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Raman-induced mode coupling in temporal waveguides formed by short solitons
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We study the propagation of optical pulses trapped inside a temporal waveguide formed by two solitons in a
dispersive nonlinear medium such as an optical fiber. The solitons are short enough that they decelerate as their
spectra shift continuously toward the red side because of intrapulse Raman scattering. We show that the shape
of a probe pulse trapped between the two solitons evolves in a periodic fashion, while its spectrum shifts toward
the blue side. We develop a coupled-mode theory showing that such changes occur because of mode coupling
induced by the deceleration of the short solitons, resulting in a curved waveguide. A simplified two-mode model
is used to introduce a single-parameter governing modal coupling and to find the condition under which coupling
becomes weak enough that the probe pulse blueshifts its spectrum without changes in its pulse shape.
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I. INTRODUCTION

The interaction of optical pulses with a temporal boundary
inside a dispersive medium has recently attracted considerable
attention [1–6]. A temporal boundary is formed when the
refractive index of the medium changes at a certain time. In
the context of photon acceleration in plasmas [2,3], changes
in the refractive index can be induced through an ionization
front that creates a moving boundary. Such a moving bound-
ary can also be produced using nonlinear optics. Sending a
strong pump pulse through an optical fiber creates a mov-
ing boundary via the optical Kerr effect [4–6]. When such a
boundary is formed inside a dispersive medium, a temporal
analog of reflection occurs when a weak probe pulse inter-
acts with the boundary [4]. When the index change is large
enough, the probe pulse is totally reflected at this bound-
ary, and its speed changes because of a large shift in its
wavelength. This phenomenon has also been studied as an
optical analog of the event horizon associated with a black
hole [7–11].

Two moving boundaries that are separated in time can form
a temporal waveguide that confines pulses to the time win-
dow created by the two boundaries [12]. Similar to a spatial
waveguide, such a temporal waveguide has a set of modes
with different shapes that propagate inside the temporal
waveguide without any distortion.

If a pump pulse is used to create a moving temporal bound-
ary within a nonlinear dispersive medium, its shape should
not change much with propagation. One way to realize this
is to ensure that the pump pulse propagates as a fundamental
soliton in that medium. In the case of optical fibers, stable
solitons form when pump pulses are not too short (width
>1 ps). The situation changes for femtosecond pump pulses
because several higher-order phenomena affect such pulses,
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the most important being the intrapulse Raman scattering
[13], which slows down the soliton by redshifting its spec-
trum continuously. Such solitons are called Raman solitons.
A probe pulse’s interaction with a Raman soliton has been
studied [14–16] and it was found that the probe pulse can be
trapped by the Raman soliton. There have also been studies
on trapping of weak pulses between two solitons, effectively
forming a temporal waveguide [17–20].

When two Raman solitons are created by a pair of short
identical pump pulses, separated in time by a fixed delay,
they form a temporal waveguide that is different from the
waveguides studied earlier [6]. Because of intrapulse Raman
scattering, both Raman solitons slow down identically, and the
temporal window associated with the waveguide shifts in time
continuously. In this paper, we study the evolution of a trapped
probe pulse in such a decelerating temporal waveguide. We
show that this type of temporal waveguide is analogous to a
spatial waveguide whose core is curved or bent. Similar to
the spatial case, the bending leads to coupling among differ-
ent modes of the waveguide. We show that a trapped probe
pulse undergoes periodic changes in its shape resulting from
mode coupling, while its spectrum blueshifts continuously to
ensure that its speed matches the speed of pump pulses. We
develop an analytic approach based on coupled-mode theory
and show that its predictions agree well with the numerical
results.

The paper is organized as follows: Sec. II introduces the
numerical model used to simulate the propagation of probe
pulses in a temporal waveguide formed by two Raman soli-
tons. Section III solves the coupled pump-probe equations
numerically and discusses the behavior of a probe pulse
trapped inside the waveguide. In Sec. IV, a noninertial frame
in which the waveguide appears stationary is introduced. Us-
ing this frame, a coupled-mode theory is developed in Sec. V.
This theory is used in Sec. VI to discuss the special case
in which only two low-order modes are coupled strongly.
A parameter indicative of the strength of mode coupling is

2469-9926/2023/107(3)/033512(8) 033512-1 ©2023 American Physical Society

https://orcid.org/0000-0002-1957-7825
https://orcid.org/0000-0003-4486-8533
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.107.033512&domain=pdf&date_stamp=2023-03-21
https://doi.org/10.1103/PhysRevA.107.033512


ZHANG, DONALDSON, AND AGRAWAL PHYSICAL REVIEW A 107, 033512 (2023)

introduced and the conditions under which mode coupling
becomes negligible and the probe pulse evolves without
changing its shape is found. The main conclusions are sum-
marized in Sec. VII.

II. PUMP-PROBE EQUATIONS

We consider a single-mode optical fiber as an example
of a dispersive nonlinear medium. The generalized nonlin-
ear Schrödinger equation is known to provide an excellent
model for propagation of short optical pulses in such a
medium [13]:

∂A

∂z
−

∑
m � 2

im+1

m!
βm

∂mA

∂tm

= iγ A(z, t )
∫ ∞

−∞
R(t ′)|A(z, t − t ′)|2dt ′. (1)

The electric field E (z, t ) is related to the slowly varying
envelope A(z, t ) as

E (z, t ) = 1
2 (A(z, t ) exp{i[β(ω1)z − ω1t]} + c.c.), (2)

where ω1 is the pump’s center frequency and β(ω1) is the
propagation constant at this frequency. The variable t is re-
lated to the actual time ta as t = ta − β1z and βm = dmβ/dωm

is the mth−order dispersion parameter of the fiber at the
frequency ω1. Also, γ is the nonlinear parameter and the
nonlinear response function [13],

R(t ) = (1 − fR)δ(t ) + fRhR(t ), (3)

includes the Raman response through hR(t ), and fR is its
fractional contribution to R(t ).

As discussed earlier, pump pulses need to propagate as
fundamental solitons, and their wavelength should lie in the
anomalous dispersion region of the fiber where β2 < 0. To
form a temporal waveguide, the probe-pulse’s group velocity
should be close to that of pump pulses [12]. Moreover, a
probe pulse is reflected only if its wavelength lies in the
region where β2 > 0. These two conditions imply that the
probe-pulse’s frequency ω2 should be on the opposite side of
the zero-dispersion wavelength of the fiber such that its speed
nearly matches that of the pump pulses. As an example, the
zero-dispersion wavelength of a standard single-mode fiber is
near 1310 nm. If we choose 1500 nm as the wavelength of
pump pulses, the wavelength of probe pulse should be near
1145 nm.

Since the spectra of such pump and probe pulses are widely
separated, it is reasonable to separate the envelopes of the
pump and the probe pulses using

A(z, t ) = A1(z, t ) + A2(z, t )ei(�βz−�ωt ), (4)

where �ω = ω2–ω1 and

�β = β(ω2) − β(ω1) − β1(ω1)�ω. (5)

We substitute this form of A(z, t ) into Eq. (1) and sepa-
rate the terms falling in two distinct spectral regions. This
allows us to obtain two coupled pump-probe equations in

the form

∂A1

∂z
−

∑
m � 2

im + 1

m!
βm1

∂mA1

∂tm

= iγ A1(1 − fR)(|A1|2 + 2|A2|2)

+ iγ fRA1

∫ ∞

−∞
hR(t ′)(|A1|2 + |A2|2)(z, t − t ′)dt ′, (6)

∂A2

∂z
−

∑
m � 2

im+1

m!
βm2

∂mA2

∂tm

= iγ A2(1 − fR)(|A2|2 + 2|A1|2)

+ iγ fRA2

∫ ∞

−∞
hR(t ′)(|A2 |2 + |A1|2)(z, t − t ′)dt ′, (7)

where we neglected the terms that lie outside the pump
and probe spectral regions. Such terms originate mostly from
four-wave mixing, and can be neglected when the underlying
phase-matching condition is not satisfied.

We solve the preceding coupled pump-probe equations
numerically with the split-step Fourier method [13]. In our
simulations, we used the following functional form for the
Raman response function [21]:

hR(t ) = (1 − fb)
τ 2

1 + τ 2
2

τ1τ
2
2

e−t/τ2 sin
t

τ1
+ fb

2τb − t

τ 2
b

e−t/τb,

(8)

with τ1 = 12.2 fs, τ2 = 32 fs, τb = 96 fs, fb = 0.21, and fR =
0.245.

III. NUMERICAL SIMULATIONS

We consider the situation where the probe pulse is located
in the middle of two identical pump pulses that form two
Raman solitons inside an optical fiber. Mathematically, we
solve the coupled pump-probe equation with the following
input at z = 0:

A1(0, t ) = √
P1

[
sech

(
t − �T /2

T1

)
+ isech

(
t + �T /2

T1

)]
,

(9)

A2(0, t ) = √
P2 exp

(
− t2

2T2
2

)
, (10)

where �T is the separation between the two pump pulses
of width T1. Their peak power is chosen such that P1 =
|β21|/γ T 2

1 corresponds to a fundamental soliton. The 90◦
phase shift between the two pump pulses is introduced to
prevent any nonlinear interaction between them [13]. The
probe pulse has a Gaussian shape and its width T2 is chosen to
be considerably larger than that of pump pulses. In contrast,
peak power P2 of the probe is much smaller compared to that
of the pump pulses to prevent its influence on the pump pulse.

As a specific example, we choose T1 = 200 fs, T2 =
1 ps, and �T = 5 ps. The width of probe pulse approx-
imately matches the fundamental mode of the temporal
waveguide formed by two pump pulses. The values of dis-
persion parameters, β21 = −β22 = −13.4 ps2/km and β31 =
β32 = 0.07 ps3/km, correspond to a silica fiber pumped at
1500 nm. All dispersion terms higher than third order were
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FIG. 1. (a), (c) Temporal and (b), (d) spectral evolutions of pump
(top) and probe (bottom) pulses over a 1-km-long fiber. Probe pulse
is trapped within the temporal waveguide formed by two Raman
solitons. The intensity is plotted on a logarithmic (dB) scale.

neglected in our simulations. The nonlinear coefficient γ is 2
W km−1.

Figure 1 shows the temporal and spectral evolution of
the pump (top) and probe (bottom) pulses for a 1-km-long
fiber. As expected, the spectrum of pump pulses continuously
redshifts because of intrapulse Raman scattering. In the time
domain, the trajectory of pump pulses is bent in a parabolic
fashion because their deceleration caused by the spectral red-
shift produces a time delay varying as z2.

The evolution of the probe pulse in Fig. 1(c) shows clearly
that it is trapped within the temporal waveguide formed by
two solitons. In the absence of pump pulses, the probe’s trajec-
tory would be vertical, its spectrum would remain unchanged,
and its width would increase because of dispersion. When the
two pump pulses form a waveguide, the probe pulse is trapped
between them and is forced to decelerate with them. In the
spectral domain, the probe’s spectrum shifts toward higher
frequencies (a blueshift), and this shift is required for its speed
to decrease. An interesting feature seen in Fig. 1(d) is that,
although the pump’s spectrum redshifts linearly with distance,
the probe’s spectrum does not do so. It exhibits a periodic evo-
lution pattern in addition to the blueshift. In the time domain,
the probe pulse also changes its shape in a periodic fashion.
When the probe pulse collides with the soliton, it bounces
back and its spectrum is shifted. This is the temporal reflection
effect discussed in Ref. [4]. It can also be interpretated as
the Doppler effect in a dispersive system. To understand the
origin of these features, we develop a semianalytic approach
in the next section. It reveals that the decelerating temporal
waveguide is the temporal analog of a bent (or curved) spatial
waveguide. The periodic spatial and temporal features result
in both cases from coupling between the waveguide’s modes
induced by such bending.

IV. NONINERTIAL FRAME

The pump equation in Eq. (6) becomes decoupled from
the probe equation when we neglect the terms containing

|A2|2 for weak probe pulses. If we also neglect the third-
and higher-order dispersion terms, the pump equation can
be solved approximately for pump pulses forming solitons
[13]. Even though the soliton’s shape does not change, its
frequency and position change such that the solution has the
form

A1(z, t ) =√
P1

[
sech

(
t − �T /2 − qp

T1

)

+ isech

(
t + �T /2 − qp

T1

)]
e−i	pt+iφp, (11)

where the Raman-induced frequency and temporal shifts are
given by

	p = −8TR|β21|z
15T 4

1

, qp = 4TRβ2
21z2

15T 4
1

= az2. (12)

The parameter TR has a value of about 3 fs found from the
Raman response function [13]. The coefficient a, introduced
using qp = az2, sets the quadratic delay of the pump pulse.
The phase φp is not relevant for the following discussion.

Given the form in Eq. (11), it is beneficial to work in a
noninertial frame in which the trajectory of pump solitons
does not shift. This is done through the transformation

τ = t − az2. (13)

In this frame, the temporal shape of each pump-pulse
power does not change with z, i.e., |A1(z, τ )|2 = |A1(0, τ )|2.
However, a new term appears in the probe Eq. (7):

∂A2

∂z
− 2az

∂A2

∂τ
+ i

2
β22

∂2A2

∂τ 2
= ib(τ )A2, (14)

where we kept only the dominant m = 2 dispersion term and
defined b(τ ) as

b(τ ) = 2γ (1 − fR)|A1(τ )|2 + γ fR

∫ ∞

−∞
hR(τ ′)|A1(τ − τ ′)|2

× dτ ′ ≈ γ (2 − fR)|A1(τ )|2. (15)

The approximate form of b(τ ) holds for probe pulses con-
siderably wider than pump pulses.

We use Eq. (14) in the next section to find the waveguide
modes and to study the Raman-induced coupling among them.
If the second term containing the parameter a is absent in this
equation, its form becomes identical to the 1D Schrödinger
equation, with z playing the role of time and b(τ ) acting as
the potential created by the pump pulses. The term containing
a results from the use of a noninertial frame and its depen-
dence on z makes the Hamiltonian “time dependent.” It per-
turbs a temporal waveguide such that its modes keep changing
with z.

V. COUPLED-MODE EQUATIONS

We write Eq. (14) in the form of a Schrödinger equation as

−i
∂A2

∂z
= Ĥ (z)A2(z, τ ), (16)

where the Hamiltonian is given by

Ĥ (z) = −β22

2

∂2

∂τ 2
− 2iaz

∂

∂τ
+ b(τ ). (17)
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FIG. 2. First two modes of the temporal waveguide formed by
two solitons with T1 = 0.2 ps and �T = 5 ps.

Recalling that z plays the role of time and τ that of a spatial
coordinate, Eq. (16) shows that we are dealing with a time-
dependent Hamiltonian. We can find the eigenmodes of this
Hamiltonian for any value of z, but they will evolve with z.
We adopt the approach used for a harmonic oscillator whose
frequency varies with time [22].

Let ψp(z, τ ) be the pth eigenmode of the Hamiltonian with
the eigenvalue �βp(z), i.e.,

Ĥ (z)ψp(z, t ) = �βp(z)ψp(z, t ). (18)

The eigenmodes at z = 0 can be found numerically using
the same parameters as those in Fig. 1. The first- and second-
order modes are shown in Fig. 2. The two modes resemble the
eigenmodes of a quantum well because each soliton acts as a
high-index barrier.

In Eq. (17), the second term containing az has its
origin in the group-velocity mismatch between the pump
and probe pulses. This mismatch can be compensated if the
probe pulse shifts its frequency to match the group veloc-
ity of the pump. Based on this concept, the eigenmodes
and eigenvalues of Eq. (18) at any distance z are found

to be

ψp(z, τ ) = ψp(0, τ ) exp(−i2azτ/β22), (19)

�βp(z) = �βp(0) − 2a2z2/β22. (20)

It is easy to conclude that the temporal shape of the eigen-
modes does not change on propagation, but they undergo a
frequency shift that increases linearly with the propagation
distance. This shift has its origin in the linear redshift of pump
pulses resulting from intrapulse Raman scattering. However,
its sign is opposite to that of pump pulses, indicating that the
mode frequencies shift toward the blue side.

Let us consider the situation in which a specific eigenmode,
say ψp(0, τ ), is excited at the input end of the temporal
waveguide. If Ĥ (z) changes slowly enough that the adia-
batic approximation holds, this mode will evolve to become
ψp(z, τ ) without coupling to other modes [22]. From Eq. (20),
the mode shape will not change even though its frequency will
shift toward the blue side.

In general, a probe pulse will excite multiple modes of
the temporal waveguide, and its shape will change because
of the coupling among different modes taking place during its
propagation. To study this mode coupling, we decompose the
probe pulse into the eigenmodes of Ĥ (z) as

A2(z, τ ) =
∑

p

Cp(z)ψp(z, τ ) . (21)

Using this expansion in Eq. (16), we obtain

∑
p

dCp

dz
ψp +

∑
p

Cp
∂ψp

∂z
= i

∑
p

Cp�βpψp. (22)

After decomposing ∂ψp/∂z in terms of the eigenmodes,
we obtain the following evolution equation for the modal
amplitudes [22]:

dCp

dz
+

∑
n

dpnCn = iCp�βp, (23)

where dpn = 〈ψp|∂ψn/∂z〉 is given by

dpn = −2ia

β22

∫ ∞

−∞
τψ∗

p (0, τ )ψn(0, τ )dτ = −2ia

β22
Tpn (24)

Noting that ψp(0, τ ) is real, Tpn is defined as

Tpn = Tnp =
∫ ∞

−∞
τψp(0, τ ) ψn(0, τ )dτ. (25)

The last term in Eq. (23) can be eliminated with the trans-
formation

Cp(z) = Ep(z) exp

[
i
∫ z

0
�βp(z′)dz′

]
. (26)

In terms of Ep, the set of coupled-mode equations takes the
form

dEp

dz
= 2ia

β22

∑
n

TpneibnpzEn, (27)

where bnp is defined as

bnp = �βn(z) − �βp(z) = �βn(0) − �βp(0). (28)
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FIG. 3. Temporal evolution of probe pulse in the noninertial
frame with the same parameter values used in Fig. 1. Left: Solution
of Eq. (14). Right: Solution based on the coupled-mode equations in
Eq. (27).

This set of relatively simple equations governs the Raman-
induced coupling of the modes of a temporal waveguide.
Notice that only the difference of initial eigenvalues at z = 0
appears in Eq. (28) because all eigenvalues change with z by
the same amount in Eq. (20). Note that in this case, there is no
geometrical phase because Tnn = 0 from the parity symmetry
of the eigenmode.

Using the same parameter values used for Fig. 1, we sim-
ulated the probe-pulse propagation in the noninertial frame in
two different ways. The results are shown in Fig. 3, where we
plot the temporal evolution of the probe pulse in a 1-km-long
fiber. On the left, we directly solved the wave equation given
in Eq. (14). Results shown on the right were obtained by
solving the coupled-mode equations in Eq. (27). In both cases,
white dashed lines show the trajectories of the pump solitons
that become vertical (no temporal shift) in the noninertial
frame used here. The probe pulse, trapped between the two
pump solitons, undergoes periodic changes in its shape, which
become more apparent in the noninertial frame compared to
the results shown in Fig. 1. The excellent agreement between
the two approaches verifies the accuracy of our coupled-
mode equations and justifies the approximations made in their
derivation.

It should be apparent from Eq. (27) that |Ep(z)|2 is a
good measure of the fraction of energy of the probe pulse
in a specific mode of the temporal waveguide at a distance
z. Changes in the distribution of energy in different modes
of the waveguide are shown in Fig. 4. As seen there, even
though the first mode initially carries most energy at z = 0,
coupling of this mode to higher-order modes leads to transfer
of energy to other modes in a periodic fashion. This energy
transfer manifests as periodic changes in the probe-pulse’s
shape in Fig. 3. However, the total energy of all the modes is
conserved during the propagation. This is because the probe

FIG. 4. Changes occurring with distance in the distribution of
pulse’s energy among different modes. Parameter values are the same
as in Fig. 1.

pulse remains trapped during propagation and there is no
energy exchange between the pump and probe.

VI. MODEL BASED ON TWO MODES

Mode coupling is an undesirable feature for practical ap-
plications. For example, the blueshift of the probe’s spectrum
can be useful for frequency conversion applications. However,
because of mode coupling, probe-pulse’s spectrum does not
shift to the blue side in a controlled fashion. In this section, we
use the coupled-mode equations to find the conditions under
which coupling of the fundamental mode to its neighboring
modes can be largely suppressed. In this situation, a temporal
waveguide can be used to shift the probe’ spectrum toward the
blue side in an adiabatic fashion.

We have seen in Sec. V that the evolution of a probe pulse
is governed by a z-dependent Hamiltonian. When the
Hamiltonian changes slowly with z, the fundamental mode
evolves adiabatically without coupling to neighboring modes
of the waveguide. Close to this adiabatic limit, mode coupling
is relatively weak, and the fundamental mode should couple
only to the second mode. This suggests that we can get con-
siderable physical insight by considering only the first two
modes in Eq. (27) and solving the following set of two coupled
equations:

dE1

dz
= 2ia

β22
T12eib21

z
E2,

dE2

dz
= 2ia

β22
T12e−ib21zE1. (29)

The preceding equations are identical to those obtained for
a directional coupler and can be solved easily because of their
linear nature. Assuming that only the fundamental mode is
excited at the input end, the energy in the second-order mode
is found to be

|E2(z)|2 = |E1(0)|2
(

4aT12

β22K

)2

sin2 Kz

2
, (30)
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where

K =
√

b2
21 + (4aT12/β22)2. (31)

Similar to a directional coupler, the mode’s energy os-
cillates with z with the period Lp = 2π/K and becomes
maximum in the middle of each period. Using Eq. (30),
the maximum energy fractional energy in the second order
mode is

|E2(z)|2max

|E1(0)|2 = F

1 + F
, (32)

where the parameter F is introduced as

F = (4aT12/β22b21)2. (33)

When a temporal waveguide is designed to ensure F << 1,
almost all energy of the probe pulse remains in the fundamen-
tal mode, and the mode evolves in an adiabatic fashion. When
F becomes close to 1, the fundamental mode does not evolve
adiabatically. The two-mode model ceases to apply for F > 1
because coupling to higher-order modes cannot be ignored.
For the results shown in Figs. 3 and 4, the estimated value
of F is 6.5. It is evident that more than two modes should be
included for such large values of F. The main conclusion is
that the mode coupling can be made negligible by ensuring
that F << 1.

The expression for F in Eq. (33) depends on T12, whose
value can be calculated from Eq. (25) but requires the mode
profiles that must be obtained numerically. To estimate the
values of F as simply as possible, we assume that pump pulses
are so short compared to the probe pulse that we can treat the
waveguide as a quantum well of width �T , surrounded by
walls of infinite potentials. The eigenfunctions and eigenval-
ues of such a quantum well are known in an analytic form, and
they can be used to find the parameters T12 and b21 in Eq. (33).
The use of these parameters leads to the following expression
for F:

F ≈ 1.68 × 10−4T 2
R �T 6/T 8

1 . (34)

We stress that Eq. (34) provides only a rough estimate of
F and should be used only for a qualitative understanding. To
estimate the numerical value of F for optical fibers, we use
the TR = 3 fs. F depends both on the widths and spacing of
two pump pulses used as temporal boundaries. High powers
of both of these parameters in Eq. (34) indicate that mode
coupling is very sensitive to the values of both of them. To
make F small, we need to either increase T1 or decrease
�T . Increasing T1 decreases the Raman-induced redshift and
reduces bending of the waveguide. In practice, the delay �T
between the two pump pulses is easily controlled. Its lower
values reduce the waveguide’s width and increase the differ-
ence in eigenvalues of different waveguide modes.

As seen in Eq. (34), F varies as (�T )6. Therefore, decreas-
ing �T by 50% should significantly suppress mode coupling
for the situation shown in Fig. 4. We keep all other param-
eters the same but choose �T = 2.5 ps and T2 = 0.5 ps.
The results are shown in Fig. 5. Temporal evolution of the
probe pulse should be compared to that in Fig. 3. Clearly,
distortion of the probe pulse is reduced considerably. Note
also that the probe’s spectrum shifts toward the blue much

FIG. 5. (a) Temporal and (b) spectral evolution of a probe pulse
(T2 = 0.5 ps) inside a temporal waveguide with �T = 2.5 ps.

more smoothly. The value of the parameter F is 0.0648 for
the parameters used here. As F 
 1, modal coupling should
be relatively weak. This is indeed the case in Fig. 6, where
the fractional energy of each mode is shown as a function of
z using the coupled-mode equations. The fundamental mode
dominates, and only a small fraction of its energy is trans-
ferred to the second mode in a periodic fashion. The results of
the two-mode theory [Eq. (30)] agree well with the solution
of the full coupled-mode equations [Eq. (27)] for such small
values of F.

For completeness, we also consider the strong-coupling
case by increasing the separation between the two pump
pulses to 10 ps. The resulting temporal waveguide supports
a large number of modes. The parameter F is 546 for this
waveguide, indicating that mode coupling would lead to pulse
distortion that is much more severe than that seen in Fig. 3.
The results are shown in Fig. 7 for a probe pulse with T2 =
2 ps. Coupling among a large number of modes severely

FIG. 6. Mode energies evolution in a 2.5-ps temporal waveguide
in Fig. 5. Dashed lines show the result from two-mode theory.
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FIG. 7. (a) Temporal and (b) spectral evolution of a probe pulse
(T2 = 2 ps) inside a temporal waveguide with �T = 10 ps.

distorts the shape of probe pulses, and the pulse’s spectrum
does not blueshift in a regular fashion.

VII. CONCLUSIONS

We have studied the propagation of optical pulses inside a
temporal waveguide formed by two short pump-pulse solitons
acting as high-index barriers. The wavelength of pump pulses
is chosen such that they form solitons inside a dispersive
nonlinear medium such as an optical fiber. The solitons are
short enough that they decelerate as their spectra shift con-
tinuously toward the red side because of intrapulse Raman
scattering. We show that the temporal waveguide formed by
such solitons is not stationary, and the situation is analo-
gous to a three-layer waveguide whose core is curved in
space.

We use the coupled pump-probe equations to show that
a probe pulse shifts its spectrum toward the blue side to
match its speed with that of pump pulses so that it remains
trapped inside such a temporal waveguide. However, the shape
of the probe pulse evolves in a periodic fashion inside the
waveguide. To understand this behavior, we make use of a
noninertial reference frame for the probe pulse and find the
eigenmodes and eigenvalues of the curved waveguide in this

frame. We use these modes to develop a set of coupled-
mode equations, showing that shape changes occur because
of mode coupling induced by the Raman-induced deceleration
of pump solitons used to make the waveguide. A simplified
two-mode model is used to introduce a single parameter gov-
erning modal coupling and to find the condition under which
coupling becomes weak enough that the probe pulse blueshifts
its spectrum without changes in its pulse shape.

From a practical standpoint, our study shows that the ef-
fects of stimulated Raman scattering must be considered when
two femtosecond pump pulses with a fixed separation are
employed to form a temporal waveguide that traps a probe
pulse between the two pump pulses. The spectral blueshift
of the probe pulse in such a waveguide can be useful for
applications that require a tunable source of short pulses. It
is difficult to change the wavelength of low-energy pulses.
The technique used in this work transfers the Raman-induced
redshift of pump pulses to probe pulses through cross-phase
modulation as a blueshift, whose magnitude can be controlled
by adjusting the width and spacing of pump pulses used to
form the waveguide. It is worth noting that the mode coupling
can also be induced through effects other than Raman scatter-
ing. As long as the speed of moving index boundary changes
during propagation, temporal mode coupling would occur. For
example, temporal mode coupling can be induced by tapering
a waveguide.
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