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Doped and optically pumped graded-index (GRIN) fibers
can be used to amplify an optical beam such that its spatial
quality is improved at the output end of the fiber com-
pared with that of the unamplified beam. We develop a
simple model of the amplification process in such GRIN
fiber amplifiers and show that the resulting equations can be
solved analytically with suitable approximations. The solu-
tion shows that the width of the amplifying beam oscillates
but also becomes narrower because of the radial dependence
of the optical gain. The main advantage of our simpli-
fied approach is that it provides an analytic expression for
the damping distance of beam-width oscillations that shows
clearly the role played by various physical parameters. ©
2023 Optica Publishing Group

https://doi.org/10.1364/OL.479060

Considerable attention has been paid to nonlinear phenom-
ena occurring in multimode graded-index (GRIN) fibers [1–4].
Recently, GRIN fibers have been doped with ytterbium and used
as optical amplifiers [5–7]. It has been observed that the ampli-
fied signal’s beam quality is better at the output end of the
amplifier compared with that expected in the absence of amplifi-
cation. This effect is similar to the Raman-induced beam cleanup
observed in GRIN fibers for the Stokes beam generated through
stimulated Raman scattering [8–11].

A mode-based description of the Raman beam cleanup pro-
cess has shown that the use of GRIN fibers is essential for the
improvement of the beam quality [9]. However, such an approach
becomes less appropriate when many modes of the GRIN fiber
are excited by the incoming pump and signal beams. Recent
work on Kerr-induced beam cleaning has shown that periodic
self-imaging [3], a unique property of GRIN fibers, plays an
important role by creating a nonlinear index grating inside the
GRIN fiber [12–14].

A nonmodal approach has recently been used for GRIN fiber
amplifiers, to study spatial narrowing of the signal beam being
amplified [7]. The resulting numerical model is time-consuming
because it requires a solution of the coupled partial differential
equations satisfied by the pump and signal beams, while also
accounting for radial and axial variations of the optical gain,
through the atomic rate equations. However, the model is quite
comprehensive and is capable of including nonlinear effects,
such as Kerr-induced beam cleaning.

In this work, we develop a simple model of the amplification
process in GRIN fiber amplifiers. We show that the resulting
equation for the signal being amplified can be solved analytically
with suitable approximations, and that the solution provides
considerable physical insight.

The article is organized as follows. We start with the math-
ematical details of the amplification process and discuss the
approximations that can be used to develop a simplified model.
Next, we solve the partial differential equation governing ampli-
fication of the signal and show that the beam’s width satisfies an
equation that is similar to the equation governing the behavior of
a damped harmonic oscillator. We use this equation to discuss
narrowing of the signal beam occurring during its amplification
inside a GRIN fiber. The main results are summarized at the end
of the article.

We consider a GRIN fiber with a nonuniform density of
dopants in the radial direction. The fiber is cladding-pumped
with an intense pump beam to invert the population of dopants
and to amplify a signal beam propagating inside the GRIN
fiber. Under such conditions, the optical gain varies radially but
remains nearly uniform along the amplifier’s length. The gain
can be included through the imaginary part of the refractive
index of the GRIN fiber, as

n(ρ, z) = n0

(︃
1 −

1
2

b2ρ2

)︃
− i

g(ρ, z)
2n0k0

, (1)

where ρ =
√︁

x2 + y2 is the radial distance from the central
axis of the GRIN fiber (aligned with the z axis), n0 is the
refractive index at ρ = 0, b is the index gradient, k0 = ω0/c,
and ω0 is the central frequency of the signal being ampli-
fied. The gain g(ρ, z) depends on the local density of dopants
and varies with ρ because of nonuniform doping of the GRIN
fiber.

The signal incident on the GRIN fiber is in the form of a quasi-
continuous beam with a spectrum centered at ω0 and narrow
enough that the effects of chromatic dispersion are negligible.
In the absence of nonlinear effects, its electric field satisfies the
Helmholtz equation:

∇2Es + n2k2
0Es = 0. (2)

We introduce the slowly varying amplitude As using Es = p̂Aseikz,
where p̂ is the polarization unit vector, and make the paraxial
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approximation to obtain

2ik
∂As

∂z
+ ∇2

TAs + (n2k2
0 − k2)As = 0. (3)

Here ∇2
T is the transverse part of the Laplacian operator. When

we substitute n(ρ, z) from Eq. (1), choose k = n0k0, and neglect
several small terms, we obtain the following equation, governing
the signal’s amplification inside a GRIN fiber amplifier:

2ik
∂As

∂z
+ ∇2

TAs − (kbρ)2As − ikg(ρ, z)As = 0. (4)

In this equation, the second, third, and fourth terms take into
account, respectively, the effects of diffraction, the index gradi-
ent b, and the gain provided by dopants. The nonlinear effects are
not included in Eq. (4), as it is assumed that the signal’s power
remains much smaller than that of the pump. As a result, Kerr-
induced beam cleaning plays no role in our simplified model.
The Kerr nonlinearity is known to produce self-cleaning of the
pump beam [12–14]. Pump-induced cleaning of the signal might
also occur through cross-phase modulation. We neglect it in this
study to focus on the gain-induced spatial narrowing of the
amplified signal.

Before solving Eq. (4), we need to specify the gain func-
tion g(ρ, z). The local gain depends on both the density of the
dopants and the intensity of the pump beam whose absorption
creates population inversion. An accurate model of the gain
g(ρ, z) requires numerical solutions of the coupled pump and
signal equations, together with the atomic rate equations to cal-
culate the inversion density at any point inside the amplifier [7].
Our objective in this work is to develop a simple model that cap-
tures the essential physics of the problem and allows us to solve
Eq. (4) analytically. We neglect gain saturation, assume that the
amplifier is cladding-pumped, and ignore the z dependence of
the gain. We also assume a parabolic form for the density of
dopants and write g(ρ, z) in the form

g(ρ, z) ≈ g0 − g2ρ
2, (5)

where g0 and g2 are constants. Physically, g0 is the peak gain
along the fiber’s axis and g2 depends on the distribution of the
dopant’s density in the radial direction.

We note that both g0 and g2 vary with z when the fiber has
uniform doping and is pumped with a beam co-propagating
with the signal [7]. We treat them as constants because this
simplification allows us to solve Eq. (4) in an analytic fashion.
We also assume that the signal beam enters the GRIN fiber as
a collimated Gaussian beam and maintains its radial symmetry
during amplification. With these simplifications, Eq. (4) takes
the following form in cylindrical coordinates:

2ik
∂As

∂z
+
∂2As

∂ρ2 +
1
ρ

∂As

∂ρ
− (kbρ)2As = ik(g0 − g2ρ

2)As. (6)

To solve Eq. (6), we assume that the signal maintains its Gaussian
form but that its amplitude, width, phase-front curvature, and
phase evolve along the amplifier’s length. This allows us to
write the solution of Eq. (6) in the form

As(ρ, z) = A0 exp
(︃
−
ρ2

2w2 +
i
2

khρ2 + iψ
)︃

, (7)

where the four parameters (A0, w, h, and ψ) vary with z. Using
this form in Eq. (6), we obtain the following equations for the

four parameters:
dA0

dz
=
(︁ 1

2 g0 − h
)︁
A0, (8)

dψ
dz
= −

1
kw2 , (9)

dw
dz
= hw − 1

2 g2w3, (10)

dh
dz
=

1
k2w4 − h2 − b2. (11)

Consider first the case of a constant gain (g2 = 0). Equations (10)
and (11) then become identical to those obtained for an undoped
GRIN fiber. Taking the second derivative of the width w, we
obtain

d2w
dz2 + b2w =

1
k2w3 . (12)

This equation is easily solved, and the solution for the beam’s
width is found to be [2]

w(z) = ws

√︁
f (z), f (z) = 1 − (1 − C2

s ) sin2(bz), (13)

where Cs = (wg/ws)
2, wg = (kb)−1/2, and ws is the input width

of the beam being amplified. This result shows that the beam’s
width varies in a periodic fashion because of self-imaging in
GRIN fibers [3]. The parameter wg is related to the width of the
fundamental mode of the GRIN fiber. The parameter Cs depends
on the input width of the beam and satisfies the condition Cs<1,
as ws>wg in practice. Physically, Cs is the fraction by which
the signal’s width is reduced in the focal plane during each
self-imaging period.

Because of the optical gain g0, the beam’s power increases
with distance. We can see this feature by using dw/dz = hw in
Eq. (8) and writing it as

d
dz

(w2A2
0) = g0(w2A2

0). (14)

Recalling that the signal’s power at any distance z is given by

P(z) =
∫ 2π

0
dϕ

∫ ∞

0
|As(ρ, z)|2ρdρ = (πw2)A2

0, (15)

we obtain dP/dz = g0P, with the solution P(z) = P(0) exp(g0z).
As expected, the beam’s power increases exponentially inside
the amplifier.

The situation is considerably different when the gain is radially
nonuniform and g2 is finite in Eq. (5). To the first order in g2, the
width equation in Eq. (12) has an additional term and becomes

d2w
dz2 + b2w =

1
k2w3 − 2g2w2 dw

dz
. (16)

The last term in this equation governs the effects of a spatially
nonuniform gain in the transverse dimensions. Its presence mod-
ifies the periodic solution given in Eq. (13). On physical grounds,
we expect the amplitude of periodic variations to decrease with
increasing z because of a larger gain in the central region of the
signal beam compared with its outer regions. In other words, the
beam should become narrower as the signal is amplified inside
such a fiber amplifier.

Before solving Eq. (16) numerically, we normalize it using
s = w/ws and ξ = bz. The resulting equation for the normalized
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Fig. 1. Oscillations in the width of the signal beam for two values
of the parameter µ. The amplitude of oscillations does not change
when µ = 0.

width s is
d2s
dξ2 + s =

C2
s

s3 − 2µs2 ds
dz

, (17)

where µ = (g2/b)w2
s is a dimensionless parameter, such that

µ ≪ 1. Figure 1 shows the results obtained by solving Eq. (17)
using Cs = 0.2, with µ = 0.02 (top) or µ = 0.04 (bottom). The
width oscillates because of self-imaging but the amplitude of
oscillations decreases with distance. The reduction in amplitude
does not occur for µ = 0, and the damping rate of oscillations
increases with µ.

The important question is what values of µ are realistic for a
GRIN fiber amplifier. It is useful to introduce the self-imaging
period of a GRIN fiber, as Lp = 2π/b. If we assume that the
gain in Eq. (5) is reduced by a factor of 4 at ρ = a, we can use
g2 = g0/(2a2) and write µ as

µ = (3g0Lp/8π)(ws/a)2. (18)

For a GRIN fiber providing 20 dB amplification over its 10 m
length, g0 is found to be 0.46 m−1 from the relation egL = 100.
The self-imaging period Lp of a GRIN fiber is close to 1 mm. If
we use ws = 15µm with a = 25µm, the estimated value of µ is
about 2 × 10−5. Such low values of µ indicate that the decrease
in the amplitude of periodic oscillations would become apparent
in Fig. 1 only after thousands of oscillations in Fig. 1.

We solve Eq. (16) approximately to estimate such a slow
damping rate of oscillations. When g2 = 0, the solution is given
in Eq. (13). We use this solution to replace w2 in the g2 term
with w2

s ⟨f (z)⟩, where the average is over one self-imaging period.
This allows us to write Eq. (16) as

d2w
dz2 + 2γd

dw
dz
+ b2w =

1
k2w3 , (19)

where γd = g2w2
s ⟨f (z)⟩. This equation corresponds to a damped

harmonic oscillator when the term on the right is negligible. Its
form suggests that an approximate solution of Eq. (16) is given
by

w(z) = ws

√︁
f (z) exp(−γdz). (20)

Its physical meaning is clear. The beam’s width oscillates
with the self-imaging period, as expected for a GRIN medium,
but the amplitude of oscillations decreases with z, resulting in
spatial narrowing of the signal beam inside the fiber amplifier.

Fig. 2. Predicted decrease in the width of the signal beam as a
function of z/Lp for three values of µ.

Figure 2 shows the predicted decrease in the width of a signal
beam over 400 self-imaging periods for three values of µ, using
Cs = 0.2. These numerical simulations agree with the exponen-
tial decay predicted by Eq. (20). The maximum value of the
width at the end of each self-imaging period is plotted to show
the envelope without any oscillations. Relatively large values
of µ were used to reduce the computing time, but the same
qualitative behavior is expected for smaller values of µ.

The distance within the amplifier over which the width is
reduced by a factor of 1/e is given by

Ld = 1/γd =
[︁

1
2 g2w2

s (1 + C2
s )
]︁−1, (21)

where we calculated ⟨f (z)⟩ from Eq. (13). The parameter Cs

depends on the width of input beam and has a value of about
0.13 for ws = 15µm. Using g2 = 3g0/(4a2) with g0 = 0.46 m−1

and a = 25µm, Ld is estimated to be 15 m. Thus, considerable
narrowing of the signal beam can occur over the 10 m length
of the amplifier. If the signal beam’s width is reduced from its
initial value of 15µm to 7µm, most of its power at the output end
will be in the fundamental mode of the GRIN fiber amplifier.
This conclusion agrees with a detailed numerical model that
includes gain saturation and many other effects by solving the
pump and signal equations together [7].

We briefly discuss how our model can be used for uniformly
doped GRIN fibers, pumped with an intense pump beam that
co-propagates with the signal being amplified. Under such con-
ditions, as mentioned earlier, the gain parameters g0 and g2 vary
with z along the amplifier’s length. The z dependence of g0

affects the signal’s power but has no effect on its width. The
width’s equation in Eq. (16) has an extra term that depends on
the derivative dg2/dz as

d2w
dz2 + b2w =

1
k2w3 − 2g2(z)w2 dw

dz
−

1
2

dg2

dz
w3. (22)

If the z dependence of g2 is known, one can solve Eq. (22)
numerically to study how the signal’s width is reduced over the
amplifier’s length.

In conclusion, a simple analytic model is presented that allows
us to study beam narrowing in multimode GRIN fiber amplifiers.
It shows that the signal beam narrows as it is amplified on a length
scale ∼1 m, while also exhibiting periodic self-imaging on a
length scale∼1 mm. The predicted beam narrowing has its origin
in the radial dependence of optical gain. The main advantage of
our simplified approach is that it provides an analytic expression
for the damping rate of oscillations, which shows clearly the role
played by various physical parameters.
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