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Spatial beam dynamics in graded-index multimode fibers under Raman amplification:
A variational approach
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We investigate the spatial beam dynamics inside a multimode graded-index fiber under Raman amplification
by adopting a semianalytical variational approach. The variational analysis provides us with four coupled ordi-
nary differential equations that govern the beam’s evolution and are much faster to solve numerically compared
to the full nonlinear wave equation. Their solution also provides considerable physical insight and allows us
to study the impact of important nonlinear phenomena such as self-focusing and cross-phase modulation. We
first show that the variational results agree well with full numerical simulations over a wide range of operating
parameters. We use them to investigate the signal beam’s amplification for different initial widths of the pump
and signal beams. This allows us to quantify the pumping conditions under which the quality of a signal beam
could be improved at the fiber’s output end. Our analysis may prove beneficial in practice for two reasons. First,
it can be used to scan the design parameters of an experiment in a time-efficient fashion and determine the
optimum values of these parameters. Second, it can provide physical insight into nonlinear phenomena involved
in the Raman-amplification process.
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I. INTRODUCTION

The quest for higher and higher output powers has led to
the use of multimode fibers for fiber-based lasers and ampli-
fiers [1–3]. In recent years, graded-index (GRIN) multimode
fibers have replaced traditional step-index fibers for making
high-power Raman amplifiers. This is motivated by a phe-
nomenon known as the Raman-induced spatial beam cleanup
[4–8], which considerably improves the amplified signal’s
beam quality at the output end of a Raman amplifier. Recent
experiments have shown that power levels of more than 2 kW
can be realized using GRIN fibers for Raman amplification
[9–11].

The use of a mode-based approach for understanding the
Raman-induced spatial beam cleanup becomes less appropri-
ate when many modes of a GRIN fiber are excited by the
incoming pump and signal beams. A nonmodal numerical
approach was recently proposed for both Yb-doped fiber am-
plifiers [12] and Raman GRIN amplifiers [8] that takes into
account most relevant physical effects under continuous-wave
(cw) diode pumping. However, such an extensive numerical
model is time consuming because it requires a solution of the
coupled nonlinear partial differential equations satisfied by the
pump and signal beams. Recent work on Kerr-induced beam
cleaning [13,14] has shown that the phenomenon of periodic
self-imaging [15], a unique property of GRIN fibers, plays
an important role in the amplification of the signal beam by
creating a nonlinear index grating inside the GRIN fiber. Sim-
ple analytic models based on self-imaging have been proposed
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recently to study amplification and beam narrowing in GRIN
fibers [16,17]. However, these models did not include all
the important nonlinear effects such as self-phase modulation
(SPM) and cross-phase modulation (XPM).

In this work we apply the variational method to develop
a semianalytic model of the Raman-amplification process in
GRIN-fiber amplifiers. We solve the resulting equations nu-
merically to investigate the impact of both SPM and XPM
on the performance of a Raman amplifier. In our treatment,
the Gaussian profile of the pump is not approximated with
a parabolic shape, which may produce erroneous results. We
show that our semianalytic approach is much less compu-
tationally time consuming compared to a fully numerical
approach, while providing reasonably accurate results over
a wide range of operating parameters. Its use is beneficial
in practice for two reasons. First, it can be used to scan
the design parameters of an experiment in a time-efficient
fashion and determine the optimum values of these param-
eters. Second, it can provide physical insight into different
nonlinear phenomena involved in the Raman-amplification
process.

The article is organized as follows. In Sec. II we outline the
theory that leads to the nonlinear coupled propagation equa-
tions for the pump and signal beams. In Sec. III we develop
the variational analysis by forming a suitable Lagrangian and
derive four coupled ordinary differential equations describing
the signal beam’s dynamics under the Raman gain. We com-
pare the variational results with full numerical simulations
and show the robustness of our approach. In Sec. IV we
solve numerically the coupled equations for the signal beam’s
parameters and investigate its dynamics and stability under the
impact of SPM and XPM for different initial conditions. The
main conclusions are summarized in Sec. V.
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FIG. 1. (a) Schematic of a GRIN fiber and (b) its parabolic index
profile. (c) Two isosurfaces showing how the signal and pump beams
evolve in a periodic fashion inside a GRIN fiber because of the self-
imaging provided by the parabolic index profile.

II. THEORY

We consider a GRIN fiber with a parabolic refractive index
profile [see Figs. 1(a) and 1(b)] and include the optical Kerr
effect using

n(ρ) = ncore(1 − 1
2 b2ρ2) + n2|E |2, (1)

where ρ =
√

x2 + y2 is the radial distance from the central
axis of the GRIN fiber and ncore is the refractive index at ρ =
0. The index gradient b is defined as b = √

2�/a, where a is
the core’s radius of the GRIN fiber and � is the relative core-
cladding index difference defined as � = (ncore − nclad )/ncore.
The Kerr coefficient n2 and has a value of 2.7 × 10−20 m2/W
for silica fibers. In practice, silica molecules also produce a
noninstantaneous response in addition to the nearly instanta-
neous Kerr response of electrons. This response, known as the
Raman response, is delayed in time. It is accounted for by
modifying the Kerr term n2|E |2 in Eq. (1) as [18]

n2|E |2 = (1 − fR)n2|E |2 + fRn2

∫ ∞

0
hR(t ′)|E (t − t ′)|2dt ′,

(2)

where fR is the fractional Raman contribution (about 18% for
silica fibers) and hR(t ) = (τ−2

1 + τ−2
2 )τ1 exp(−t/τ2) sin(t/τ1)

is the Raman response function, with τ j=1,2 being two
constants. The response function is normalized with∫ ∞

0 hR(t )dt = 1.
The pump and signal beams are launched at the input end

of the GRIN fiber located at z = 0. The total electric field
E (r, t ) inside the fiber at a distance z can be written as

E (r, t ) = Apexp[i(kpz − ωpt )] + Asexp[i(ksz − ωst )], (3)

where Aj (ρ, z) and k j = ncore(ω j )ω j/c, with j = p, s, are the
amplitudes and wave numbers of pump and signal beams,
respectively. Both waves are assumed to be polarized in the
same direction. In our simulations, we choose the wavelengths
for the pump (λp) and signal (λs) beams to be 1018 and
1060 nm, respectively, and use � = ωp − ωs for the frequency
shift of the signal from the pump. Using Eq. (3), we evaluate
the integral in Eq. (2) to obtain∫ ∞

0
hR(t ′)|E (t − t ′)|2dt ′ = |Ap|2 + |As|2 + A∗

pAse
−iδkzh̃R(�)

+ ApA∗
s eiδkzh̃∗

R(�), (4)

where δk = kp − ks and h̃R(�) is the Fourier transform of
hR(t ). The Raman gain coefficient gR is related to the imag-
inary part of h̃R(�) as gR = 2 fRn2(ωs/c)Im(h̃R).

Using Eqs. (2)–(4) in Maxwell’s equations and retaining
only the phase-matched terms under the slowly varying en-
velope approximation, we can separate the pump and signal
terms and obtain two coupled nonlinear equations for the
pump and signal amplitudes [16],

∂Ap

∂z
+ ∇2

⊥Ap

2ikp
+ i

2
kpb2ρ2Ap = iωp

c
n2|Ap|2Ap, (5)

∂As

∂z
+ ∇2

⊥As

2iks
+ i

2
ksb

2ρ2As = iωs

c
n2(|As|2 + 2|Ap|2)As

+ 1

2
gR|Ap|2As, (6)

where ∇2
⊥ = 1

ρ
∂
∂ρ

(ρ ∂
∂ρ

) + 1
ρ2

∂2

∂φ2 is the transverse Laplacian.
Here we have neglected the depletion and XPM terms in the
pump equation (5), assuming the pump to remain much more
intense than the signal over the entire length of the GRIN fiber.
As a result, this equation can be solved first to obtain Ap(ρ, z).
For a cw pump in the form of a Gaussian beam, Eq. (5) has
been solved with the variational method and the solution is
given as [19]

Ap(ρ, z) =
√

Ip0

fp(z)
exp

(
− ρ2

2w2
p0 fp(z)

+ i�(ρ, z)

)
, (7)

where Ip0 is the peak intensity and wp0 is the width of the
input pump beam at z = 0, while the periodic function fp(z)
is defined as

fp(z) = cos2(bz) + C2
p sin2(bz), Cp =

√
1 − p/bkpw

2
p0,

(8)

with p = Pp0/Pc. Here Pp0 = πw2
p0Ip0 is the input pump

power and Pc = 2πncore/n2k2
p is the critical power at which

the pump beam collapses due to self-focusing. Because of
GRIN-induced self-imaging, the pump beam compresses and
expands periodically such that it recovers its input shape and
width at distances z = mπ/b = mzp, where m is an integer
and zp is the period. Thus, in normalized units the self-
imaging period becomes ξp = zpb = π . Figure 1(c) shows
schematically the periodic evolution of such a pump beam
inside the GRIN fiber.
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III. VARIATIONAL ANALYSIS

Exploiting the analytical pump solution given in Eq. (7),
we can numerically solve the signal equation in Eq. (6).
However, numerical simulations become time consuming for
distances exceeding the 10 m required for Raman amplifiers.
A numerical approach also hinders physical insight and does
not reveal what parameters are most relevant for the narrowing
of the signal beam to occur. To gain insight into how the
SPM, XPM, and Raman phenomena affect the signal beam,
we adopt the variational method [20] for solving Eq. (6). The
variational method has been used successfully, in spite of the
gain and loss terms that make the underlying system noncon-
servative [21]. It requires a suitable ansatz for the pulse shape
and makes the assumption that the functional form of the pulse
shape remains intact in the presence of small perturbations,
but its parameters appearing in the ansatz (amplitude, width,
position, phase, frequency, etc.) evolve with propagation.

First, we normalize Eq. (6) and rewrite it in the form

i
∂ψs

∂ξ
+ δ

2

(
∂2ψs

∂r2
+ 1

r

∂ψs

∂r

)
− 1

2δ
r2ψs + γ |ψs|2ψs

= −2�|ψp|2ψs + i
GR

2
|ψp|2ψs, (9)

where the variables are scaled using ξ = bz, r = ρ/ws0, and
ψ j = Aj/

√
I j0, with j = s, p. Here ws0 is the width and Is0

is the peak intensity of the input signal beam, δ = w2
g/w

2
s0

is a dimensionless ratio, and w2
g = 1/bks is the width of the

fundamental mode of the GRIN fiber at the signal’s frequency
ωs. Typically, wg is close to 5 µm for GRIN fibers. The
other parameters, namely, γ = ωsn2Is0/cb, � = ωsn2Ip0/cb,
and GR = gRIp0/b, are the normalized SPM, XPM, and Ra-
man coefficients, respectively. To implement the variational
method, we treat the two terms on the right-hand side of
Eq. (9) as a small perturbation ε, defined such that

ε = (
2i� + 1

2 GR
)|ψp|2ψs. (10)

The Lagrangian density Ld corresponding to Eq. (9) has
the form [22]

Ld = i

2
r(ψs∂ξψ

∗
s − ψ∗

s ∂ξψs) + δ

2
r|∂rψs|2

− γ

2
r|ψs|4 + r3

2δ
|ψs|2 + ir(εψ∗

s − ε∗ψs), (11)

where ∂ j=ξ,r ≡ ∂/∂ j. We choose a chirped Gaussian beam for
our ansatz for ψs because the signal is often in the form of a
Gaussian beam in practice,

ψs(r, ξ ) = ψs0(ξ )exp

(
− r2

2r2
s (ξ )

+ ids(ξ )r2 + iφs(ξ )

)
,

(12)
where the four parameters ψs0, rs, ds, and φs represent the
amplitude, width, phase-front curvature, and phase, respec-
tively, and depend on ξ . The normalized signal width rs is
defined as rs(ξ ) = ws(ξ )/ws0. Using this ansatz and following
the standard Rayleigh-Ritz optimization procedure [22], we
obtain the reduced Lagrangian L = ∫ ∞

0 Ld dr by integrating

over r. The result is found to be

L = 1

2
ψ2

s0r2
s

(
dφs

dξ

)
+

(
2δd2

s + 1

2δ
+ dds

dξ

)
ψ2

s0r4
s

2

+ δ

4
ψ2

s0 − γ

8
ψ4

s0r2
s + i

∫ ∞

0
r(εψ∗

s − ε∗ψs)dr. (13)

We evaluate the integral in Eq. (13) by using the pump inten-
sity from Eq. (7). The normalized form of this intensity is

|ψp(ξ )|2 = fp(ξ )−1exp
[−r2/r2

p0 fp(ξ )
]
, (14)

where rp0 = wp0/ws0 is the normalized width of the input
pump beam.

We now use the Euler-Lagrange equation ∂ξ (∂Xξ
L) −

∂X L = 0, with X = ψs0, rs, ds, φs, and obtain the four coupled
equations for the evolution of the four parameters along the
amplifier’s length,

dψs0

dξ
= −2δdsψs0 + GR

2 fp

(
re

rs

)2[
2 −

(
re

rs

)2]
ψs0, (15)

drs

dξ
= 2δdsrs − GR

2 fp

(
re

rs

)2[
1 −

(
re

rs

)2]
rs, (16)

dds

dξ
= −2δd2

s − γ

4

(
ψs0

rs

)2

− 1

2δ
+ δ

2r4
s

− 2�

fp

(
r2

e

r4
s

)[
1 −

(
re

rs

)2]
, (17)

dφs

dξ
= − δ

r2
s

+ 3

4
γψ2

s0 + 2�

fp

(
re

rs

)2[
2 −

(
re

rs

)2]
, (18)

where r−2
e = r−2

s + r−2
p0 / fp, with fp = cos2(ξ ) + C2

p sin2(ξ ).
These ordinary differential equations (ODEs) can be solved
numerically much faster than Eq. (9), which governs the
evolution of the signal beam. However, the accuracy of the
resulting solution needs to be checked by solving Eq. (9)
directly.

We solve the coupled ODEs (15)–(18) with the fourth-
order Runge-Kutta method and obtain the evolution of four
beam parameters under different conditions. We check the
accuracy of the solution by solving Eq. (9) numerically with
the standard split-step Fourier method. The step size is 10−3

along the ξ axis and 10−2 in the transverse directions. In all
cases, we employ the same values for the three parameters:
γ = 1 × 10−4, � = 5.7 × 10−3, and GR = 3.5 × 10−3. These
are estimated using the following realistic values for a GRIN
fiber: a = 50 µm and � = 0.01, making b = 2.83 × 103 m−1.
The input pump power is taken to be Pp0 = 0.1 MW and the
signal power Ps0 is 1% of Pp0. The input beam has a Gaus-
sian shape such that ψs(r) = ψs0 exp(−r2/2r2

s + idsr2 + iφs)
with the initial values ψs0 = 1, rs = 1, ds = 0, and φs = 0.
Figure 2 compares the variational and numerical results over
a propagation distance that corresponds to nine self-imaging
periods (ξ = 9π ). Excellent agreement between the numerical
and variational results is evident in Fig. 2 over this distance.
In Figs. 2(a i) and 2(a ii) we show the three-dimensional (3D)
evolution of the signal beam and its x projection.
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FIG. 2. Comparison between the variational (solid lines) and
numerical (closed circles and dashed curves) predictions. (a i) Evo-
lution of the signal beam inside the GRIN fiber, (a ii) signal beam’s x
projection, (a iii) signal’s amplitude, (b i) pump’s width, (b ii) width
of the signal beam, (c) signal beam’s phase-front curvature, and
(d) signal beam’s phase. The parameter values used were μ = 0.001,
ws0 = 14.34 µm, and wp0 = 19 µm.

IV. IMPACT OF SPM AND XPM

Since the variational method predicts accurately the signal
beam’s dynamics under Raman amplification, we use it to
study all possible scenarios for the signal’s input width: (i)
The signal beam is narrower than the pump beam (ws0 <

wp0), (ii) the signal beam is wider than the pump beam (ws0 >

wp0), and (iii) the signal beam is equal to the pump beam
(ws0 = wp0). We use realistic values for all other parameters.

A. Case of ws0 < wp0

Assuming wp0 = 1.33ws0, we solve Eqs. (15)–(18) with
and without including the SPM and XPM effects. Exploiting
the variational results in Eqs. (15)–(18), it is possible to obtain
an equation for the beam width rs under certain approxima-
tions. For example, in the absence of SPM, rs satisfies the
differential equation

d2rs

dξ 2
= −rs + δ2

r3
s

− K�rsF2(rs) + KGR r3
s F3(rs) f ′

p

− 2KGR r2
s F3(rs) fp

drs

dξ
, (19)

where F (rs) = ( fpr2
p0 + r2

s )−1, K� = 4δ�r2
p0, KGR = GRr4

p0,
and f ′

p = dfp/dξ . In obtaining this equation, we neglect a
higher-order term associated with GR because it has a negligi-
ble contribution. In the absence of XPM (� = 0) and Raman
gain (GR = 0), we set K� = 0 and KGR = 0. This case was
studied recently [16] and it was found that the width satisfies
a simple equation d2rs

dξ 2 + rs = δ2r−3
s and has the analytic solu-

tion rs(ξ ) = [cos2(ξ ) + δ2 sin2(ξ )]1/2.

FIG. 3. (a)–(c) Evolution of three signal-beam parameters ψs0,
rs, and ds over a distance of 40 cm (ξ = 1100) using rp0 = 1.33rs0

without the nonlinear effects (γ = � = 0). Top rows in (a)–(c) com-
pare the variational (solid line) and numerical (dashed line) results
on a magnified scale. (d) Changes in the average width 〈rs〉 of the
signal with distance for four values of μ.

The last three terms in Eq. (19) result from the Raman
amplification and the nonlinear effects such as the SPM and
XPM and offers significant physical insight into the signal
beam’s evolution in a nonlinear GRIN-fiber amplifier. For
example, the term containing K� and related to the XPM is
found to modulate the envelope of the GRIN-induced rapid
periodic oscillations of rs. The amplitude of this modulation
is damped under the influence of the last term in Eq. (19).
Finally, the term related to the Raman gain and containing
KGR saturates the amplitude of rapid oscillation towards the
initial pump width rp0.

Following [16], we define the dimensionless parameter
μ = gRIp0w

2
s0/2bw2

p0 that is controlled mainly by the input
pump intensity (or power). For silica-based GRIN fibers, the
Raman gain coefficient is gR = 1 × 10−13 m/W at wave-
lengths near 1 µm. At an input pump power of 115 kW,
the peak intensity is close to 100 TW/m2. Its use yields
μ = 0.001 and Cp = 0.1 for rp0/rs0 = 1.33. Such high-power
values can be realized when the pump is in the form of
nanosecond pulses.

To study the effect of Raman gain, we set � = 0, γ = 0,
δ = 0.2, and μ = 0.001 and solve Eqs. (15)–(18); the results
are presented in Fig. 3. As expected, the Raman gain ampli-
fies the signal such that its amplitude in Fig. 3(a) exhibits
an oscillatory pattern, seen clearly in the magnified view on
top. In Fig. 3(b) the signal’s width follows the same periodic
self-imaging pattern as the pump width rp (shown in red).
This periodic self-imaging occurs for any GRIN fiber. The
black dotted lines in the insets are obtained from numerical
simulations; the variational results show excellent agreement
with them. In the zoomed-in version in Fig. 3(b), the signal’s
width is larger than the pump’s width at the point of maximum
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FIG. 4. Evolution of two parameters of the signal beam (ψs0 and
rs) with (a) and (b) XPM only (γ = 0) and (c) and (d) SPM only (� =
0) for rp0 = 1.33rs0, i.e., ws0 < wp0 for a distance ξ = 1100 (z ≈
40 cm). The insets show the oscillatory pattern on a magnified scale.
The dashed lines in all the insets show numerical results obtained by
solving Eq. (9).

compression where the effect of the pump on the signal is
most prominent. To visualize changes in the signal’s width
more clearly, we plot in Fig. 3(d) its average value 〈rs〉 as a
function of ξ for four μ values. The average width is calcu-
lated by averaging rs over several self-imaging periods ξp. It
gradually increases with ξ and saturates at a value close to the
pump’s width for large ξ . The rate of increase depends on the
value of μ and is larger for its larger values.

To investigate the individual effects of XPM and SPM on
the evolution of signal beam, we consider two situations: (a)
� �= 0 and γ = 0 and (b) � = 0 and γ �= 0. We solve the set
of coupled ODEs (15)–(18) in both cases. The results for the
evolution of the signal’s amplitude and width are presented
in Figs. 4(a) and 4(b) for the first case (� = 5.7 × 10−3 but
γ = 0) and in Figs. 4(c) and 4(d) for the second case (� = 0
but γ = 1 × 10−4). In both cases, the signal’s amplitude in-
creases with a pattern similar to that found in Figs. 4(a) and
4(c). However, the signal’s width exhibits unique features in
Figs. 4(b) and 4(d). In the presence of XPM, the peak value
of the signal’s width undergoes oscillations before reaching a
stable value. On the other hand, the presence of SPM leads
to the beam’s collapse due to self-focusing, as is evident in
Fig. 4(d). To summarize, while Raman gain contributes to the
signal beam’s amplification and also changes its width, XPM
leads to oscillations in the signal’s width and SPM produces
the beam’s collapse owing to the self-focusing. Finally, we
investigate the realistic case in which all three parameters GR,
�, and γ have finite values by solving Eq. (9) and the varia-
tional equations; the results are presented in Figs. 5(a)–5(c).
As can be seen in Fig. 5(d ii), the average width 〈rs〉 of the
signal evolves in an oscillatory fashion, similar to that of a
damped harmonic oscillator. When both SPM and XPM are

100 300 400
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FIG. 5. (a)–(c) Evolution of signal’s parameters for rp0 = 1.33rs0

using γ = 1 × 10−4 and � = 6 × 10−3. (d i) Evolution of 〈rs〉 with
(oscillatory) and without XPM. The solid lines show the solution
of Eq. (19) and dashed lines show numerical results. (d ii) Impact
of SPM and XPM on of the average signal width 〈rs〉. Evolution is
shown without nonlinear effects (green solid line), with XPM only
(red solid line), with SPM only (black solid line), and with both
SPM and XPM (violet solid line). The last case is compared with
numerical simulations using a blue dashed line.

neglected, 〈rs〉 increases monotonically towards a saturated
value, as shown by the green solid line. When only XPM is
included (red solid line), 〈rs〉 exhibits damped oscillation and
its value saturates near the pump’s width, without any beam
collapse. However, we observe a beam collapse only when
SPM is included (black solid line) without any oscillations.
When both XPM and SPM are included, 〈rs〉 oscillates ini-
tially but eventually collapses (violet solid line) toward the
value zero as the amplification of the signal beam increases its
power toward the critical self-focusing power. It may appear
surprising that a variational analysis does not break down
near the self-focusing collapse. To verify its accuracy, we
solve Eq. (9) and extracted numerically the values of 〈rs〉. The
results are shown in Fig. 5(d ii) by a blue dashed line and they
validate the variational results.

Among the three nonlinear phenomena, the influence of
SPM on the beam’s dynamics is the most well known. The
Raman gain and XPM are somewhat unique because the
average beam width exhibits damped oscillations for them.
To understand this unique feature, we employ Eq. (19) but
ignore the influence of SPM, as we are more interested in
the contributions of GR and �. Given a relatively low value
GR = 3.5 × 10−3, the contribution of terms containing higher
powers of GR is also neglected. It is apparent from Eq. (17)
that the phase-front curvature ds varies in an oscillatory fash-
ion when XPM is included, which influences the beam’s width
and produces oscillations in 〈rs〉. Solutions of Eq. (19) with
and without � are presented in Fig. 5(d i); they are in good
agreement with the full numerical results (dashed line).
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FIG. 6. Variational and numerical solution for the signal’s pa-
rameters without the XPM and SPM effects (γ = � = 0) when
ws0 > wp0 (rp0 = 0.67rs0). The results are shown in the same format
used for Fig. 3. The evolution of three parameters, (a) amplitude,
(b) width, and (c) phase-front curvature, is shown. (d) Change of
the average width 〈rs〉 with ξ for different values of μ. The top
panels in (a)–(c) compare the variational results (solid lines) with
full numerical simulations (dashed lines).

B. Case of ws0 > wp0

In this section we consider the evolution of a signal beam
when its initial width is greater than the pump’s width. For
this purpose, we choose wp0/ws0 = rp0/rs0 = 0.67 with μ =
0.01, Cp = 0.42, and δ = 0.2. For μ = 0.01, the Raman gain
coefficient has a value GR = 9 × 10−3. In the absence of
nonlinearity, the evolution of the signal parameters is shown
in Fig. 6. In contrast to the previous case, Fig. 6(b) shows a
gradual reduction in the width of the signal beam. This feature
is seen better in Fig. 6(d), where we plot the average width 〈rs〉
as a function of the distance for several values of μ. The rate
of width reduction is found to be proportional to the value of
μ.

In Fig. 7 we show the individual effects of XPM and
SPM on the beam’s amplitude and width. The values used
for the XPM and SPM coefficients are � = 1.4 × 10−2 and
γ = 6.45 × 10−5, respectively.

The evolution of the signal beam amplitude and width
under the influence of XPM and SPM is shown in Figs. 7(a)
and 7(b) and Figs. 7(c) and 7(d), respectively, where the full
simulation results are superimposed with variational results.
In both the cases, an enhancement in the signal amplitude
is observed. Under the influence of XPM, we observe the
familiar oscillation in beam width where SPM leads to a beam
collapse. From the top inset plots it is evident that variational
results (solid line) are is in excellent agreement with full
numerical simulation (dashed line).

In Fig. 8 we consider the full case by including both
XPM and SPM simultaneously. Figure 8(a) shows the
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FIG. 7. Evolution of two parameters of the signal beam (ψs0 and
rs) with (a) and (b) XPM only (γ = 0) and (c) and (d) SPM only
(� = 0) when wp0 < ws0. Top panels show a magnified view and
compare variational results (solid lines) with full numerical simula-
tions (dashed lines).
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FIG. 8. Evolution of the signal’s parameters in the case ws0 >

wp0 (rp0 = 0.67rs0) when both XPM and SPM effects are included:
(a) amplitude, (b) width, and (c) phase-front curvature. The beam’s
collapse due to self-focusing is shown in (b). The variational results
(solid lines) are compared with numerical simulations (dashed lines)
in the top panel. (d i) Evolution of the signal’s average width. Solid
lines show the solution of Eq. (19) and dashed lines show numerical
results. (d ii) Evolution of 〈rs〉 in different regimes: without SPM and
XPM (green solid line), with XPM only (red solid line), with SPM
only (black solid line), and with both SPM and XPM (violet solid
line). Numerical results for the last case are shown by a blue dotted
line.
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(di)

(d ii)

FIG. 9. Same as Fig. 8 but with wp0 = ws0. Top panels in (a)–
(c) compare variational results (solid lines) with full numerical
simulations (dashed lines).

growth of the signal’s amplitude using � = 1.4 × 10−2 and
γ = 6.45 × 10−5. Changes in the widths of the signal and
pump are shown in Fig. 8(b). Both widths follow an oscilla-
tory pattern because of self-imaging inside a GRIN fiber. The
phase-front curvature ds also oscillates as shown in Fig. 8(c).
Similar to Fig. 5, Fig. 8(d i) shows the evolution of the
signal’s average width 〈rs〉 with and without XPM. Solid
lines are obtained by solving Eq. (19) and the dashed lines
show numerical results. Figure 8(d ii) shows the evolution
of the average width 〈rs〉 in four cases: without SPM and
XPM (green solid line), with XPM only (red solid line), with
SPM only (black solid line), and with both SPM and XPM
(violet solid line). The width decreases monotonically when
SPM and XPM effects are weak or ignored, exhibits damped
oscillations when XPM is included without SPM, and experi-
ences self-focusing collapse when only SPM is also included.
Narrowing of the signal beam with increasing amplification
expedites the self-focusing effect.

C. Case of ws0 = wp0

For completeness of this study we also consider the specific
case in which the pump and signal have the same width ini-
tially (ws0 = wp0). Recall that the signal beam broadens when
ws0 < wp0 because of the Raman gain, but the exact opposite
happens for ws0 > wp0 when the nonlinear effects are ignored.
When the XPM effects are included, the average width of
the signal oscillates. Thus, when ws0 = wp0 we expect neg-
ligible changes in the signal’s width. The results shown in
Fig. 9 support this expectation. Figure 9(a) shows that the
beam’s amplitude is amplified because of the Raman gain.
Figure 9(a) shows that the beam’s width oscillates because
of self-imaging without much change in its peak value. The
average width 〈rs〉 shown in Fig. 9(d i) shows this feature
more clearly. Similar to Fig. 8, Fig. 9(d ii) shows changes in

x x x

y y y
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=0ξ

y x y

(e)(d)

x xy
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FIG. 10. Stability of a noisy Gaussian beam during its amplifica-
tion inside a GRIN fiber. (a)–(c) Two-dimensional contour plots of
the signal’s intensity for three different distances using rp0 = 1.33rs0

without the XPM and SPM effects (γ = � = 0). (d)–(f) Correspond-
ing 3D plots.

〈rs〉 with and without including the effects of SPM and XPM.
Variational results again agree with full numerical simulations
even when self-focusing collapse of the beam occurs.

D. Stability of the signal beam

The preceding analysis has been done under the assump-
tion that the shape of the signal and pump beams remains
Gaussian during their propagation inside the GRIN fiber.
This is a fundamental requirement for any variational anal-
ysis. In recent works on Raman fiber amplifiers [6,7] and
Kerr-induced beam cleanup in GRIN fibers [14], considerable
reshaping of the beam can occur but the beam shape remains
nearly Gaussian. To check for stability of the signal beam, we
consider the evolution of an input Gaussian beam corrupted by
noise by adding small random fluctuations to the amplitude of
the input beam.

Figure 10 shows the intensity distribution at three dif-
ferent locations inside the GRIN fiber using contour plots
[Figs. 10(a)–10(c)] and 3D plots [Figs. 10(d)–10(f)]. It is
evident that random perturbations do not destroy the Gaussian
nature of the beam during its propagation inside a GRIN-fiber
amplifier. In fact, the beam becomes smoother as it propa-
gates down the GRIN fiber. These results are indicative of the
robustness of the Gaussian beams.

V. CONCLUSION

We have studied the Raman amplification of a signal beam
inside a multimode graded-index fiber with a semianalytical
variational approach, assuming that both the pump and sig-
nal are launched into the GRIN fiber in the form of cw or
quasi-cw Gaussian beams. The variational analysis provides
us with four coupled ordinary differential equations for the
four relevant parameters (amplitude, width, phase, and phase
curvature) that govern the evolution of the signal beam in-
side a GRIN fiber. These equations are much faster to solve
numerically compared to the coupled nonlinear wave equa-
tion satisfied by the pump and signal beams. For context,
a full numerical solution with acceptable accuracy for one
set of input parameters typically takes more than 1000 times
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more time compared to the solution of variational equations.
Variational analysis also provides considerably more physical
insight because it allows us to study the impact of important
nonlinear phenomena such as SPM, XPM, and self-focusing
in a controlled fashion.

We verified the accuracy of variational equations over a
wide range of input parameters by comparing their solutions
to the numerical predictions of the nonlinear wave equa-
tion governing the signal beam’s evolution. More specifically,
we used the variational equations to investigate the signal’s
evolution inside a GRIN Raman amplifier for different initial
widths of the pump and signal beams. This allowed us to
quantify the conditions under which the quality of a signal
beam could be improved, without its collapse owing to self-
focusing.

As expected, the widths of both the pump and signal
beams undergo rapid periodic oscillations as a consequence
of the self-imaging phenomena occurring in any graded-index
fiber. The pump-induced XPM and the Raman gain is found
to modulate the envelope of such oscillations for the signal
beam. Because of Raman amplification, the XPM-induced
modulation is damped in such a way that the average signal
width approaches the pump’s width at large distances.

Two conclusions can be drawn from the results given in this
paper. First, in the absence of SPM, the Raman-gain-assisted
narrowing of the signal beam can occur only when the input
width of the pump beam is comparable to or smaller than that

of the signal. As a result, Raman-induced beam cleanup is
unlikely to occur in cladding pumped Raman amplifiers where
the pump beam is always considerably wider than the signal
beam. Second, one must avoid the collapse of the signal beam
induced by self-focusing. In practice, this can be realized
by decreasing the input signal power or the length of the
GRIN fiber, to ensure that the signal’s power remains below
the critical power at which self-focusing leads to the beam’s
collapse.

While time-consuming numerical simulations may be
needed when gain saturation and pump depletion must be in-
cluded, the variational method is useful for two reasons. First,
it can be used to scan the design parameters of an experiment
in a time-efficient fashion and determine the optimum values
of these parameters. Second, it can provide physical insight
into the relative importance of different nonlinear phenomena
involved in the Raman-amplification process.
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