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Proposal and efficiency analysis of cascaded adiabatic frequency conversion in coupled microrings
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Adiabatic frequency conversion (AFC) in microring resonators is a promising alternative for fully integrable
and tunable frequency shifting of optical signals. Nonetheless, the magnitude of the frequency shift via simple
AFC in a single ring is fundamentally limited by the material platform. To overcome this limitation, we
propose and analyze a scheme to induce cascaded AFC (CAFC) along a chain of coupled, yet initially detuned
rings, without requiring unloading the optical signal into a bus waveguide between successive modulations.
For concreteness, we examine thoroughly the simplest nontrivial case of a chain of two rings and briefly
discuss the generalization to a chain of an arbitrary number of rings. We analyze the temporal dynamics of
this CAFC process using temporal coupled mode theory. We examine the transformation of the input into the
frequency-shifted output as a rank-one linear operator in the vector space of finite-energy pulses. In this way we
show that the energy efficiency of CAFC depends on the input pulse shape through a Schwarz inequality, just
as in single-ring AFC. We propose a numerical scheme to maximize the CAFC efficiency with respect to the
process’s timescales and discuss the physics involved. We show that the resulting CAFC efficiency converges
in a polynomial manner to a maximum as the process becomes progressively idealized. Furthermore, we show
that this maximum efficiency is identical to that for single-ring AFC, e.g., 0.7951 for a symmetric, single-lobe
input pulse. Thus, we show that CAFC can become more efficient than multiple instances of single-ring AFC.
We explain the polynomial convergence of the CAFC efficiency as a consequence of its real analyticity as a
function of the process’s timescales under our scheme. We leverage this polynomial convergence to model the
CAFC efficiency as a simple polynomial in few normalized timescales. We then utilize this polynomial model to
predict optimal values for the remaining free parameters and the scaling of the CAFC with the interring detuning.
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I. INTRODUCTION

In photonics, frequency conversion is usually realized via
nonlinear wave mixing. In recent years, the advent of inte-
grated photonics has enabled broadband wave mixing on a
chip with a compact footprint [1–4]. Despite its successes,
nonlinear wave mixing has several inherent limitations [5–7].
First, it demands a high-power optical pump, which impedes
on-chip integration. Second, nonlinear wave mixing obeys
conservation of photon energy. Consequently, to tune the out-
put frequency, one must change the input frequency or the
pump frequency. Third, efficient wave mixing requires phase
matching, which restricts both the waveguide geometry and
the range of possible output frequencies.

Adiabatic frequency conversion (AFC) is a promising al-
ternative for frequency shifting of optical signals. AFC is
the phenomenon in which light excites a resonant mode of
an optical cavity, the cavity’s refractive index is temporally
modulated, and the light follows the cavity’s instantaneous
resonance frequency [8,9]. This process is called adiabatic
because it was shown numerically in its first investigations
[9] that it preserves the adiabatic invariant of a harmonic
oscillator [10,11]. In contrast to nonlinear wave mixing, AFC
does not require optical pumping or phase matching and is
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not restricted by photon-energy conservation. Moreover, its
output frequency can be tuned by adjusting the magnitude of
index modulation within the cavity. As a result, AFC can be
used to realize on-chip, tunable frequency conversion. AFC
has been demonstrated through injection of charge carriers in
silicon cavities [12–16] and in semiconductor-based metasur-
faces [17], through the optical Kerr effect in a silica toroidal
cavity [18], and through the Pockels effect in bulk [19] and
integrated [20] lithium-niobate resonators.

Until recently, most theoretical work on AFC has focused
either on its modeling and description [8,9,21–23] or on its
proposal for novel applications [8,24–26]. Analysis of the
engineering of AFC in integrated photonics has only recently
attracted attention. It was found in Ref. [27] that AFC of
a Gaussian pulse in an all-pass resonator (e.g., a microring
coupled to a bus waveguide) can yield an energy efficiency
of up to 74%. In Ref. [28] we investigated the fundamen-
tal limits of AFC efficiency in a single all-pass resonator
employing temporal coupled-mode theory (TCMT) [29–33].
There we demonstrated that the process’s efficiency is limited
by a Schwarz inequality. Consequently, near-unity efficiency
can be attained only when two conditions are satisfied. First,
the intrinsic loss of the resonator must be small compared to
the input pulse’s bandwidth and the bus-resonator coupling
rate. Second, in accordance with the matched-filter principle
[34,35], the incident pulse must resemble the ring’s time-
reversed impulse response, in this case, a truncated increasing
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exponential. Hence, for a symmetric, single-lobe pulse (such
as a Gaussian pulse), relevant for optical telecommunications
[5,36], the maximum AFC efficiency is limited to less than
80% [27,28]. To overcome this efficiency limit, we proposed
in Ref. [37] to induce AFC over two coupled rings simulta-
neously, rather than a single ring. We analyzed the AFC in
this system again employing TCMT. We showed that the two-
ring system can achieve an efficiency of 97% for symmetric,
single-lobe pulses. To explain this higher AFC efficiency, we
analyzed two-ring AFC as a linear operator of rank two in the
vector space of finite-energy pulses and examined its singular
value decomposition.

In this paper we propose and analyze the energy efficiency
of a new photonic circuit for AFC which increases the fre-
quency shift possible in a given material platform. As is well
known [9,12,20,23], the magnitude of the frequency shift �ω

induced by AFC in a single optical resonator is given by
�ω = −ω(�n)/n, where ω is the resonator’s original reso-
nance frequency; n, the resonator’s original refractive index;
and �n, the change in the refractive index induced via mod-
ulation. Thus, the frequency shift �ω attainable via AFC in
a single ring is limited by the magnitude of the modulation
�n. To increase the frequency shift of the output signal,
one could induce single-ring AFC twice in succession. This
process, though, is fundamentally energy inefficient. This is a
consequence of the mismatch between the shape of the output
of the first single-ring AFC and that of the ideal input for
the second single-ring AFC [28]. In this work we propose to
induce AFC in cascade over a chain of coupled, yet initially
detuned microrings; i.e., to induce cascaded AFC (CAFC).
With this architecture, we can subject an optical pulse to AFC
multiple times in succession, without unloading the pulse
into a bus waveguide between modulations. Thus, we show
that CAFC can achieve higher energy efficiency than simply
inducing single-ring AFC twice in series. For concreteness,
we examine thoroughly the simplest nontrivial case of a chain
of two rings, and briefly discuss the generalization to a chain
of an arbitrary number of rings.

In Ref. [37] we also proposed to induce AFC over two
coupled rings. Nonetheless, in that scheme, AFC is induced
simultaneously over two resonant rings, rather than in cas-
cade over two initially detuned rings. The objective of the
scheme in Ref. [37] is to increase the energy efficiency of
one instance of AFC. The objective of this paper’s scheme
is to increase the net frequency-shift magnitude, without sig-
nificantly compromising the process’s net energy efficiency.

The rest of the paper is organized as follows. In Sec. II we
introduce the two-ring photonic circuit we propose to realize
CAFC, and we describe its operation. We present the TCMT
equations governing it and write their analytical solution for
strong and fast temporal modulation. In Sec. III we discuss
in detail a sample CAFC process for a symmetric, single-lobe
optical pulse. There we examine the temporal dynamics of the
energy in each ring and the power of the resulting frequency-
shifted signal. In Sec. IV we analyze the transformation of
the input into the frequency-shifted output as a linear operator
in the vector space of finite-energy pulses. We show that
this operator is effectively of rank one, so the efficiency of
CAFC is limited by a Schwarz inequality, similar to the case
of simple, single-ring AFC [28]. In Sec. V we explain the

Ring 1

Ring 2

input

output

FIG. 1. Schematic diagram of the photonic circuit proposed for
cascaded adiabatic frequency conversion.

numerical scheme we employ to practically optimize CAFC
over the multiple timescales of the process. We discuss the
physical processes which govern the optimal values of these
timescales. In Sec. VI we study how the CAFC efficiency
converges to its theoretical maximum as it becomes progres-
sively idealized, as measured by three distinct timescale ratios.
We find that the CAFC of our scheme has an identical limit
as that of single-ring AFC, e.g., of 0.7951 for a symmetric,
single-lobe input pulse [28]. Thus, CAFC can become more
efficient than multiple instances of single-ring AFC in series.
We show that the CAFC efficiency has a polynomial depen-
dence on these ratios. We explain this polynomial dependence
as a consequence of the CAFC efficiency being a real-analytic
function of the TCMT parameters. In Sec. VII we leverage
the polynomial convergence identified in Sec. VI to model
the CAFC efficiency as a polynomial function of the free
timescale ratios. We utilize the simplicity of this polynomial
model to optimize the CAFC efficiency over the remaining
free TCMT parameters and to predict its rate of convergence
with respect to the interring detuning. In Sec. VIII we present
the paper’s conclusions.

II. DESCRIPTION OF THE PHOTONIC CIRCUIT
AND COUPLED-MODE EQUATIONS FOR CAFC

In Fig. 1 we present a schematic diagram of the photonic
circuit we propose to realize CAFC. It consists of two micror-
ings evanescently coupled to each other, and each coupled to
a different bus waveguide. One of the bus waveguides carries
the input optical pulse, and the other, the output frequency-
shifted pulse. The ring coupled to the input bus is labeled as
Ring 1, and the ring coupled to the output bus, as Ring 2.
The rings’ refractive indices are modulated in time so that
that Ring j has a time-dependent instantaneous resonance
frequency ω j (t ) ( j = 1, 2).

We assume that the input pulse is resonant with Ring 1
before frequency modulation, and that the input’s bandwidth,
interring coupling, bus-ring coupling, and the maximum fre-
quency modulation are all small compared to the rings’ free
spectral range. Then we may describe the temporal dynamics
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of the fields in this resonant system using TCMT [29–31,33].
Accordingly, the field in Ring j at time t is proportional
to the amplitude a j (t ) and the ring’s energy equals |aj (t )|2.
Analogously, the amplitude of the input (output) pulse at
time t is proportional to sin(t ) [sout (t )], and its instantaneous
power equals |sin(t )|2 [|sout (t )|2]. In agreement with TCMT,
the two-component column vector a(t ) = (a1(t ), a2(t ))T and
the output sout (t ) evolve in time according to

da

dt
= −iH (t )a + kinsin(t ),

sout (t ) = k†
outa(t ). (1)

Here H (t ) is a time-dependent 2 × 2 matrix, while kin and kout

are two-component column vectors. k†
out denotes the adjoint of

kout. Correspondingly, the matrix H (t ) and the vectors kin and
kout are of the form

H (t ) =
(

ω1(t ) − iγ1 κ12

κ21 ω2(t ) − iγ2

)
,

kin = (√
2γ1e 0

)T
,

kout = (
0

√
2γ2e

)T
. (2)

As stated above, ω j (t ) is the instantanous frequency of Ring
j. The rate γ j is the total decay rate of Ring j; and κ jk , the
complex-valued coupling from Ring k to Ring j. Naturally,
coupling between a ring and a bus waveguide contributes
to decay of the ring’s energy. Thus, it follows from energy
conservation and time reversibility [29,30] that

γ j = γ0 + γ je, j = 1, 2. (3)

Here γ0 is the rings’ intrinsic decay rate. This rate is assumed
equal for both rings for simplicity. Interring coupling is as-
sumed to conserve the rings’ total energy. Then it follows that
κ12 and κ21 are related as [29,30]

κ12 = κ∗
21. (4)

Thus, for succinctness, we henceforth write κ12 as κ and κ21

as κ∗.
To induce CAFC on our two-ring system, we modulate the

rings’ resonance frequencies ω j (t ) in the following way. First,
we let them be separated by a difference �0[�0 = ω1(−∞) −
ω2(−∞)], sufficiently large in magnitude compared to the
interring coupling magnitude |κ| to inhibit energy exchange
between the rings. While the bare ring frequencies ω j (t ) re-
main separated in this way, the optical input (resonant with
Ring 1) is launched into the input bus. Then, on a timescale
short compared to the TCMT parameters and the ring dura-
tion, ω1(t ) is decreased by �0/2 and ω2(t ) increased by �0/2
to bring them in resonance with each other. As a result, energy
exchange analogous to Rabi oscillation is induced between the
rings [38]. This energy exchange is allowed until the energy
in Ring 2 reaches its maximum and contains most of the
coupled rings’ energy. Then the rings’ resonance frequencies
are restored to their initial values, separated by �0, again on a
comparatively short timescale. In this way, the optical pulse,
originally at resonance with Ring 1 at frequency ω̄ + �0/2, is
now in Ring 2, with frequency ω̄ − �0/2. Thus, a frequency
shift of �0 is achieved even when only frequency modulations
of ±�0/2 are applied to each ring.

According to the preceding modulation protocol, we can
write ω j (t ) in the form

ω j (t ) = ω̄ − (−1) j (�0/2)[�(t1 − t ) + �(t − t2)]. (5)

In Eq. (5), t1 and t2 are the times at which frequency
modulation is started and ended, respectively; and �(x),
the Heaviside unit-step function. Of course, by substituting
Eq. (5) into Eq. (2), we find that H (t ) has a form analogous to
the right-hand side of Eq. (5), given by

H (t ) = Hm + (H0 − Hm)[�(t1 − t ) + �(t − t2)]. (6)

Here H0 is the value of H (t ) before and after ring modulation,
and Hm is its value during modulation. Clearly, H0 is given by
Eq. (2) with ω j (t ) = ω̄ − (−1) j (�0/2), and Hm, by Eq. (2)
with ω j (t ) = ω̄.

Given Eqs. (5) and (6), we derive a closed-form expression
for the CAFC output sout (t ) in the Supplemental Material [39],
under the assumption of large detuning |�0| compared to the
interring coupling |κ|, the ring decay rates, γ1 and γ2, and the
input bandwidth. This assumption does not restrict the rele-
vance of the subsequent analysis, because large detuning |�0|
is necessary for efficient CAFC, as we discuss below. This
explicit solution for the frequency-shifted sout (t ) is given by

sout (t ) = k†
outU (t − t2,�0)a(t2),

a(t2) = U (t2 − t1, 0)a(t1),

a(t1) =
∫ ∞

−∞
dt U (t1 − t,�0)kinsin(t ). (7)

Here U (t,�) is the impulse-response matrix of Eq. (1) for
time-independent H (t ) with interring detuning �. Explicit
expressions for the matrix elements of U (t,�) are also given
in the Supplemental Material [39].

The proposed scheme for CAFC can be generalized
to incorporate N initially detuned, sequentially coupled
rings, rather than just two, with N being any integer greater
than two. In such a scheme, Ring 1 couples to the input
waveguide; Ring N , to the output waveguide; and Ring j
( j = 2, . . . , N − 1), to Rings ( j − 1) and ( j + 1). Ring N
is detuned �0 from Ring 1; Ring 2 is detuned by 3�0/(2N )
from Ring 1; and Ring j ( j = 1, 2, . . . N − 1) is initially
detuned by �0/N from Ring ( j − 1). In this scheme, light
is coupled into Ring 1 from the waveguide. Then Ring 1 is
modulated by �0/N and Ring 2 by −�0/(2N ) so they are
at resonance with each other and exchange energy. Then
Ring 2 is modulated by �0/2 and Ring 3 by −�0/2 and
they exchange energy, and so on. Finally, the excited Ring
(N − 1) is modulated by �0/(2N ), and Ring N , by −�0/N ,
until Ring N reaches its maximum energy; and then Ring N is
returned to its original frequency and releases its energy into
the output waveguide. With this scheme, a net shift of �0 is
then achieved, when each ring was modulated by �0/N .

Generalization of the derivation for Eq. (7) to the case of N
coupled rings can be done via the same methods of the Sup-
plemental Material [39] for two rings and is straightforward.
One then obtains

sout (t ) = koutUN (t − tN )a(tN ),

a(t j+1) = Uj (t j+1 − t j )a(t j ), j = 1, . . . , N − 1,

a(t1) =
∫ ∞

−∞
dt U0(t1 − t )kinsin(t ). (8)
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Here U0(t ) is the impulse-response matrix before any mod-
ulation is applied, and Uj (t ), the impulse-response matrix
after the N th modulation is applied. We note that, while the
impulse-response matrix in Eq. (7) is 2 × 2, those in Eq. (8)
are N × N , as they describe the time evolution of all N rings.

Though analytical study of the N-ring system is straight-
forward, its numerical analysis is generally challenging, as
it increases the number of parameters with respect to which
one must optimize the CAFC process. For this reason, we
mostly restrict subsequent analysis to the two-ring system and
briefly suggest generalizations to the N-ring system where
appropriate.

III. DESCRIPTION OF A SAMPLE CAFC PROCESS

To visualize the temporal dynamics of CAFC, we consider
a specific example and numerically evaluate the correspond-
ing temporal dependence of the input power |sout (t )|2, the
output power |sout (t )|2, and the ring energies |a j (t )|2 ( j =
1, 2).

As in Refs. [28,37], we consider an input sin(t ) of the form
of a raised-cosine pulse:

sin(t ) =
√

2Us/3Ts[1 + cos(2πt/Ts)]

× [�(t + Ts/2) − �(t − Ts/2)]

× exp[−i(ω̄ + s�(r)
0 /2)t]. (9)

Here Ts is the pulse’s duration; Us, the pulse’s total energy;
and �(t ), the Heaviside unit-step function. To match the reso-
nance frequency of the rings’ supermode with most energy in
Ring 1, the input carrier frequency is set to ω̄ + s�(r)

0 /2. Here
s ≡ sgn(�0) and �

(r)
0 ≡ ��0, where �0 is the ring super-

modes’ complex-valued frequency splitting in the absence of
ring modulation. As discussed in the Supplemental Material
[39], �0 is given in terms of the ring parameters by

�0 =
√

(�0 − iδ)2 + 4|κ|2, ��0 > 0. (10)

Here δ ≡ (γ1 − γ2) is the ring decay rate contrast.
The raised-cosine pulse of Eq. (9) is convenient for our

analysis for two reasons. First, it is a symmetric, single-lobe
pulse. Hence, it is comparatively robust to dispersive effects
for a fixed pulse duration, and it is thus of interest for optical
telecommuncations [5,36]. Second, it is nonzero only over a
finite time interval, which simplifies the numerical evaluation
of the TCMT equations [Eq. (1)] and the optimization of the
modulation times t1 and t2. As for simple (i.e., not cascaded)
AFC in one [28] and two [37] rings, the CAFC of the raised-
cosine pulse is mostly governed by the latter’s symmetry and
single-lobe nature. Thus, the analysis of CAFC of the raised-
cosine input applies qualitatively and yields similar results for
other symmetric, single-lobe pulse shapes such as Gaussian,
super-Gaussian, and hyperbolic secant.

As we show in later sections, the efficiency of CAFC is
limited by three distinct normalized timescales. These are
the loss per pulse duration, γ0Ts; the interring coupling per
pulse duration, |κ|Ts; and the interring coupling over the in-
terring detuning rate, |κ/�0|. The CAFC energy efficiency η

increases monotonically as these ratios converge as γ0Ts → 0,
|κ|Ts → ∞, and |κ/�0| → 0. Of course, in practice all three

dimensionless ratios have finite, nonzero values. For our sam-
ple numerical evaluation of CAFC, we fix the value of γ0Ts

and |κ|Ts, but sweep the value of |κ/�0|. For concreteness, we
choose γ0Ts = 0 and |κ|Ts = 10. Although γ0Ts = 0 is clearly
an idealization, we find that the resulting energy-transfer
dynamics are representative, i.e., they do not change quali-
tatively as γ0Ts increases beyond zero. Furthermore, setting
γ0 = 0 allows us to illustrate numerically that intrinsic ring
loss is not the only physical mechanism limiting the CAFC
efficiency, as discussed in Refs. [28,37].

Thus, we solve the TCMT equations, i.e., Eq. (1), numer-
ically for the raised-cosine input sin(t ) in Eq. (9), γ0 = 0,
|κ|Ts = 10, and various values of |�0/κ|, including the limit
|�0/κ| = ∞. We choose the modulation times, t1 and t2, and
the bus-ring coupling rates, γ1e and γ2e to approximately opti-
mize the CAFC efficiency, using the schemes explained below
in Sec. V. In Fig. 2 we plot the resulting instantaneous ener-
gies, |a1(t )|2 and |a2(t )|2, and instantaneous powers, |sin(t )|2
and |sout (t )|2.

We first analyze the time dependence of the instantaneous
powers and energies in Fig. 2 for |�0/κ| = ∞. Then we ana-
lyze the changes these quantities undergo as |�0/κ| becomes
finite and progressively decreases. For |�0/κ| = ∞, from the
start of the pulse at t = −Ts/2 and until the start of ring
modulation at t = t1, |a1(t )|2 increases monotonically while
|a2(t )|2 stays at zero. This is because, for |�0/κ| = ∞, the
energy transferred from Ring 1 to Ring 2 cannot accumulate
before the field amplitude in the rings grow out of phase with
each other. Thus, the energy in Ring 2 is effectively isolated
from Ring 1, and the power injected through the input bus
accumulates in Ring 1.

From t = t1 to t = t2, ring modulation is applied so that
the interring detuning � vanishes. Thus, the input sin(t ) is
no longer at resonance with a ring supermode. Consequently,
loading of the input sin(t ) into Ring 1 becomes inhibited,
but interring energy exchange is no longer so. Hence |a1(t )|2
decreases while |a2(t )|2 increases. The time dependence of the
ring energies in this time interval is approximately sinusoidal,
in analogy to Rabi oscillation [29,38]. Albeit the total energy
in both rings decays exponentially with rate (γ1 + γ2), which
we show below must be of the order of the input bandwidth
∼T −1

s for efficient, bandwidth-preserving CAFC. Even if the
rings’ intrinsic decay rate γ0 vanishes, the total decay rate
(γ1 + γ2) = (γ1e + γ2e) is nonzero because we need nonva-
nishing γ1e and γ2e to couple the optical pulse from the input
bus into Ring 1 and from Ring 2 into the output bus.

Ring modulation stops at t = t2. The stopping time t2 is
chosen so that the energy transferred from Ring 1 to Ring 2
is approximately maximum. So to zeroth order in γ1/|κ| and
γ2/|κ|, t2 is set so that t2 − t1 = π/(2|κ|). From this statement
and from the last paragraph, it follows that efficient interring
energy transfer requires (γ1 + γ2)(t2 − t1) ∼ (|κ|Ts)−1 	 1.
Otherwise, a significant fraction of the rings’ energy is leaked
into the bus wave guides during interring transfer. For the
considered value of |κ|Ts, this energy leakage causes the max-
imum |a2(t1)|2 in Fig. 2 to be appreciably smaller than the
maximum for |a1(t1)|2 at |�0/κ| = ∞. For t > t2, interring
energy exchange is again inhibited by the large ratio |�0/κ|,
so the energy in Ring 2 is isolated from Ring 1. From Ring 2,
the energy leaks continuously into the output bus with rate γ2e,

063510-4



PROPOSAL AND EFFICIENCY ANALYSIS OF CASCADED … PHYSICAL REVIEW A 109, 063510 (2024)

(a) (b)

FIG. 2. Plots of the instantaneous ring energies and the instantaneous input and output powers as functions of time t for a raised-cosine
input, γ0 = 0, |κ|Ts = 10, and various values of |�0/κ|. Us is the input energy and Ts, the input’s duration: (a) ring energies, |a1(t )|2 (solid
blue) and |a2(t )|2 (dashed orange), as functions of time t ; (b) input and output powers, |sin (t )|2 (solid blue) and |sout (t )|2 (dashed orange), as
functions of time t .

and its amplitude oscillates at frequency ω2 (or ω̄ − s�(r)
0 /2,

for finite |�0/κ|).
As a consequence of Eq. (1), |sout (t )|2 is proportional

to |a2(t )|2. However, as we noted earlier, not all of the
energy in the output sout (t ) oscillates at the target output fre-
quency ω2 (or ω̄ − s�0/2, for finite |�0/κ|). Only the energy
in sout (t ) for t > t2 oscillates at this frequency. Therefore,
only the segment of sin(t ) for t > t2 [mathematically given
by sout (t )�(t − t2)] corresponds to the frequency-shifted
output. Thus, in the limit of |�0/κ| → ∞, the frequency-
shifted output equals exactly an exponentially decaying tail
starting suddenly at t = t2, decaying in power with rate
2γ2, and oscillating in amplitude at the target frequency
ω2 = ω1 − �0. In the limit of large |�0/κ|, the total en-
ergy in this frequency-shifted output is (γ2e/γ2)|a2(t2)|2. We
choose γ2e = 1/(2TRMS) so that the input and frequency-
shifted output power signals have the same root-mean-square
duration in this limit. This choice of γ2e and its implica-
tion on the CAFC efficiency are discussed in detail in the
Supplemental Material [39].

As |�0/κ| becomes finite, several new effects appear in the
energy and power dynamics of CAFC. First, the maximum
energy |a1(t1)|2 loaded from the bus into Ring 1 decreases, as
Ring 1 is continuously leaking energy into Ring 2. Second,
the splitting in the rings’ supermode resonance frequencies
changes from �0 to �

(r)
0 , as discussed for Eq. (9). Third, the

decay rates of the supermodes also change. They are modified
from their bare values of γ j ( j = 1, 2) to new values γ̃ j ,
defined as

γ̃ j = γ̄ + (−1) j s�(i)
0 /2. (11)

Here γ̄ = (γ1 + γ2)/2 is the ring-averaged decay rate, and
�

(i)
0 ≡ 
�0. As a consequence of this alteration of the effec-

tive decay rates γ̃ j , both the optimal time t1 to start modulation
and the optimal coupling between bus and Ring 1 γ1e are
correspondingly modified. This modification of the optimal
values for t1 and γ1e is studied below in Sec. V.

Because |a1(t1)|2 decreases, the maximum energy in Ring
2 at the end of modulation, |a2(t2)|2, diminishes proportion-
ally. Beyond that, the Rabi oscillation in ring energy from
t = t1 to t = t2, remains unchanged, as it does not depend on
|�0|. This is because we keep the modulation time (t2 − t1)
fixed for simplicity. In addition to the Rabi oscillation of the
rings’ energy, for finite |�0/κ| energy from sin(t ) can couple
into the rings during ring modulation at t ∈ [t1, t2]. However,
this effect is negligible as long as |�0/κ| is large enough
that the input bandwidth, ∼T −1

s , is small compared to the
shift in the supermode’s resonance frequencies due to ring
modulation, ∼(|�0| − |κ|). This is the case for the TCMT
parameters used for Fig. 2.

As |�0/κ| becomes finite, the energy in Ring 2, |a2(t )|2,
for t > t2 no longer merely decays exponentially at the bare-
ring rate γ2. Due to interference between the supermodes,
|a2(t )|2 for t > t2 becomes the sum of three terms: two de-
caying exponentially, one at rate 2γ̃1 and the other at rate
2γ̃2, and one oscillating with angular frequency �

(r)
0 and with

envelope decaying as 2γ̄ = (γ1 + γ2). For large |�0/κ|, the
term decaying as γ̃2 dominates. But as |�0/κ| decreases, the
other two terms become appreciable. This can be seen in
Fig. 2, where the oscillating term causes a beat in Ring 2’s
energy, |a2(t2)|2, which progressively increases in amplitude
and decreases in frequency as |�0/κ| decreases. The term
decaying as γ̃1 is not discernible in Fig. 2 as, in this case,
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γ̃1 ≈ γ̃2. In theory, |a2(t )|2 for t > t2 is also altered by the
energy in sin(t ) for t > t2. However, the large detuning |�0|
compared to the input bandwidth T −1

s again causes this effect
to be negligible.

IV. INNER-PRODUCT ANALYSIS
OF THE CAFC EFFICIENCY

To analyze the efficiency of CAFC, it is useful to identify
the input sin(t ) and the frequency-shifted output sout (t ) as
vectors in the vector space of finite-energy pulses (mathe-
matically, the Hilbert space of square integrable functions of
time, L2) as in Ref. [37]. Using Dirac notation, let | f (t )〉
and |g(t )〉 be vectors in this Hilbert space corresponding to
the square-integrable functions functions of time t , f (t ) and
g(t ), respectively. We define the inner product between these
vectors as

〈 f (t )|g(t )〉 ≡
∫ ∞

−∞
dt f ∗(t )g(t ). (12)

Employing this Dirac notation, we rewrite Eq. (7) in the
more abstract form

|sout (t )〉 = T̂outa(t2),

a(t2) = U (t2 − t1, 0)a(t1),

a(t1) = T̂in|sin(t )〉. (13)

In Eqs. (13), T̂out is a linear map from the vector space of two-
dimensional, complex-valued vectors, C2, to L2. Conversely,
T̂in is a linear map from L2 to C2. Let u jk (t,�) be the matrix
element of U (t,�) from Eqs. (7) and (13) in its jth row and
kth column. Then we can write explicit expressions for the T̂in

and T̂out maps as

T̂out =
√

2γ2e(|u21(t − t2,�0)〉 |u22(t − t2,�0)〉),

T̂in =
√

2γ1e

(〈u∗
11(t − t1,�0)|

〈u∗
21(t − t1,�0)|

)
. (14)

The conjugation of the impulse response functions uj1(t −
t1,�0) ( j = 1, 2) in Eq. (14) results from the definition of
the inner product, Eq. (12). As implied by their subindices,
T̂in describes the loading of the input optical pulse into the
coupled rings, and T̂out, the unloading of the ring energy into
the frequency-shifted output. From Eq. (14), it follows that
the net action of CAFC is that of a linear operator T̂ in L2,
transforming |sin(t )〉 into |sout (t )〉. Furthermore, this operator
is expressible as

T̂ = T̂outU (t2 − t1, 0)T̂in. (15)

Equations (14) and (15) suggest that T̂out, T̂in, and T̂ are
maps of rank 2, i.e., that their image is a two-dimensional
vector space. In practice, this is inaccurate because, for CAFC,
we consider only inputs |sin(t )〉 nearly resonant with Ring 1’s
original frequency (ω0 + �0/2), and outputs |sout (t )〉 resonant
with Ring 2;s final frequency (ω0 − �0/2), rather than over
the complete frequency spectrum. Thus, the co-image of T̂in

and the image of T̂out are practically restricted, which might
reduce the rank of T̂in, T̂out and T̂ and impact the resulting
efficiency of CAFC. To incorporate this restriction into our
analysis, we introduce effective “filtered” maps T̂in,F , T̂out,F ,

and T̂F . Explicitly, the filtered loading map, T̂in,F , is defined
so that it models the effect of T̂in only over the vector space
of inputs |sin(t )〉 nearly resonant to Ring 1 before modulation.
On the other hand, the filtered unloading map, T̂out,F , is the
restriction of T̂out to the preimage of outputs |sout (t )〉 nearly
resonant to Ring 2 after modulation. Finally, T̂F is defined, in
analogy to Eq. (15), as

T̂F = T̂out,FU (t2 − t1, 0)T̂in,F . (16)

As given in Eq. (16), T̂F describes the output of T̂ nearly res-
onant to Ring 2, restricted over inputs |sin(t )〉 nearly resonant
to Ring 1.

For subsequent analysis, we formulate abstract expressions
for the filtered maps. To do so, we note from the Supplemen-
tal Material [39] that, before and after modulation, the ring
supermodes oscillate at the frequencies ω̄ ± �

(r)
0 /2. Thus, we

write

T̂in,F =T̂inF̂
(
ω̄ + s�(r)

0 /2
)
,

T̂out,F =F̂
(
ω̄ − s�(r)

0 /2
)
T̂out. (17)

Here F̂ (ω) is an ideal bandpass-filter operator, which retains
only pulses near-resonant with ω. As in Sec. III, s = sgn(�0).
Of course, the ideal bandpass-filter F̂ (ω) must have a given
bandwidth. We assume that this bandwidth is large compared
to typical bandwidths of the considered inputs |sin(t )〉 and
outputs |sout (t )〉, albeit small compared to the ring detuning
�0 and leave it unspecified.

We take the ideal filter operator F̂ (ω) as self-adjoint. Thus,
we may evaluate the right-hand sides of (17) by applying F̂ (ω)
to the bras 〈u∗

j1(t − t1,�0)| and the kets |u2 j (t − t2,�0)〉 ( j =
1, 2) in Eq. (14). We do so by retaining only the terms in the
matrix elements unm(t,�0) oscillating at the frequency spec-
ified by the filtering operator F̂ (ω), either (ω̄ + s�(r)

0 /2) or
(ω̄ − s�(r)

0 /2). In this way, we obtain the explicit expressions

T̂in,F =
√

γ1e

γ̃1

(
[1 + (|�0| − isδ)/�0]/2

sκ21/�0

)
〈nin|,

T̂out,F =
√

γ2e

γ̃2
|nout〉(−sκ21/�0[1 + (|�0| − isδ)/�0]/2).

(18)

In Eq. (18), |nin〉 and 〈nout| are the ket and bra corresponding,
respectively, to the normalized pulses

nin(t ) =
√

2γ̃1�(t1 − t ) exp[−(t1 − t )(γ̄ − iω̄ − is�∗
0/2)],

nout (t ) =
√

2γ̃2�(t − t2) exp[−(t − t2)(γ̄ + iω̄ − is�0/2)].

(19)

Again, �(t ) is the Heaviside function, and γ̃ j , the modified
decay rates of Eq. (11). The bra 〈nin| and the ket |nout〉 in
Eq. (18) are normalized so that 〈nin|nin〉 = 〈nout|nout〉 = 1.
From Eqs. (16) and (18), it is clear that the filtered maps
T̂in,F , T̂out,F , and T̂F are of rank 1. This is in contrast to the
unfiltered maps T̂in, T̂out, and T̂ in Eqs. (14) and (15), which
are of rank 2. As we discuss next, consideration of this rank
reduction is key to analyze CAFC efficiency’s upper bounds
and its dependence on the input pulse sin(t ).
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Leveraging Eqs. (16) and (18), it is now straightforward
to write an explicit expression for the energy efficiency η

of CAFC. Since the CAFC output is given by T̂F |sin(t )〉, we
substitute Eqs. (16) and (18) to obtain

η = 〈sin(t )|T̂ †
F T̂F |sin(t )〉

〈sin(t )|sin(t )〉 = γ1eγ2e

γ̃1γ̃2
|V |2 |〈nin|sin(t )〉|2

〈sin(t )|sin(t )〉 . (20)

Here † stands for the adjoint operation, and V , for the matrix
product

V = (−sκ21/�0 [1 + (|�0| − isδ)/�0]/2)

× U (t2 − t1, 0)

(
[1 + (|�0| − isδ)/�0]/2

sκ21/�0

)
. (21)

Of course, the magnitude of the inner product 〈nin|sin(t )〉 is
bounded by the Schwarz inequality [28,51] as |〈nin|sin(t )〉|2 �
〈nin|nin〉〈sin(t )|sin(t )〉 = 〈sin(t )|sin(t )〉. Hence, the CAFC effi-
ciency η is bounded from above as

η � γ1eγ2e

γ̃1γ̃2
|V |2. (22)

Furthermore, this bound is tight; as a well-known corollary
of the Schwarz inequality is that it becomes an equality
if and only if the two vectors considered are linearly de-
pendent [51]. Thus, Eq. (22) becomes an equality if and
only if |sin(t )〉 is proportional to |nin〉. Additionally, increas-
ing the projection of |sin(t )〉 into |nin〉 increases the ratio
|〈nin|sin(t )〉|2/〈sin(t )|sin(t )〉, and thus increases the efficiency
η, providing the remaining factors on the right-hand side of
Eq. (20) remain fixed.

Generalization of the results of this section to the N-ring
system is straightforward. The row vector of kets and the
column vector of bras in Eq. (18) for T̂out now have entries
|u(N )

N j (t − tN )〉 and 〈u(0)∗
j1 (t − t1)|, respectively. Here u( j)

kl (t ) is
the kl entry of the impulse-response matrix Uj (t ), as de-
fined in Eq. (8). Equations (15), (16), and (21), the matrix
U (t2 − t1, 0) is replaced by the matrix product

U (t2 − t1, 0) →
N−1∏
j=1

Uj (t j+1 − t j ). (23)

In the right-hand side of Eq. (23), the matrices Uj (t j+1 − t j )
are multiplied in descending order for their index j.

In the N-ring system, the rings’ supermodes no longer
oscillate at the complex frequencies ω̄ − iγ̄ ± �0/2 before
and after modulation. Rather, they oscillate at the complex
frequencies is j ( j = 1, . . . , N). These s j are the poles of the
resolvent (sIN + iH0)−1, where IN is the N × N identity ma-
trix, and H0, as in Eq. (6), is the frequency-coefficient matrix
H (t ) before and after all ring modulations. Consequently, the
filtering frequencies ω̄ ± �

(r)
0 /2 in Eq. (17) must be changed

to −
s1 and −
sN , respectively. Here is j is the complex
supermode frequency with −
s j closest to the bare resonance
frequency of the jth Ring. Additionally, the input and output
normalized pulses nin(t ) and nout (t ) in Eq. (19) retain the same
form, with their central frequencies replaced by −
s1 and
−
sN , and their decay rates by −�s1 and −�sN , respectively.
Of course, the expressions for column and row vectors in
Eq. (14) and (21) become altered for the N-ring system, and
must be reevaluated for each value of N .

Limit of large interring detuning

To aid the numerical optimization of the CAFC efficiency
η and to develop an intuition of its behavior, it is useful
to consider η in the limit of large interring detuning |�0|
compared to the other time rates governing the CAFC pro-
cess. Expressly, this limit corresponds to that of |�0| large
compared to the interring coupling |κ|, the ring decay rates γ j

( j = 1, 2), and the input pulse’s bandwidth. Let us define η0

as the CAFC efficiency in this limit, i.e., η0 = lim|�0|→∞ η.
From Eq. (20) for η, we find that η0 can be factored as

η0 = η01η12η23. (24)

Here the factors η j, j+1 ( j = 0, 1, 2) on the right-hand side of
Eq. (24) can be interpreted as the efficiencies of the subpro-
cesses composing CAFC. η01 is the efficiency of loading the
input pulse from the input bus waveguide into Ring 1; η12,
the efficiency of transferring the energy from Ring 1 to Ring
2; and η23, the efficiency of unloading the energy from Ring
2 into the output bus waveguide. The expressions for these
partial efficiencies are

η01 =
(

γ1e

γ1

) |〈nin|sin(t )〉|2
〈sin(t )|sin(t )〉 ,

η12 = |u21(t2 − t1, 0)|2,
η23 = γ2e/γ2. (25)

Clearly, the expressions in Eq. (25) agree with the previously
described interpretations.

Let us briefly discuss the partial efficiencies η01 and η23. In
the limit |�0| → ∞, the normalized input vector |nin〉, given
by Eq. (19), oscillates at frequency ω1 and grows at a rate
of γ1. Thus, as expected, η01 equals the efficiency of loading
the input sin(t ) into Ring 1 in the absence of Ring 2 and the
output bus [28]. Similarly, the expression for η23 in Eq. (25)
is identical to the efficiency of unloading the energy in Ring
2 into the bus waveguide in the absence of the input bus and
Ring 1 [28].

Just as discussed for Eq. (22), η01 in Eq. (25) is bounded
by the Schwarz inequality as η01 � γ1e/γ1. Furthermore, from
the Schwarz inequality’s corollary, η01 increases as the pro-
jection of |sin(t )〉 into |nin〉 increments, if γ1e/γ1 remains
constant. Finally, the maximum η = γ1e/γ1 can be attained
if and only if |sin(t )〉 is proportional to |nin〉.

Though it is difficult to obtain an explicit form for η for
CAFC in the N-ring (N > 2) system for finite �0, the intuitive
results of this subsection suggest it takes a simple form in the
limit of infinite |�0|. Given the intuitive forms η0 in Eq. (24)
and of η j, j+1 in Eq. (25), and the generalization rule Eq. (23),
we surmise that, for the N-ring system, η0 takes the form

η0 =
N∏

j=0

η j, j+1. (26)

As in the two-ring system, η j, j+1 ( j = 0, . . . , N) are the par-
tial efficiencies of the subprocesses constituting CAFC in the
limit |�0| → ∞. Just as in the two-ring system, η01 is the
efficiency of loading the input from the input bus into Ring 1,
and ηN,N+1, the efficiency of unloading the energy from Ring
N into the output bus. These are still given by Eq. (25) for
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η01 and η23, respectively. For j �= 0, N , η j, j+1 is the efficiency
of transferring energy from Ring j to Ring ( j + 1). As a
consequence of Eq. (23), this is given by

η j, j+1 = lim
|�0|→∞

∣∣u( j)
j+1, j (t j+1 − t j )

∣∣2
, j �= 0, N. (27)

As described above Eq. (23), u( j)
j+1, j (t ) are off-diagonal entries

of the impulse-response matrix Uj (t ).

V. OPTIMIZATION OF THE CAFC TIMESCALES

As is clear from Secs. III and IV, the two-ring CAFC pro-
cess and its efficiency depend on the relation among various
timescales and time rates. These are the pulse duration Ts,
the initial t1 and final t2 times of modulation, the interring
detuning �0, the interring coupling κ , the intrinsic decay rate
γ0, the coupling rate γ1e between the input bus and Ring 2,
and the coupling rate γ2e between Ring 2 and the output bus.
In this section we describe our scheme for practical numerical
optimization of the CAFC efficiency with respect to these
variables. For concreteness, we suppose the input pulse is a
simple, symmetric, single-lobe pulse as in Sec. III.

First, we discuss CAFC efficiency optimization with re-
spect to the pulse duration Ts. In practice, the input pulse
is usually fixed. Hence Ts is often not a free parameter to
optimize the CAFC efficiency. For completeness, though, we
briefly consider optimization of CAFC with respect to Ts. We
see in Eq. (20) that Ts appears only in the expression for
the CAFC efficiency η through the inner product 〈nin|sin(t )〉.
Thus, if all other TCMT parameters remain constant, optimal
Ts is that which maximizes |〈nin|sin(t )〉|. From Eq. (19), this
implies that Ts must be of the order of the supermode decay
rate γ̃1 ∼ γ1. Furthermore, the derivation of the solution of
Eqs. (1) in the Supplemental Material [39] assumes that the
bandwidth of sin(t ) is small compared to the modulation-
induced change in the rings’ supermode resonant frequency,
which is of the order of (|�0| − |κ|). This requirement is
equivalent to the condition (|�0| − |κ|)Ts � 1. This condition
is satisfied if |�0| � |κ| and |κ|Ts � 1, which are neces-
sary for efficient CAFC, as discussed in Sec. III and below
in this section. Nonetheless, as discussed below in this sec-
tion and Sec. VI, efficient CAFC under our scheme requires
simultaneously γ0Ts 	 1 and |κ|Ts � 1. The first condition
arises because efficient CAFC requires both γ1e � γ0 and
γ1e ∼ T −1

s , as explained below in this section, which occurs
only if γ0Ts 	 1. Similarly, the second condition emerges
because efficient CAFC requires γ1e 	 |κ| and γ1e ∼ T −1

s ,
again explained below, which occurs only if |κ|Ts � 1.

Second, we consider CAFC optimization with respect to
the modulation start time t1. From Eqs. (19) and (20), t1
appears only in the expression for η through the bra vector
〈nin| in the inner product 〈nin|sin(t )〉. Specifically, t1 is the time
at which the normalized, truncated, increasing exponential
nin(t ) is terminated. Thus, the value of t1 which optimizes
η is the one which shifts |nin〉 so that it achieves the largest
overlap with |sin(t )〉. For a large detuning ratio |�0/κ|, the
CAFC optimization with respect to t1 can be interpreted as an
optimization of the loading of the input pulse into one of the
rings’ supermodes at time t1.

Third, we examine CAFC optimization with respect to the
modulation end time t2. For a high modulation ratio |�0/κ|
and small input bandwidth |κ| � T −1

s , coupling of sin(t ) into
the rings is inhibited during ring modulation, from t = t1 to
t = t2. Thus, the only effect of varying t2 is to modify the
duration (t2 − t1) of Rabi oscillation of the rings’ energies.
This is seen from Eqs. (20) and (21). Thus, to optimize the
CAFC efficiency η with respect to t2, we choose the t2 which
maximizes the modulus of V in Eq. (21). Nonetheless, direct
maximization of |V |2 for finite �0 is a challenging problem,
requiring numerical solution for each value of |�0/κ|. To sim-
plify the problem, we note, as in Sec. IV A, that lim�0→∞ V =
u21(t2 − t1, 0). Furthermore, maximization of η12 = |u21(t2 −
t1, 0)|2 with respect to t2 can be performed analytically for ar-
bitrary values of the other TCMT parameters. This analytical
optimization is discussed in the Supplemental Material [39].
Thus, for simplicity of numerical implementation, we set t2 to
the value which maximizes η12, and thus η in the limit of high
|�0|. Of course, this value of t2 also approximately maximizes
|V |2 (and thus the exact CAFC efficiency η) for large |�0/κ|,
which itself is necessary for efficient CAFC.

Fourth, we discuss the effect of the pre- and post-
modulation interring detuning �0 on the CAFC efficiency.
Mathematically, changing �0 changes the pre- and postmodu-
lation rings’ supermodes and their complex-valued frequency
splitting �0. Consequently, this changes the supermodes’
modified decay rates γ̃ j in Eq. (11), which modifies the input
and output functions nin(t ) and nout (t ) in Eq. (19). Increasing
|�0| modifies the supermodes by causing them to concen-
trate each on one of the two rings. This energy concentration
reduces the interring energy leakage before and after ring
modulation, and thus increases the CAFC efficiency. In par-
ticular, to inhibit interring energy exchange before and after
modulation, we must have |�0/κ| � 1.

Fifth, we consider the effect of interring coupling κ . Before
and after ring modulation, we require |κ| to be small compared
to |�0| to inhibit interring energy leakage, as discussed above.
During ring modulation, we require |κ| to be large compared
to the ring-averaged decay rate γ̄ so that the energy in Ring 1
can be transferred to Ring 2 before the rings’ total energy dis-
sipates noticeably. Combining these two criteria, we deduce
that there exists an value of |κ| that optimizes η, satisfying
γ̄ 	 |κ| 	 |�0|. Exact determination of this optimal |κ| is
a formidable numerical problem. In Sec. VII we present an
approximate numerical scheme to estimate this optimal |κ|.

Sixth, we examine the effect of the intrinsic decay rate γ0

on the CAFC efficiency. Physically, the effect of nonzero γ0

is to introduce energy loss at all stages of CAFC. Thus, the
CAFC efficiency is maximized with respect to γ0 in the ideal
case of γ0 = 0. More specifically, efficient CAFC requires the
intrinsic photon lifetime (2γ0)−1 large compared to all other
timescales of CAFC. Among the remaining timescales, we
show below that efficient CAFC requires Ts, (2γ1e)−1, and
(2γ2e)−1 to be largest, with these three all being of similar
order of magnitude. Thus, a concrete criterion for small intrin-
sic loss is γ0Ts 	 1. In particular, γ0Ts ∼ γ0/γ1e 	 1 directly
implies low intrinsic loss upon coupling of the input into Ring
1 before modulation. Similarly, γ0Ts ∼ γ0/γ2e 	 1 implies
low intrinsic loss upon coupling the frequency-shifted output
out of Ring 2 after modulation.
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Seventh, we analyze the net effect on the CAFC efficiency
η of the coupling rate γ1e between the input bus and Ring
1. From Eq. (20), η depends on γ1e through three of its fac-
tors: (γ1e/γ̃1), |〈nin|sin(t )〉|2, and |V |2. In the limit of large
|�0|, (γ1e/γ̃1) converges to γ1e/γ1. So for large |�0|, the
ratio (γ1e/γ̃1) increases monotonically with γ1e. In particular,
(γ1/γ̃1) becomes near unity when γ1e � γ0 for large |�0|. On
the other hand, the magnitude of the inner product 〈nin|sin(t )〉
is optimized with respect to γ1e when the duration γ̃1 of nin(t )
[in Eq. (19)] is of the order of the input bandwidth ∼T −1

s .
Finally, in the limit of large |�0|, V converges to u21(t2 −
t1, 0). Consequently, large |V |2 ≈ |u21(t2 − t1, 0)|2 requires
γ1e small compared to |κ| for large |�0|. Balancing all of
these dependences to obtain the value of γ1e which optimizes
η is evidently a challenging numerical problem which also
depends on the particular value of |�0|. To make the problem
numerically amenable, we assume |�0| large enough so we
can optimize the factorized η of Sec. IV A instead of the
general η to good accuracy.

To this approximation, we need only balance the depen-
dences on γ1e of the partial efficiencies η01 and η12 from
Eq. (25). From Sec. IV A, we recall that η01 can be inter-
preted as the efficiency of loading the input sin(t ) into Ring
1 before index modulation is applied at time t1. Hence, from
Ref. [28], η01 is maximized when γ1e � γ0 and γ1e = k/Ts

for a constant k of the order of unity, depending on the input
pulse shape, e.g. k = 2.3780 for the raised cosine [28]. In
contrast, η12 is maximized with respect to non-negative γ1e

when γ1e = 0. Physically, this is because coupling between
the input bus and Ring 1 results only in energy leakage during
the energy transfer from Ring 1 to Ring 2. Thus, the partial
efficiency η02 = η01η12 of energy transfer form the input bus
to Ring 2 in the limit |�0| → ∞ (and hence η in this same
limit) is maximized with respect to γ1e at some critical value
between 0 and k/Ts.

To determine this value, we assume that the ratios γ j/|κ|
( j = 1, 2) are small enough so that the value of γ1e which
maximizes η02 differs only slightly from k/Ts. Then we may
approximate through Taylor polynomials η01 as a function
of (γ1eTs − k); and η12 as a function of γ j/|κ|. As a result,
η02 = η01η12 can be approximated as as a third-order polyno-
mial in γ1e, which optimum γ1e we can determine analytically.
We then use this approximate optimal γ1e as the initial guess
of a numerical routine for local optimization. We discuss the
details of the polynomial model for η02 as a function of γ1e in
the Supplemental Material [39].

We evaluate this approach for numerical optimization of
η02 with respect to γ1e. To do so, we first note that we con-
sider the limit |�0| → ∞, and that we optimize CAFC with
respect to t1 and t2 as discussed above in this section. Then
we focus on the case of a raised-cosine input of duration Ts

and the idealized case of γ0 = 0. As in Sec. III, γ0 = 0 is
chosen for simplicity and to illustrate the fundamental limits
of the CAFC efficiency. We illustrate the following analysis
of the dependence of η02 on γ1e for nonvanishing γ0 in the
Supplemental Material [39], though the qualitative behavior
of all quantities is identical for small γ0. The value of γ2e is set
to tune the duration of the CAFC output, as described below
in this section. Then η02 depends only on two dimensionless
products: γ1eTs and |κ|Ts. Given this observation, we evaluate

FIG. 3. Contour plot of the maximum partial efficiency η02 for
γ0 = 0 for different values of |κ|Ts and γ1eTs. Highlighted are also
three curves. The first curve corresponds to the value of γ1eTs which
maximizes η02 for fixed |κ|Ts (red). The second and third curves are
estimates of the optimal curve. One corresponds to the value of γ1eTs

which maximizes the polynomial model for η02 (purple), and the
other, to the value which maximizes the partial efficiency η01 (green).

η02 for different values of γ1eTs and |κ|Ts. We display the
results as a contour plot in Fig. 3. In this contour plot, we also
trace the curve corresponding to the values of γ1eTs that max-
imize η02 for set values of |κ|Ts. To compare with this curve,
we also highlight two estimates for it. The first estimate is the
curve with values of γ1eTs which optimize the aforementioned
polynomial model for η02 for fixed |κ|Ts. The second estimate
is the curve with values of γ1eTs which optimize η01 [28], and
are thus constant for all |κ|Ts, which influences only η12.

We examine the lines of constant γ1eTs and of constant
|κ|Ts in Fig. 3. For constant γ1eTs, η02 increases monotonically
with |κ|Ts. This is because, to maximize η01, from the input
bus to Ring 1, γ1e must be of the order of T −1

s . Hence, large
|κ|Ts implies large |κ|/γ1e, and thus small energy leakage
during energy transfer from Ring 1 to Ring 2. In contrast, for
constant |κ|Ts, there is always a finite value of γ1eTs which
maximizes η02, in agreement with the aforementioned poly-
nomial model for η02 and its discussion.

We compare the line of optimal values of γ1eTs with its
analytical estimates in Fig. 3. For this comparison, we make
three observations. First, the exact optimum value of γ1eTs lies
between its two estimates for all of the considered values of
|κ|Ts. This allows us to use these estimates as bounds for the
optimum γ1eTs for any |κ|Ts for numerical optimization of η02.
Second, as |κ|Ts increases, the exact optimum γ1eTs converges
to its polynomial estimate. This is because then, the interring
transfer efficiency η12 approaches unity, and its first-order
polynomial in γ j/|κ| approximates it more accurately. Third,
as |κ|Ts increases, the polynomial estimate converges to the
value which optimizes input loading from the input bus to
Ring 1. Again, this is because then η01 approaches unity, so
η02 ≈ η01. Then, because the exact optimum γ1eTs is always
between these two estimates, it also converges to the value for
maximum η01.
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Eight, we discuss the effect on the CAFC output of the
coupling rate γ2e between Ring 2 and the output bus, and we
explain the scheme we use to set is value. In general, varying
γ2e has two effects in the CAFC output. First, a change in
γ2e alters the CAFC efficiency η. Mainly, this occurs via two
competing mechanisms: it decreases the efficiency in energy
transfer from Ring 1 to Ring 2 during ring modulation, as
energy leaks from Ring 2 into the output bus while the energy
in Ring 1 is coupled into Ring 2, which decreases η; also, it
increments the energy coupled from Ring 2 into the output
bus after modulation, which increases η. Second, an increase
in γ2e decreases the duration of the frequency-shifted output
pulse. This is because most of the energy of the output is in an
exponentially decaying tail of characteristic timescale 1/(2γ̃2)
which decreases with increasing γ2e.

We might consider setting γ2e to the value which maxi-
mizes the η. Nonetheless, determining this optimal value of
γ2e is challenging. For simplicity, we may consider η in the
limit |�0| → ∞, where η becomes expressible as the product
of the partial efficiencies η j, j+1 ( j = 0, 1, 2). Even then, the
problem remains formidable. However, if we assume that the
interring coupling strength |κ| is large compared to the ring
decay rates γ j ( j = 1, 2), we may approximate the partial ef-
ficiency η12 = |u21(t∗, 0)|2 by a Taylor polynomial. Then, we
may analytically optimize the partial efficiency η13 = η12η23.
This is analogous to how we set γ1e by optimizing η02 =
η01η12.

Nonetheless, optimizing η with respect to γ2e in the limits
|�0| → ∞ and γ j/|κ| → 0 yields a value of γ2e that depends
on γ1e. Conversely, optimizing η similarly with respect to γ1e

yields a value of γ1e that depends on γ2e. Thus, the problem of
optimizing η with respect to both rates simultaneously, even
under these approximations, becomes a challenging set of
simultaneous nonlinear equations, which requires numerical
solution. Even obtaining initial estimates for the optimal γ1e

and γ2e proves difficult.
To circumvent the formidable numerical problem of opti-

mizing η with respect to γ2e, we neglect the effect of γ2e on η,
and we rather engineer its effect on the output pulse duration.
As we discuss in the Supplemental Material [39], this neglect
is accurate for small γ2e/|κ|. Explicitly, we set γ2e so that
the frequency-shifted output sout (t ) has a root-mean-square
(RMS) duration TRMS approximately equal to that of the input
sin(t ). Consequently, the frequency-shifted sout (t ) shall have
a bandwidth comparable to that of sin(t ), in the order of
2π/TRMS. Our scheme used to accomplish this is discussed
further in the Supplemental Material [39].

To close this section, we briefly discuss the extension of
our optimization scheme for N-ring CAFC with N > 2. Most
of the results of this section still hold for the N-ring system, al-
beit with the following small modifications. First, we note that
the middle rings [with index j, such that 2 � j � (N − 1)],
have no extrinsic loss γ je, as they are not coupled to the
input or output buses. They have only intrinsic loss γ0. Hence
the interring coupling |κ| among them need only be large
enough so γ0 	 |κ| to inhibit loss during interring energy
exchange. In turn, this looser requirement on the interring
coupling allows interring leakage due to finite |κ/�0| to be
smaller for a fixed value of |�0|. By adding additional rings
to the system, one must optimize the efficiency η over the

durations (t j+1 − t j ) of the intermediate ring modulations.
These must maximize interring energy transfer, just as the
single modulation duration (t2 − t1) of the two-ring system.
To zerorth order in γ0, the optimal durations (t j+1 − t j ) equal
π/(2|κ|). For exact, and higher-order, expressions, see the
Supplemental Material [39]. Finally, we note that for N > 2,
there is no first-neighbor coupling between Ring 1 and Ring
N , the two rings coupled to waveguide buses and hence with
nonzero extrinsic loss. Thus, independent optimization of η

with respect to γ1e and γ2e is more accurate for finite interring
detuning |�0|, as they become increasingly decoupled as the
number of rings, N , increases.

VI. CONVERGENCE ANALYSIS
OF THE CAFC EFFICIENCY

With the scheme of Sec. V, we optimize CAFC with re-
spect to most of the process’s timescales. In particular, we
explain in that section that the CAFC efficiency increases as
γ0Ts tends to zero, and as |κ|Ts and |�0/κ| tend to infinity.
In practice, these three dimensionless parameters have finite,
nonzero values; so it is important to analyze how quickly the
CAFC efficiency η converges to its maximum with respect to
them and, of course, the numerical value of this maximum.
As we show in Sec. VII, this analysis allows us to develop an
accurate, simple polynomial model of the dependence of η on
these three dimensionless parameters. We may then use this
polynomial model to estimate optimal values for the remain-
ing free TCMT timescales (e.g., the interring coupling rate |κ|,
and possibly the pulse duration Ts) and the scaling of η with
the interring detuning |�0|. Furthermore, we show in this sec-
tion that our CAFC scheme converges to the same maximum
as single-ring AFC [28]. This is a key result because, as we
discuss below, it directly implies there exist conditions under
which CAFC can be more efficient than multiple instances of
single-ring AFC in series.

We start by examining the convergence of η with respect
to the normalized interring detuning |�0/κ|. As stated previ-
ously, efficient CAFC requires this ratio to be large, so the
input pulse sin(t ) can be efficiently loaded from the input
bus into Ring 1 without leaking into Ring 2, and so the
frequency-shifted output sout (t ) can efficiently exit from Ring
2 into the output bus without leaking into Ring 1. As stated in
the previous paragraph, η depends on the three dimensionless
parameters |�0/κ|, |κ|Ts, and γ0Ts. Hence, we analyze the
rate of convergence of η with respect to |�0/κ| as a function
of two independent variables: |κ|Ts and γ0Ts. First, we take
γ0Ts as constant, and examine the rate of convergence of η

with respect to |�0/κ| for different values of |κ|Ts. Then we
take |κ|Ts as constant, and consider different values of γ0Ts.
Finally, we draw general conclusions by varying both |κ|Ts

and γ0Ts simultaneously.
The numerical results of this convergence analysis are

shown in Fig. 4. In Fig. 4(a) we study the convergence of η

with respect to |�0/κ| for γ0Ts = 0 and different values of
|κ|Ts. To aid visualization and subsequent discussion, Fig. 4(a)
also shows η0 = lim|�0|→∞ η (as introduced in Sec. IV A)
for γ0Ts = 0 and each value of |κ|Ts. We verify that, for all
values of |κ|Ts, η indeed converges to η0 as |�0/κ| increases.
Moreover, we observe in Fig. 4(a) that η converges to η0
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FIG. 4. Numerical analysis of the rate of convergence of the CAFC efficiency η with respect to the normalized interring detuning |�0/κ|
to its infinite-detuning value, η0: (a) η as a function of |�0/κ| and its limit η0 for γ0Ts = 0 and different |κ|Ts; (b) log10(η0 − η) as a function of
log10 |�0/κ| for γ0Ts = 0 and different |κ|Ts; (c) η as a function of |�0/κ| and its limit η0 for |κ|Ts = 10 and different γ0Ts; (d) log10(η0 − η)
as a function of log10 |�0/κ| for |κ|Ts = 10 and different γ0Ts; (e) estimate of the convergence coefficient k1 as a function of |κ|Ts and γ0Ts; (f)
estimate of the convergence exponent α1 as a function of |κ|Ts and γ0Ts.

monotonically from below for all considered values of |�0/κ|.
This observation suggests that η0 is indeed an upper bound
on η for large, finite |�0/κ|, provided the remaining TCMT
parameters remain fixed. Of course, we expect this to be the
case for sufficiently large |�0/κ|, based on the discussion of

the role of |�0| in Sec. V. Furthermore, we observe in Fig. 4(a)
that both η for finite |�0| and its limit η0 for infinite |�0|
increase monotonically with |κ|Ts. This monotonic increase
with |κ|Ts agrees with the discussion in Sec. V. There we
explained that increasing |κ|Ts enables larger ratios of |κ| to
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the optimal bus-ring coupling rates γ1e and γ2e, reducing the
energy dissipated in transferring energy from Ring 1 to Ring
2 during ring modulation.

We examine the convergence of η with respect to |�0/κ|.
To do so, we evaluate the difference between η and its value
in the limit of infinite interring detuning, η0. We surmise
that (η0 − η) scales approximately as a positive power of
|κ/�0| for sufficiently large |�0/κ|. To test this hypothesis,
we plot the logarithm of (η0 − η) against that of |�0/κ| for
γ0Ts = 0 and different values of |κ|Ts in Fig. 4(b). From this
figure, we observe that the relation between log10(η0 − η)
and log10 |�0/κ| is approximately linear, with negative slope,
for all values of |κ|Ts. This implies that (η0 − η) is indeed
approximately proportional to a positive power of |κ/�0|,
for large |�0/κ|. We note that the curves in Fig. 4(b) all
have approximately the same slope, which implies (η0 − η)
is approximately proportional to the same power of |κ/�0|,
for all considered values of |κ|Ts.

Next, we analyze the convergence of η with respect to
|�0/κ| for different values of γ0Ts and constant |κ|Ts. Thus,
in analogy to Fig. 4(a), we plot η and its limit η0 as a function
of |�0/κ| for different values of γ0Ts and large, fixed |κ|Ts,
specifically, |κ|Ts = 10. The result is shown in Fig. 4(c). The
qualitative behavior of η in Fig. 4(c) is similar to that in
Fig. 4(a). Explicitly, η grows monotonically with |�0/κ|, con-
verging to η0 from below for each value of γ0Ts. As expected,
as γ0Ts increases, both η and η0 decrease, as then more energy
is dissipated into the environment during the CAFC process.
Again, we surmise there is a power law relating (η0 − η) to
|�0/κ| for sufficiently large |�0/κ|. To test this claim, we
again plot (η0 − η) against |�0/κ| in a logarithmic scale. The
result is in Fig. 4(d). As Fig. 4(b), Fig. 4(d) confirms an ap-
proximate linear relation between the logarithms of (η0 − η)
and |�0/κ| and thus a power law between them, now for all
considered values of γ0Ts. Again, we note that the curves in
the logarithmic plot of Fig. 4(d) have approximately the same
slope. Hence, (η0 − η) is proportional to the same power of
|�0/κ|, independently of γ0Ts

Having confirmed numerically the existence of an approx-
imate power law for (η0 − η) as a function of |�0/κ|, we
next characterize it quantitatively. To do so, based on the
observations of this section, we approximate η as a function
of |�0/κ| via

η ≈ η0 − k1

∣∣∣∣ κ

�0

∣∣∣∣
α1

for |�0| � |κ|. (28)

In Eq. (28) we introduce the convergence coefficient k1,
and the convergence exponent α1. Because η depends on
|�0/κ|, |κ|Ts, and γ0Ts, k1 and α1 generally depend on
|κ|Ts and γ0Ts. We then estimate k1 and α1 as functions
of |κ|Ts and γ0Ts. We estimate them via linear regression
of log10(η0 − η) as a function of log10 |�0/κ| based on a
least mean squares criterion, for different values of |κ|Ts

and γ0Ts.
In Figs. 4(e) and 4(f), we show contour plots of the re-

sulting estimates of k1 and α1, respectively, as functions of
|κ|Ts and γ0Ts. In Fig. 4(e), the convergence coefficient k1

exhibits large relative change with these parameters, varying
from 1 to 3. For small |κ|Ts (less than 20), k1 is approximately

independent of γ0Ts. But as |κ|Ts grows, k1 increases and so
does its susceptibility to γ0Ts. In contrast, the convergence
exponent α1 exhibits small relative change, in Fig. 4(f) varying
from 1.85 to 1.93. In Fig. 4(f), α1 appears more sensitive to
|κ|Ts than to γ0Ts. Though the relative variation of α1 with
respect to |κ|Ts is still appreciably small.

Next, we study the dependence of the value η0 of the CAFC
efficiency η in the limit of infinite interring detuning |�0|. The
limiting value η0 itself depends on the dimensionless products
|κ|Ts and γ0Ts, converging to a finite maximum as |κ|Ts →
∞, and γ0Ts → 0. For simplicity of the subsequent analysis,
we examine first the convergence of η0 with respect to |κ|Ts,
and then the convergence of the resulting limit with respect to
γ0Ts. From Sec. IV A, we recall that the limit η0 is expressible
as the product of three partial efficiencies η j, j+1 ( j = 0, 1, 2).
Furthermore, the partial efficiency η23 (of the energy release
from Ring 2 into the output bus) is independent of |κ|Ts for our
CAFC scheme. Thus, we need only consider the convergence
of the partial efficiency η02 = η01η12 with respect to |κ|Ts to
analyze that of η0, i.e., the efficiency of the complete CAFC
process.

Thus, we analyze numerically the convergence of η02 as
|κ|Ts diverges for several values of γ0Ts. To do this, we study
the plots in Fig. 5. In Fig. 5(a), in particular, we observe η02

converges with respect to |κ|Ts, similarly to how η converges
with respect to |�0/κ| in Figs. 4(a) and 4(c). Explicitly, η02

increases monotonically with |κ|Ts, converging to a finite limit
below unity, depending on the value of γ0Ts. In particular,
we find that the limiting value of η02 for infinite |κ|Ts equals
the partial efficiency η01, maximized over the input bus-Ring
1 coupling γ1e and and the modulation start time t1 for the
corresponding value of γ0Ts. This limiting value for η02 is
intuitive. When γ0Ts is small, and |κ| is large compared to
T −1

s , |κ| is large compared to γ1 and γ2. Then the energy
exchange between Ring 1 and Ring 2 is nearly lossless, so
η12 ≈ 1 and η02 ≈ η01.

As in our discussion of Fig. 4, we surmise that there might
be a power law describing the convergence of η02 with respect
to |κ|Ts observed in Fig. 5(a). To test this hypothesis, we
consider the difference (η01 − η02) between η02 and its limit-
ing efficiency η01, and we again plot log10(η01 − η02) against
log10(|κ|Ts) in Fig. 5(b). Again, we confirm from Fig. 5(b)
that the relation between these logarithms is approximately
linear for all considered values of γ0Ts. Moreover, the relation
between (η01 − η02) and |κ|Ts appears approximately equal
for all values of γ0Ts. Thus, the most notable effect of γ0Ts on
η02 is to change η01, i.e., its limit for infinite |κ|Ts.

Next, we leverage the apparent power law from Fig. 5(b)
between (η01 − η02) and |κ|Ts to quantitatively characterize
the rate of convergence of η02 with respect to |κ|Ts. Thus, we
model the dependence of η02 on |κ|Ts as

η02 ≈ η01 − k2(|κ|Ts)−α2 , for |κ| � T −1
s , (29)

for some convergence coefficient k2, and a convergence expo-
nent α2. Because η02 is a function of |κ|Ts and γ0Ts, k2 and α2

are functions of γ0Ts. As for k1 and α1 in Eq. (28), we estimate
k2 and α2 through linear regression of log10(η01 − η02) as
a function of log10(|κ|Ts) for different values of γ0Ts. The
resulting estimates for k2 and α2 are shown in Fig. 5(c). We
confirm that both k2 and α2 exhibit small relative change for
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FIG. 5. Numerical analysis of the rate of convergence of the
partial CAFC efficiency η02 with respect to the normalized interring
coupling |κ|Ts to the partial efficiency η01: (a) η02 as a function of
log10(|κ|Ts ) and its limit η01 for different γ0Ts; (b) log10(η01 − η02)
as a function of log10(|κ|Ts ) for different γ0Ts; (c) estimates of the
convergence coefficient k2 and of the convergence exponent α2 as
functions of γ0Ts.

FIG. 6. Numerical analysis of the rate of convergence of the
partial CAFC efficiency η01 with respect to the normalized intrinsic
loss γ0Ts to its maximum η

(0)
01 . Depicted are η01 (solid blue line), η

(0)
01

(dashed blue lined), and log10(η(0)
01 − η01) (dotted orange line).

the considered values of γ0Ts, as expected from our discussion
of Fig. 5(b). The convergence coefficient k2 goes from 4.95
at γ0Ts = 0 to 4.40 for γ0Ts. Conversely, the convergence
exponent α2 decreases from 0.946 at γ0Ts = 0 to 0.938 at
γ0Ts = 0.6. Both parameters change approximately linearly
with γ0Ts.

To complete our convergence analysis, we next examine
how the partial efficiency η01 converges to its maximum as
γ0Ts tends to zero. As mentioned in this section, and as follows
from Eq. (25) in Sec. IV A, η01 is the efficiency with which the
input pulse sin(t ) in the input bus is loaded into Ring 1, iso-
lated from Ring 2 due to the large interring detuning. We recall
that, for each value of γ0Ts, the input coupling γ1e and the
modulation time t1 are chosen to maximize η01. For γ0 = 0,
we have γ1e = γ1, and then η01 from Eq. (25) reduces to the
squared modulus of the projection of sin(t ) onto nin (the time-
reversed impulse response of Ring 1), normalized to the input
energy 〈sin(t )|sin(t )〉. For γ0 = 0, the loading efficiency η01

is then identical to the efficiency of single-ring AFC at time
t = t1 (also with vanishing intrinsic loss) [28]. In Ref. [28]
we found that single-ring AFC efficiency for a raised-cosine
input has a maximum of 0.7951 when the input-ring coupling
γe equals 2.3780T −1

s , and modulation is induced at a time
0.2194Ts after the input’s maximum. Hence, η01 has this same
maximum of η

(0)
01 = 0.7951 under the equivalent conditions

γ1eTs = 2.3780 and t1 = 0.2194Ts.
In Fig. 6 we analyze numerically the convergence of the

partial efficiency η01 to its maximum with respect to γ0Ts. In
this plot, we show η01 as a function of log10(γ0Ts), along with
its upper limit of η

(0)
01 = 0.7951. We verify that η01 converges

monotonically to η
(0)
01 as γ0Ts decreases for log10(γ0Ts) � −1

(γ0Ts � 0.1). To characterize the rate of convergence, we also
plot in Fig. 6 log10(η(0)

01 − η01) as a function of log10(γ0Ts).
Again, we find that the relation between these logarithms is
approximately linear. Hence, the convergence of η01 to η

(0)
01

is well described by a power law for sufficiently small γ0Ts.
Then, in analogy to Eqs. (28) and (29), we approximate the
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dependence of η01 on γ0Ts as

η01 ≈ η
(0)
01 − k3(γ0Ts)α3 , for γ0 	 T −1

s , (30)

for some convergence coefficient k3 and convergence expo-
nent α3. Because η01 depends only on γ0Ts, k3 and α3 are
constant dimensionless parameters. Applying linear regres-
sion to the numerical values in Fig. 6, we estimate k3 =
0.3259 and α3 = 0.9965.

Throughout our numerical analysis of the rate of con-
vergence of η with respect to the dimensionless smallness
parameters |κ/�0|, (|κ|Ts)−1, and γ0Ts, we identify four recur-
ring features for sufficiently small values of these parameters.
These are the following: convergence is always monotonically
increasing; convergence is always well described by a power
law; the convergence coefficient k j ( j = 1, 2, 3) may exhibit
significant relative change with the remaining free TCMT
parameters, but the convergence exponents α j do not; and
the convergence exponents α j always take on values slightly
smaller than specific integers (either 1 or 2). The fact that η

or the corresponding partial efficiency converges monotoni-
cally for sufficiently small parameter values agrees with the
discussion of Sec. V. There we provided intuitive, physical
arguments explaining that we expect η to increase with in-
creasing |�0/κ|, increasing |κ|Ts, and decreasing γ0Ts.

However, the other three observations are new results
that cannot be predicted from our previous discussion of
the CAFC efficiency η. We interpret these observations as
indications that η for our scheme is a smooth function of
the three smallness parameters: |κ/�0|, (|κ|Ts)−1, and γ0Ts.
Thus, for sufficiently small values of these parameters, η

can be accurately approximated through a Taylor polyno-
mial in the smallness paramaters, and then this polynomial
dependence dominates the variation of η. In this case, for
a given smallness parameter, the corresponding convergence
coefficient k j approximates the coefficient of the Taylor
polynomial’s lowest-order nonvanishing term and the corre-
sponding convergence exponent α j , the order of this term. In
the Supplemental Material [39], we provide a mathematical
argument explaining that the CAFC efficiency of our scheme
always is a real analytic (and hence smooth) function of the
three smallness parameters, if the input sin(t ) is a complex
analytic function of the TCMT parameters.

Given this interpretation of the convergence exponents α j

( j = 1, 2, 3) as polynomial-term orders, it is interesting to
compare them to each other. From Figs. 4(f) and 5(c), and
the value of α3 = 0.9965, the closest integer to α1 is 2, but the
closest integer to α2 and α3 is 1. This implies the lowest-order
term in the Taylor expansion of η with respect to (|κ|Ts)−1

and γ0Ts is of first order, but that with respect to |κ/�0| is of
second order. Hence, the implication is that the dependence of
η on |κ/�0| vanishes to first order. This result is not obvious
from our analysis in the prior sections. But it is consistent with
the fact that, for sufficiently large |�0|, �0 varies quadratically
with |κ|, as discussed in the Supplemental Material [39]. In
Sec. VII we note that this second-order dependence of η on
|κ/�0| modifies the scaling of both the maximum CAFC effi-
ciency η and the conditions required to attain this maximum.

To close this section, we make a key observation from
our convergence analysis. This is that the CAFC efficiency η

and that of single-ring AFC share the same fundamental tight

upper limit, η
(0)
01 of Eq. (30). In other words, the efficiencies

of CAFC and single-ring AFC converge towards the same
value as they become progressively ideal. This result follows
because, in the limit of infinite interring detuning |�0|, η

converges to η0, as implied by Eq. (28). Then, in the limit of
infinite normalized interring coupling |κ|Ts, η0 converges to
η01η23, as implied by Eq. (29). Finally, in the limit of vanish-
ing normalized intrinsic loss, η01 converges to η

(0)
01 , as implied

by Eq. (30), and η23 converges to unity (see the Supplemental
Material [39]), so η01η23 converges to η

(0)
01 . In summary,

lim
|�0/κ|→∞
|κ|Ts→∞
γ0Ts→0

η = η
(0)
01 . (31)

As stated in the discussion of Fig. 6, η
(0)
01 is also the value

of single-ring AFC in the limit of zero intrinsic loss, i.e., its
fundamental tight upper bound.

Equation (31) is a key result of this paper. It implies
that, for sufficiently small values of the smallness parameters
|κ/�0|, (|κ|Ts)−1, and γ0Ts, the efficiency η of CAFC and
that of single-ring AFC can be made arbitrarily close. In
particular, it implies that CAFC can be made more efficient
than two instances of single-ring AFC in series, which can
also induce the same frequency shift of �0 by modulating
each ring by �0/2, just as CAFC. To prove that CAFC can
become more efficient than serial AFC, we note that in serial
AFC, there exists a fundamental mismatch between the output
of the first single-ring AFC and the ideal input for the second
single-ring AFC. This is because the former is a truncated
decaying exponential, and the latter, a truncated increasing
exponential [28]. Thus, even for an ideal choice of parameters
for the second ring, the second instance of single-ring AFC
attains only an energy efficiency of 4e−2 ≈ 0.5413 (see the
Supplemental Material [39]). Then, so long as the CAFC
efficiency is smaller than single-ring AFC efficiency by no
more than this factor of 4e−2, CAFC is more efficient than
two instances of single-ring AFC in series.

Though we do not prove it numerically, this result also
applies for N-ring CAFC with N > 2. In this case, η must
still converge polynomially to η0 of Sec. IV A, as it is still
a real-analytic function of the TCMT parameters. Then the
N-ring η0 converges to η

(0)
01 , as in Eq. (31). This is because the

values of η0 for two-ring CAFC and N-ring CAFC differ only
via the partial efficiencies η j, j+1 [for j = 1, . . . , (N − 1)] of
the additional stages of interring energy exchange and these
all converge to unity as γ0/|κ| tends to zero (see Sec. V
and the Supplemental Material [39]). Then, the N-ring CAFC
efficiency can become arbitrarily close to to η

(0)
01 , the upper

limit for single-ring AFC. Consequently, N-ring CAFC can be
more efficient than N instances of single-ring AFC in series,
which, at best, have a net efficiency of η

(0)
01 (4e−2)N−1.

VII. MODELING OF THE CAFC EFFICIENCY
AS A POLYNOMIAL FUNCTION

In Sec. VI we analyze how the CAFC efficiency η con-
verges monotonically to a maximum as the three normalized
smallness parameters |κ/�0|, (|κ|Ts)−1, and γ0Ts tend to zero.
There, we show that the convergence with respect to these
parameters is approximately polynomial for sufficiently small
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values of these parameters. Thus, in this section, we leverage
the results of Sec. VI to model the efficiency η of our scheme
as a polynomial function of the smallness parameters. Then
we leverage this polynomial model to estimate optimal values
of the few remaining free TCMT parameters and to predict
scaling laws for these optimal values and for the associated
rate of convergence of η.

In the Supplemental Material [39], we argue that the CAFC
efficiency η is a smooth function of the smallness parame-
ters. Then we utilize the smoothness of η to approximate it
as a Taylor polynomial in these parameters. For simplicity,
we consider for this section a fixed normalized intrinsic loss
γ0Ts, but variable normalized interring detuning |�0/κ| and
normalized interring coupling |κ|Ts. In practice, this occurs in
the case of a fixed intrinsic loss γ0 and pulse duration Ts, but
tunable interring detuning |�0| and interring coupling |κ|.

Hence, to lowest order in each of the variable smallness
parameters, we write

η ≈ η01η23 − c1

∣∣∣∣ κ

�0

∣∣∣∣
2

− c2

|κ|Ts
|�0| � |κ|, |κ|Ts � 1.

(32)
We recall that η in Eq. (32) is the value of the CAFC efficiency
when the constrained TCMT parameters (γ1e, γ2e, t1, and t2)
are chosen according to our scheme of Sec. V. η j, j+1 ( j =
0, 1, 2) are partial CAFC efficiencies in the limit of infinite
|�0|, as described in Sec. IV A. Explicitly, η01 is the partial
efficiency of loading the input sin(t ) into Ring 1, optimized
over γ1e and t1. Conversely, η23 is the partial efficiency of
loading the frequency-shifted output from Ring 2 into the
output bus. For our scheme, η23 is given in Sec. V and in the
Supplemental Material [39]. In Eq. (32), c1 and c2 are positive
constant coefficients of the order of unity. These coefficients
are related, yet not identical, to the convergence coefficients
k1 and k2 of Sec. VI, as we discuss below. Because η depends
on the normalized intrinsic loss γ0Ts, so do the coefficients c1

and c2. In Eq. (32), we take the lowest-order term in |κ/�0|
as quadratic, and the one in (|κ|Ts)−1 as linear. As discussed
in the Supplemental Material [39], this choice is made so that
the polynomial model reproduces the numerical results of the
convergence analysis in Sec. VI, where η converges approxi-
mately quadratically with |κ/�0| and approximately linearly
with (|κ|Ts)−1. According to the discussion in the Supplemen-
tal Material [39], Eq. (32) is accurate only if |�0/κ| � 1, and
|κ|Ts � 1.

Of course, for Eq. (32) to be useful, we need concrete
estimates for the values of η01η23, c1, and c2. As noted above,
η, and thus η01η23, c1, and c2 depend on γ0Ts. So we fix its
value to γ0Ts = 0.1 for the subsequent example and the corre-
sponding calculations. The product η01η23 is readily evaluated
from the formulas in Sec. IV A, yielding η01η23 = 0.7413 for
γ0Ts = 0.1. To estimate c1 and c2, we evaluate Eq. (32) in the
limits of infinite normalized interring detuning |�0/κ| and of
infinite normalized interring coupling |κ|Ts as

lim
|�0/κ|→∞

η ≈ η01η23 − c2

|κ|Ts
,

lim
|κ|Ts→∞

η ≈ η01η23 − c1

∣∣∣∣ κ

�0

∣∣∣∣
2

. (33)

From Eq. (33), c1 (c2) is the coefficient of convergence of
η with respect to |�0/κ| (|κ|Ts) in the limit of infinite |κ|Ts

(|�0/κ|). Then we compare Eq. (33) to Eqs. (28) and (29),
making the approximation α1 = 2 and α2 = 1. This is justified
based on the closeness of the numerically estimated values of
α1 and α2 to these integers, and on our argument in Sec. VI
that η must be a real-analytic function of the smallness pa-
rameters. In this way, we relate c1 and c2 of Eq. (32) to k1 and
k2 of Eqs. (28) and (29) in Sec. VI as

c1(γ0Ts) = lim
|κ|Ts→∞

k1(|κ|Ts, γ0Ts),

c2(γ0Ts) =η23(γ0Ts)k2(γ0Ts). (34)

For clarity, in Eq. (34), we explicitly indicate that k1 of Sec. VI
depends on both |κ|Ts and γ0Ts, but the remaining quantities
(including k2) depend only on γ0Ts. Following Eq. (34), we
immediately estimate c2 from k2 at γ0Ts = 0.1 of Sec. VI
as c2 = 4.7094. In contrast, we lack an analytical formula
to evaluate η in the limit of infinite |κ|Ts, but finite |�0/κ|.
Thus, we estimate c1 as the convergence coefficient k1 for
γ0Ts = 0.1, and the large, but finite, value of |κ|Ts = 50. In
this way, we obtain c1 = 3.0050.

Equation (32) is useful due to its simple and explicit de-
pendence on the smallness parameters |κ/�0| and (|κ|Ts)−1.
This simplicity allows us to estimate optimal values of the
remaining free TCMT parameters (|κ| in this case of fixed
γ0Ts), and predict scaling laws for these optimal values and
their associated CAFC efficiency η. The objective of the re-
mainder of this section is to showcase this utility.

First, we leverage Eq. (32) to estimate the optimal interring
coupling |κ| which maximizes the CAFC efficiency η of our
scheme and the corresponding maximum value. To do so,
we need only extremize analytically the right-hand side of
Eq. (32) with respect to |κ|, which is straightforward due to
its simple polynomial dependence. In this way, we find that η

is maximized with respect to |κ| when

|κ| = κ∗ ≈
(

c2

2c1

)1/3 |�0|2/3

T 1/3
s

. (35)

In Eq. (35) we introduce the critical interring coupling κ∗.
When Eq. (35) is satisfied, then Eq. (32) predicts that η ap-
proximately equals

η ≈ η01η23

[
1 −

(
�T

|�0|
)2/3

]
. (36)

In Eq. (36), �0T is a threshold detuning, given by

�T = 3
√

3

2

T −1
s c1/2

1 c2

(η01η23)3/2
. (37)

Of course, Eq. (36) is accurate only if |�0| � �T . Eqs. (36)
and (37) predict that, as the product |�0|Ts increases, then η

(maximized with respect to |κ|) converges to its upper limit
η01η23. This is because, as |�0|Ts increases, the negative terms
in Eq. (32) decrease after maximization with respect to |κ|.

Next, we validate the accuracy of the analytical estimates
of Eqs. (35) and (36) by comparing them with numerical
results in Fig. 7. In Fig. 7(a) we show a contour plot of η

as a function of |�0|Ts and |κ|Ts. In this contour plot, we also
plot the analytical estimate for the optimal value κ∗T of |κ|Ts
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(a)

(b)

FIG. 7. Comparison of the CAFC efficiency η for γ0Ts = 0.1 as
estimated from the polynomial model of Eq. (32) and as obtained via
numerical evaluation. (a) Contour plot of η as a function of |�0|Ts

and |κ|Ts. Also shown are estimates for the optimal value of |κ|,
κ∗, obtained from Eq. (35) and from direct numerical optimization.
(b) Plot of the maximized CAFC efficiency η as a function of |�0|Ts,
as estimated via the analytical model of Eq. (36) (solid blue line) and
via numerical optimization (dashed orange line). Also depicted is the
limit η01η23 of η for infinite |�0|Ts.

predicted by Eq. (35), and we compare it with the exact value
of κ∗Ts, obtained via numerical optimization of η with respect
to |κ|Ts. We verify that the analytical and numerical estimates
for κ∗ remain relatively close for all considered values of
|�0|Ts. Furthermore, both the analytical and the numerical
estimates for κ∗Ts increase similarly with |�0|Ts, proportional
to (|�0|T s)2/3, in agreement with Eq. (35).

In Fig. 7(b) we plot as a function of |�0|Ts both the an-
alytical estimate from Eq. (36) and the numerical value for
the maximum η after it is maximized with respect to |κ|. For
comparison, we also show the value of η in the limit of infinite
|�0|Ts, i.e., η01η23. Similarly to the behavior of κ∗ in Fig. 7(a),
the analytical estimate for the maximized η accurately pre-
dicts the numerically exact value and its dependence on |�0|Ts

for all the considered values of |�0|Ts. Hence, we verify that

the maximized η for a given value of |�0|Ts converges to
η01η23 approximately according to (|�0|Ts)−2/3, as implied by
Eqs. (36) and. (37).

Having verified the accuracy of Eqs. (35) and (36), we
next examine their predictions for the scaling of the optimal
coupling ratio κ∗ and the convergence rate of the optimized
η, respectively. Equation (35) predicts the optimal interring
coupling κ∗ scales as |�0|2/3/T 1/3

s ; and Eq. (36) predicts
the maximized efficiency η converges to η01η23 at a rate
proportional to (|�0|T )2/3. These scaling behaviors are a di-
rect consequence of Eq. (32), in particular, of the exponents
therein for the smallness parameters |κ/�0| and (|κ|Ts)−1. Let
us compare this to the hypothetical case where the term in
Eq. (32) proportional to |κ/�0|2 was instead directly propor-
tional to |κ/�0|, i.e., to its first power, rather than the second.
In this hypothetical case, it is straightforward to verify that
κ∗ would scale as (|�0|Ts)1/2, and the maximized η would
converge to η01η23 as (|�0|Ts)−1/2. Then the fact that η de-
pends on |κ/�0| only to second order in Eq. (32) qualitatively
changes Eqs. (35) and (36). First, it causes the optimal κ∗ to
increase more rapidly with |�0| and more slowly with T −1

s .
Second, and more importantly, it causes the maximized η to
converge to η01η23 more quickly with |�0|Ts.

To highlight the significance of the scaling behavior of the
maximized η with |�0|Ts, we provide a sample calculation.
In Fig. 7(b) we find that both the analytical and numerical
estimates for the maximum η as a function of |�0|Ts reach a
value of approximately 0.6 for |�0|Ts = 500. We assume that
the maximized η for fixed |�0|Ts continues to converge to its
maximum η01η23 = 0.7413 for γ0Ts = 0.1 at a rate propor-
tional to (|�0|Ts)−2/3, as identified in the previous paragraph.
Then, for instance, we immediately deduce from the scaling
behavior that a product |�0|Ts of the order of 3000 is required
for η to reach a value of 0.70. Naturally, this assumption on
convergence rate is expected to hold. This is because as |�0|Ts

increases, the concomitant optimal values of the smallness
parameters |κ/�0| and (|κ|Ts)−1 decreases, and the polyno-
mial model of Eq. (32) becomes more accurate, as indicated
therein and following the discussion of the Supplemental
Material [39].

VIII. CONCLUSION

In this paper we proposed and analyzed the energy
efficiency of a new photonic circuit and the correpond-
ing modulation scheme for adiabatic frequency conversion
(AFC). The circuit consists of a chain of coupled, yet initially
detuned ring resonators, coupled at each of its ends to a bus
waveguide. The scheme consists of injecting an optical pulse
from a bus waveguide into the first ring of the chain, modu-
lating the first pair of rings so they reach resonance and their
energies undergo Rabi oscillation, and stopping ring modu-
lation after the energy in the first ring is deposited into the
second ring. Then the process is repeated between the second
and third ring, and so on. This scheme then realizes cascaded
AFC (CAFC), where the output pulse has a frequency shift of
N times that applied to the resonance frequency of each ring,
where N is the total number of rings in the chain. This CAFC
scheme offers the advantage of inducing AFC multiple times
in succession without the need to unload the optical pulse into
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a bus waveguide between modulations. For concreteness, we
examined thoroughly the simplest nontrivial case of a chain of
two rings, and briefly discuss the generalization to a chain of
arbitrary number of rings.

In the paper we modeled the temporal dynamics of CAFC
using temporal coupled mode theory (TCMT), and we pro-
posed a scheme to optimize CAFC practically with respect
to the process’s timescales. To do so, we first presented the
TCMT equations for CAFC and obtained their analytical
solution for strong and fast temporal modulation. Then we
illustrated the CAFC scheme by discussing in detail a sam-
ple CAFC process of a symmetric, single-lobe optical pulse.
We analyzed the transformation of the input pulse into the
frequency-shifted output as a rank-one linear operator in the
vector space of finite-energy pulses. In this way we identified
that the CAFC efficiency depends on the input pulse shape
through a Schwarz inequality, just as in single-ring AFC. Then
we explained the numerical scheme we utilize to practically
optimize CAFC process over its multiple timescales. We iden-
tified a tight upper bound for the CAFC efficiency under our
scheme. We found that this upper bound is identical to that
of single-ring AFC, specifically of 0.7951 for a symmetric,

single-lobe input pulse. Consequently, we showed CAFC
can become more energy efficient than multiple instances
of single-ring AFC in series. We examined how the CAFC
efficiency for our scheme converges to its theoretical upper
bound as it becomes progressively idealized, as measured by
three distinct timescale ratios. We showed that this conver-
gence is polynomial and explained this behavior based on
the real analyticity of the CAFC efficiency as a function of
its timescales. We leveraged this polynomial convergence to
model the CAFC efficiency of our scheme as a polynomial
function of the remaining free TCMT parameters. We utilized
this polynomial model to optimize our CAFC scheme with
respect to the remaining free parameters and to predict its
scaling with respect to interring detuning postoptimization.

The CAFC scheme of this work represents then an energy-
efficient strategy to extend the frequency shift induced by
AFC beyond the limit imposed by the material platform.
This broadens the utility of integrated AFC as an alternative
for practical frequency shifting of optical signals. This is
of technological interest as AFC promises a route towards
fully integrated, tunable frequency conversion in the optical
regime.
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