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Theory of high-efficiency adiabatic frequency conversion in coupled microrings
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Adiabatic frequency conversion (AFC) in microring resonators is a promising alternative for integrated,
tunable frequency shifting of optical signals. However, the efficiency of AFC in a single-ring resonator is limited
to below 80% for symmetric input pulses with a single peak. This is the consequence of a poor match between
the pulse shape and the ring’s impulse response. To overcome this limitation, we propose inducing AFC over
two coupled rings rather than a single ring. We analyze the process’s efficiency using temporal coupled mode
theory (TCMT). We show that two-ring AFC can attain an efficiency of 97% in the limit of negligible intrinsic
ring loss. To explain this higher AFC efficiency, we analyze two-ring AFC as a linear operator of rank two in the
vector space of finite-energy pulses. We represent the AFC operator as a 2 × 2 matrix and examine its singular
value decomposition. In this way we analyze the dependence of the two-ring AFC efficiency on the input pulse
shape and the TCMT parameters.
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I. INTRODUCTION

In photonics, frequency conversion is usually realized via
nonlinear wave mixing. The advent of integrated photonics in
recent years has enabled broadband wave mixing on a chip
with a compact footprint [1–4]. Despite its successes, nonlin-
ear wave mixing has several inherent limitations [5–7]. First,
it demands a high-power optical pump, which impedes on-
chip integration. Second, nonlinear wave mixing must obey
the conservation of photon energy. Consequently, to tune the
output signal’s frequency, one must change the frequency of
either the input signal or the pump. Third, efficient wave
mixing requires phase matching. This requirement restricts
both the waveguide geometry and the range of possible output
frequencies.

Adiabatic frequency conversion (AFC) is a promising al-
ternative for frequency shifting. AFC is the phenomenon in
which light excites an optical cavity’s mode, the cavity’s re-
fractive index is temporally modulated, and the light follows
the cavity’s instantaneous resonance frequency [8,9]. This
process is called adiabatic because it was shown numerically
[9] that it preserves the adiabatic invariant of a harmonic
oscillator [10,11]. In contrast to nonlinear wave mixing, AFC
does not require optical pumping or phase matching and is
not restricted by photon-energy conservation. Moreover, its
output frequency can be tuned by adjusting the magnitude
of index modulation within the cavity. As a result, AFC can
be used to realize tunable frequency conversion in a photonic
chip. AFC has been demonstrated through injection of charge
carriers in silicon cavities [12–16] and in semiconductor-
based metasurfaces [17], through the optical Kerr effect in a
silica toroidal cavity [18], and through the Pockels effect in
bulk [19] and integrated [20] lithium-niobate resonators.

*lcortesh@ur.rochester.edu

So far, most theoretical work on AFC has focused ei-
ther on its modeling and description [8,9,21–23] or on its
proposal for novel applications [8,24–26]. Discussion of the
efficiency of AFC has attracted less attention. It was found in
Ref. [27] that AFC of a Gaussian pulse in an all-pass resonator
(e.g., a microring coupled to a bus waveguide) can yield an
energy efficiency of 74%. In Ref. [28] we investigated the
fundamental limits of AFC efficiency in an all-pass resonator
employing temporal coupled-mode theory (TCMT) [29–33].
There we demonstrated that the process’s efficiency is limited
by a Schwarz inequality. Consequently, near-unity efficiency
can be attained only when two conditions are satisfied. First,
the intrinsic loss of the resonator must be small compared to
the input pulse’s bandwidth and the bus-resonator coupling
rate. Second, in accordance with the matched-filter principle
[34,35], the incident pulse must resemble the ring’s time-
reversed impulse response, in this case, a truncated increasing
exponential. Hence, for a symmetric single-lobe pulse (such
as a Gaussian pulse), the maximum AFC efficiency is lim-
ited to less than 80% [27,28]. It is desirable to increase the
efficiency of AFC for such optical pulses because they are
employed in optical communications [5,36].

In this paper we use TCMT to demonstrate that the AFC
of symmetric single-lobe pulses can achieve a considerably
higher efficiency of 97% when it is induced over two cou-
pled microrings, rather than over a single ring. To explain
the increased efficiency in this coupled-ring system, we ex-
amine AFC as a linear operator of rank two in the Hilbert
space of finite-energy pulses (i.e., square-integrable func-
tions). We show that this operator can be understood as the
composition of two linear maps: the first one representing
the pre-modulation loading of the input into the rings’ modal
amplitudes, and the second one representing their postmodu-
lation unloading into the frequency-shifted output. Then we
project the AFC operator’s image and coimage onto orthonor-
mal bases to represent the loading map, the unloading map,
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FIG. 1. Schematic diagram of the photonic circuit for two-ring
adiabatic frequency conversion.

and the AFC operator as 2 × 2 matrices. We study these
matrices’ singular value decomposition and show how these
decompositions govern the AFC process’s efficiency. We eval-
uate our analytical results numerically in terms of the rings’
TCMT parameters. We note that TCMT has been used to
describe accurately the response of time-varying resonators
[23,24,26]. Thus, its use in this paper is appropriate.

The rest of the paper is organized as follows. In Sec. II we
introduce the two-ring photonic circuit we propose for high-
efficiency AFC, and we describe its operation. We present the
TCMT equations governing it and write their analytical so-
lution in the limit of strong and fast temporal modulations. In
Sec. III we examine the solution of Sec. II as an operator in the
vector space of finite-energy pulses, given by the composition
of the loading and an unloading maps. We characterize the
image and coimage of each of these maps. In Sec. IV we
project the AFC’s linear operator into distinct orthonormal
bases for its image and coimage to obtain a 2 × 2 matrix
representation for it. Then we propose a singular value de-
composition (SVD) of this matrix representation and discuss
its use to examine the AFC efficiency. In Sec. V we study
the dependence of the rings’ impulse response on the device
parameters. This study aids the interpretation of the numeri-
cal results in subsequent sections. In Sec. VI we investigate
numerically the SVD of the ring loading and ring unloading
maps, which combine to form the complete two-ring AFC
process. In Sec. VII we analyze the SVD of the full AFC
process using the results of the prior sections. In Sec. VIII
we examine the AFC of a symmetric, single-lobe pulse in our
proposed two-ring network and compare our results with AFC
in a single-ring resonator. We interpret our results based on the
SVD analysis of the preceding sections. In Sec. IX we review
the paper’s conclusions.

II. DESCRIPTION OF THE PHOTONIC CIRCUIT
AND THE AFC LINEAR OPERATOR

Figure 1 shows the proposed photonic circuit for high-
efficiency AFC. It consists of two identical evanescently
coupled ring resonators (Ring 1 and Ring 2), one of them
(Ring 1) coupled to a bus waveguide. An optical pulse with
carrier frequency equal to the rings’ original resonance fre-
quency ω0 is injected through the bus. Afterwards the rings’
resonance frequency is modulated to induce AFC on the
stored light. The frequency-shifted output exits through the

bus waveguide. We note that the circuit in Fig. 1 is identical
to one proposed in Ref. [37]. However, the ring modulation in
Ref. [37] is sinusoidal, and the one in this work is monotonic.
Hence, the mechanisms for frequency conversion are funda-
mentally different [9], and so is their corresponding analysis
and optimization.

Let a j (t ) ( j = 1, 2) denote the amplitude of the field in the
ring resonators at time t . As conventional in TCMT [29–33],
these are normalized so that |aj (t )|2 equals the energy in
Ring j at time t . Similarly, let sin(t ) and sout (t ) denote the
amplitude of the pulse coming into and out of Ring 1. These
are normalized so that |sin(t )|2 is the instantaneous incoming
power at time t , and |sout (t )|2, the instantaneous outgoing
power at time t . Of course, as pointed out in Ref. [32], this
normalization of sin(t ) and sout (t ) is accurate only when sin(t )
and sout (t ) are sufficiently narrowband for the variation of the
waveguide’s modal profile to be negligible.

Employing TCMT [29–33], we find that the temporal evo-
lution of the column vector a(t ) = (a1(t ), a2(t ))T is governed
by the ordinary differential equation

da

dt
= H (t )a(t ) + ksin(t ). (1)

Here k a constant column vector, and H (t ) a time-dependent
square matrix, both given by

k = (
√

2γe, 0)T , (2)

H (t ) =
(−iω(t ) − γ1 iκ

iκ∗ −iω(t ) − γ2

)
. (3)

In Eq. (2), γe is the coupling rate between Ring 1 and the
bus waveguide. In Eq. (3), ω(t ) is the rings’ instantaneous
frequency; κ , the complex-valued coupling rate from Ring 2
to Ring 1; γ1, the decay rate of Ring 1; and γ2, the decay rate
of Ring 2.

In accordance to Fig. 1, we assume that only Ring 1 is
coupled to the bus. Hence, we write the decay rates γ1 and
γ2 as

γ1 = γe + γ0, γ2 = γ0. (4)

where γ0 is the intrinsic decay rate of each ring, assumed to
be the same for the two identical rings.

From TCMT, we also obtain an expression for the output
sout (t ) in terms of the input sin(t ) and the rings’ amplitude
a(t ). This is given by

sout (t ) = exp(iφ)[sin(t ) − k†a(t )], (5)

where φ is a constant phase that depends on the locations
where sin(t ) and sout (t ) are defined [31]. The negative sign
before k†a(t ) is necessary to ensure the output energy equals
the input energy when the ring frequencies are constant and
there is zero intrinsic ring loss (i.e., when γ0 = 0). This can
be verified by writing the TCMT equations in the frequency
domain and invoking Parseval’s theorem. This negative sign
is also consistent with perturbative treatment of TCMT in
Ref. [31]. We take exp(iφ) = −1 for convenience and without
loss of generality.

To examine AFC, we consider the case in which ω(t )
changes monotonically. For simplicity, and in the interest
of studying fast, efficient AFC, we assume the modulation
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of ω(t ) takes place rapidly compared to any other relevant
timescale except the carrier optical frequency. Thus, as in
Ref. [28], we write ω(t ) as

ω(t ) = ω0 + ��(t − tm). (6)

Here ω0 is the value of ω(t ) premodulation; (ω0 + �), its
value postmodulation; tm, the time at which modulation is ap-
plied; and �(t ), the Heaviside unit-step function. Substituting
Eq. (6) into Eq. (3), the coefficient matrix H (t ) may then be
written in the analogous form

H (t ) = H0 + (Hm − H0)�(t − tm). (7)

Naturally, H0 is the value of H (t ) before modulation, with
ω(t ) in Eq. (3) replaced by ω0, and Hm, the value of H (t ) after
modulation, with ω(t ) replaced by (ω0 + �).

Using Eq. (7) for H (t ), it is straightforward to integrate
Eq. (1). For investigating the AFC efficiency, we need only
consider a(t ) for t � tm. For t < tm, a(t ) oscillates at the
original frequency ω0, which we assume is filtered out after
AFC. The solution of Eq. (1) for t � tm is given by

a(t ) = exp [Hm(t − tm)]a(tm)

+
∫ t

tm

dt ′ exp[Hm(t − t ′)]ksin(t ′), for t � tm, (8)

where a(tm), the rings’ amplitude at the time of modulation tm,
is given by

a(tm) =
∫ tm

−∞
dt exp [H0(tm − t )]ksin(t ). (9)

Henceforth, we assume that the ring modulation is such
that the frequency-shift magnitude |�| is large compared to
the bandwidth of the input sin(t ). In this case we may accu-
rately neglect the second term in the right-hand side of Eq. (8),
as in Ref. [28]. This neglect is akin to the rotating-wave
approximation in the theory of optical resonance in two-level
atoms [38].

Because of this assumed large modulation, we may also
neglect the first term in Eq. (5), by supposing that any out-
put sout (t ) oscillating at the original frequency is filtered
out. Therefore, under this approximation, we may substitute
Eq. (8) into Eq. (5) to obtain

sout (t ) = k†�(t − tm) exp [Hm(t − tm)]a(tm). (10)

Together, Eqs. (9) and (10) provide a linear operator trans-
forming the input sin(t ) into the frequency-shifted output
sout (t ). Equation (9) describes the loading of sin(t ) into the
ring amplitude a(tm) at time tm, and Eq. (10) describes the
unloading of the ring amplitudes a(tm) into the output pulse
sout (t ) in the bus waveguide.

To close this section, we discuss sufficient conditions on
the refractive-index modulation for coupled-ring AFC to be
accurately described by Eqs. (1) and (6) and thus achieve
high net efficiency. These conditions are for modulation to
be both homogeneous in space (over the coupled rings) and
fast in time (compared to the other TCMT timescales). If
the modulation is spatially inhomogeneous and occurs with
a speed comparable to or faster than the rings’ free spectral
range, it may induce energy leakage into the rings’ neigh-
boring longitudinal modes [9,23,39]. Usually, only the output

spectrum within a free spectral range is useful, so the spectral
broadening due to the excitation of a ring’s other longitudinal
modes results in a reduction of the AFC efficiency. However,
if the modulation is either spatially homogeneous or slow
compared to the rings’ free spectral range, dynamic mode cou-
pling is inhibited [9,23,39], and we need only consider a single
mode per ring (and per polarization) in Eq. (1). Nonetheless,
for efficient AFC, index modulation must be fast compared to
the other TCMT timescales, so long as the ring modulation
is spatially homogeneous enough to avoid dynamical mode
coupling. This is because, as modulation is induced, the rings’
energy continuously decays in time due to coupling to the
bus waveguide and due to intrinsic loss. Thus, a slower index
modulation results in a decrease in AFC efficiency, and we
may restrict attention to the fast ring modulation described
in Eq. (6).

III. INNER-PRODUCT ANALYSIS OF THE AFC LINEAR
OPERATOR AND ITS EFFICIENCIES

For the following analysis, we identify the input and out-
put pulses, sin(t ) and sout (t ), as vectors in the vector space
of finite-energy pulses, or mathematically, the Hilbert space
of square-integrable functions of time, L2. Thus, we employ
Dirac notation and identify them with the kets |sin(t )〉 and
|sout (t )〉, respectively. This vector space has a natural inner
product, 〈 f (t )|g(t )〉, defined as

〈 f (t )|g(t )〉 ≡
∫ ∞

−∞
dt f ∗(t )g(t ). (11)

In this notation, the energy Ein of the input pulse and the
energy Eout of the output pulse are given by

Ein = 〈sin(t )|sin(t )〉, (12)

Eout = 〈sout (t )|sout (t )〉. (13)

Of course, Eout depends on the energy Er of the rings at the
time of modulation tm. Correspondingly, Er given by

Er = a†(tm)a(tm). (14)

In this Dirac notation, we may rewrite Eqs. (9) and (10),
which govern AFC. These become the abstract equations

a(tm) = T̂in|sin(t )〉, (15)

|sout (t )〉 = T̂outa(tm). (16)

Here T̂in and T̂out are linear maps. Specifically, T̂in is a lin-
ear map from L2 to the vector space of two-dimensional,
complex-valued vectors, C2; and T̂out is a linear map from C2

to L2.
For subsequent analysis, we wish to write explicit expres-

sions for T̂in and T̂out in this Dirac notation. To do so, it is
convenient to introduce some auxiliary functions. Let [A]mn be
the m, n element of the matrix A. Then we define the functions
unm(t, 0) and unm(t,�) as

unm(t, 0) = [exp(H0t )]nm,

unm(t,�) = [exp(Hmt )]nm. (17)
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Here � stands for the postmodulation frequency shift, as
in Eq. (6). Physically, unm(t, 0) and unm(t,�) represent the
impulse-response functions of the two rings before and after
the index modulation. In Appendix A we provide explicit
expressions for them and examine their properties that are
relevant to our study. In terms of these impulse response
functions, we can write T̂in and T̂out as

T̂in =
√

2γe

(〈u∗
11(tm − t, 0)|

〈u∗
21(tm − t, 0)|

)
, (18)

T̂out =
√

2γe(|u11(t − tm,�)〉, |u12(t − tm,�)〉), (19)

where the conjugation of the bra vectors results from the
definition of the inner product in Eq. (11).

An immediate collorary of Eqs. (15) and (16) is that they
constitute a linear map of |sin(t )〉 to |sout (t )〉 through their
composition. Let us denote this map by T̂ . Then we have

|sout (t )〉 = T̂ |sin(t )〉. (20)

It follows that T̂ is a linear map from L2 to L2, i.e., a linear
operator in L2. Comparing Eq. (20) to Eqs. (15) and (16), we
find that

T̂ = T̂outT̂in. (21)

Substituting Eq. (18) for T̂in and Eq. (19) for T̂out into (21), we
get the explicit expression for T̂ ,

T̂ = 2γe

2∑
j=1

|u1 j (t − tm,�)〉〈u∗
j1(tm − t, 0)|. (22)

The preceding reformulation of AFC in Dirac notation
allows us to write succinct expressions for the AFC pro-
cess’s efficiencies. In turn, we show below that these succinct
expressions lend themselves to further analysis. We define
the AFC’s efficiency η as the ratio of the energy Eout in
the frequency-shifted output to the energy of the input Ein.
Substituting Eqs. (12) and (13), it follows that η is given by

η = 〈sout (t )|sout (t )〉
〈sin(t )|sin(t )〉 ,

= 〈sin(t )|T̂ †T̂ |sin(t )〉
〈sin(t )|sin(t )〉 , (23)

where we used Eq. (20) for |sout (t )〉.
As discussed above, the AFC process can be understood as

a succession of two constituent processes: the loading T̂in of
the input pulse until the modulation time tm and the unload-
ing T̂out of the output pulse after tm. Hence, it is useful and
physically significant to define efficiencies for each of these
processes. Let ηin be the efficiency of the loading process, with
map T̂in; and ηout, the efficiency of the unloading process, with
map T̂out. From Eqs. (12), (14), and (18), it follows that

ηin = a†(tm)a(tm)

〈sin(t )|sin(t )〉 ,

= 〈sin(t )|T̂ †
in T̂in|sin(t )〉

〈sin(t )|sin(t )〉 ; (24)

and from Eqs. (13), (14), and (19), it follows that

ηout = 〈sout (t )|sout (t )〉
a†(tm)a(tm)

,

= a†(tm)T̂ †
outT̂outa(tm)

a†(tm)a(tm)
. (25)

Intuitively, the efficiency of the complete AFC process is
the product of the efficiency of each process. Thus, provided
Er > 0, we have

η = ηinηout. (26)

As a consequence of its expression in Eq. (18), T̂in is
nonzero over vector components in the subspace of L2

spanned by |u∗
11(tm − t, 0)〉 and |u∗

21(tm − t, 0)〉. Let us denote
this subspace as Vin, and let P̂in be the projection operator into
Vin. Because T̂in is nonzero only Vin, we may write

T̂in = T̂inP̂in. (27)

Then, substituting Eq. (27) into Eq. (24), and supposing that
P̂|sin(t )〉 �= 0, we may factor the loading efficiency ηin as

ηin = η
(p)
in ηp. (28)

In Eq. (28), ηp is the projection efficiency, defined as the ratio

ηp = 〈sin(t )|P̂†
inP̂in|sin(t )〉

〈sin(t )|sin(t )〉 ,

=
〈
s(p)

in (t )
∣∣s(p)

in (t )
〉

〈
s(p)

in (t )
∣∣s(p)

in (t )
〉 + 〈

s(o)
in (t )

∣∣s(o)
in (t )

〉 . (29)

Here |s(p)
in (t )〉 and |s(o)

in (t )〉 are the components of |sin(t )〉 par-
allel and orthogonal to Vin. In terms of the projector P̂in, these
can be expressed as∣∣s(p)

in (t )
〉 = P̂in|sin(t )〉,∣∣s(o)

in (t )
〉 = (1 − P̂in )|sin(t )〉. (30)

In Eq. (28), η
(p)
in is the projected loading efficiency, defined as

the ratio

η
(p)
in =

〈
s(p)

in (t )
∣∣T̂ †

in T̂in

∣∣s(p)
in (t )

〉
〈
s(p)

in (t )
∣∣s(p)

in (t )
〉 . (31)

Given Eqs. (27) and (28), it is useful to interpret the loading
T̂in as a composition of two other maps. From Eq. (27), the
fist map is the projection P̂in of the input |sin(t )〉 into the
two-dimensional vector space Vin ∈ L2. From Eq. (29), the
energy lost in this process is that in the component |s(o)

in (t )〉,
orthogonal to Vin. The second map is the action of T̂in on the
projected input |s(p)

in (t )〉 ∈ Vin. The efficiency of this process
is η

(p)
in , given by Eq. (31).
Given the second line in Eq. (29), the projection effi-

ciency ηp can be interpreted as a function of the ratio of
〈s(o)

in (t )|s(o)
in (t )〉 to 〈s(p)

in (t )|s(p)
in (t )〉. The quantity 〈s(o)

in (t )|s(o)
in (t )〉

is non-negative, so ηp is maximized with respect to it when
〈s(o)

in (t )|s(o)
in (t )〉 vanishes, and ηp equals unity.
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Furthermore, ηin depends on 〈s(o)
in (t )|s(o)

in (t )〉 only through
the factor of ηp in Eq. (28). This has two consequences on the
maximization of ηin. First, ηin is also maximized with respect
to 〈s(o)

in (t )|s(o)
in (t )〉 when it equals zero. Second, the maxi-

mum loading efficiency ηin over any input nonzero |sin(t )〉 ∈
L2 equals the maximum of the projected loading efficiency
η

(p)
in over any nonzero projected input |s(p)

in (t )〉 ∈ Vin. Written
mathematically,

max
|sin (t )〉�=0

ηin = max
|s(p)

in (t )〉�=0
η

(p)
in . (32)

This result is significant because the right-hand side of
Eq. (32) can be maximized via techniques of finite-
dimensional linear algebra, as we discuss below in Sec. IV.

Having analyzed the implications of Eq. (27) in the proper-
ties of the loading efficiency ηin, we next do the same for the
overall AFC efficiency η. Substituting Eq. (27) into Eq. (21),
it follows directly that

T̂ = T̂ P̂in. (33)

Then, just as for ηin in Eq. (28) and again assuming |s(p)
in (t )〉 �=

0, the overall efficiency η can be factored as

η = η(p)ηp, (34)

where η(p) is the projected AFC efficiency and is given by the
ratio

η(p) =
〈
s(p)

in (t )
∣∣T̂ †T̂

∣∣s(p)
in (t )

〉
〈
s(p)

in (t )
∣∣s(p)

in (t )
〉 , (35)

and ηp is again the projection efficiency in Eq. (29).
Naturally, substituting Eq. (28) into Eq. (26) and compar-

ing with Eq. (34) yields

η(p) = η
(p)
in ηout, (36)

which has the intuitive meaning that the overall projected
efficiency η(p) is that of the projected loading followed by ring
unloading.

Again, we note that the net efficiency η depends on the en-
ergy 〈s(o)

in (t )|s(o)
in (t )〉 only through ηp, as indicated in Eq. (34).

Thus, just as ηin, η is maximized with respect to the non-
negative 〈s(o)

in (t )|s(o)
in (t )〉 when the latter vanishes. In addition,

we have

max
|sin (t )〉�=0

η = max
|s(p)

in (t )〉�=0
η(p), (37)

just as ηin in Eq. (32). Once more, Eq. (37) is signifi-
cant because the maximization of its right-hand side can be
performed via methods of finite-dimensional linear algebra,
which we do in Sec. IV.

We conclude this section with a few remarks on the
interpretation of the AFC efficiency η. Within the phenomeno-
logical framework of TCMT, we defined η in Eq. (23) as the
ratio of the output energy at the target output frequency, to

the input energy. It follows from Eq. (23) that η is indepen-
dent of the frequency shift �, so long as it is sufficiently
large compared to the other TCMT time rates that filtering
of the output results in negligible loss. Moreover, we show
in Sec. VII that η has a tight upper bound of unity. These
properties of the AFC energy efficiency η seemingly contra-
dict the intuition that the input light consists of a stream of
photons, with energy proportional to their frequency; so the
output AFC energy should depend on the frequency shift and
have no upper limit, at least in the limit of negligible intrinsic
ring loss.

Nonetheless, this photon-stream intuition is indeed com-
patible with our analysis’s results because TCMT is known
to be accurate only for narrowband optical excitations [32].
Thus, if the induced frequency shift is small compared to
the input pulse’s carrier frequency, TCMT is accurate, and
one may safely neglect the change in the photon energy due
to the frequency shift. This is usually the case in AFC of
telecom and optical signals, where the ratio of the frequency
shift to the carrier frequency is on the order of 10−5 to 10−3

[12,18–20].
Furthermore, we show in the Supplemental Material [40],

via a quantum-optical analysis of the AFC process, that the
photon-stream intuition is correct: in the absence of intrinsic
loss, AFC in a set of coupled resonators preserves the sys-
tem’s photon-number statistics but not its energy statistics.
Additionally, we show that, to the accuracy of the input-output
formalism, popular in quantum optics [41–44], the energy effi-
ciency η of Eq. (23), obtained via TCMT, can be interpreted as
a mean photon-number efficiency when the rings-waveguide
system is initially in a coherent waveguide state. With this in-
terpretation, the fact that η is independent of the the frequency
shift and bounded by unity is intuitive. Additionally, with this
interpretation as a photon-number efficiency, Eq. (23) for η

can be extended beyond the accuracy of TCMT. Nonetheless,
the input-output formalism itself is still applicable only to
optical excitations with a bandwith smaller than that of the
ring-waveguide coupling, as explained in the Supplemental
Material [40].

IV. AFC MATRIX REPRESENTATION AND SINGULAR
VALUE DECOMPOSITION

We aim to fully dissect the AFC efficiency η, determine
its upper bounds and examine its dependence on the rings’
TCMT parameter and the input pulse shape. To do so, we next
introduce orthonormal bases for the image and coimage of the
AFC operator T̂ . In this way we can represent and analyze it
as a matrix.

The coimage of T̂ is the orthogonal complement to
its nullspace. Hence, it is the subspace of L2 spanned by
{|u∗

11(tm − t, 0)〉, |u∗
21(tm − t, 0)〉}, denoted by Vin in Sec. III.

From Eq. (22), the image of T̂ is the subspace of L2 spanned
by {|u11(t − tm,�)〉, |u12(t − tm,�)〉}. We denote this sub-
space by Vout.

As shown in Appendix A, |u∗
11(tm − t, 0)〉 and

|u∗
21(tm − t, 0)〉 are not mutually orthogonal unless γ0 = 0.

Therefore, in general they do not form an orthonormal
basis of Vin. Nonetheless, we generate an orthonormal
basis {|n(in)

1 〉, |n(in)
2 〉} from them through Gram-Schmidt
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orthonormalization [45,46]. We define these unit vectors of
Vin so they satisfy 〈

n(in)
l

∣∣n(in)
m

〉 = δlm,∣∣n(in)
2

〉 ∝ |u∗
21(tm − t, 0)〉,∣∣n(in)

1

〉 ∈ Vin,〈
n(in)

1

∣∣u∗
11(tm − t, 0)

〉
> 0,〈

n(in)
2

∣∣u∗
21(tm − t, 0)

〉
> 0. (38)

Here δlm is the Kronecker delta. Explicit expressions for
|n(in)

1 〉 and |n(in)
2 〉 which satisfy Eq. (38) are given in

Appendix B. In Eq. (38) we choose |n(in)
2 〉 to be proportional

to |u∗
21(tm − t, 0)〉, rather than have |n(in)

1 〉 proportional to
|u∗

11(tm − t, 0)〉. We find that this choice in Eq. (38) simplifies
the interpretation of the results in Sec. VIII.

Analogously, we apply Gram-Schmidt orthonormalization
to |u11(t − tm,�)〉 and |u12(t − tm,�)〉 to obtain an orthonor-
mal basis {|n(out)

1 〉, |n(out)
2 〉} for the image Vout. This output

basis satisfies relations analogous to those in Eq. (38), with
|u∗

11(tm − t, 0)〉 replaced by |u11(t − tm,�)〉, |u∗
21(tm − t, 0)〉

by |u12(t − tm,�)〉, and Vin by Vout. This is shown in
Appendix B, where explicit expressions for |n(out)

1 〉 and |n(out)
2 〉

are provided as well.

With these orthornomal bases for Vin and Vout, we next
follow orthonormal representation theory [45] (popular in
quantum mechanics [47,48]) to represent the projected input
vector |s(p)

in (t )〉, and the output vector |sout (t )〉 with column
vectors, xin and xout; and the linear maps T̂in, T̂out, and T̂ , with
square matrices Min, Mout, and M, respectively. In this way,
we obtain∣∣s(p)

in (t )
〉 = (∣∣n(in)

1

〉
,

∣∣n(in)
2

〉)
xin,∣∣sout (t )

〉 = (∣∣n(out)
1

〉
,

∣∣n(out)
2

〉)
xout,

T̂in = Min

(〈
n(in)

1

∣∣
〈n(in)

2 |

)
,

T̂out = (∣∣n(out)
1

〉
,

∣∣n(out)
2

〉)
Mout,

T̂ = (∣∣n(out)
1

〉
,

∣∣n(out)
2

〉)
M

(〈
n(in)

1

∣∣〈
n(in)

2

∣∣
)

. (39)

Here xin, xout ∈ C2, and Min, Mout, M ∈ C2×2, i.e., they are
complex-valued two-dimensional vectors and 2 × 2 matrices,
respectively. Again, matrix multiplication in Eq. (39) is im-
plied. Expressions for the matrices Min, Mout, and M are given
by

Min =
√

2γe

(〈
u∗

11(tm − t, 0)
∣∣n(in)

1

〉 〈
u∗

11(tm − t, 0)
∣∣n(in)

2

〉
〈
u∗

21(tm − t, 0)
∣∣n(in)

1

〉 〈
u∗

21(tm − t, 0)
∣∣n(in)

2

〉
)

,

Mout =
√

2γe

(〈
n(out)

1

∣∣u11(t − tm,�)
〉 〈

n(out)
1

∣∣u12(t − tm,�)
〉

〈
n(out)

2

∣∣u11(t − tm,�)
〉 〈

n(out)
2

∣∣u12(t − tm,�)
〉
)

,

M = MoutMin. (40)

More explicit expressions for Min and Mout, amenable for
numerical evaluation, are presented in Appendix B.

Next, we express the efficiencies η
(p)
in , ηout, and η(p) in the

representation of Eq. (39). To do so, we substitute Eq. (39)
into their corresponding expressions [Eqs. (31), (25), and (35),
respectively] and leverage the orthonormality of the input and
output bases. In this way, we write

η
(p)
in = x†

inM†
inMinxin

x†
inxin

,

ηout = a†(tm)M†
outMouta(tm)

a†(tm)a(tm)
,

η(p) = x†
inM†Mxin

x†
inxin

. (41)

The expression (x†Ax)/(x†x) for a square matrix A and a
column vector x is called their Rayleigh quotient in the context
of linear algebra [49].

The advantage of introducing the representation
Eq. (39) and writing the efficiencies η

(p)
in , ηout, and η(p)

as Rayleigh quotients is that these are well understood in
finite-dimensional linear algebra [49,50]. Thus, we can

investigate them with the robust analytical and numerical
techniques of this area. In particular, to study Eq. (41) we
find it useful to introduce the singular value decomposition
(SVD) of the matrices Min, Mout, and M. Let A ∈ Cn×n.
Then the SVD of A is a matrix decomposition of the
form [50,51]

A =
n∑

j=1

σ jw jv
†
j . (42)

Here σ j � 0 are called the singular values of A; w j and v j

are two orthonormal sets of vectors, called the left singular
vectors and right singular vectors of A. Every matrix A, even
nonsquare ones, has a SVD. Moreover, the singular values σ j

are uniquely determined, and for square A, the vectors w j and
v j are uniquely determined up to arbitrary phase factors, so
long as the σ j are distinct [51]. Also, a matrix’s SVD is a
step in many algorithms in numerical linear algebra, so its
computation is a well-studied problem.

Substituting the SVD of the matrices Min, Mout, and M
into Eq. (41), we may write the efficiencies η

(p)
in , ηout, and
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η(p) as

η
(p)
in =

2∑
j=1

p j (Min, xin )σ 2
j (Min ),

ηout =
2∑

j=1

p j (Mout, a(tm))σ 2
j (Mout ),

η(p) =
2∑

j=1

p j (M, xin )σ 2
j (M ). (43)

As the notation suggests, σ j (A) is the jth singular value of the
matrix A. The factors p j (A, x) are relative weights satisfying
p j (A, x) � 0 and

∑2
j=1 p j (A, x) = 1 and are given by

p j (A, x) = x†v j (A)v†
j (A)x

x†x
. (44)

In accordance to Eq. (42), v j (A) is the jth right singular vector
of A.

Equation (43) is one of the main results of this paper. It im-
plies that the efficiencies η

(p)
in , ηout, and η(p) are weighted sums

of the square of the singular values of their corresponding
matrix. Moreover, according to Eq. (44), the weight for each
σ 2

j is given by the normalized squared projection of the input
column vector [either xin or a(tm)] into the jth right singular
vector, v j .

A corollary of Eq. (43) is that the extrema for the effi-
ciencies η

(p)
in , ηout, and η(p) over their corresponding input are

given by

max
|s(p)

in (t )〉�=0
η

(p)
in = σ 2

max(Min ),

max
a(tm )�=0

ηout = σ 2
max(Mout ),

max
|s(p)

in (t )〉�=0
η(p) = σ 2

max(M ) (45)

and

min
|s(p)

in (t )〉�=0
η

(p)
in = σ 2

min(Min ),

min
a(tm )�=0

ηout = σ 2
min(Mout ),

min
|s(p)

in (t )〉�=0
η(p) = σ 2

min(M ). (46)

Here σmax(A) (σmin(A)) is the maximum (minimum) singular
value of A.

Moreover, Eqs. (43) and (44) provide prescriptions for how
to attain the extrema in Eqs. (45) and (46). The maxima (min-
ima) for η

(p)
in and η(p) occur when |s(p)

in (t )〉 has components
in the input basis {|n(in)

1 〉, |n(in)
2 〉} proportional to the right

singular vector v j corresponding to σmax(Min ) and σmax(M )
[σmin(Min ) and σmin(M )], respectively. Similarly, the maxi-
mum (minimum) of ηout occurs when the amplitude vector
a(tm) is proportional to the right singular vector v j corre-
sponding to σmax(Mout ) [σmin(Mout )].

Lastly, the SVD of Min, Mout, and M also prescribes how
the energy in the extrema of Eqs. (45) and (46) is distributed
over the images of T̂in, T̂out, and T̂ , respectively. When the

maximum (minimum) of η
(p)
in occurs, the amplitude vector

a(tm) at the time of modulation is proportional to the left
singular vector w j corresponding to σmax(Min ) (σmin(Min )).
Similarly, when the maxima (minima) of ηout and η(p) oc-
cur, the frequency-shifted output |sout (t )〉 has components
in the output basis {|n(out)

1 〉, |n(out)
2 〉} proportional to the left

singular vector w j corresponding to σmax(Mout ) and σmax(M )
[σmin(Mout ) and σmin(M )], respectively.

It is important to note that Eq. (45) gives us not only the
maxima for the projected efficiencies η

(p)
in and η(p), but also

the maxima for the overall efficiencies ηin and η. Substituting
Eq. (45) into Eqs. (32) and (37), we obtain

max
|sin (t )〉�=0

ηin = σ 2
max(Min ),

max
|sin (t )〉�=0

η = σ 2
max(M ). (47)

Just as discussed after Eq. (45), the maxima in Eq. (47) are
attained when |sin(t )〉 = |s(p)

in (t )〉 and |s(p)
in (t )〉 has components

xin [as in Eq. (39)] proportional to the right singular vector
v j corresponding to σmax(Min ) or σmax(M ). Again, then the
output is proportional to the corresponding left singular vector
w j . Unlike η

(p)
in and η(p), however, the minima of ηin and η

are zero and not the minimum singular values in Eq. (46).
These vanishing efficiencies appear when |s(p)

in (t )〉 = 0, i.e.,
when |sin(t )〉 = |s(o)

in (t )〉. This is a consequence of Eqs. (27)
and (33).

V. NUMERICAL ANALYSIS OF THE TWO-RING
IMPULSE-RESPONSE FUNCTIONS

In the following sections, we evaluate numerically the an-
alytical results of Secs. III to IV to quantitatively characterize
two-ring AFC and its efficiency. In this section we start by
examining the impulse-response functions unm(t,�), which
govern the AFC process as discussed in Sec. III.

Let ūnm(t ) = unm(t,�) exp[i(ω0 + �)t] be the envelopes
of the impulse response functions unm(t,�). We plot the en-
velope functions ū11(t ) and ū21(t ) in Fig. 2 for γ0 = 0 and
for different values of |κ|/γe. Increasing values of γ0 merely
cause the envelopes ūnm(t ) to decay more rapidly with t . As
seen in Appendix A, ū12(t ) = ū21(t )(κ/κ∗), so plotting ū12(t )
in addition to ū21(t ) is redundant.

It is important to observe the general shape of the envelopes
ūnm(t ). This is for two reasons. First, as discussed in Sec. III,
u∗

11(tm − t, 0) and u∗
21(tm − t, 0) span the vector space Vin ∈

L2 over which the input efficiency ηin and the overall AFC
efficiency η are nonzero. Second, as discussed in Secs. III and
IV, u11(t − tm,�) and u12(t − tm,�) span the image Vout ∈
L2 of T̂out (and hence T̂ ).

We first note the behavior of ū11(t ) and ū21(t ) at t =
0. In Fig. 2 we observe that we always have ū11(0) = 1
and ū21(0) = 0. Consequently, at t = 0, ū11(t ) is discontin-
uous from the left, but ū21(t ) is continuous. Furthermore, we
show in Appendix A that we always have du11(0)

dt = −γ1 and
du21(0)

dt = iκ∗.
In contrast, the qualitative behavior of ū11(t ) and ū21(t )

for t > 0 depends on the ratio between the interring
coupling and the waveguide-ring coupling, i.e., |κ|/γe. We
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FIG. 2. Plots of the envelopes ūnm(t ) of the impulse-response
functions unm(t,�) for γ0 = 0 and for different values of |γ |/γe. For
ease of visualization, we take Re{κ} = 0 and Im{κ} � 0.

show in Appendix A that, depending on the value of this ratio,
interring coupling can be underdamped, critically damped,
or overdamped, just as the motion of a damped harmonic
oscillator [52,53].

If |κ|/γe > 1/2, then interring coupling is underdamped.
In this case ū11(t ) and ū21(t ) oscillate around zero with a
frequency of

√
|κ|2 − (γe/2)2, but their oscillation amplitude

decays exponentially at the ring-averaged decay rate of γ̄ =
(γ1 + γ2)/2.

If |κ|/γe = 1/2, then interring coupling is critically
damped. In this case, ū11(t ) and ū21(t ) become the products of
two factors. The first factor is still an exponentially decreasing
envelope, decaying with the rate γ̄ . The second factor is an
affine function of time. Hence, ū11(t ) and ū21(t ) still decay
with the rate γ̄ for t � γ −1

e .
If |κ|/γe < 1/2, then interring coupling is overdamped.

In this case ū11(t ) and ū21(t ) become the sum of two ex-
ponentially decaying terms: one decaying with a rate of
γ̄ +

√
(γe/2)2 − |κ|2, and the other with a rate of γ̄ −√

(γe/2)2 − |κ|2. Naturally, the latter term dominates for large
t because it decays more slowly. In Appendix A we show that,
for overdamped interring coupling, both envelopes ū11(t ) and
ū21(t ) attain exactly one extremum. Moreover, ū11(t ) always
becomes negative for sufficiently large t , but ū21(t ) has the
same phase for any t .

Next, we examine the inner products of the impulse-
response functions unm(t,�) with each other and with
themselves, i.e., their squared norms. These quantities are
relevant to our analysis of AFC because they determine
the matrices Min and Mout (as seen in Sec. IV and
Appendix B) and thus govern the projected efficiencies η

(p)
in ,

ηout, and η(p) through Eq. (43). Specifically, we analyze three
dimensionless quantities. Two of these are the normalized
squared norms 2γe〈u11|u11〉 = 2γe〈u11(t,�)|u11(t,�)〉 and
2γe〈u21|u21〉 = 2γe〈u21(t,�)|u21(t,�)〉. The third of these
is the effective cosine cos θ12 between |u11〉 and |u21〉,

FIG. 3. Contour plots of the normalized squared norms
2γe〈u11|u11〉 and 2γe〈u21|u21〉, and of the effective cosine cos θ12

as functions of the normalized coupling magnitude |κ|/γe and the
normalized intrinsic loss γ0/γe.

defined as

cos θ12 ≡ |〈u11|u21〉|√〈u11|u11〉〈u21|u21〉
. (48)

Clearly cos θ12 � 0, and cos θ12 = 0 if and only if |u11〉 and
|u21〉 are orthogonal. Furthermore, as a consequence of the
Schwarz inequality, cos θ12 � 1 and cos θ12 = 1 if and only
if |u11〉 ∝ |u21〉. Therefore, cos θ12 can be interpreted as a
measure of the collinearity of |u11〉 and |u21〉. Below we show
that these three quantities govern the SVD of Min and Mout.

To study the quantities 2γe〈u11|u11〉, 2γe〈u21|u21〉, and
cos θ12, we note that they depend only on the rings’ TCMT
parameters: the waveguide-ring coupling γe, the intrinsic de-
cay rate γ0, and the interring coupling κ . Additionally, we find
in Appendix A that they depend only on the magnitude of κ ,
rather than on both its magnitude and phase. So we need only
investigate 2γe〈u11|u11〉, 2γe〈u21|u21〉, and cos θ12 as functions
of the two dimensionless ratios |κ|/γe and γ0/γe to understand
their general behavior for nonzero γe.

Figure 3 shows contour plots of 2γe〈u11|u11〉, 2γe〈u21|u21〉,
and cos θ12 as functions of |κ|/γe and γ0/γe. We examine
first their values for the ideal case of γ0 = 0. As seen read-
ily in Fig. 3 and shown analytically in Appendix A, for
γ0 = 0, 2γe〈u11|u11〉 = 2γe〈u11|u11〉 = 1, and cos θ12 = 0, in-
dependently of the value of |κ|/γe. Then, as γ0/γe increases
from zero, both 2γe〈u11|u11〉 and 2γe〈u21|u21〉 decrease mono-
tonically, while cos θ12 increases monotonically. From the
formulas for 〈u11|u11〉, 〈u21|u21〉, and 〈u11|u21〉 in Appendix A,
it follows that 〈u11|u11〉 and 〈u21|u21〉 converge to 0, and that
cos θ12 converges to 1/

√
2 in such a way that

cos θ12 < 1/
√

2, (49)

for nonzero γe and |κ|. In other words, cos θ12 converges to
1/

√
2 from below as γ0/γe tends to infinity and |κ|/γe remains

finite.
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Although both 2γe〈u11|u11〉 and 2γe〈u21|u21〉 decrease with
increasing γ0/γe, we always have

〈u11|u11〉 � 〈u21|u21〉, (50)

and equality is achieved if and only if γ0 = 0, as shown in
Appendix A, though their difference decreases with increas-
ing |κ|.

Additionally, the rates at which the squared norms de-
crease and the effective cosine increases with γ0/γe evidently
depends on |κ|/γe. Increasing |κ|/γe causes 2γe〈u11|u11〉 to
decrease more rapidly with γ0/γe, but it causes 2γe〈u21|u21〉 to
decrease more slowly with γ0/γe. On the other hand, cos θ12

increases with γ0/γe more rapidly with smaller |κ|/γe.
The dependence of the squared norms on |κ|/γe makes

intuitive sense. This is because, as depicted in Fig. 1, Ring
1 is directly coupled to the bus waveguide, but Ring 2 is not.
Therefore, if |κ|  γ0, energy coupled from Ring 1 into Ring
2 is quickly dissipated, causing 2γe〈u21|u21〉 to be small. But if
|κ| increases beyond γ0, energy can accumulate in u21(t,�),
and energy in u11(t,�) leaks into Ring 2. This also explains
why we always have 〈u11|u11〉 � 〈u21|u21〉 for γ0 > 0, and
why their difference decreases with |κ|.

To understand the increase of cos θ12 with γ0/γe, we note
that increasing γ0 enhances damping in the impulse responses
u11(t,�) and u21(t,�) common to both rings. This pushes
the behavior of both impulse-response functions towards ex-
ponential decay, thus increasing their collinearity, as measured
by cos θ12. However, this increase in their rate of exponential
decay cannot make u11(t,�) and u21(t,�) fully collinear
(i.e., linearly dependent), due to their difference in initial
conditions, as pointed out in the discussion of Fig. 2. As
a result, cos θ12 converges to 1/

√
2 for large γ0 rather than

unity. As seen in Fig. 3, the increase in collinearity between
u11(t,�) and u21(t,�) is inhibited by an increase in |κ| as
well. This is because larger |κ| either inhibits exponential
decay (if interring coupling is overdamped) or keeps the am-
plitude oscillations of u11(t,�) and u21(t,�) out of phase (if
interring coupling is underdamped).

To conclude this section, we add a remark on the criti-
cal damping condition, |κ| = γe/2. It is that this condition
corresponds to a so-called exceptional point of the rings’
parameter space [54,55], where the matrix H (t ) of Eq. (1)
becomes nondiagonalizable. At this exceptional point, the
eigenvalues of H (t ) are no longer holomorphic functions of
the TCMT parameters and acquire a branch-cut topology
[54,55]. This singular behavior has recently been leveraged to
design novel high-sensitivity photonic densors and adiabatic
mode converters, among other devices [55–57]. Nonetheless,
at the exceptional point |κ| = γe/2, the exponential matrices
exp(H0t ) and exp(Hmt ) in Eq. (17) remain well defined and
continuous [58] with respect to the TCMT parameters. Fur-
thermore, these matrices are expressible as Neumann series
[46] in terms of perturbations to the TCMT parameters, as
in quantum-mechanical time-dependent perturbation theory
[47]. Thus, these matrices are holomorphic in the TCMT
parameters, and so are their elements, the impulse responses
unm(t, 0) and unm(t,�). Hence, the AFC dynamics and ef-
ficiency exhibit no extraordinary behavior at the exceptional
point |κ| = γe/2.

VI. NUMERICAL SVD OF THE LOADING
AND UNLOADING MAPS

With the results of the previous section, we now study
numerically the SVD of AFC in the two-ring system of Fig. 1.
First, for this section we study the SVD of the individual
loading and unloading matrices, Min and Mout. We then use
these results to investigate the SVD of the full AFC process,
with matrix representation M = MoutMin in Sec. VII.

In Appendix C we perform a partial analytical SVD of both
Min and Mout. There we obtain the left singular vectors of
Min, the right singular vectors of Mout, and the singular values
of both matrices. First, we examine the singular values, but
we also examine the singular vectors later in this section. As
we demonstrate in Appendix C, Min and Mout have identical
singular values, i.e., we have

σ j (Min ) = σ j (Mout ), (51)

assuming these are ordered either in ascending or descending
order. Thus we need only consider those of Min, σ j (Min ). In
Appendix C we show that these may be written in terms of the
inner products of the impulse-response functions unm(t,�) as

σ 2
max(Min )

2γe
= 〈u11|u11〉 + 〈u21|u21〉

2

+
√( 〈u11|u11〉 − 〈u21|u21〉

2

)2

+ |〈u11|u11〉u21|2,

σ 2
min(Min )

2γe
= 〈u11|u11〉+ 〈u21|u21〉

2

−
√( 〈u11|u11〉 − 〈u21|u21〉

2

)2

+ |〈u11|u11〉u21|2.
(52)

We note how these singular values depend on the inner
product 〈u11|u21〉. If 〈u11|u21〉 = 0, then, as a consequence
of Eq. (50), σmax(Min ) = 2γe〈u11|u11〉, and σmin(Min ) =
2γe〈u21|u21〉. Nonetheless, 〈u11|u21〉 = 0 happens if and only
if γ0 = 0, as seen in Fig. 3. Nonzero 〈u11|u21〉 then increases
σ 2

max(Min ) above 2γe〈u11|u11〉, and decreases σ 2
min(Min ) be-

low 2γe〈u21|u21〉. Therefore, nonorthogonality of u11(t,�)
u21(t,�) further splits the singular values σ j (Min ). In par-
ticular, the splitting of the squares of the singular values is
analogous to the eigenvalue splitting of a quantum-mechanical
two-level system when interaction between its original eigen-
states is introduced. This mathematical similarity arises
because the squared singular values σ 2

j of Min and Mout are the

eigenvalues of the Hermitian matrices M†
inMin and M†

outMout,
as is well known in linear algebra [50,51] and as we leverage
in Appendix C.

Naturally, the Schwarz inequality limits the maximum
singular-value splitting due to nonorthogonality of the im-
pulse responses. Specifically, the Schwarz inequality bounds
|〈u11|u21〉|2 from above by 〈u11|u11〉〈u21|u21〉 when cos θ12 =
1. Not only that, but the effective cosine cos θ12 between the
impulse-response functions is further restricted below 1/

√
2

by Eq. (49). Correspondingly, this imposes an upper bound
on σmax(Min ) and a lower bound on σmin(Min ) for fixed values
of 2γe〈u11|u11〉 and 2γe〈u21|u21〉. Then we conclude that the

063514-9



CORTES-HERRERA, HE, CARDENAS, AND AGRAWAL PHYSICAL REVIEW A 108, 063514 (2023)

FIG. 4. Plots of σ 2
max(Min ) and its bounds (top), and σ 2

min(Min ) and
its bounds (bottom), as functions of γ0/γe and for multiple values of
|κ|/γe. The squared singular values are shown as solid blue lines;
the inner bounds (2γe〈u11|u11〉 and 2γe〈u21|u21〉), as a dashed orange
lines; and the outer bounds (ρ2

− and ρ2
+) as dotted yellow lines.

singular values σ j (Min ) are bounded as

2γe〈u11|u11〉 � σ 2
max(Min ) � ρ2

+,

ρ2
− � σ 2

min(Min ) � 2γe〈u21|u21〉. (53)

Here the outer bounds ρ+ and ρ−, are given by

ρ2
±

γe
= 〈u11|u11〉 + 〈u21|u21〉 ±

√
〈u11|u11〉2 + 〈u21|u21〉2.

(54)

In accordance with the previous argument, these are given by
substituting |〈u11|u21〉|2 = 〈u11|u11〉〈u21|u21〉/2 in the right-
hand side of Eq. (52).

We evaluate the singular values σ j (Min ) of Min and their
bounds from Eq. (53) as a function of the normalized intrinsic
loss γ0/γe and for different values of the normalized coupling
|κ|/γe. Our results are shown in Fig. 4. We plot the square
of the singular values rather than the singular values directly

because, as discussed in Sec. IV, the latter can be interpreted
immediately as the extrema of energy efficiencies.

Several features of Fig. 4 are noteworthy. First, we note that
both singular values are exactly equal to unity when γ0 = 0,
for all values of |κ|/γe. This follows because, when γ0 = 0,
then 2γe〈u11|u11〉 = 2γe〈u21|u21〉 = 1 and 〈u11|u21〉 = 0, as
seen in Fig. 3. Thus, substituting these values into Eq. (52),
we get σmax(Min ) = σmin(Min ) = 1. This observation is signif-
icant because, as shown in Eqs. (45) and (46), σ 2

max(Min ) and
σ 2

min(Min ) are the maximum and minimum of the projected ef-
ficiency η

(p)
in over the projected input |s(p)

in (t )〉. Hence, because
both are equal to unity when γ0 = 0, then η

(p)
in equals unity

too for any |s(p)
in (t )〉. Consequently, the input efficiency ηin =

η
(p)
in ηp equals the projection efficiency ηp. In other words,

when γ0 = 0, energy is only lost in the loading process with
map T̂in through the projection of the input |sin(t )〉 into the
vector space Vin spanned by |u∗

11(tm − t )〉 and |u∗
21(tm − t )〉.

Analogously, because Min and Mout have identical singular
values [as stated in Eq. (51)], it follows too from Eqs. (45)
and (46) that ηout = 1 for γ0 = 0, independently of the ring-
amplitude vector a(tm) at the time of modulation. Therefore,
no energy is lost in the unloading process with map T̂out in this
idealized case.

As γ0/γe increases, both singular values decrease from
unity, for all values of |κ|/γe in Fig. 4. Naturally, this reflects
that, for nonzero γ0, it becomes impossible to couple all the
input energy into the two-ring system, regardless of input
pulse shape. Because of the equality of singular values in
Eq. (51), this means too that extraction of the energy from
the rings into the bus after AFC becomes increasingly lossy,
regardless of the form of a(tm).

In Fig. 4 the squared singular values remain closer to their
inner bounds, 2γe〈u11|u11〉 and 2γe〈u21|u21〉, than to the outer
bounds, ρ2

±. Based on Eq. (52) and this section’s discussion,
this is because the effective cosine cos θ12 between u11(t,�)
and u21(t,�) is small compared to its limit of 1/

√
2 over the

considered values of γ0/γe and |κ|/γe. Note that, according
to Fig. 3, cos θ12 increases faster with γ0/γe for lower |κ|/γe.
Hence, the singular values in Fig. 4 should deviate from their
inner bounds more rapidly with decreasing |κ|/γe. However,
this is hard to appreciate in Fig. 4, because in this case, the
inner and outer bounds grow closer together as well.

Next, we examine the dependence the singular vectors
of Min and Mout on the rings’ TCMT parameters. However,
rather than analyzing the components of the singular vectors
directly, we analyze the components of their associated Bloch
vectors, i.e., their pseudospin vectors [38,59] (or their normal-
ized Stokes parameters, in the context of polarization optics
[60–62]). This Bloch vector representation is valid because,
for our two-ring AFC, right and left singular vectors are
represented by normalized column vectors in C2; a vector
space isomorphic to the state space of a quantum-mechanical
two-level system.

Two general advantages of this representation are that the
Bloch vector components (or Bloch components for short) are
real-valued quantities and that they have an intuitive geomet-
rical interpretation. Additionally, for our particular analysis,
we find below that some Bloch components have simple
dependences on the impulse-response inner products and the
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ring parameters. There is a disadvantage of the representation
of singular vectors through their Bloch components. This is
that the value of the phase between a matrix’s right singu-
lar vector and its corresponding left singular vector is lost
[60,62]. This phase could be measured by interferometry of
the output signal sout (t ), but it does not impact our investiga-
tion of AFC efficiency.

Let S(r)
j (Min ) be the jth ( j = 1, 2, 3) Bloch components of

the right singular vector of Min corresponding to σmax(Min ).
Analogously, S(l )

j (Min ) is the jth Bloch component of the
left singular vector of Mout corresponding to σmax(Min );
S(r)

j (Mout ), that of the right singular vector corresponding to

σmax(Mout ); and S(l )
j (Mout ), that of the left singular vector

corresponding to σmax(Mout ). We need only consider the Bloch
components of the singular vectors corresponding to one sin-
gular value, because the right singular vectors and left singular
vectors are orthogonal sets. Therefore, the Bloch components
of the ignored left or right singular vector are the negative of
the other left or right singular vector.

With these definitions, the Bloch components S(r)
j (Min ) are

given by S(r)
j (Min ) = v

†
k s jvk . Here vk is the right singular

vector of Min associated with σmax(Min ), and s j are the Pauli
matrices

s1 =
(

0 1
1 0

)
, s2 =

(
0 −i
i 0

)
, s3 =

(
1 0
0 −1

)
.

(55)
In Appendix C we show that S(l )

j (Min ) and S(r)
j (Mout ) have par-

ticularly simple expressions in terms of the impulse-response
inner products and of the ring parameters. Specifically, these
are

S(l )
1 (Min ) = FRe{〈u11|u21〉} = Im{κ}/

√
|κ|2 + γ̄ 2,

S(l )
2 (Min ) = F Im{〈u11|u21〉} = Re{κ}/

√
|κ|2 + γ̄ 2,

S(l )
3 (Min ) = F (〈u11|u11〉 − 〈u21|u21〉)/2,

= γ̄ /
√

|κ|2 + γ̄ 2 (56)

and by

S(r)
1 (Mout ) = FRe{〈u12|u11〉} = −Im{κ}/

√
|κ|2 + γ̄ 2,

S(r)
2 (Mout ) = F Im{〈u12|u11〉} = −Re{κ}/

√
|κ|2 + γ̄ 2,

S(r)
3 (Mout ) = F (〈u11|u11〉 − 〈u12|u12〉)/2,

= γ̄ /
√

|κ|2 + γ̄ 2. (57)

In Eqs. (56) and (57), F is a normalization factor that ensures
the magnitude of the Bloch vector is unity. Thus, it defined so
F−2 = (〈u11|u11〉 − 〈u21|u21〉)2/4 + |〈u11|u11〉〈u21|u21〉|2. As
in Appendix A, γ̄ = (γ1 + γ2)/2 is the ring-averaged decay
rate. Equations (56) and (57) hold only if γ0 is nonzero. Other-
wise, 〈u11|u11〉 = 〈u12|u12〉 and 〈u11|u12〉 = 0. So the singular
values are no longer distinct, according to Eq. (52), and the
singular vectors are no longer uniquely defined (up to phase
factors), as discussed in Sec. IV.

From Eqs. (56) and (57), we make some key observations.
For the first of these, we focus on S(l )

j (Min ), but analogous con-

clusions follow for S(r)
j (Mout ). First, S(l )

1 (Min ) and S(l )
2 (Min )

are nonzero only as a consequence of nonorthogonality of

the impulse responses u11(t,�) and u21(t,�). Similarly,
S(l )

3 (Min ) is nonzero due to the disparity between 〈u11|u11〉
and 〈u21|u21〉. Moreover, as a consequence of Eq. (50),
S(l )

3 (Min ) > 0. Thus, the quantity
√

[S(l )
1 (Min )]2 + [S(l )

2 (Min )]2

compared to S(l )
3 (Min ) is a measure of the impulse-response

nonorthogonality relative to the squared-norm difference
(〈u11|u11〉 − 〈u21|u21〉). Although decreasing |κ| for fixed γe

and γ0 increases the nonorthogonality, as measured by cos θ12

in Fig. 3, this also increases the difference (〈u11|u11〉 −
〈u21|u21〉), yielding an overall increase in S(l )

3 (Min ) and a de-
crease in magnitude of S(l )

1 (Min ) and S(l )
2 (Min ), as indicated by

the rightmost side of Eqs. (56) and (57).
The second observation is that, for any set of ring parame-

ters excluding γ0 = 0,

S(l )
1 (Min ) = −S(r)

1 (Mout ),

S(l )
2 (Min ) = −S(r)

2 (Mout ),

S(l )
3 (Min ) = S(r)

3 (Mout ). (58)

Consequently, the left singular vectors of Min approximate
the right singular vectors of Mout if and only if S(l )

1 (Min ) and
S(l )

2 (Min ) are close to zero. From Eqs. (56) and (57), this
occurs if and only if

|κ|  γ̄ . (59)

This observation is significant because the similarity between
the left singular vectors of Min and the right singular vectors
of Mout influences the singular values of their product, M, the
matrix representing the overall AFC process. This is discussed
below in Sec. VII and in Appendix D.

The analogs of Eqs. (56) and (57) for S(r)
j (Min ) and

S(l )
j (Mout ) are generally complicated and yield little insight.

Thus, we omit their general discussion and mostly investigate
S(r)

j (Min ) and S(l )
j (Mout ) numerically. This discrepancy in the

complexity of S(r)
j (Min ) and S(l )

j (Mout ) compared to that of

S(l )
j (Min ) and S(r)

j (Mout ) arises because the components of the
right singular vectors of Min and the left singular vectors Mout

depend on the orthonormal basis chosen for Vin and Vout. In
contrast, the left singular vectors of Min and the right singular
vectors of Mout have a natural basis as column vectors of
energy amplitudes in Ring 1 and Ring 2.

There is one analytical property of the Bloch components
S(r)

j (Min ) and S(l )
j (Mout ) that we derive in Appendix C, and

that is useful to point out. This is that, just as S(l )
j (Min ) and

S(r)
j (Mout ) satisfy Eq. (58), S(r)

j (Min ) and S(l )
j (Mout ) obey the

relation

S(r)
1 (Min ) = −S(l )

1 (Mout ),

S(r)
2 (Min ) = −S(l )

2 (Mout ),

S(r)
3 (Min ) = S(l )

3 (Mout ), (60)

valid for any set of ring parameters, except for γ0 = 0 when
the singular values Min and Mout become degenerate. Un-
like Eq. (58), Eq. (60) holds only for our choice of bases
{|n(in)

1 〉, |n(in)
2 〉} for Vin, and {|n(out)

1 〉, |n(out)
2 〉} for Vout that
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satisfy Eq. (38). If either of these were changed, Eq. (58)
would still hold, but Eq. (60) would not in general.

Next, we study numerically the dependence of the com-
plete SVD, both singular values and singular vectors, of
Min on the ring parameters. As a consequence of Eqs. (51),
(58), and (60), this analysis covers the SVD of Mout as
well. In Fig. 5 we plot as functions of γ0/γe and for var-
ious different |κ|/γe the squared singular values σ 2

max(Min )
and σ 2

min(Min ), along with the Bloch components S(r)
2 (Min ),

S(l )
3 (Min ), S(r)

2 (Min ), and S(l )
3 (Min ). The components S(r)

1 (Min )
and S(l )

1 (Min ) are omitted because they are always zero. This
is a consequence of our choice of taking the interring coupling
coefficient κ to be real and positive.

From Fig. 5, we first examine the behavior of the singular
values σmax(Min ) and σmin(Min ). As seen in Fig. 4, they both
start at unity for γ0 = 0 and then decrease with increasing
γ0/γe for all values of |κ|/γe. In contrast to Fig. 4, in Fig. 5 the
effect on σmax(Min ) and σmin(Min ) of varying |κ|/γe is more
transparent. For fixed γ0/γe, increasing |κ|/γe simultaneously
decreases σmax(Min ) and increases σmin(Min ). Furthermore,
this increment and this decrement are such that, in the limit of
|κ| → ∞ and for fixed γ0/γe, σmax(Min ) and σmin(Min ) con-
verge to a common value. As seen in Fig. 3, increasing |κ|/γe

inhibits impulse-response nonorthogonality, i.e., cos θ12. So
this convergence of σmax(Min ) and σmin(Min ) for increasing
|κ|/γe can be understood as a convergence of 2γe〈u11|u11〉
and 2γe〈u21|u21〉 to a common value. By manipulation of
the formulas in Appendix A for 〈u11|u11〉 and 〈u21|u21〉, it is
straightforward to verify that this common asymptote is given
by

lim
|κ|→∞

σ 2
max(Min ) = lim

|κ|→∞
σ 2

min(Min ) = γe

γ1 + γ2
, (61)

assuming that both γ0 and γe remain finite in this limit. Like-
wise, it is easy to verify that, for vanishing |κ|,

σ 2
max(Min ) = γe/γ1, σ 2

min(Mout ) = 0. (62)

This value of σ 2
max(Min ) for |κ| = 0 then equals the Schwarz

limit for the loading of a single ring resonator [28], as one
might expect. Similarly, it is intuitively clear that for zero
interring coupling, the minimum singular value corresponds
to the efficiency of loading the now-uncoupled Ring 2 and
thus equals zero.

Next, we inspect the plots for the Bloch components
S(l )

2 (Min ) and S(l )
3 (Min ) of the left singular vectors of Min. In

Fig. 5 we see that their behavior is well described by the
expressions in the rightmost side of Eq. (56). S(l )

2 (Min ) in-
creases with |κ|/γe and decreases with γ0/γe; while S(l )

3 (Min )
decreases with |κ|/γe and increases with γ0/γe, ensuring that
the Bloch vector remains normalized.

The behavior of S(r)
2 (Min ) and S(r)

3 (Min ), corresponding to
the right singular vectors of Min, is slightly different. For fixed
γ0/γe and increasing |κ|/γe, S(r)

2 (Min ) increases and S(r)
3 (Min )

decreases, just like S(l )
2 (Min ) and S(l )

3 (Min ), respectively. How-
ever, S2(Min ) increases and S3(Min ) decreases for increasing
γ0/γe and fixed |κ|/γe. In contrast, S(l )

2 (Min ) and S(l )
3 (Min )

exhibit the opposite behavior in this case.

FIG. 5. Singular value decomposition of Min as a function of
γ0/γe and for different values of |κ|/γe.

VII. NUMERICAL SVD OF THE AFC OPERATOR

Having studied in detail the SVD of Min and Mout in
Sec. VI, we now examine the SVD of their product, M, the
matrix representing the full AFC linear operator. Because the
expression for M is given by the product of those for Min

and Mout, it is complicated. Hence, an explicit analytical SVD
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FIG. 6. Squared singular values of M and their bounds as func-
tions of γe/γ0 and for various values of |κ|/γe. σ 2

max(M ) is shown as
a solid blue line; σ 2

min(M ), as a dashed orange line; the upper bound
σ 2

max(Min )σ 2
max(Mout ), as a dotted yellow line; and the lower bound

σ 2
min(Min )σ 2

min(Mout ), as a dashed-dotted purple line.

of M yields unwieldy mathematical expressions and little
physical insight. Thus, we investigate the SVD of M mostly
numerically.

Still, we show in Appendix D that the fact that M equals
the product of Min and Mout allows us to bound its singular
values in terms of those of Min and Mout. Thus, we obtain

σmax(M ) � σmax(Min )σmax(Mout ),

σmin(M ) � σmin(Min )σmin(Mout ). (63)

Because the singular values of Min equal those of Mout, as
established in Appendix C, the terms on the right-hand side
of Eq. (63) can also be written as σ 2

max(Min ) and σ 2
min(Min )

or as σ 2
max(Mout ) and σ 2

min(Mout ). Additionally, we show in
Appendix D that a sufficient condition to achieve equality in
both lines of Eq. (63) is for the left singular vectors of Min

to equal the right singular vectors of Mout. Accordingly, we
expect that differences between these sets of singular vectors
will cause σmax(M ) to decrease below its upper bound of
σmax(Min )σmax(Mout ), and σmin(M ) to increase above its lower
bound of σmin(Min )σ (Mout ).

To verify Eq. (63) and determine its implications, we
compute the squared singular values of Min and plot them
alongside their corresponding bounds for different values
of the ring parameters. The resulting plots are shown in
Fig. 6. Two features of these plots are noteworthy. First,
both σ 2

max(M ) and σ 2
min(M ) indeed lie below the upper

bound σ 2
max(Min )σ 2

max(Mout ) and above the lower bound
σ 2

min(Min )σ 2
min(Mout ) for all considered values of γ0/γe and

|κ|/γe. This confirms the validity of the analytically derived
Eq. (63). Second, as |κ|/γe is increased, the singular values
σmax(M ) and σmin(M ) grow closer to each other, as do their
lower and upper bounds. Of course, in the case of the upper
and lower bounds, this follows from the fact that σmax(Min )
and σmin(Min ) exhibit this same behavior in Fig. 5.

Moreover, we observe that for small |κ|/γe, σmax(M ) and
σmin(M ) lie close to their outer bounds. Then, as |κ|/γe is in-
creased, they grow apart from them. But, then, this separation
is inhibited by the outer bounds growing closer themselves.
As stated above and discussed in Appendix D, the decrease
of σmax(M ) below σmax(Min )σmax(Mout ) [and the increase of
σmin(M ) above σmin(Min )σmin(Mout )] is a consequence of the
mismatch between the left singular vectors of Min and the right
singular vectors of Mout. From Eqs. (56) and (57), we find
that this mismatch increases with |κ|/γe for fixed γ0/γe. This
explains the increasing deviation of the σmax(M ) and σmin(M )
from their bounds, as |κ|/γe increments.

As in Sec. VI, both singular values of M are equal to unity
when γ0 vanishes, regardless of the value of |κ|/γe. This im-
plies that for γ0 = 0 the projected AFC efficiency, η(p), equals
unity for any form of the projected input |s(p)

in (t )〉. In this case
it follows from Eq. (34) that η = ηp. In other words, the AFC
efficiency equals the projection efficiency. Hence, in this ideal
case, energy is only lost in AFC through the projection of
|sin(t )〉 into Vin spanned by |u∗

11(tm − t )〉 and |u∗
21(tm − t )〉. As

γ0 increases from zero, σmax(M ) and σmin(M ) decrease below
unity, so the map from the projected input |s(p)

in (t )〉 to |sout (t )〉
becomes lossy.

Next, we investigate numerically the full SVD of the AFC
matrix M as a function of the ring parameters. Thus, as in
Fig. 5, we plot σ 2

max(M ), σ 2
min(M ), S(r)

2 (M ), S(r)
3 (M ), S(l )

2 (M ),
and S(l )

3 (M ) as functions of γ0/γe and for different values of
|κ|/γe in Fig. 7. As in Fig. 5, we omit the Bloch components
S(r)

1 (M ) and S(l )
1 (M ) because they vanish for all ring parame-

ters as a consequence of setting κ as real valued.
Just like σmax(Min ) and σmin(Min ) in Fig. 5, it is evident

in Fig. 7 that σmax(M ) and σmin(M ) grow closer as |κ|/γe

is increased. This occurs because their outer bounds from
Eq. (63) themselves grow closer, as discussed in Sec. VI, thus
forcing σmax(M ) and σmin(M ) to converge to a common value.
From this argument and from Eq. (61), it follows that the
common asymptote for σ 2

max(M ) and σ 2
min(M ) is given by

lim
|κ|→∞

σ 2
max(M ) = lim

|κ|→∞
σ 2

min(M ) =
(

γe

γ1 + γ2

)2

. (64)

As for Eq. (61), we assume for Eq. (64) that both γe and γ0

remain finite.
From Fig. 7, it is also apparent that σmax(M ) and σmin(M )

each converge to distinct curves as |κ| tends to zero. To de-
termine their values for |κ| = 0, we recall that the inequalities
in Eq. (63) become equalities when the left singular vectors
of Min equal the right singular vectors of Mout. And from
Eqs. (56) and (57), this is the case when |κ| = 0. Then we may
substitute Eq. (62) into Eq. (63), now equalities, to obtain

σ 2
max(M ) = (γe/γ1)2, σ 2

min(M ) = 0, (65)

for |κ| = 0. As in Eq. (62), Eq. (65) has an intuitive interpre-
tation. The first line of Eq. (65) means that for zero interring
coupling, AFC in the two-ring system is just as efficient as
AFC in a single ring (Ring 1) [28]. The second line means
that for zero interring coupling, the efficiency of AFC in Ring
2 equals zero.

Next, we discuss the Bloch components in Fig. 7. Their de-
pendence on the ring parameters is noticeably different from
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FIG. 7. Singular value decomposition of M as a function of γ0/γe

and for different values of |κ|/γe.

those in Fig. 5. For decreasing γ0/γe, S(r)
2 (M ) and S(l )

2 (M )
always converge to zero, and S(r)

3 (M ) and S(l )
3 (M ) always

converge to unity. In contrast, in Fig. 5 they can take any value
between 0 and 1 as γ0/γe converges to zero, depending on the
value of |κ|/γe. Additionally, the rate at which S(r)

3 (M ) and
S(l )

3 (M ) decrease from unity as γ0/γe increases from zero in

Fig. 7 clearly decreases with increasing |κ|/γe. Correspond-
ingly, the rate at which S(r)

2 (M ) and S(l )
2 (M ) grow in magnitude

with increasing γ0/γe decreases with |κ|/γ0 as well. This is re-
quired for the Bloch vectors to remain normalized. Finally, for
the range of ring parameters in Fig. 7, the Bloch components
appear to satisfy

S(r)
2 (M ) = −S(l )

2 (M ), S(r)
3 (M ) = S(l )

3 (M ), (66)

analogous to Eqs. (58) and (60). However, the validity of
Eq. (66) is harder to verify analytically due to the ex-
plicit expression for M being considerably more unwieldy
that of Min.

VIII. EFFICIENCY ANALYSIS OF AFC
OF A SYMMETRIC SINGLE-LOBE PULSE

In this section we examine the AFC of an input pulse of
fixed shape and duration in the two-ring system of Fig. 1.
We investigate and optimize this process’s efficiency with
respect to the rings’ TCMT parameters. We use the formalism
developed in Secs. III to VII to interpret our results.

For the pulse shape of the AFC input sin(t ), we follow
Ref. [28] and consider a raised-cosine pulse, also known as
a Hann function in numerical Fourier analysis [63,64]. Thus,
sin(t ) is given by

sin(t ) =
√

2Ein

3τ
[1 + cos(2πt/τ )]exp(−iω0t )

× [�(t + τ/2) − �(t − τ/2)]. (67)

Here Ein = 〈sin(t )|sin(t )〉 is the input energy, and τ , the input
pulse duration. As in Sec. II, ω0 is the rings’ original bare
resonance frequency, and �(t ), the Heaviside step function.
The total duration τ is related to the pulse’s root mean square
duration τRMS via τRMS ≈ 0.141τ [28]. We choose the raised-
cosine pulse shape because it is a symmetric, single-lobe
shape, which is usually of interest in optical telecommuni-
cations [5,36]. Additionally, this shape has a finite support,
i.e., it is nonzero only over a finite time interval, unlike the
typically analyzed Gaussian envelope. This latter feature sim-
plifies the numerical analysis and optimization of its AFC.
Moreover, as we show later in this section, the AFC efficiency
of this raised-cosine input is mostly determined by the sym-
metry and single-lobe nature of the pulse. Hence, the analysis
for the AFC optimization of a raised-cosine input applies
qualitatively and yields similar results for other symmetric,
single-lobe pulse shapes, e.g., Gaussian, super-Gaussian, and
hyperbolic secant.

We aim to determine the upper limit to the AFC efficiency
of the raised-cosine pulse and to observe how this efficiency
decreases with increasing intrinsic ring loss γ0. To do so,
we first solve numerically the TCMT equations for the ring
amplitudes at the time of modulation a(tm) and compute the
corresponding AFC efficiency for γ0 = 0 and a broad range
of ring parameters and modulation times. Then we compare
the obtained AFC efficiencies to estimate the ring parameters
for global maximum efficiency. Subsequently, we refine this
estimate via numerical local optimization.

In this way we find that the maximum AFC efficiency η of
a raised-cosine pulse for γ0 = 0 is of 0.9683. This maximum
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is achieved when tm = 0.3280τ , γe = 5.5324τ−1, and |κ| =
4.4027τ−1. Qualitatively, then the conditions for optimal AFC
of the raised-cosine pulse are as follows. The intrinsic decay
rate γ0 must be small compared to the extrinsic decay rate γ0,
and the input pulse’s bandwidth ∼τ−1. The external decay rate
γe must be moderately large compared to the input bandwidth
∼τ−1. The interring coupling must be slightly underdamped
by the extrinsic decay. Finally, the ring modulation must
be applied at a time tm slightly after the input’s maximum
relative to the pulse’s root mean square duration. The max-
imum AFC efficiency of 0.9683 in our two-ring system is
appreciably larger than the single-ring maximum AFC effi-
ciency of 0.7951 found in Ref. [28] for the same raised-cosine
envelope.

To explain this difference in efficiencies, we recall from
Sec. VII and Ref. [28], that for γ0 = 0, the overall AFC
efficiency η equals the projection efficiency ηp, for both the
two-ring system and for a single-ring system. From Eq. (29),
we recall that the projection efficiency is simply the ratio
of the energy in the projected input |s(p)

in (t )〉 to that in the
overall input |sin(t )〉. Therefore, a larger AFC efficiency in
the two-ring system than in the single-ring system means that
the sin(t ) in Eq. (67) achieves a larger projection in the input
space Vin of the two-ring system than that of the single-ring
system.

The main reason why the raised-cosine input sin(t )
achieves a greater projection into Vin of the two-ring system
than that of the single-ring system is the shape of the Ring
2′s impulse response envelope, ū21(t ), shown in Fig. 2. As
discussed in Sec. V, ū21(t ) is continuous at t = 0, and, if
γe � |κ|, most of the squared norm 〈ū21(t )|ū21(t )〉 is accumu-
lated under the first peak after t = 0. Thus, the time-reversed
impulse response u∗

21(tm − t, 0) can match closely the raised-
cosine input sin(t ). This contrasts with the single-ring case,
where its impulse response is a discontinuous, truncated, de-
caying exponential. Hence, the maximum overlap between the
raised-cosine sin(t ) and the single-ring time-reversed impulse
response is poor, which limits the AFC efficiency to the afore-
mentioned value of 0.7951.

To illustrate this interpretation, we examine Fig. 8. In it we
display two plots. The first pertains to the optimized single-
ring AFC of the raised-cosine input sin(t ) for γ0 = 0. This
first plot shows the envelopes of: sin(t ), its projection s(p)

in (t )
into the ring’s impulse response for optimal AFC, and the
corresponding AFC output sout (t ). Analogously, the second
plot pertains to the optimized two-ring AFC of the same input
sin(t ). It shows the envelopes of: sin(t ), its projection s(p)

in (t )
into Vin, and the corresponding AFC output sout (t ). By com-
paring these two plots, it is clear that s(p)

in (t ) of the two-ring
system matches more closely sin(t ) than that of the single-ring
system. Consequently, it is expected that the two-ring system
conserves more of the energy of sin(t ) upon projection into
s(p)

in (t ).
For both the single-ring and two-ring system, the envelope

of the output sout (t ) seems proportional to the time-reversed
envelope of s(p)

in (t ) in Fig. 8. For the single-ring system, this
apparent time-reversal is exact for γ0 = 0 and for any form
of sin(t ) and any choice of ring parameters and tm. However,
for the two-ring system, this is only approximately true for

FIG. 8. Envelopes of the raised-cosine input envelope sin (t ), the
associated projected input envelope s(p)

in (t ), and the associated AFC
output envelope sout (t ). The top axis corresponds to single-ring AFC;
the bottom axis corresponds to two-ring AFC. Amplitude units are
arbitrary.

γ0 = 0 if s(p)
in (t ) is mostly proportional to either u∗

11(tm − t, 0)
or u∗

21(tm − t, 0). This is because the envelope’s projection
onto u∗

11(tm − t, 0) is only time-reversed when multiplied by
u11(t − tm,�) at the AFC output; but its projection onto
u∗

21(tm − t, 0) is time-reversed and multiplied by −1 when
multiplied by u12(t − tm,�).

We observe one last feature of Fig. 8. This is that the
frequency-shifted output sout (t ) is noticeably discontinuous at
the modulation time tm in single-ring AFC, but it is seemingly
continuous at tm in two-ring AFC. This occurs because, in
two-ring AFC, most of the energy is stored in Ring 2 at
tm, so this energy is released via u12(t − tm,�), which is
continuous at t = tm, as discussed in Sec. V. Similarly, in
single-ring AFC, the energy in the single ring is released
via the ring’s impulse response. In contrast, however, this
impulse response is a decaying exponential multiplied by a
step function �(t − tm), and is thus discontinuous at t = tm.

This observation on the continuity of sout (t ) is important
because the discontinuities of the AFC’s outputs govern the
asymptotic behavior of the output spectra and, hence, their
robustness to dispersive phenomena (e.g., dispersive propa-
gation and filtering). Let ω be the frequency variable for the
spectrum of sout (t ). According to Riemman’s lemma [35],
the discontinuity of single-ring AFC output sout (t ) at t = tm
implies that its spectrum decays as ω−1 for |ω| → ∞. In
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FIG. 9. Maximum efficiency for a raised-cosine input of single-
ring AFC and two-ring AFC as functions of intrinsic loss γ0 (top).
Modulation time tm and ring parameters, γe and |κ|, for optimal two-
ring AFC of a raised-cosine input as functions of γ0 (bottom).

contrast, for two-ring AFC u12(t,�) is continuous, albeit
with discontinuous derivative at t = tm (see Sec. V). Hence,
from Riemann’s lemma, the spectrum of u12(t,�) decays
as ω−2 for |ω| → ∞. Therefore, the output spectrum of
two-ring AFC decays more rapidly with ω than that of single-
ring AFC, and is consequently more robust to dispersive
effects.

Next, we compare how the maximum AFC efficiencies of
the raised-cosine input in the single-ring and two-ring system
vary as we increase the intrinsic ring loss γ0. To do this, we
use a numerical local optimizer to find how the maximum
AFC efficiency and the ring parameters required to attain
this maximum are changed as γ0 is increased. Naturally, the
main assumption of this method is that increasing γ0 only
slightly perturbs the configuration for globally optimal AFC
for both single-ring and two-ring networks. In Fig. 9 we
present our numerical results on the optimization of AFC of
the raised-cosine input in both the single-ring and two-ring
networks and for increasing γ0. We report the attained AFC
efficiencies in both configurations, along with the required
modulation time tm (referred to the input pulse’s peak) and the
required ring parameters γe and |κ| for the two-ring system.
The ring parameters and modulation time for optimal AFC
in a single-ring system were studied in Ref. [28], so they are
omitted for succinctness.

In Fig. 9 we observe that the maximum AFC efficiency of
the raised-cosine input is larger in the two-ring system than in
the single-ring system for all considered values of γ0. This is a
remarkable result as it implies that the two-ring configuration
generally offers a better choice for AFC of symmetric pulses.
We explain this with two intuitive arguments. First, as we
already noted for γ0 = 0, the raised-cosine input achieves
a larger projection into the input space Vin of the two-ring
system than that of the single-ring system. For γ0 = 0, this im-
mediately translates to a larger AFC efficiency. Accordingly,
for sufficiently small γ0, we expect two-ring AFC to continue
being more efficient than single-ring AFC. Second, if |κ| = 0
in two-ring AFC, it clearly acts as single-ring AFC. Therefore,
two-ring AFC should, at worst, possess the same efficiency as
single-ring AFC, and never lower.

Now, we interpret the variation in Fig. 9 of the modulation
time tm and ring parameters γe and |κ| for optimal two-ring
AFC with increasing γ0. In Fig. 9 we observe that tm decreases
from 0.3280τ at γ0 = 0 to almost 0.15τ at γ0 = 0.7τ−1; γe

increases from 5.5324τ−1 to almost 40τ−1; and |κ| increases
from 4.4027τ−1 to barely above 10τ−1. This variation in the
modulation time and ring parameters with γ0 is similar to that
of the single-ring case [28]. The coupling rate γe increases
to inhibit energy loss to γ0 during the loading and unloading
processes. Meanwhile, tm approaches the pulse peak at t = 0
to avoid energy leakage due to nonzero γ0.

Though both γe and |κ| increase with γ0 in Fig. 9, they
do such that the ratio γe/|κ| increases. This causes inter-
ring coupling to transition from underdamped to overdamped.
This transition removes the amplitude oscillations of ū21(t ),
characteristic of the underdamped regime, and makes ū21(t )
have a common phase for all t > 0. This constant phase helps
optimize the loading T̂in of the input pulse by ensuring the in-
tegrand determining a2(tm) are in-phase for a long integration
time t and thus interfere constructively.

To understand more deeply our results for optimal AFC of
a raised-cosine pulse, we factorize the AFC efficiency η as
the product of the projection efficiency ηp and the projection
efficiency η(p), as in Eq. (34). To do this, we compute ηp from
a(tm) and the ring parameters, as in Appendix B, and then
evaluate η(p) as the quotient η/ηp. The results are shown in
Fig. 10. As argued in the discussion of Fig. 8, when γ0 = 0,
η(p) = 1 for both single-ring and two-ring AFC, so η = ηp.
As γ0 increases from zero, η(p) and ηp decrease for both ring
networks, causing their product, η, to decrease accordingly.
For both cases, the projected efficiency η(p) decrease similarly,
starting at 1 for γ0 = 0, and lying close to 0.7 for γ0 = 0.7τ−1.

The main difference in Fig. 10 between single-ring and
two-ring AFC clearly lies on their values for the projection
efficiency ηp. For single-ring AFC, ηp starts at 0.7951 for
γ0 = 0 and always remains below η(p), even at γ0 = 0.7τ−1.
On the other hand, ηp for two-ring AFC starts at 0.9683 and
becomes larger than η(p) just after γ0 = 0.0286τ−1, where
ηp = η(p) = 0.9676. We note that the projection efficiency ηp

decreases more slowly than the projected efficiency η(p) for
both single-ring and two-ring AFC. But the initially larger
value of 0.9683 for two-ring AFC allows ηp to overcome η(p)

at just γ0 = 0.0286τ−1.
Having computed the projected AFC efficiency η(p), it

is interesting to compare it to its theoretical bounds, the
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FIG. 10. Maximum overall efficiency η, and its corresponding
projection efficiency ηp, and projected efficiency η(p) for single-ring
AFC (top) and two-ring AFC (middle) as functions of γ0. Compar-
ison of the η(p) for a raised-cosine input, σ 2

max(M ), and σ 2
min(M ) as

functions of γ0 (bottom).

squared singular values of M. This is what we do in the
last plot of Fig. 10, where η(p), σ 2

max(M ) and σ 2
min(M ) for

optimal two-ring AFC are plotted as functions of γ0τ in
a common axis. Indeed, we verify that η(p) lies within its
theoretical bounds of σ 2

min(M ) and σ 2
max(M ). Moreover, η(p)

follows closely σ 2
max(M ). From Eq. (43), this implies that

the projected input |s(p)
in (t )〉 closely matches the right sin-

gular vector corresponding to σmin(M ). From Fig. 9, the
rings’ parameters are such that γ0/γe is small compared to
unity. From Fig. 7 we recall that the right singular vector
corresponding to σmin(M ) for small γ0/γe has Bloch com-
ponents −S(r)

1 (M ) ≈ 0, −S(r)
2 (M ) ≈ 0, and −S(r)

3 (M ) ≈ −1.
Recall that S(r)

j (M ) were defined as the Bloch components
of the right singular vector corresponding to σmax(M ), not
σmin(M ). Thus, the right singular vector for σmin(M ) is ap-
proximately proportional to |n(in)

2 〉. Hence, it is approximately
proportional to |u∗

21(tm − t, 0)〉, as follows from our basis def-
inition in Eq. (38). Therefore, the close match between this
right singular vector and |s(p)

in (t )〉 agrees with our previous
discussion of Fig. 8, where we observed that the raised-cosine
input closely matches the time-reversed impulse response
u∗

21(tm − t, 0).
Thus, we find that the AFC efficiency of the raised-cosine

input is mostly determined by its close match to u∗
21(tm − t, 0)

for γe � |κe|, and γe � γ0. This implies that any input pulse
shape that matches closely u∗

21(tm − t, 0) under these condi-
tions also achieves similar optimal AFC efficiencies. From
Fig. 2 we recall that u21(t, 0) for γe � |κe|, and γe � γ0 has
an envelope continuous at t = 0, most of its energy in its first
lobe, and small-amplitude oscillations (if underdamped) at its
tail for γet � 1. Hence, symmetric, single-lobe pulses in gen-
eral (e.g., Gaussian, super-Gaussian, and hyperbolic secant),
rather than just the raised-cosine pulse in particular, closely
match the time-reversed impulse response u∗

21(tm − t, 0) and
therefore may attain similar high AFC efficiencies under anal-
ogous conditions.

IX. CONCLUSION

The efficiency of adiabatic frequency conversion (AFC) for
a single-ring resonator is known to be limited to below 80%
for input pulses with a symmetric single peak. This is a con-
sequence of a relatively poor match between the pulse’s shape
and the ring’s impulse response. To overcome this limitation,
we propose inducing AFC simultaneously over two coupled
rings, rather than a single one.

We analyze the efficiency of AFC in this two-ring system
using temporal coupled mode theory. In this manner we show
that the AFC efficiency for symmetric, single-lobe pulses in
two-ring devices has an upper limit of 97% when intrinsic ring
losses are comparatively small; interring coupling is slightly
underdamped; extrinsic decay is comparable to the input
bandwidth; and ring modulation occurs slightly after the input
pulse’s maximum. To explain this higher AFC efficiency, we
analyze the AFC process as a linear operator in the vector
space of finite-energy pulses. More specifically, we examine
the AFC process as a composition of two linear maps: one
representing loading of the input pulse’s energy into the rings
and another describing unloading of the rings’s energy into
a frequency-shifted output pulse. We use orthonormal repre-
sentation theory to represent these maps as 2 × 2 matrices.
This allows us examine each matrix’s singular value decom-
position, which we demonstrate to govern the AFC process’s
efficiency.

We expect that our results will stimulate experimental
work on our proposed two-ring configuration. Moreover, the
matrix analysis developed in this work can be extended to
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analyze more complicated, multiring networks for tunable fre-
quency conversion with high efficiency on integrated photonic
chips.

APPENDIX A: CHARACTERIZATION OF THE
IMPULSE-RESPONSE FUNCTIONS

In this Appendix we examine analytically the impulse-
response functions unm(t,�), defined by Eq. (17). Our
objective is to describe their properties, which are useful for
our study of AFC. For succinctness, we first factorize these
functions as

unm(t,�) = ũnm(t ) exp [−i(ω0 + �)t − γ̄ t]�(t ). (A1)

Here, as in Eq. (6), ω0 is the rings’ original resonance fre-
quency; �(t ), the Heaviside step function; and γ̄ the average
ring decay rate

γ̄ = (γ1 + γ2)/2. (A2)

The expressions for the factorized functions ūnm(t ) provided
below can be obtained by solving the TCMT equations,
Eq. (1), for constant H (t ) using the Laplace-transform
method.

Similarly to a damped harmonic oscillator [52,53], the
interring coupling (and thus, the impulse-response functions)
can be underdamped, critically damped, or overdamped. In-
terring coupling is underdamped when

|κ| > γe/2. (A3)

In this case the impulse-response functions exhibit oscillatory
behavior and their expressions are given by

ũ11(t ) = cos(�t/2) − (γe/�) sin(�t/2),

ũ12(t ) = (2iκ/�) sin(�t/2),

ũ21(t ) = (2iκ∗/�) sin(�t/2),

ũ22(t ) = cos(�t/2) + (γe/�) sin(�t/2). (A4)

Here � is the frequency of energy exchange, analogous to the
Rabi frequency in a quantum-mechanical two-level system. It
is given by

� =
√

4|κ|2 − γ 2
e . (A5)

Interring coupling is critically damped when

|κ| = γe/2. (A6)

In this case, the factor functions ũnm(t ) in Eq. (A1) become
affine functions of time, specifically

ũ11(t ) = 1 − γet/2,

ũ12(t ) = iκt,

ũ21(t ) = iκ∗t,

ũ22(t ) = 1 + γet/2. (A7)

Interring coupling is overdamped when

|κ| < γe/2. (A8)

In this case the factor functions ũnm(t ) become sums of hyper-
bolic functions of time; explicitly

ũ11(t ) = cosh(ξ t/2) − (γe/ξ ) sinh(ξ t/2),

ũ12(t ) = (2iκ/ξ ) sinh(ξ t/2),

ũ21(t ) = (2iκ∗/ξ ) sinh(ξ t/2),

ũ22(t ) = cosh(ξ t/2) + (γe/ξ ) sinh(ξ t/2). (A9)

Here ξ is the positive rate

ξ =
√

γ 2
e − 4|κ|2. (A10)

Regardless of the damping regime, the column vector
(u11(t,�), u21(t,�))T [(u12(t,�), u22(t,�))T ] is a solution
of the TCMT equation, i.e., Eq. (1), with H (t ) = Hm, s+(t ) =
0 and initial condition a(0) = (1, 0)T [a(0) = (0, 1)T ]. Con-
sequently, they have the initial values

u11(0) = 1, u12(0) = 0,

u21(0) = 0, u22(0) = 1. (A11)

Additionally, the envelope functions ūnm(t ) =
unm(t,�) exp[i(ω0 + �)t] have the initial values for their
time derivatives given by

dū11(0)

dt
= −γ1,

dū12(0)

dt
= iκ,

dū21(0)

dt
= iκ∗,

dū22(0)

dt
= −γ2. (A12)

Although the expressions in Eqs. (A4), (A7), and (A9)
appear qualitatively different, they are continuous functions of
the ring parameters (i.e., κ , γe, and γ0), even at the parameter
transition between underdamped and overdamped coupling
[i.e., in the neighborhood of Eq. (A6)].

The behavior of the impulse-response functions unm(t,�)
in the underdamped and critically damped regimes is
straightforward to interpret. However, their behavior in
the overdamped regime merits some discussion. Only the
impulse-response functions u11(t,�), u12(t,�), and u21(t,�)
are relevant for our investigation of AFC. Furthermore,
u12(t,�) and u12(t,�) are always proportional, so we analyze
only u11(t,�) and u21(t,�). First, we consider the forms of
these functions for large, positive values of t . Specifically,
for t � 2ξ−1, we may approximate the hyperbolic functions
in Eq. (A9) as sinh(x) ≈ cosh(x) ≈ exp(x)/2. Then, to the
accuracy of this approximation, the factor functions ũ11(t ) and
ũ21(t ) become

ũ11(t ) ≈ 1
2 (1 − γe/ξ ) exp(ξ t/2),

ũ21(t ) ≈ (iκ∗/ξ ) exp(ξ t/2). (A13)

Consequently, for t � 2ξ−1, u11(t ) and u21(t ) decay in mag-
nitude as exp[−(γ̄ − ξ/2)t]. Moreover, we find that for large
t , ū11 is always negative. This follows because the factor
(1 − γe/ξ ) itself is negative as a consequence of the assumed
overdamping condition, Eq. (A8), and of the definition of ξ in
Eq. (A10).

We also point out that, in the overdamped regime, the
envelopes ū11(t ) = u11(t,�) exp[i(ω0 + �)t] and ū21(t ) =
u21(t,�) exp[i(ω0 + �)t] always have a single extremum
each. In other words, for each envelope there exists one and
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only one positive time t such that dū1n
dt = 0 (n = 1, 2). We

first prove this statement for ū11(t ). By differentiation of
Eq. (A9), the condition dū11

dt = 0 in the overdamped regime is
equivalent to

tanh(ξ t/2) = γ̄ + γe/2

γeγ̄ /ξ + ξ/2
. (A14)

The left-hand side of Eq. (A14) is a monotonically increasing
function of t , while its right-hand side is time-independent
constant. Thus, there is, at most, one value of t for which
the left-hand side of Eq. (A14) equals its right-hand side.
But dū11

dt is negative when t = 0 and it converges to a pos-
itive value for t → ∞, as can be seen from Eq. (A13). So
there must be at least one positive value of t for which
dū11
dt = 0. Hence, there exists exactly one positive value of t

for which dū11
dt vanishes. By an analogous argument, we can

prove that there is exactly one positive value of t for which dū21
dt

vanishes.
Next, we evaluate the inner products required for our AFC

efficiency analysis in terms of the ring parameters. Given
Eqs. (A4), (A7), and (A9) for the factor functions ūnm(t ), we
next subsitute them back into Eq. (A1) and into the inner-
product definition in Eq. (11). Then, employing elementary
integration techniques, we obtain

〈u11|u11〉 = γ2(γ1 + γ2) + |κ|2
2(γ1 + γ2)(γ1γ2 + |κ|2)

,

〈u11|u12〉 = iκγ2

2(γ1 + γ2)(γ1γ2 + |κ|2)
,

〈u12|u12〉 = |κ|2
2(γ1 + γ2)(γ1γ2 + |κ|2)

. (A15)

As in the main text, 〈unm|upq〉 is an abbreviation for
〈unm(t,�)|upq(t,�)〉. We note that, for our investigation of
AFC, we require only the inner products of impulse-response
functions unm(t,�) with equal frequency shift �. Because of
the aforementioned continuity of the impulse-response func-
tions with respect to the ring parameters, Eq. (A15) holds
regardless of whether the interring coupling is underdamped,
critically damped, or overdamped.

As seen in Eqs. (A4), (A7), and (A9), u21(t,�) is always
proportional to u12(t,�). Therefore, we may evaluate the
inner products of u21(t,�) with other functions from those
of u12(t,�). In this way, we have

〈u11|u21〉 = (κ∗/κ )〈u11|u12〉,
〈u21|u21〉 = 〈u12|u12〉. (A16)

In Eq. (A16) we assume that κ �= 0. Otherwise both u12(t,�)
and u21(t,�) vanish, and so do their inner products with any
function.

As a consequence of Eq. (A15), for nonzero interring cou-
pling κ , u11(t,�) and u12(t,�) [and consequently u11(t,�)
and u21(t,�)] are mutually orthogonal if and only if γ2 = 0.
As a consequence of Eq. (4), γ2 = 0 if and only if the intrinsic
decay rate γ0 vanishes. Furthermore, if γ0 = 0, then Eq. (A15)

simplifies to

〈u11|u11〉 = 1

2γ1
,

〈u11|u12〉 = 0,

〈u12|u12〉 = 1

2γ1
. (A17)

In Secs. V and VI, we find it useful to introduce the effec-
tive cosine cos θ12 in Eq. (48) as a normalized measure of the
collinearity between u11(t,�) and u21(t,�). Here we provide
an explicit expression for it in terms of the ring parameters,
we bound its value, and we investigate it in the limit of large
intrinsic loss.

To obtain the expression for cos θ12 in terms of the rings’
TCMT parameters, we directly substitute the expressions for
the inner products in Eq. (A15) and (A16) into the definition
of Eq. (48). In this way we get

cos2 θ12 = γ 2
2

γ2(γ1 + γ2) + |κ|2 . (A18)

As expected, cos θ12 ∈ [0, 1]. Furthermore, it increases mono-
tonically with γ2 for fixed γ1 and |κ|, and with γ0 for fixed
γe and |κ|, though it decreases with |κ| for fixed γ1 and γ2,
or equivalently, fixed γ0 and γe. This agrees with the behavior
observed in Fig. 3.

Next, we utilize Eq. (A18) to obtain an upper bound
for cos θ12 tighter than cos θ12 � 1, which follows from the
Schwarz inequality. To do so, we first note that cos θ12 is
maximized with respect to |κ| when |κ| = 0. Likewise, we
note that cos θ12 for |κ| = 0 is largest when γe = 0. In this
way we obtain

cos2 θ12 � γ2

γ1 + γ2
= γ0

2γ0 + γe
� 1

2
. (A19)

Hence, we find that cos θ12 � 1/
√

2. Then, because Eq. (A19)
prohibits cos θ12 = 1, we conclude from the Schwarz inequal-
ity that u11(t,�) and u21(t,�) are never collinear, as then
cos θ12 would equal unity. This result is relevant because it
implies that the AFC operator T̂ in a two-ring system always
is of rank two.

Lastly, we note that it follows from Eq. (A18) that

lim
γ0→∞ cos θ12 = 1/

√
2, (A20)

assuming that, in this limit, γe and |κ| remain finite. Com-
bining Eqs. (A19) and (A20), we further conclude that
cos θ12 converges to 1/

√
2 always from below in the limit

γ0 → ∞.

APPENDIX B: GRAM-SCHMIDT
ORTHONORMALIZATION OF
AFC IMAGE AND COIMAGE

In this Appendix we use the Gram-Schmidt process [45,46]
to obtain orthonormal bases for both the image Vout and the
coimage Vin of the AFC operator T̂ . Then we use them to
derive results useful to the main text. First, we find explicit
expressions for the matrices Min and Mout representing the
maps T̂in and T̂out in these bases. Then we obtain formulas
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for the projected input |s(p)
in (t )〉 and its energy in terms of the

ring amplitudes at the time of modulation and of the rings’
parameters.

We first write expressions for the basis vectors |n(in)
1 〉 and

|n(in)
2 〉 spanning Vin. We recall from Sec. IV that these are

defined to satisfy the conditions in Eq. (38). These conditions
uniquely determine |n(in)

1 〉 and |n(in)
2 〉 as

∣∣n(in)
2

〉 = |u∗
21(tm − t, 0)〉√〈u21|u21〉

,

∣∣n(in)
1

〉 = |N (in)
1 〉√

〈N (in)
1 |N (in)

1 〉
, (B1)

where the auxiliary vector |N (in)〉 is defined as∣∣N (in)
1

〉 = |u∗
11(tm − t, 0)〉

− |u∗
21(tm − t, 0)〉 〈u11|u21〉

〈u21|u21〉 . (B2)

From Eq. (B2) it follows that the squared norm of |N (in)
1 〉 is

given by

〈
N (in)

1

∣∣N (in)
1

〉 = 〈u11|u11〉 − |〈u11|u21〉|2
〈u21|u21〉 . (B3)

The inner products in Eqs. (B1) to (B3) can be evaluated
in terms of the rings’ TCMT parameters using Eqs. (A15)
and (A16).

Note that in writing Eqs. (B1) to (B3), we repeatedly use
the fact that

〈 f (tm − t )|g(tm − t )〉 = 〈 f (t )|g(t )〉 (B4)

for any real value of tm, as follows from the inner product
definition, Eq. (11).

In an analogous way, we define the orthonormal basis vec-
tors |n(out)

1 〉 and |n(out)
2 〉 spanning the image Vout of T̂ . These

are then given by

∣∣n(out)
2

〉 = |u12(t − tm,�)〉√〈u12|u12〉
,

∣∣n(out)
1

〉 = |N (out)
1 〉√

〈N (out)
1 |N (out)

1 〉
, (B5)

with ∣∣N (out)
1

〉 = |u11(t − tm,�)〉

− |u12(t − tm,�)〉 〈u12|u11〉
〈u12|u12〉 (B6)

and

〈
N (out)

1

∣∣N (out)
1

〉 = 〈u11|u11〉 − |〈u11|u12〉|2
〈u12|u12〉 . (B7)

The inner products in Eqs. (B5) to (B7) can be evaluated in
terms of the rings’ TCMT parameters using Eq. (A15).

With the explicit expressions for the orthonormal bases
{|n(in)

1 〉, |n(in)
2 〉} and {|n(out)

1 〉, |n(out)
2 〉} in Eqs. (B1) and (B5),

we may write corresponding expressions for the loading ma-
trix Min and the unloading matrix Mout. Substituting then

Eqs. (B1) and (B5) into Eq. (40), we obtain

Min =
√

2γe

(√〈
N (in)

1

∣∣N (in)
1

〉 〈u21|u11〉/
√〈u21|u21〉

0
√〈u21|u21〉

)
,

Mout =
√

2γe

( √〈
N (out)

1

∣∣N (out)
1

〉
0

〈u12|u11〉/
√〈u12|u12〉

√〈u12|u12〉

)
.

(B8)

Next, we derive expressions for thr projected input |s(p)
in (t )〉

and its energy, 〈s(p)
in (t )|s(p)

in (t )〉 in terms of the rings’ amplitude
vector a(tm) at the time of modulation. To achieve this, we
write the projector P̂in, introduced in Sec. III, as [47]

P̂in =
2∑

j=1

∣∣n(in)
j

〉〈.| (B9)

Thus, we may write the projected input as

∣∣s(p)
in (t )

〉 =
2∑

j=1

∣∣n(in)
j

〉〈
n(in)

j

∣∣sin(t )〉, (B10)

and its energy as

〈
s(p)

in (t )
∣∣s(p)

in (t )
〉 =

2∑
j=1

∣∣〈n(in)
j

∣∣sin(t )
〉∣∣2

. (B11)

Given Eq. (B1) for |n(in)
1 〉 and |n(in)

2 〉, we need only expressions
for the inner products 〈n(in)

1 |sin(t )〉 and 〈n(in)
2 |sin(t )〉 to evaluate

Eqs. (B10) and (B11). To do so, we recall from Eq. (18) that
the ring amplitudes aj (tm) may be written as

a j (tm) =
√

2γe〈u∗
j1|sin(t )〉 (B12)

for j = 1, 2. Then we utilize the adjoint of Eq. (B1) and
Eq. (B12) to obtain

〈
n(in)

2

∣∣sin(t )
〉 = a2(tm)√

2γe〈u21|u21〉
,

〈
n(in)

1

∣∣sin(t )
〉 = 〈N (in)

1 |sin(t )〉√
〈N (in)

1 |N (in)
1 〉

, (B13)

where 〈N (in)
1 |sin(t )〉 is evaluated through

〈
N (in)

1

∣∣sin(t )
〉 = a1(tm)√

2γe
− a2(tm)〈u21|u11〉√

2γe〈u21|u21〉
. (B14)

APPENDIX C: PARTIAL ANALYTICAL SVD OF THE
LOADING AND UNLOADING MATRICES

In this Appendix we investigate analytically the SVD of the
loading and unloading matrices, Min and Mout. To do so, let us
first define the auxiliary matrices

Kin ≡ T̂inT̂ †
in = MinM†

in,

= 2γe

(〈u11|u11〉 〈u21|u11〉
〈u11|u21〉 〈u21|u21〉

)
(C1)
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and

Kout ≡ T̂ †
outT̂out = M†

outMout,

= 2γe

(〈u11|u11〉 〈u11|u12〉
〈u12|u11〉 〈u12|u12〉

)
(C2)

By construction, the eigenvalues of Kin are the squared
singular values of Min, and its eigenvectors are the left singular
vectors of Min [50,51]. Similarly, the eigenvalues of Kout are
the squared singular values of Mout, and its eigenvectors are
the right singular vectors of Mout.

Then, by finding the eigenvalues of Kin, we verify that
the squared singular values of Min are indeed given by
Eq. (52). Moreover, finding the eigenvalues of Kout and re-
calling Eq. (A16), we find that Kin and Kout have the same
eigenvalues. Therefore, Min and Mout have the same singular
values, as stated in Eq. (51).

Next, we determine the Bloch components S(l )
j (Min ) and

S(r)
j (Mout ) of the left singular vector of Min with largest sin-

gular value and of the right sisngular vector of Mout with
largest singular value. To do this we obtain the components
of Kin and Kout in the basis of the Pauli matrices. Let k( j)

in be
the components of Kin and k( j)

out be those of Kout ( j = 1, 2, 3).
These are computed through the formula [60,62]

k( j)
in = 1

2 Tr{Kins j}, k( j)
out = 1

2 Tr{Kouts j}. (C3)

Here Tr{A} is the trace of A, and s j are the Pauli matrices, as in
Eq. (55). Thus, we substitute Eqs. (C1) and (C2) into Eq. (C3)
to find k( j)

in and k( j)
out in terms of the impulse-response inner

products. Then we substitute Eqs. (A15) and (A16) to find
them in terms of the ring parameters. In this way we obtain

k(1)
in = 2γeRe{〈u11|u21〉} = μkIm{κ},

k(2)
in = 2γeIm{〈u11|u21〉} = μkRe{κ},

k(3)
in = γe(〈u11|u11〉 − 〈u21|u21〉) = μk γ̄ , (C4)

and

k(1)
out = 2γeRe{〈u12|u11〉} = −μkIm{κ},

k(2)
out = 2γeIm{〈u12|u11〉} = −μkRe{κ},

k(3)
out = γe(〈u11|u11〉 − 〈u12|u12〉) = μk γ̄ . (C5)

where the factor μk is given by

μk = γ2γe

(γ1 + γ2)(γ1γ2 + |κ|2)
. (C6)

Given Eqs. (C4) and (C5), we may now evaluate the Bloch
components S(l )

j (Min ) and S(r)
j (Mout ), as intended. To do so,

we need only one result from spinor theory. This is that the
Bloch components (i.e., the normalized Stokes parameters) of
the eigenvectors of Kin and Kout with largest eigenvalue equal
k( j)

in and k( j)
out after these are normalized so their squares add up

to unity [62]. With this result, along with Eqs. (C4) and (C5),
we confirm that S(l )

j (Min ) and S(r)
j (Mout ) are given by Eqs. (56)

and (57).
Lastly, we prove Eq. (60) relating the Bloch components

S(r)
j (Min ) and S(l )

j (Mout ). To do this, we evaluate the matrix
products

M†
inMin = 2γe

⎛
⎝ 〈

N (in)
1

∣∣N (in)
1

〉 〈u21|u11〉
√〈

N (in)
1

∣∣N (in)
1

〉
/〈u21|u21〉

〈u11|u21〉
√〈

N (in)
1

∣∣N (in)
1

〉
/〈u21|u21〉 〈u21|u21〉 + |〈u11|u21〉|2/〈u21|u21〉

⎞
⎠,

MoutM
†
out = 2γe

⎛
⎝ 〈

N (out)
1

∣∣N (out)
1

〉 〈u11|u12〉
√〈

N (out)
1

∣∣N (out)
1

〉
/〈u12|u12〉

〈u12|u11〉
√〈

N (in)
1

∣∣N (in)
1

〉
/〈u21|u21〉 〈u12|u12〉 + |〈u11|u12〉|2/〈u12|u12〉

⎞
⎠. (C7)

We note that the right singular vectors of Min are the eigen-
vectors of M†

inMin, and the left singular vectors of Mout are
the eigenvectors of MoutM

†
out. Hence, the Bloch components

S(r)
j (Min ) and S(l )

j (Mout ) can be evaluated from Eq. (C7), just

as S(l )
j (Min ) and S(r)

j (Mout ) were obtained from Eqs. (C1) and
(C2) for Kin and Kout.

However, rather than obtaining explicit expressions for
S(r)

j (Min ) and S(l )
j (Mout ) and comparing them, we need only

make two observations about the entries of M†
inMin and

MoutM
†
out in Eq. (C7) to establish the desired results, Eq. (60).

First, we note that the value of these diagonal entries of
M†

inMin and MoutM
†
out are identical, as a consequence of

Eq. (A16). Hence, we get S(r)
3 (Min ) = S(l )

3 (Mout ). Second, the
ratio between the first-row off-diagonal element of M†

inMin

and that of MoutM
†
out equals 〈u21|u11〉/〈u11|u12〉, again recall-

ing Eq. (A16). This is the same case as for Kin and Kout.

Therefore, we obtain S(r)
1 (Min ) = −S(l )

1 (Mout ) and S(r)
2 (Min ) =

−S(l )
2 (Mout ), just as in Eq. (58).

APPENDIX D: PROOF OF SUBMULTIPLICATIVE
PROPERTY OF MAXIMUM AND MINIMUM

SINGULAR VALUES

In Sec. VII we are interested in relating the minimum and
maximum singular values of a matrix product to those of its
factors. Let σmax(M ) [σmin(M )] be the maximum (minimum)
singular value of some matrix M. In this Appendix we prove
that, for any matrices A and B for which their product AB
exists, σmax(AB) [σmin(AB)] is bounded above (below) by

σmax(AB) � σmax(A)σmax(B), (D1)

σmin(AB) � σmin(A)σmin(B). (D2)
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In the context of matrix norms (or operator norms), the max-
imum singular value is proven to be a matrix norm [50], and
Eq. (D1) is referred to as its submultiplicative property.

A similar proof of Eq. (D1) for bounded operators in a
Hilbert space is given in Ref. [45], Ch. 17. Though our proof
is more detailed, including discussion of sufficient conditions
for Eq. (D1) to be an equality. Of course, we have also ex-
tended the proof of Eq. (D1) to also prove Eq. (D2).

We start with the proof of Eq. (D1). From Refs. [49,50],
σmax(M ) can be written as

σ 2
max(M ) = max

x �=0

x†M†Mx

x†x
(D3)

In other words, σ 2
max(M ) is the maximum value of the quotient

in the right-hand side of Eq. (D3). As mentioned in Sec. IV,
the right-hand side of Eq. (D3)is a Rayleigh quotient.

Momentarily, we assume that the vector x which maxi-
mizes the right-hand side of Eq. (D3) for M = AB is such
that Bx �= 0, and consequently x†B†Bx = ‖Bx‖2 > 0. Then
we may write

σ 2
max(AB) = max

x �=0

x†B†A†ABx

x†B†Bx

x†B†Bx

x†x
,

� max
x �=0

x†B†A†ABx

x†B†Bx
max
x �=0

x†B†Bx

x†x
,

= max
x �=0

x†B†A†ABx

x†B†Bx
σ 2

max(B). (D4)

In Eq. (D4) we made use of Eq. (D3) for M = B.
Next, we bound from above the first factor in the last line

of Eq. (D4). Thus, we write

max
x �=0

x†B†A†ABx

x†B†Bx
� max

y �=0

y†A†Ay

y†y
= σ 2

max(A). (D5)

The inequality in Eq. (D5) becomes an equality if and only if
a right singular vector of A with its largest singular value is
in the range of B. Of course, this is the case if B is a square
matrix of full rank. Finally, substituting Eq. (D5) into (D4),
we obtain the desired bound, Eq. (D1).

Now, if the vector x maximizing the right-hand side of
Eq. (D3) for M = AB is such that Bx = 0, then σmax(AB) = 0.
Then Eq. (D1) is trivially satisfied, as the singular values are
non-negative by definition.

Next, we show that if the left singular vector of B cor-
responding to σmax(B) equals the right singular vector of A
corresponding to σmax(A), then Eq. (D1) is an equality. In this
case, let x be the right singular vector of B corresponding to

σmax(B). Then

σ 2
max(A)σ 2

max(B) = x†B†A†ABx

x†B†Bx

x†B†Bx

x†x

= x†B†A†ABx

x†x

� σ 2
max(AB). (D6)

Here we used Eq. (D3) with M = AB. But for Eq. (D6) to be
compatible with the Eq. (D1), the inequality in the last line of
Eq. (D6) must be an equality. This completes the proof.

Now, we prove Eq. (D2). Similarly to Eq. (D3), the mini-
mum singulvar value σmin(M ) of some matrix M satisfies the
relation [49],

σ 2
min(M ) = min

x �=0

x†M†Mx

x†x
. (D7)

Momentarily, we assume that Bx = 0 if and only if x = 0
Then, x†B†Bx = ‖Bx‖2 > 0 for x �= 0. So we may substitute
M = AB in Eq. (D7) to obtain

σ 2
min(AB) = min

x �=0

x†B†A†ABx

x†B†Bx

x†B†Bx

x†x

� min
x �=0

x†B†A†ABx

x†B†Bx
min
x �=0

x†B†Bx

x†x

= min
x �=0

x†B†A†ABx

x†B†Bx
σ 2

min(B), (D8)

where we substituted Eq. (D7) for M = B.
Analogous to Eq. (D5), we bound from below the first term

in the last line of Eq. (D8). Thus, we write

min
x �=0

x†B†A†ABx

x†B†Bx
� min

y �=0

yA†Ay

y†y
= σ 2

min(A). (D9)

The inequality in Eq. (D9) becomes an equality if and only if
a right singular vector of A with its smallest singular value is
in the range of B. Again, this is the case if B is square and of
full rank. Substituting Eq. (D9) into Eq. (D8), we obtain the
desired bound, Eq. (D2), for σmin(AB).

If Bx = 0 for some x �= 0, then σmin(B) = 0. Then Eq. (D2)
is trivially satisfied all singular values is non-negative by
definition, so σmin(AB) � 0.

Lastly, one may prove that if the left singular vector of B
corresponding to σmin(B) equals the right singular vector of A
corresponding to σmin(A), then Eq. (D2) becomes an equality.
To do so, one need only to follow reasoning analogous to
Eq. (D6).
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