pulses. We believe that it is this splitting
of the pulse that is responsible for the two reflection peaks seen
in Fig. 9(a) for small pump-probe delays. The wavelengths of
the two reflected pulses shift by different amounts, resulting in
the formation of two spectral peaks after a distance of 10 cm.
We observed a similar behavior in our experiments when the
pump-probe delay was small.

One more feature is noteworthy. Compared with the case of
the pump pulse forming a higher-order soliton, the Raman soli-
ton for chirped pump pulses is generated at a shorter distance.
This implies that temporal reflection of the probe pulse should
happen for smaller pump-probe delays. This is indeed what is
observed when we compare the experimental results in Fig. 7(a)
with those in Fig. 9(a). Comparing the observed behavior in
the three cases of pump pulses (a fundamental soliton, a higher-
order soliton, and a highly chirped pulse), we can conclude that
temporal reflection is sensitive to different evolution dynamics
of pump pulses occurring inside the PCF. This is the reason
why measured probe spectra at the PCF’s output can be used
to deduce information such as deceleration of pump pulses
initiated by the spectral shift induced by intrapulse Raman
scattering.

5. CONCLUSIONS

In this paper, we have studied, through a series of experiments
and simulations, how temporal reflection from an intense pump
pulse is affected inside a PCF by the parameters of the pump
pulse used to form a moving high-index boundary. We first
studied the ideal case in which pump pulses form a short fem-
tosecond soliton, whose spectrum red-shifts continuously inside
the PCF because of intrapulse Raman scattering. In our experi-
ments, most of the energy of 800-nm input pump pulses shifted
to 865 nm over 3.8-m length of the fiber. Temporal reflection of
a 655-nm probe pulse produced a single reflected pulse whose
wavelength was shifted toward the red side by an amount that
depends on the initial pump-probe delay.

We changed the width and chirp of our pump pulses in our
experiments using a 4f pulse shaper, containing two prisms and
a slit in the Fourier plane for spectral filtering. We found that
temporal refection of probe pulses exhibited unexpected novel
features when pump pulses were made wider through spectral
filtering without much chirp. Similar but different features
were observed when pulses were chirped through a dispersive

delay line without any spectral filtering. In both cases, two or
more reflected pulses were produced at different wavelengths
in a specific range of initial pump-probe delays. Numerical
simulations reveal that the origin of such novel features is related
to a complex nonlinear evolution of pump pulses inside the
PCF. Nonlinear phenomena such as the fission of higher-order
solitons, intrapulse Raman scattering, and chirp-induced pulse
compression can produce a temporal intensity pattern in pump
pulses that is sensed by the probe pulse when it collides with a
pump pulse at a distance that depends on initial pump-probe
delay.

The observed novel effects can be interpreted as scattering
of the probe wave from the pump’s intensity pattern. When
the pump pulse evolves as a fundamental soliton, its intensity
forms a smooth high-index “mirror”, and the probe’s reflection
produces a single red-shifted pulse at a shifted wavelength.
However, when a more complex intensity pattern is formed for
wider or chirped pump pulses, a probe can scatter from different
parts of the pump pulse at different distances inside the PCF,
resulting in multiple reflected pulses that are red-shifted by
different amounts. This feature could, in principle, be used for
studying the nonlinear evolution of a pump pulse with the PCF,
without employing a destructive cut-back method. Temporal
reflection is also useful for shifting the wavelength of a weak
probe pulse when a suitable pump pulse is available.
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