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A semi-analytic model of the amplification process is presented for Raman amplifiers made with graded-index
multimode fibers. When the pump beam remains much more intense than the signal being amplified, it evolves in
a self-similar fashion and recovers its initial width periodically. Using this feature, the width of the amplified signal
is found to satisfy an equation whose form is similar to that of a damped harmonic oscillator. We use this equation
to discuss the spatial beam narrowing occurring inside a Raman amplifier. In addition to oscillating with a period
∼1 mm, the beam also narrows down during its amplification inside a graded-index fiber on a length scale ∼1 m.
The main advantage of our simplified approach is that it provides an analytic expression for the damping distance
of width oscillations that shows clearly the role played by various physical parameters. © 2023 Optica Publishing

Group
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1. INTRODUCTION

Step-index silica fibers have been used for making Raman ampli-
fiers for nearly 50 years, and such amplifiers are used for a variety
of applications [1–3]. In recent years, graded-index (GRIN)
multimode fibers have been used as Raman amplifiers, mainly
motivated by two properties of such fibers. First, a larger core
diameter allows for higher output powers exceeding kilowatt
levels [4–7]. Second, the spatial quality of the amplified beam
is improved through a phenomenon known as the Raman-
induced beam cleanup [8,9]. Self-imaging, an intrinsic property
of GRIN fibers designed with a parabolic refractive-index pro-
file [10], also plays an important role during the amplification
process.

A mode-based description of the Raman-induced beam-
cleanup process has shown that the use of GRIN fibers is
essential for the improvement in the beam’s quality [8]. It makes
use of the modal overlap factors and reveals that the effective
Raman gain is larger for lower-order Stokes modes. As a result,
even when the incoming signal beam excites many modes of the
GRIN fiber at the input end, most of its power appears in a few
low-order modes of the fiber at the output end. An extensive
numerical model of the Raman amplification process based on
the modal expansion has been developed recently for studying
brightness enhancement in GRIN-fiber Raman lasers [11]. It
included important processes such as intracavity spatial filtering
and random linear mode coupling, together with the nonlinear
effects such as self-phase modulations (SPMs) and cross-phase
modulations (XPMs). The predicted narrowing of the amplified

beam agreed with the experimental data. By necessity, such a
numerical model becomes time-consuming as more and more
modes are taken into account. It also hinders physical insight
and does not reveal what parameters are most relevant for beam
narrowing to occur.

In this work, a semi-analytic model of the amplification proc-
ess is developed for GRIN-fiber Raman amplifiers. Section 2
provides mathematical details and identifies the approxima-
tions that can be used to simplify the nonlinear coupled partial
differential equations satisfying the pump and signal fields.
An intense pump beam is found to evolve in a periodic fashion
because of self-imaging. We use this solution in Section 3 to
solve the equation governing amplification of the signal beam
and show that its width satisfies an equation whose form is
similar to that of a damped harmonic oscillator. This equation is
employed in Section 4 to discuss spatial narrowing of the signal
beam occurring during its amplification inside a GRIN-fiber
Raman amplifier. The main results are summarized in Section 5.

2. THEORY OF GRIN-FIBER RAMAN
AMPLIFIERS

We consider a GRIN fiber whose refractive index is designed to
decrease radially in a parabolic fashion and can be written as

n(ρ)= n0

(
1−

1

2
b2ρ2

)
+ n2|E |2, (1)
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where ρ =
√

x 2 + y 2 is the radial distance from the central
axis of the GRIN fiber (aligned with the z axis) and n0 is the
refractive index at ρ = 0. The index gradient b is defined as
b =
√

21/a , where a is the radius of the GRIN fiber’s core and
1 is the relative core-cladding index difference. The nonlinear
effects are included through the intensity dependence of the
refractive index resulting from the optical Kerr effect. The Kerr
coefficient n2 has a value of about 2.7× 10−20 m2/W for silica
fibers.

The pump and signal beams are launched at the input end of
the GRIN fiber located at z= 0. The total electric field at a dis-
tance z can be written as

E (r, t)= A p exp[i(k p z−ωp t)] + As exp[i(ks z−ωs t)],
(2)

where k j = n0(ω j )ω j/c with j = p, s and�=ωp −ωs is the
frequency shift of the signal from the pump (about 13.2 THz
for maximum Raman gain). Both waves are assumed to remain
polarized along the same direction.

For Raman amplification to occur, the nonlinear part,
n2|E |2, of the refractive index is modified to include the Raman
contribution as [2,12]

n2|E |2 = (1− f R)n2|E |2 + f R n2

∫
∞

0
h R(t ′)|E (t − t ′)|2dt ′,

(3)
where f R is the fractional Raman contribution (about 18%
for silica glass) and h R(t) is the Raman response function of
the material used to make the GRIN device; it is normalized
such that

∫
∞

0 h R(t)dt = 1. Using Eq. (2) within the integral of
Eq. (3), we obtain∫

∞

0
h R(t ′)|E (t − t ′)|2dt ′ = |A p |

2
+ |As |

2
+ A∗p As e−iδkz h̃ R(�)

+ A p A∗s e iδkz h̃∗R(�),
(4)

where δk = k p − ks and h̃ R(�) is the Fourier transform of
h R(t). The imaginary part of h̃ R(�) is related to the Raman
gain [2] at the signal’s frequency as gR = 2 f R n2(ωs /c )Im(h R).

When we use Eqs. (2)–(4) in Maxwell’s equations, make the
paraxial approximation, retain only the phase-matched terms,
and separate the pump and signal terms, we obtain the follow-
ing two coupled nonlinear equations for the pump and signal
amplitudes [12]:

∂ A p

∂z
+
∇

2
T A p

2ik p
+

i
2

k p b2ρ2 A p =
iωp

c
n2(|A p |

2
+ 2|As |

2)A p

−
ωp

2ωs
gR |As |

2 A p − αp A p ,

(5)

∂ As

∂z
+
∇

2
T As

2iks
+

i
2

ks b2ρ2 As =
iωs

c
n2(|As |

2
+ 2|A p |

2)As

+
1

2
gR |A p |

2 As − αs As , (6)

where the loss of the GRIN fiber has been added through the last
term. These equations include all linear and nonlinear effects for

a GRIN Raman amplifier operating in a quasi-continuous fash-
ion. In general, they must be solved numerically if one wants to
include the diffractive and self-imaging effects together with the
pump’s depletion and resulting saturation of the Raman gain.

We are interested in finding an approximate solution of
Eqs. (5) and (6), obtained with some reasonable assumptions. In
practice, the pump beam is much more intense than the signal
beam at the input end of the fiber. We make the assumption that
the GRIN fiber is short enough that the pump is not depleted
much and remains intense compared to the signal over the entire
length of the Raman amplifier. If we also neglect losses over this
length, Eqs. (5) and (6) are reduced to

∂ A p

∂z
+
∇

2
T A p

2ik p
+

i
2

k p b2ρ2 A p =
iωp

c
n2|A p |

2 A p , (7)

∂ As

∂z
+
∇

2
T As

2iks
+

i
2

ks b2ρ2 As =
2iωs

c
n2|A p |

2 As +
1

2
gR |A p |

2 As .

(8)
Notice that the pump equation is decoupled from the signal’s
equation and can be solved first to obtain A p(ρ, z).

For a CW pump in the form of a Gaussian beam, the solution
of Eq. (7) was found in 1992 in the form [13],

A p(ρ, z)=

√
Ip

f p
exp

[
−

ρ2

2w2
p f p
+ iφp(ρ, z)

]
, (9)

where Ip is the peak intensity,wp is the width of the pump beam
at z= 0, and the periodic function f p(z) is defined as

f p(z)= cos2(bz)+C 2
p sin2(bz). (10)

The parameter C p depends on the width and intensity of the
pump beam as

C p =

√
1− p

bk pw2
p
, p =

n2 Ip

2n0
(k pwp)

2. (11)

The dimensionless parameter p can be written as p = Pp/Pc ,
where Pp = (πw

2
p)Ip is the input power of the pump beam and

Pc = 2πn0/(n2k2
p) is the critical power at which its collapse

occurs owing to self-focusing.
Figure 1 uses the solution in Eq. (9) to show the periodic evo-

lution of a pump beam inside a GRIN fiber for input parameters

Fig. 1. Periodic focusing and self-imaging of the pump beam inside
a GRIN-fiber Raman amplifier. The beam’s width is reduced by a fac-
tor of 5 for C p = 0.2, and its intensity is enhanced by a factor of 25, at
distances such that bz= (m + 1

2 )π , where m is an integer.
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such that C p = 0.2. The pump beam compresses and expands
during each period such that it recovers its input shape and
width at distances such that bz=mπ , where m is an integer.
The maximum compression occurs in the middle of each period
where w/wp =C p , i.e., the parameter C p dictates the mini-
mum width of the pump beam in each cycle. When the pump’s
power is considerably below the critical power Pc , resulting in
p� 1 in Eq. (11), the self-focusing effects are relatively minor
and can be ignored.

3. AMPLIFICATION OF THE SIGNAL BEAM

In this section, we use the pump solution given in Eq. (9) to solve
Eq. (8) satisfied by the signal being amplified. We show that it is
possible to obtain an equation governing changes in the width
of the signal beam, after making a reasonable approximation.
As we saw in Section 2, the nonlinear SPM term has a relatively
minor effect on a pump beam whose input power is well below
the critical self-focusing level. Assuming that to be the case, the
XPM term containing n2 in Eq. (8) can also be ignored. The
pump-induced spatial cleanup effects are not included in our
simplified analysis based on the following linear equation for the
signal’s amplitude:

∂ As

∂z
+
∇

2
T As

2iks
+

i
2

ks b2ρ2 As =
1

2
gR |A p |

2 As . (12)

We can solve Eq. (12) approximately when the signal at the
input end is in the form of a Gaussian beam. We seek its solution
in a self-similar form as

As(ρ, z)= A0 exp

(
−
ρ2

2w2
+

ikh
2
ρ2
+ iψ

)
, (13)

where the four parameters (A0, w, h , and ψ) vary with z. We
use this form in Eq. (12) and approximate |A p |

2 from Eq. (9) as

|A p(ρ, z)|2 ≈
Ip

f p

(
1−

ρ2

w2
p f p

)
. (14)

This approximation is justified because the pump beam in prac-
tice is wider that the signal beam, and its shape is nearly parabolic
over the signal’s width. Equating the real and imaginary parts on
the two sides of Eq. (12) for terms containing different powers of
ρ, we obtain the following first-order differential equations for
the four parameters:

d A0

dz
=

gR Ip

2 f p
A0 − h A0, (15)

dw
dz
= hw−

gR Ip

2w2
p f 2

p
w3, (16)

dh
dz
=

1

k2
s w

4
− h2
− b2, (17)

dψ
dz
=−

1

ksw2
. (18)

The presence of the Raman gain modifies equations for both A0

andw. The amplitude in Eq. (15) is expected to increase with z

because of the Raman gain. However, as seen from Eq. (16), the
Raman gain also affects the width of the signal beam.

Consider first the case of a relatively wide pump beam
for which the last term in Eq. (16) can be neglected. Using
hw= dw/dz in Eq. (15), we can write this equation as

d
dz
(w2 A2

0)=
gR Ip

f p(z)
(w2 A2

0). (19)

Recalling that the signal’s power at any distance z is given by

Ps (z)=
∫ 2π

0
dφ

∫
∞

0
|As (ρ, z)|2ρdρ = (πw2)A2

0, (20)

we can write Eq. (19) in the form

d Ps

dz
=

gR Ip

f p(z)
Ps . (21)

Integrating this equation, the signal’s power is found to increase
inside the amplifier as

Ps (z)= Ps (0) exp

(
gR Ip

∫ z

0

dz′

f p(z′)

)
. (22)

Because of the GRIN-induced self-imaging of the pump
beam, P (z) oscillates in a periodic fashion, as the signal is
amplified through the Raman gain. It is important to consider
the length scale of such oscillations. Whereas amplification
occurs over a length scale of meters, the self-imaging period for
typical GRIN fibers is∼1 mm. For this reason, one can average
the integral in Eq. (22) over one self-imaging period. Using
Ip = Pp/(πw

2
p), where Pp is the input pump power, we obtain

Ps (z)= Ps (0) exp(g effz), g eff =
gR Pp

πw2
pC p

. (23)

This result shows that the signal’s power grows exponen-
tially inside a GRIN Raman amplifier with an effective gain
coefficient that depends on the pump beam’s parameters.

Our main interest in this work is in finding how the width
of the signal beam changes during its amplification inside the
GRIN Raman amplifier. Calculating the second derivative of
w from Eq. (16) and using Eq. (17), we obtain the following
equation for the widthw(z):

d2w

dz2
+ b2w=

1

k2
s w

3
−

gR Ip

2w2
p

d
dz

(
w3

f 2
p

)
. (24)

Thus, the problem has been reduced to solving a single second-
order differential equation for the beam’s width. Physically, the
two terms on the right side of this equation represent, respec-
tively, the effects of diffraction and of the Raman gain. For pump
beams much wider than the signal, the Raman term in Eq. (24)
becomes negligible. The width equation in this specific case can
be solved analytically to obtain [12,13]

w(z)=ws

√
f s (z), f s (z)= cos2(bz)+C 2

s sin2(bz),
(25)

where Cs = (bksw
2
s )
−1 and ws is the initial width of the signal

beam at z= 0. Similar to the pump beam, the signal beam also
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evolves in a periodic fashion dictated by the self-imaging phe-
nomenon. The self-imaging period, defined as L p = 2π/b, is
only about 1 mm for typical GRIN fibers. Notice that L p is the
same for both the pump and signal beams but the compression
factors, C p and Cs , become different for them.

4. RAMAN-INDUCED NARROWING OF THE
SIGNAL BEAM

In this section, we solve Eq. (24) approximately to study how the
width of the signal beam is affected by the Raman gain. For this
purpose, it is useful to normalize Eq. (24) using s =w/ws and
ξ = bz, wherews is the initial width of the signal beam at z= 0.
The normalized form of the width equation is

d2s
dξ 2
+ s =

C 2
s

s 3
−µ

d
dξ

(
s 3

f 2
p

)
, (26)

where the two dimensionless parameter are defined as

µ=
gR Ipw

2
s

2bw2
p
, Cs =

w2
g

w2
s
, (27)

with w2
g = 1/(bks ). Physically, wg represents the width of

the fundamental mode of the GRIN fiber at the signal’s fre-
quency. Its value is about 5 µm for GRIN fibers. The last term
in Eq. (26), representing the effects of the Raman gain, depends
on both the intensity and the width of the pump beam inside the
GRIN medium.

The second-order nonlinear differential equation in Eq. (26)
can be solved numerically with a suitable technique such as the
Runge–Kutta method. Figure 2 shows the results for µ= 0.01
(top) or µ= 0.02 (bottom) using Cs = 0.2 and C p = 0.1. As
expected, the signal’s width oscillates because of self-imaging.
The new feature in Fig. 2 is that the amplitude of oscilla-
tions decreases the width distance, and the damping rate of
oscillations increases withµ.

The important question is what values of µ are realistic for a
GRIN Raman amplifier. Using Ip = Pp/(πw

2
p), where Pp is

the input pump power, we can write the parameterµ in the form
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Fig. 2. Oscillations in the width of the signal beam for two values of
the parameter µ. The amplitude of oscillations does not change when
µ= 0.
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Fig. 3. Predicted decrease in the width of the signal beam as a func-
tion of z/L p for three values of the parameterµ.

µ=
gR Pp L pw

2
s

4π2w4
p

. (28)

This expression shows that the width of the pump beam play a
crucial role becauseµ scales inversely with it as 1/w4

p . When the
pump beam is much wider than the signal beam,µmay become
so small (µ< 10−6) that little narrowing of the amplified signal
can occur over the length of the Raman amplifier. Even when
the two beams have comparable widths at the input end, the
value ofµ is∼10−4, indicating that significant narrowing of the
signal beam is expected to occur after thousands of oscillations
in Fig. 2.

As an example, Fig. 3 shows the numerically predicted
decrease in the width of a signal beam over 400 self-imaging
periods for three values ofµ using C p = 0.1 and Cs = 0.2. The
maximum value of the width at the end of each self-imaging
period was plotted to show the envelope without any oscil-
lations. Relatively large values of µ were used to reduce the
computing time, but the same qualitative behavior is expected
for smaller values of µ. In all cases, the width decreases in an
exponential fashion. For µ= 0.002, it appears to have reached
its final value that is only 45% of the input width at a distance of
400L p . For smaller values of µ, a longer distance is needed to
reach the steady-state value of the width.

As numerical solutions do not provide much physical insight,
we solve Eq. (26) approximately. Its solution is known when
µ= 0 and can be written from Eq. (25) as

s (ξ)=
√

f s (ξ), f s (ξ)= 1− (1−C 2
s )sin

2ξ . (29)

The Raman term affects this solution over a much longer length
scale compared to L p . However, this term depends on f 2

p (ξ)

and varies rapidly with ξ . To include its impact approximately,
we replace f 2

p (ξ)with its average value and write Eq. (26) as

d2s
dξ 2
+

3µs 2

〈 f 2
p 〉

ds
dξ
+ s =

C 2
s

s 3
, (30)

where the angle brackets denote the average over one
self-imaging period. The average of f 2

p (ξ) over one self-
imaging period can be calculated from Eq. (10) and is found
to be

〈 f 2
p 〉 =C 2

p +
3

8
(1−C 2

p)
2. (31)
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As a further simplification, we replace s 2 with 〈 f s 〉 in the
second term in Eq. (30). This is justified as long as L p is a small
fraction of the amplifier’s length (>10 m in practice). If we
also neglect the small term containing C 2

s , we obtain a linear
equation similar to that of a damped harmonic oscillator,

d2s
dξ 2
+ 2γd

ds
dξ
+ s = 0, (32)

where the damping rate is governed by the parameter γd

defined as

γd =
3µ〈 f s 〉

2〈 f 2
p 〉

. (33)

The solution of Eq. (32) for an initially collimated beam is
s (ξ)= cos ξ exp(−γdξ). We can include the diffraction effects,
governed by the last term in Eq. (30), by writing its approximate
solution as s (ξ)=

√
f s e−γd ξ . In terms of the original variables,

the solution takes the form

w(z)=ws

√
f s (z) exp(−γd bz). (34)

This analytic solution shows that the width of the signal beam
oscillates inside a GRIN Raman amplifier with a period∼1 mm,
but the amplitude of oscillations decreases on a length scale Ld

governed by the decay rate γd . This length scale depends on the
input parameters as

Ld =
1

bγd
=

8πw4
p〈 f

2
p 〉

3gR Ppw2
s
(1+C 2

s )
−1, (35)

where we used 〈 f s 〉 = (1+C 2
s )/2.

In practice, the parameter C p for the pump beam is much
smaller than 1. Neglecting C 2

p in Eq. (31), we can write Eq. (35)
in terms of the known input parameters as

Ld =
πw4

p(1+C 2
s )
−1

gR Ppw2
s

. (36)

Noting that Ld scales as w4
p , we conclude that the width of the

pump beam plays a crucial role. Specifically, for wide pump
beams, Ld may be much longer than the length of the Raman
amplifier, resulting in negligible narrowing of the signal beam.

5. DISCUSSION AND CONCLUSIONS

The length Ld depends on the input power of the pump beam
as well as on the initial widths of the pump and signal beams.
We can estimate its value for silica-based GRIN fibers using
gR = 1× 10−13 m/W for the Raman gain at wavelengths near
1 µm [2]. At a pump power of 1 kW, the peak intensity is close
to 1 TW/m2. If we usewp/ws = 2, Ld is estimated to be about
20 m. This value is much larger compared to the self-imaging
period (about 1 mm) in typical GRIN fibers. As the fiber’s
length in a Raman amplifier typically exceeds 20 m, consid-
erable narrowing of the signal beam can occur over its length.
If the signal beam’s width is reduced to near 5 µm before the
output end of the GRIN fiber, it will nearly match the width of
the fiber’s fundamental mode. As a result, most of the signal’s
power at the output end will be in the fundamental mode of the

GRIN fiber. This conclusion agrees with a detailed mode-based
numerical model [11].

To judge the usefulness of Eq. (36) in practice, we focus on
two recent experiments on Raman amplifiers. A 100-m-long
double-clad GRIN fiber was used in a 2018 experiment [4].
Its core, with a diameter of 62.5 µm, was encased in the inner
cladding whose diameter was 125 µm, but the outer-cladding
diameter exceeded 300 µm. The GRIN fiber was cladding-
pumped at 1018 nm using a relatively wide pump beam. The
output power of the amplified 1060-nm signal was 654 W when
the pump power was 766 W, resulting in a conversion efficiency
of 85%. The quality of the output beam was judged by measur-
ing its M2 factor [14]. The measured value was 4.2, indicating
a quality far from that of a Gaussian beam. The estimated value
of Ld for this experiment exceeds 200 m because of the use of a
much wider pump beam compared to that of the signal.

In a 2020 experiment [5], only a 20-m-long piece of GRIN
fiber was employed to suppress the onset of the second-order
Stokes inside the amplifier. The fiber has a single cladding of
125 µm diameter, and its core had a diameter of 62.5 µm. The
pump beam was relatively narrow because it was launched using
fibers of 20-µm core diameters. The 1130-nm signal beam
could be amplified up to a power level of 2 kW, with a conver-
sion efficiency of 80%. The measured value of M2 was close
to 2.8 at the high pump-power level used in this experiment.
This improvement in beam’s quality is expected from Eq. (36)
because Ld is reduced to near 30 m in this experiment, resulting
in a narrower signal beam, with a large fraction of its power in
the fundamental mode of the GRIN fiber.

It is important to emphasize that the results of this paper
should not be used for a quantitative comparison with the
experiments in view of the approximations and simplifications
made in obtaining them. The analysis ignores the polarization
effects and assumes that both pump and signal are coherent,
CW, Gaussian-shaped beams. It does not make use of the
modal description and cannot include random mode cou-
pling that occurs in long fibers. The analysis also neglects the
pump-induced XPM effects, assuming that the pump’s power
is considerably below a critical self-focusing threshold. These
approximations are reasonable for single-clad GRIN fibers,
pumped longitudinally by launching an intense Gaussian beam
at power levels below the self-focusing threshold [5]. However,
their use becomes questionable for cladding-pumped Raman
amplifiers employing much wider pump beams with a nearly flat
intensity profile.

In conclusion, a simple semi-analytic model is presented
that allows us to study spatial beam narrowing in GRIN-fiber
Raman amplifiers, pumped such that the optical gain is spatially
nonuniform in the radial direction. An analytic expression for
the width of the signal beam is obtained after making some
reasonable approximations. It shows that the signal beam nar-
rows down on a length scale ∼1 m, as it is amplified inside the
GRIN fiber, while exhibiting periodic self-imaging on a length
scale ∼1 mm. The predicted beam narrowing has its origin in
the pump-induced radial dependence of the optical gain. The
main advantage of our simplified approach is that it provides an
analytic expression for the damping rate of oscillations, which
shows clearly the role played by various physical parameters. For
example, the width of the pump beam is found to play a crucial
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role. Little improvement in spatial quality of the amplified beam
is likely to occur when the Raman amplifier is cladding-pumped
using wide pump beams. In contrast, considerable improve-
ment in the beam’s quality can occur when the pump and signal
beams have comparable sizes and are launched together into the
GRIN fiber.
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