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Focusing of partially coherent light by a
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We use coherence theory to study how the focusing of an opti-
cal beam by a graded-index (GRIN) lens is affected when
the incoming beam is only partially coherent. The Gaus-
sian–Schell model is used to show that the intensity of a
partially coherent beam exhibits self-imaging and evolves
in a periodic fashion in a GRIN medium with a parabolic
index profile. Spatial coherence of the beam affects a single
parameter that governs how much the beam is compressed
at the focal point. Our results show that the focal spot size
depends on the fraction of the beam’s diameter over which
coherence persists. Focusing ceases to occur, and the beam
may even expand at the focal point of a GRIN lens, when this
fraction is below 10%. © 2023 Optica Publishing Group

https://doi.org/10.1364/OL.481086

It is well known that a fully coherent optical beam can be focused
by a lens down to a spot size comparable to the wavelength of
incident light [1,2]. In practice, any incoming beam is likely to
exhibit amplitude and phase fluctuations that render it partially
coherent. Intuitively, one expects partial coherence to affect the
spot size at the focal point. For this reason, considerable attention
has been paid to the focusing of partially coherent beams by a
lens [3–8].

A thin rod of a graded-index (GRIN) material also acts as
a lens when its length is chosen suitably. Such devices, called
GRIN lenses, have been available commercially since the 1970s
and have found many applications because of their compact size
with a flat surface. An optical beam, launched into a GRIN
rod that is designed with a parabolic refractive-index profile,
exhibits self-imaging such that it recovers all of its input prop-
erties periodically [9–12]. During each self-imaging period, a
coherent beam undergoes a focusing phase such that its width is
reduced considerably at the focal point where the width takes its
minimum value. For a typical GRIN rod of 2 mm in diameter,
the focal length is less than 1 cm, resulting in a compact flat
lens.

Propagation of partially coherent beams inside a GRIN
medium has been studied in several different contexts [13–19].
In a 1990 study, spectral modifications of a partially coherent
beam were considered inside a GRIN medium [13]. In sev-
eral later works, the focus was on changes in the polarization
properties of a partially coherent beam propagating through a

GRIN fiber [14–16]. In a 2015 study, attention was on the self-
imaging phenomenon [17]. More recently, the evolution of a
partially coherent vortex beam inside a GRIN medium has been
discussed [18].

In this work, we consider how the focusing of an optical beam
by a GRIN lens is affected when the incoming beam is only
partially coherent. Similar to the case of a conventional lens, we
expect the focal spot size to depend on the degree of coherence
of the incoming beam. We first introduce the concept of cross-
spectral density and provide mathematical details related to its
evolution inside a GRIN medium. The Gaussian–Schell model
is then used to study how the intensity of a partially coherent
beam evolves inside the GRIN medium and to show that it
changes in a periodic fashion that is analogous to a coherent
beam. Spatial coherence of the beam affects a single parameter
that governs how much the beam is compressed at the focal
point. This feature is employed to study the dependence of the
focal spot size on spatial coherence of the input beam. The main
results are summarized at the end of the paper.

Consider a GRIN medium whose refractive index is designed
to decrease radially in a parabolic fashion and can be written as

n(ρ) = n0

(︂
1 −

1
2

b2ρ2
)︂
, (1)

where ρ =
√︁

x2 + y2 is the radial distance from the central axis
of the GRIN rod (aligned with the z axis) and n0 is the refractive
index at ρ = 0. The index gradient b is defined as b =

√
2∆/a,

where a is the radius of the GRIN rod’s core and ∆ is the relative
core–cladding index difference.

It is easier to solve Maxwell’s equations in the frequency
domain by introducing the Fourier transform of the electric field
E(r, t) as

Ẽ(r,ω) =
∫ ∞

−∞

E(r, t) eiωt dt. (2)

Each component of Ẽ(r,ω) at a given frequencyω evolves inside
the GRIN rod as [9–12]

Ẽj(r,ω) =
∫ ∞

−∞

K(r, s)Ẽj(s,ω) ds, (3)

where j = x, y, or z, s represents a point at the input plane z = 0,
and the integral is over the surface of this plane. The propagation
kernel can be written in terms of the elements of the ABCD
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matrix as

K(r, s) =
(︂ keikz

2πiB

)︂
× exp

(︃
ik
2B

[D u · u − 2u · s + As · s]
)︃

,
(4)

where k = n0(ω/c) and u = (x, y) is the transverse part of the vec-
tor r at the location z. For a GRIN medium with the parabolic
index profile in Eq. (1), the matrix elements are A = D = cos(bz)
and B = sin(bz)/b [9,12]. For a homogeneous medium (b = 0),
they become A = D = 1 and B = z. The element C is not needed
but can be found from the condition AD − BC = 1, set by the
requirement that the ABCD matrix must be unitary in the
absence of losses.

The cross-spectral density is used for describing partially
coherent light in the spectral domain. It represents a correlation
function defined as [20]

Wij(r1, r2,ω) = ⟨Ẽ∗

i (r1,ω)Ẽj(r2,ω)⟩, (5)

where the average is over an ensemble in the frequency domain.
The subscripts i, j can be dropped when the electric field is
oriented along a specific direction in the transverse plane that
does not change with propagation. We assume this to be the case
and work with the scalar form of Eq. (5):

W(r1, r2,ω) = ⟨Ẽ∗(r1,ω)Ẽ(r2,ω)⟩. (6)

Using Eq. (3) in Eq. (6), the cross-spectral density at a distance
z is related to its known form at z = 0 as

W(r1, r2,ω) =
∬ ∞

−∞

K∗(r1, s1)K(r2, s2)

W(s1, s2,ω) ds1 ds2.
(7)

Its evaluation requires a four-dimensional integration over the
input-plane variables. Even though the algebra can be tedious,
Eq. (7) provides a straightforward approach to study the
evolution of partially coherent light inside a GRIN medium.

Before using Eq. (7), we need to specify the input cross-
spectral density W(s1, s2,ω) at z = 0. The spectral degree of
coherence between two points in the input plane is defined as
[20]

µ(s2 − s1,ω) =
W(s1, s2,ω)

[S(s1,ω)S(s2,ω)]1/2
, (8)

where S(s,ω) = W(s, s,ω) is the spectral intensity at the point
s. If the spectrum is the same at all spatial points, we can write
spectral intensity in the form S(s,ω) = S0(ω)U(s), where S0(ω)
is the input spectrum and U(s) is the dimensionless spatial profile
of the beam’s intensity. Combining Eqs. (7) and (8), we obtain

W(r1, r2,ω) = S0(ω)

∬ ∞

−∞

K∗(r1, s1)K(r2, s2)√︁
U(s1)U(s2)µ(s2 − s1,ω) ds1 ds2.

(9)

The spectral intensity of the beam at a distance z is obtained by
setting r1 = r2 = r in Eq. (9).

Before we can use Eq. (9) to calculate propagation-induced
changes in the intensity of an optical beam, we need to specify
its spatial profile U(s) at z = 0 as well as its degree of coherence
µ(s2 − s1,ω). In a well-known model, known as the Gaus-
sian–Schell model [20], both are assumed to have a Gaussian

shape:

U(s) = exp(−|s|2/w2
0), µ(s,ω) = exp(−|s|2/2σ2

c ), (10)

where w0 is the spot size of the input beam andσc is a measure of
the distance over which spatial coherence of the beam persists.

The Gaussian–Schell model in Eq. (10) applies to a Gaus-
sian beam whose spatial coherence decreases with distance in
a Gaussian fashion. The beam’s intensity at any point inside a
GRIN medium is found from Eq. (9) by setting r1 = r2 = r in
this equation:

S(r,ω) = S0(ω)

∬ ∞

−∞

K∗(r, s1)K(r, s2)√︁
U(s1)U(s2)µ(s2 − s1,ω) ds1 ds2.

(11)

Using the form of the kernel given in Eq. (4) and employing
the Cartesian coordinates with r = (x, y, z) and sj = (x′j, y′j) for
j = 1, 2, Eq. (11) can be written as

S(r,ω) = S0(ω)H(x, z)H(y, z), (12)

where the function H(x, z) is defined as

H(x, z) =
∬ ∞

−∞

exp
[︂
−
(x′2

1 ) + x′2
2 )

2w2
0

−
(x′1 − x′2)2

2σ2
c

]︂
K∗(x, x′1)K(x, x′2) dx′1dx′2,

(13)

and the one-dimensional kernel K(x, x′) is obtained from Eq. (4):

K(x, x′) =
√︃

keikz

2πiB
exp

[︃
ik
2B

(Dx2 − 2xx′ + Ax′2)
]︃

. (14)

It is possible to carry out the integrations in Eq. (13) in an
analytic form. After considerable algebra, the beam’s intensity
at a distance z inside the GRIN rod can be written as [12,14]

I(r,ω) =
S(r,ω)
S0(ω)

=
w0

we(z)
exp

[︂
−
(x2 + y2)

w2
e(z)

]︂
, (15)

where the effective width of the beam at a distance z is given as

we(z) = w0

√︁
f (z), f (z) = cos2(bz) + C2

p sin2(bz). (16)

The parameter Cp depends on the spatial coherence of the input
beam as

Cp = Cf

√︂
1 + 2w2

0/σ
2
c , Cf = w2

g/w
2
0, (17)

where wg is the spot size of the fundamental mode of the GRIN
rod and is defined as wg = 1/

√
kb. Periodic self-imaging of a

partially coherent beam is evident from Eq. (15) and occurs at
distances where f (z) takes value 1. From Eq. (16), this happens
when bz = mπ, where m is an integer.

Equation (15) is remarkable because it shows that even a par-
tially coherent Gaussian beam evolves in a self-similar fashion
and maintains its Gaussian nature inside a GRIN rod. More
specifically, the intensity of each spectral component of a par-
tially coherent beam follows a periodic pattern that is similar to
that of a coherent beam with one major difference: the parameter
Cp is replaced with Cf for coherent beams. To understand the
impact of partial coherence on a GRIN lens, we consider what
happens at a distance z = Lf = π/(2b) that corresponds to the
the focal length of such a lens.
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Fig. 1. Variations in the width of a partially coherent beam plotted
as a function of bz for three values of the ratio σc/w0.

The beam’s partial coherence appears in Eq. (17) through the
parameter σc. For a coherent beam, σc becomes much larger
than the beam’s width w0, and Cp takes its minimum value
Cf = (wg/w0)

2. We can estimate the value of the parameter wg

using

w2
g =

1
kb
=

λa
2πn0

√
2∆

, (18)

where λ is the input wavelength. Using n0 = 1.5, a = 0.5 mm,
and ∆ = 0.02 as typical values for a GRIN rod, wg is about 16
µm at wavelengths near 1 µm. In practice, the condition w0>wg

is satisfied as the width of the beam to be focused by the GRIN
lens is likely to exceed 100 µm. It follows that the value of the
parameter Cf is considerably smaller than 1.

As an example, Fig. 1 shows the width ratio we/w0 as a func-
tion of bz for three values of σc/w0 using Cf = 0.1. A coherent
beam’s width would be smaller by a factor of 10 in the first focal
plane located at bz = π/2. Although some focusing of the beam
occurs for σc/w0 = 0.2, focusing ceases to occur when this ratio
is close 0.1. As seen in Fig. 1, the beam expands by a factor of
2.8, rather than focusing, whenσc/w0 = 0.05. The incident beam
is nearly incoherent for such small values of σc. We can think
of such a beam as a superposition of multiple coherent beams
that diffract over a wide region because of their tiny sizes. It is
evident from these results that spatial coherence of the incom-
ing beam affects considerably the focusing properties of a GRIN
rod. Notice that a beam’s width would not change at all inside
the GRIN rod when its initial width is chosen to ensure Cp = 1.

Let us consider a GRIN lens whose length is chosen to be
Lf = π/(2b) so that a beam entering the lens comes to focus at
the output end. It follows from Eqs. (16) and (17) that the spot
size of the focused beam is given by

we(z = Lf ) =
(︂w2

g

w0

)︂√︂
1 + 2w2

0/σ
2
c . (19)

Figure 2 shows how the focal spot size varies with the ratio
σc/w0 for three values of input spot size w0 using wg = 16 µm
for the GRIN lens. As expected, when the input beam is nearly
coherent (σc ≥ w0), the focused beam acquires a small spot size
(∼ 1 µm) in the focal plane. The spot size increases for a partially
coherent beam and can exceed 10 µm when the degree of spatial
coherence of the input beam is such thatσc/w0 = 0.1. As we saw
earlier, the beam does not compress at all and may even become
wider at the focal point when σc is a small fraction of w0.

Siegman introduced in 1990 a new quantity known as the M2

factor [21]. It compares the spatial quality of an arbitrary beam

Fig. 2. Focal spot size of a partially coherent beam plotted as a
function of σc/w0 for three values of the beam’s initial width.

with a coherent Gaussian beam and is based on the notion that
the angular spread is minimum for a Gaussian beam at its waist.
As the width of a beam becomes smaller at its waist, its angular
spread becomes larger, as dictated by the angular spectrum of
the beam. The M2 factor compares the product of the spatial and
angular widths of a beam with that of a Gaussian beam.

The concept of the M2 factor has been applied to partially
coherent beams [22]. In the case of the Gaussian–Schell model
used here, the M2 factor associated with such a partially coherent
beam was found to be

M2 =

√︂
1 + 2w2

0/σ
2
c . (20)

It follows that the compression factor in Eq. (19) can be written
as we/w0 = Cf M2. These results show that the focusing ability
of a partially coherent beam is degraded just by its M2 factor. In
other words, the focal spot size becomes wider by a factor of M2

for a partially coherent beam.
In conclusion, we have used the standard coherence theory

based on cross-spectral density to study how the focusing by
a GRIN lens is affected when the incoming beam is partially
coherent. The intensity of a partially coherent beam exhibits self-
imaging and evolves in a periodic fashion in a GRIN medium
with a parabolic index profile. Spatial coherence of the beam
affects a single parameter that governs how much the beam is
compressed at the focal point. Our results show that the focal
spot size depends on the fraction of the beam’s diameter over
which coherence persists. Focusing ceases to occur, and the
beam may even expand at the focal point of a GRIN lens, when
this fraction is below 10%.
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