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Optimization of adiabatic frequency conversion in an all-pass resonator
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Adiabatic frequency conversion (AFC) is a promising alternative for shifting the frequency of optical signals.
In this paper we present a comprehensive theoretical study of the energy efficiency of AFC in an all-pass
resonator. Through the Cauchy-Schwarz inequality, we deduce the upper limit of the energy efficiency of
the AFC process and analyze its dependence on the input pulse shape. For a fixed pulse shape, we discuss
the dependence of the AFC efficiency on its relevant timescales. We show that maximum efficiency requires
overcoupling of the resonator to a degree dependent on the input pulse duration. We compare and contrast the
requirements for optimal AFC for pulsed and continuous-wave inputs.
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I. INTRODUCTION

In photonics, frequency conversion is usually realized via
nonlinear wave mixing. In particular, the advent of integrated
photonics has enabled broadband and efficient wave mixing
on a chip with a compact footprint [1–4]. Despite its suc-
cesses, integrated wave mixing has inherent limitations [5–7].
First, it demands a high-power optical pump, which impedes
on-chip integration. Second, wave mixing must obey the con-
servation of photon energy. Consequently, to tune the output
signal’s frequency, one must change the frequency of either
the input signal or the pump. Third, efficient wave mixing
requires phase matching. This requirement restricts both the
waveguide geometry and the range of possible output frequen-
cies.

Adiabatic frequency conversion (AFC) is a promising
alternative for frequency shifting. Adiabatic frequency con-
version is the phenomenon in which light excites an optical
cavity’s mode, the cavity’s refractive index is modulated, and
light follows the cavity’s instantaneous resonance frequency
[8,9]. This process is called adiabatic because it was shown
numerically [9] that it preserves the adiabatic invariant of a
harmonic oscillator [10,11]. In contrast to wave mixing, AFC
does not require optical pumping or phase matching and is
not restricted by photon-energy conservation. Furthermore, its
output frequency can be tuned by adjusting the strength of
the index modulation within the cavity. Therefore, AFC can
be used to realize tunable frequency conversion in a photonic
chip. Adiabatic frequency conversion has been demonstrated
in silicon cavities [12–16] and semiconductor-based metasur-
faces [17] through charge-carrier injection, in a silica toroidal
cavity through the optical Kerr effect [18], and in a bulk
lithium niobate resonator [19] through the Pockels effect.

So far, theoretical work on AFC has focused either on
its modeling and description [8,9,20–22] or on its proposal
for novel applications [8,23–25]. Discussion of the AFC effi-
ciency has attracted less attention. It was found in Ref. [26]
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that AFC in an all-pass (i.e., Gires-Tournois) resonator can
yield an energy efficiency of 74%. However, a comprehensive
theoretical study of AFC efficiency, which analyzes all its lim-
itations and determines the conditions for optimal efficiency,
is still lacking. That is the objective of our work. We hope that
our study will help move the investigation of AFC from proof-
of-principle demonstrations to engineering practical devices
for diverse applications.

Adiabatic frequency conversion has been analyzed through
two semianalytic approaches. One approach is based on
heuristic traveling-wave models [20,21,27]. In these, an in-
tuitive ansatz is proposed for optical wave propagation in a
dynamic medium, inferred from generalizing wave propaga-
tion in static cavities. Although this approach is intuitive by
construction, it is unclear how to derive their ansatz from
Maxwell’s equations. As a result, its accuracy cannot be
judged without comparing directly with experiments or an
independent analysis.

The other approach employs the time-domain coupled-
mode equations that describe the time evolution of a discrete
set of resonator modes [22,23,25,26,28]. The main advantage
of this approach is the simplicity of the resulting equations,
which reduce the electromagnetic field to a finite number of
degrees of freedom. Moreover, this approach can be derived
directly from Maxwell’s equations [22,28]. Hence, conditions
sufficient for its validity can be obtained, and its accuracy can
be assessed a priori. For these reasons, we analyze AFC in
this paper using the coupled-mode approach.

The remainder of the paper is organized as follows. In
Sec. II we describe the system under analysis, write the gov-
erning coupled-mode equations, and find a general expression
for the AFC energy efficiency in the high-modulation limit. In
Sec. III we use the Cauchy-Schwarz inequality to examine the
theoretical limit of energy efficiency for AFC and to analyze
the dependence of energy efficiency on input pulse shape. We
also explain how the ideal input pulse shape to excite AFC
emerges directly from energy conservation and reversibility
in time. In Sec. IV we consider a fixed single-lobe input
pulse shape and analyze how the energy efficiency of AFC
varies as we change the various timescales of the process. We
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FIG. 1. Schematic the bus-resonator system used for adiabatic
frequency conversion.

obtain simple formulas to maximize the energy efficiency of
AFC for any given pulse duration. In Sec. V we consider a
continuous-wave input of fixed power and analyze the energy
of the resulting AFC output. We compare the results with
those of Sec. IV and explain the similarities and differences.
In Sec. VI we summarize and present the paper’s conclusions.

II. ANALYSIS OF GOVERNING EQUATIONS

We consider the configuration depicted in Fig. 1. It consists
of an optical all-pass resonator (i.e., a resonating structure
with a single input port and a single output port [26,29,30])
under temporal modulation of its refractive index. Typical
examples of all-pass resonators are a Gires-Tournois étalon, a
microring resonator directionally coupled to a waveguide, and
a photonic-crystal cavity butt coupled to a photonic crystal
waveguide. An optical pulse is injected into the input port with
a carrier frequency ω equal to that of a specific resonance ωc

of the resonator before modulation. As a result, a large fraction
of the input pulse’s energy is coupled into the resonator. The
amplitude a of the excited resonator mode is normalized so
that |a|2 represents the mode’s energy before modulation.
Modulation of the resonator changes the refractive index,
which in turn changes the mode’s instantaneous frequency
ωc(t ). The evolution of the mode’s amplitude is governed by
the well-known differential equation [23–25]

da

dt
= −i�(t )a − γ a + κs+(t ). (1)

Here �(t ) = ωc(t ) − ω is the detuning from the resonance;
s+(t ) is the input amplitude, normalized such that |s+(t )|2 is
its instantaneous power; κ is a coupling coefficient; and γ is
the mode’s decay rate, inversely proportional to the cavity’s
Q parameter. In general, γ consists of two contributions: an
intrinsic decay rate γ0, independent of output coupling, and
the extrinsic decay rate γe, resulting from coupling of the
resonator to the output port [31,32]. Thus we have the relation

γ = γ0 + γe. (2)

In an AFC experiment, the cavity’s resonance frequency
is modulated monotonically. For simplicity, we assume that
the modulation occurs in a steplike fashion over a timescale
shorter than the half photon lifetime γ −1 and the duration of
s+(t ). In this case, �(t ) can be modeled as

�(t ) = �0H (t − t0). (3)

Here t0 is the time at which modulation starts, H (t ) the Heav-
iside function, and �0 the postmodulation detuning of the
cavity with respect to its original resonance.

To complete the description of AFC in an all-pass res-
onator, we must also consider the output wave s−(t ) leaving
the resonator. It is given by [32]

s−(t ) = exp(iφ)s+(t ) + κa(t ), (4)

where φ is a constant phase that depends on the planes where
s+(t ) and s−(t ) are defined. From energy conservation and
time-reversibility considerations, it can be shown that κ in
Eq. (1) and κ in Eq. (4) must indeed be identical [31]. Increas-
ing the coupling between the resonator and the bus increases
both κ and γe. Hence, it is critical to model the relation
between these two parameters to model and optimize AFC.
This is accomplished via energy-conservation arguments and
results in the relation [31]

κ =
√

2γe. (5)

After the cavity undergoes modulation, we expect two
things to happen. First, we expect the light contained therein
to follow the new frequency. Second, we expect the coupling
of the input s+(t ), oscillating at the original resonance fre-
quency, into the mode amplitude a(t ) to become inefficient.
To verify these two expectations, it is convenient to introduce
a change of variable for t > t0, from the rapidly oscillating
a(t ) to the slowly oscillating ã(t ), defined through

a(t ) = ã(t ) exp[−(i�0 + γ )(t − t0)]. (6)

Substituting Eq. (6) into Eq. (1) and integrating the resulting
differential equation, we obtain

ã(t ) = a(t0) +
∫ t

t0

dt ′κs+(t ′) exp[(i�0 + γ )(t ′ − t0)]. (7)

If the second term on the right-hand side of Eq. (7) can be
neglected, then both of our expectations would be correct. In
that case, ã(t ) would be a constant and a(t ) would oscillate at
the frequency �0, as indicated in Eq. (6). Also, s+(t ) would
have no effect, as it would not couple appreciably to a(t ). In
the Appendix we show that neglect of the integral in Eq. (7) is
justified if

8γe � Ts�
2
0, (8)

where Ts is the duration of the input pulse s+(t ).
When Eq. (8) holds, Eq. (6) shows that a(t ) oscillates at

the frequency �0 and decays exponentially for t > t0. Given
the output relation in Eq. (4), s−(t ) will lead to interference
between a(t ) and the input s+(t ) at the original frequency. Let
us assume the original frequency is filtered out from s−(t ).
Then the output energy Uc at the converted frequency is a
function of the modulation time t0 and can be evaluated as

Uc =
∫ ∞

t0

dt |s−(t )|2 = γe

γ
|a(t0)|2. (9)

Thus, we can maximize Uc if we maximize the product
(γe/γ )|a(t0)|2. Because Eq. (1) is linear in a(t ), it proves
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convenient to consider the auxiliary variable

ac(t0) =
√

γe

γ
a(t0). (10)

As Uc = |ac(t0)|2, the output energy Uc(t0) is maximum when-
ever |ac(t0)| is. Therefore, ac(t0) can be interpreted as a
converted-energy amplitude, just as a(t ) is the instantaneous
energy amplitude of the resonator mode. We rewrite Eq. (1) as
a differential equation for ac(t0) and obtain

dac

dt0
= −γ ac +

√
2γ 2

e

γ
s+(t0). (11)

Equation (11) is the main result of this section and its solutions
are the subject of interest in the following sections. We empha-
size that the modulation time t0 is the independent variable in
this equation.

III. UPPER LIMIT ON ENERGY EFFICIENCY

Usually, the cavity undergoing AFC is unexcited before the
incident pulse s+(t ) starts driving it. Let T be the time during
which the input pulse s+(t ) couples with the cavity before
AFC is induced. By this definition, cavity excitation starts at
t0 − T . Then ac(t ) = 0 for t � (t0 − T ) and Eq. (11) can be
integrated to yield

ac(t0) =
∫ ∞

−∞
dt h(t0, t )s+(t ), (12)

where h(t0, t ) is the impulse response of Eq. (11) and is given
by

h(t0, t ) =
√

2γ 2
e

γ
exp[−γ (t0 − t )]

× [H (t + T − t0) − H (t − t0)]. (13)

Recalling that the input s+(t ) is normalized so that |s+(t )|2 is
its instantaneous power, the input’s total energy Us is evalu-
ated as ∫ ∞

−∞
dt |s+(t )|2 = Us. (14)

We are interested in maximizing the converted energy Uc,
i.e., the square modulus of ac(t0). To do so, we make two
observations. First, Eq. (12) suggests that ac(t0) can be inter-
preted as an inner product of two complex-valued functions:
h∗(t0, t ) and s+(t ). Second, it follows from Eqs. (13) and
(14) that both h∗(t0, t ) and s+(t ) are square integrable. From
these two facts we conclude that Uc is bounded from above
by the Cauchy-Schwarz (CS) inequality for square-integrable
functions [33]∣∣∣∣

∫ ∞

−∞
dt h(t0, t )s+(t )

∣∣∣∣
2

�
∫ ∞

−∞
dt |h(t0, t )|2

∫ ∞

−∞
dt |s+(t )|2.

(15)
From Eq. (14), the second integral on the right-hand side of
Eq. (15) evaluates to Us. On the other hand, the first integral
can be evaluated by substituting Eq. (13) for h(t0, t ). In this

manner, we readily obtain∫ ∞

−∞
dt |h(t0, t )|2 =

(
γe

γ

)2

[1 − exp(−2γ T )]. (16)

In evaluating Eq. (16), we made use of Eq. (5), relating κ and
γe.

Then substituting Eqs. (14) and (16) into the right-hand
side of Eq. (15) and recalling that the left-hand side of Eq. (15)
equals the converted energy Uc, we obtain the bound

Uc � Us

(
γe

γ

)2

[1 − exp(−2γ T )]. (17)

Equation (17) is an important result showing the upper bound
on the maximum energy efficiency, η = Uc/Us, for AFC in
an all-pass resonator. Because both factors (γe/γ )2 and 1 −
exp(−2γ T ) are bounded by unity, Eq. (17) is stricter than
the intuitively evident condition that the output energy can-
not exceed the input energy, i.e., Uc � Us. Equation (17) is
imposed solely by the resonator and the modulation scheme,
specifically, by the ratio of extrinsic to intrinsic decay rate and
the time T between the start of the pulse s+(t ) and the start of
the index modulation.

Even for an ideally shaped pulse (discussed below) and
modulation satisfying γ T � 1, Eq. (17) restricts the energy
efficiency η by (γe/γ )2 rather than the intuitive limit of η � 1.
Still, this additional factor of (γe/γ )2 makes intuitive sense.
One factor of γe/γ arises from Eq. (10). It reflects the fact that
not all the energy in the cavity at time of modulation exits into
the bus, but only a fraction of γe/γ . The second factor of γe/γ

accounts for the fact that intrinsic loss γ0 causes coupling
to be imperfect. Even for an ideally shaped pulse, only a
fraction γe/γ of the incident pulse’s energy can be coupled
into the resonator because energy continuously dissipates into
the environment.

The bound in Eq. (17) increases with γ T , where T is the
delay between the start of the pulse and the start of index
modulation. However, increasing γ T for a fixed pulse shape
does not always not increase efficiency of AFC. Such an
increase in energy efficiency only needs to hold for the ideal
pulse shape, for which the CS inequality becomes an equality.

A well-known corollary of the CS inequality (15) is that
it becomes an equality if and only if the two functions in the
inner product, s+(t ) and h∗(t0, t ), are linearly dependent [33].
It follows from Eq. (13) that this can occur if and only if the
input s+(t ) has the form

s+(t ) =
√

2γUs[1 − exp(−2γ T )]−1/2 exp[−γ (t0 − t )]
(18)

× [H (t + T − t0) − H (t − t0)],

where s+(t ) has been normalized according to Eq. (14). This
relation shows that, to achieve the maximum η allowed by
Eq. (17), s+(t ) must start at the time t0 − T , increase expo-
nentially with the rate γ , and terminate at the time t0 of index
modulation.

From Eq. (17) and the preceding discussion, we conclude
that Uc = Us when s+(t ) has the shape given in Eq. (18),
γe = γ (i.e., γ0 = 0), and γ T → ∞. In other words, one can
transfer the total energy Us of the incident pulse into the
frequency-converted output if and only if the cavity has no
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intrinsic loss and the pulse exciting it is semi-infinite and ex-
ponentially increasing with rate γe. Both of these requirements
are physically unattainable, so one always obtains Uc < Us.

The interpretation of Eq. (12) as an inner product also
gives us a prescription for maximizing the converted energy
Uc = |ac(t0)|2 over a restricted set of pulse shapes s+(t ) of
equal energy Us. This prescription consists of maximizing the
projection of s+(t ) along h(t0, t ). For instance, consider the set
of exponentially increasing pulses s+(t ) of the form (18), but
with γ replaced by a free parameter μ. It is straightforward
(albeit tedious) to verify that indeed μ = γ results in the
largest possible Uc, equal to the right-hand side of Eq. (17).

However, the usefulness of the preceding guideline is lim-
ited. This is because it only allows comparison between pulses
of equal energy Us and equal premodulation time T . Also,
it might not be evident which pulse among a set of possible
choices yields the largest projection along h(t0, t ) and numer-
ical evaluation of Eq. (12) may be required. Such a calculation
is equivalent to solving the original problem of integrating
Eq. (11); so no insight is gained from the prescription in this
case. Nonetheless, as discussed in Sec. IV B, we show that this
guideline is still useful to interpret the results of numerical
optimization.

The requirements of no intrinsic loss and a semi-infinite,
exponentially increasing s+(t ) for 100% conversion efficiency
can be understood via an argument based on the principles
of energy conservation and reversibility. The argument is as
follows. First, recall from Eq. (9) that the converted energy Uc

is merely the energy in the cavity at the time of modulation,
multiplied by a factor of γe/γ . However, for Uc = Us to occur,
we need γe = γ , so in this ideal case, the converted energy and
the energy in the resonator are identical. Thus, we only need
to argue that when the cavity has zero intrinsic loss and it is
excited by a semi-infinite, exponentially increasing pulse, all
of the pulse’s energy couples to the resonator.

To do so, consider energy dissipation in an ideal cavity
with no intrinsic loss. Such an ideal cavity dissipates all of
its energy by emitting a semi-infinite exponential pulse into
the output port. After an infinite period of time, all of the
energy stored in the cavity is released into the output port. If
we reverse this process in time, it becomes the injection of a
semi-infinite, exponentially increasing pulse into the cavity.
From the time-reversal symmetry of Maxwell’s equations,
this reversed process is also a valid solution to them [31,34].
Thus, as required, we find that the energy in the exponentially
increasing pulse must equal that deposited in the cavity, once
the pulse is terminated.

Note that for this time-reversibility argument to agree with
the purely mathematical Eq. (17), we required Eq. (5) to
relate κ and γe. Therefore, Eq. (17) along with the same
time-reversibility argument could be used conversely to es-
tablish Eq. (5). Indeed, such an argument follows the same
physical reasoning, based on energy conservation and time
reversibility, albeit slightly different mathematics, as the one
originally employed by Haus [31] to derive Eq. (5).

IV. PULSED INPUT OF FIXED SHAPE

In this section we examine AFC when the input pulse has
a fixed shape and finite energy. Our objective is to analyze the

effects of varying several relevant parameters such as relative
values of the decay rates γ0 and γe, the modulation time t0,
and the input-pulse duration Ts.

Rather than working with the input signal s+(t ) directly,
it is more convenient to normalize s+(t ) with respect to its
duration Ts. Hence, we write s+(t ) as

s+(t ) = 1√
Ts

s̄+

(
t

Ts

)
, (19)

where s̄+(τ ) is the normalized input-pulse profile subject to
two conditions. The first condition is that it obeys the normal-
ization ∫ ∞

−∞
dτ |s̄+(τ )|2 = Us. (20)

Evidently, Eq. (14) then follows from Eqs. (19) and (20). The
second condition is that |s̄+(τ )|2 is of the order of Us only
when |τ | is of the order of unity or lower. In other words,
|s̄+(τ )|2 should be negligible, relative to Us, for |τ | � 1.

Substituting Eq. (19) into Eq. (11), we obtain

dac

dτ
= −γ̄ ac + κ̄ s̄+(τ ), (21)

where τ = t0/Ts is the normalized modulation time, γ̄ the nor-
malized decay rate, and κ̄ the normalized coupling constant.
These last two are defined as

γ̄ ≡ γ0Ts + γeTs, κ̄ ≡
√

2γeTs/
√

γ̄ . (22)

Thus, for a fixed pulse shape s̄+(τ ), the converted-energy
amplitude ac depends on three independent parameters: the
normalized modulation time t0/Ts, the normalized intrinsic
decay rate γ0Ts, and the normalized external decay rate γeTs.

To analyze the dependence of the converted-energy ampli-
tude ac on the modulation time, we consider input pulses of
finite support such that s̄+(τ ) = 0 for |τ | > τ0 and some τ0.
For concreteness, we examine the case where the input pulse
s̄+(τ ) has the shape of a raised cosine, corresponding to

s̄+(τ ) =
√

2Us/3[1 + cos(2πτ )]
[
H

(
τ + 1

2

) − H
(
τ − 1

2

)]
.

(23)

The raised-cosine shape in Eq. (23) is also known as the Hann
(or Hanning) window function in the context of numerical
Fourier analysis [35,36].

As desired, s̄+(τ ) in Eq. (23) has a finite support: It is only
nonzero for |τ | < 1

2 . In addition, the Hann pulse has the de-
sirable features of being continuous and having a continuous
derivative for all real τ . Given Eq. (23) for s̄+(τ ), both its
full width at half maximum duration TFWHM and root-mean-
square duration TRMS are straightforward to calculate. These
are given by

TFWHM = Tsarccos(
√

2 − 1)

π
≈ 0.364Ts,

(24)

TRMS = Ts

2

√
1

3
− 5

2π2
≈ 0.141Ts.

Equation (24) can be used to evaluate Ts in terms of experi-
mentally measurable quantities.

In the remainder of this section, we study numerically
the dependence of the energy efficiency η on the AFC’s
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timescales. Our objective is to determine how to choose these
timescales to maximize η. To do this, we sweep the normal-
ized timescales of the process and solve Eq. (21) for their
corresponding values and for the raised-cosine input shape
s̄+(τ ) of Eq. (23). Note that the space spanned by the nor-
malized parameters t0/Ts, γ0Ts, and γeTs is three dimensional.
Thus, we first perform partial parameter sweeps where only
two of the three are swept while the other one is fixed. This
allows us to visualize and understand the dependence of η

on this reduced two-dimensional parameter space. Then we
perform a global parameter sweep, where all three normalized
parameters are swept simultaneously to identify optimum val-
ues for all parameters. To enable visualization and because
we are mostly interested in optimization, we reduce the di-
mensionality of the parameter space in this global parameter
sweep by considering only the optimum η over the normalized
modulation time t0/Ts.

A. Partial parameter sweeps

Having set Eq. (23) for s̄+(τ ), we perform partial param-
eter sweeps of the solutions ac(τ ) to Eq. (11) and evaluate
the corresponding energy efficiency η = Uc/Us. The results
are depicted in Fig. 2. Because we are interested in sweep-
ing orders of magnitude of the parameter ratios rather than
in examining the effect of small changes, we label them
with logarithmic scales. Furthermore, because we are mostly
interested in the maxima of Uc [|ac(τ )|2], we need only con-
sider τ = t0/Ts ∈ [−1/2, 1/2], as s̄+(τ ) vanishes outside this
range.

Figure 2(a) shows the results of our first parameter sweep.
In it we set the resonator to critical coupling (γe = γ0 [31])
and sweep t0/Ts and γ0Ts. This figure can be interpreted as a
visualization of η for different modulation times t0 and pulse
widths Ts, with fixed γ0 and γe. The most prominent feature
of Fig. 2(a) is the maximum in η occurring at γ0Ts = 1.1768
and t0/Ts = 0.2172, where η reaches a value of 0.1987. This
indicates that, for a critically coupled resonator, one should set
the pulse duration Ts equal to 1.1768γ −1

0 and the modulation
time t0 to 0.2172Ts to achieve the maximum efficiency un-
der critical coupling. This relatively low value suggests that,
although critical coupling maximizes the resonator’s energy
for continuous-wave input [31], it is not the optimal choice to
optimize the energy efficiency of AFC. We demonstrate this
inference to be correct in Sec. IV B.

We highlight another feature of Fig. 2(a). This is that, for
a given value of γ0Ts, the modulation time t0 for maximum η

decreases monotonically with increasing γ0Ts. To explain this
feature, we note that ac(τ ) acts as the output of a first-order
low-pass filter with a time constant γ̄ −1. Moreover, because
γe/γ0 is fixed, the normalized decay γ̄ scales linearly with
γ0Ts, as a consequence of Eq. (22). If γ0Ts � 1, the shape
of ac(τ ) resembles the integral of s̄+(τ ) and its maximum
lies close to t0 = Ts/2. On the other hand, as γ0Ts increases,
γ̄ −1 decreases and the shape ac(τ ) gradually resembles that of
s̄+(τ ), which has its maximum at τ = 0.

In Fig. 2(b) we set γ0Ts = 1 while sweeping t0/Ts and
γe/γ0. This can be interpreted as fixing the intrinsic decay γ0

and the pulse duration Ts while varying the modulation time t0
and the extrinsic decay γe. Again, we find a choice of param-

(a)

(b)

FIG. 2. Contour plots of the AFC energy efficiency η in the
high-modulation limit for a Hann-shape input pulse. (a) AFC energy
efficiency η in the case of critical coupling (γe/γ0 = 1). (b) AFC
energy efficiency η for a fixed value of the normalized pulse duration
(γ0Ts = 1).

eters where the AFC efficiency peaks at a value η = 0.4373.
The peak occurs at γe = 4.4306γ0 and t0 = 0.1364Ts. Thus,
when the pulse duration Ts is of the order of γ −1

0 (twice the
intrinsic photon lifetime), one should design the resonator to
be slightly overcoupled (γe > γ0) to achieve the maximum
AFC efficiency. We observe that the modulation time t0 for
best efficiency decreases with increasing γe/γ0. Again, this
can be understood by interpreting ac(τ ) as the output of a
low-pass filter with the time constant γ̄ −1.

B. Global parameter sweep

Now we perform a global parameter sweep, where we
sweep the full parameter space by simultaneously varying all
normalized parameters: the normalized modulation time t0/Ts,
the normalized pulse duration γ0Ts, and the normalized exter-
nal decay γe/γ0. Once again, our objective is to identify the set
of parameters which yield maximum AFC energy efficiency
η = Uc/Us. To allow visualization of the results, we collapse
the dependence of η on t0 by plotting only the maximum of η

over t0/Ts in the range [−1/2, 1/2] for each pair of values for
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(a)

(b)

FIG. 3. Global parameter sweep of the AFC energy efficiency
η over both the normalized pulse duration γ0Ts and the normalized
external decay γe/γ0, optimized over the modulation time t0, for an
input Hann pulse in the high-modulation limit. (a) Contour plot of
AFC energy efficiency η. The red dashed line depicts the locus of
optimum γe for a given value of γ0Ts. The green dashed line indicates
its asymptote for γ0Ts � 1; and the white dashed line, its asymptote
for γ0Ts � 1. (b) Plot of the AFC energy efficiency η for a given
normalized pulse duration γ0Ts and maximized over the modulation
time t0 and external decay γe (blue solid line). Plot of the derivative
of the AFC efficiency η (optimized with respect to t0 and γe) as a
function of γ0Ts (orange dashed line).

γ0Ts and γe/γ0. The result is shown in Fig. 3(a). Again, we use
logarithmic scales γ0Ts and γe/γ0. As is clear from Fig. 3(a),
a necessary condition for maximizing η is to minimize γ0Ts.
Moreover, as γ0Ts → 0, the optimal γe that maximizes η for a
given γ0Ts converges to the asymptote

γeTs = 2.3780, γ0Ts � 1. (25)

In Fig. 3(a), Eq. (25) corresponds to the straight line
log10(γe/γ0) = log10(2.3780) − log10(γ0Ts) depicted graphi-
cally as a green dashed line. Equation (25) implies that, for
γ0Ts � 1, a resonator needs to be significantly overcoupled
to maximize the converted energy Uc, as also observed in
Ref. [26]. To see this, note that if γ0Ts � 1, then (γe/γ0) �

γeTs and γe � γ0. This is also graphically evident from
Fig. 3(a), where the line for Eq. (25) lies noticeably upward
from the horizontal level log10(γe/γ0) = 0.

To understand how Eq. (25) emerges, we consider the
idealized case of a resonator with no intrinsic loss (γ0 = 0).
It follows from Eq. (22) that γ̄ = γeTs and κ̄ = √

2γeTs. As a
result, η depends only on t0/Ts and γeTs. In this idealized case,
we determine via numerical optimization that, for an input
s̄+(τ ) with a Hann pulse shape [Eq. (23)], η is maximized
at t0/Ts = 0.2194 and γeTs = 2.3780 [matching Eq. (25)],
attaining the value of η = 0.7951. From Sec. III we recall
that maximization of η can be understood geometrically as the
maximization of the magnitude of inner product in Eq. (12).
As γ0 increases from zero, it only slightly shifts the conditions
and decreases the value of the maximum η, as long as it
satisfies γ0Ts � 1 and γ0/γe � 1. Specifically, an increasing,
but still small, γ0 slightly decreases the maximum attainable
efficiency η and slightly shifts it towards larger values of γe.

Of course, the exact value of 2.3780 in Eq. (25) is particular
to the Hann shape of the pulse in Eq. (23). Nonetheless, the
Hann shape is generic in the sense that it represents a typical
single-lobe pulse. Hence, an asymptote of the form

γeTs = k, k ∼ 1, γ0Ts � 1 (26)

must exist for any single-lobe pulse shape. Furthermore, k can
be determined by setting γ0 = 0 and optimizing η over t0/Ts

and γeTs, just as we did for the Hann pulse. As discussed in
Sec. III, this value of k maximizes the magnitude of the inner
product between the impulse response h(t0, t ) and the input
signal s+(t ).

It follows from Eq. (26) that, when the energy efficiency η

is maximized, the duration of output pulse is comparable to
that of the input pulse. To see this, we recall from Eq. (11)
that the frequency-shifted pulse is an exponentially decaying
pulse with time constant of γ −1. If Eq. (26) is satisfied, γ −1 ≈
γ −1

e = Ts/k ∼ Ts. This result was first identified by Daniel
et al. [26].

Although Eq. (26) maximizes the inner product, one cannot
claim that it maximizes the projection of s+(t ) over h(t0, t ) or
vice versa. This is because both s+(t ) and h(t0, t ) change as
the ratios t0/Ts, γ0Ts, and γe/γ0 vary. Although s̄+(τ ) does
remain fixed, saying that Eq. (26) maximizes the projection of
a renormalized h(t0, t ) over s̄+(τ ) is also misleading. This is
because, as the parameter ratios are swept, the renormalized
h(t0, t ) changes its norm rather than just its “direction” in the
Hilbert space of square-integrable functions.

As γ0Ts approaches unity, the external coupling γe required
for maximum η progressively increases away from Eq. (25).
When γ0Ts increases beyond unity, the γe required to maxi-
mize η is no longer well described by Eq. (25). In fact, the
optimum γe converges to the asymptote

γe = 2γ0, γ0Ts � 1. (27)

In Fig. 3(a), Eq. (27) corresponds to the horizontal line shown
as a white dashed line. It implies that, even for γ0Ts � 1,
the resonator needs to be overcoupled for efficient AFC, as
observed in Sec. IV A.

To understand the origin of Eq. (27), we again examine
Eq. (11) as a low-pass filter. When γ0Ts � 1, it follows from
Eq. (22) that γ̄ −1 � 1, i.e. the response time γ̄ −1 of ac(τ )
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to s̄+(τ ) becomes short. Consequently, the differential equa-
tion (11) approximates the algebraic relation

ac(τ ) = κ̄ s̄+(τ )

γ̄
. (28)

To maximize the converted energy Uc = |ac(τ )|2 with respect
to γe, the coefficient κ̄ γ̄ −1 should take its maximum value.
Equation (27) then results from maximizing κ̄ γ̄ −1 with re-
spect to γe. As implied by this argument, Eq. (27) does not
depend on the shape of input pulses. This is in contrast to
Eq. (26), where the precise value of k depends on the specific
input pulse shape.

In Fig. 3(b) we consider a range of values of γ0Ts and
plot with a blue solid line the maximum AFC efficiency η

attainable by tuning γe. Equivalently, these are the values of η

along the red dashed line in Fig. 3(a), plotted as a function of
their corresponding γ0Ts. The maximum possible η decreases
monotonically with increasing γ0Ts. This verifies the intuitive
notion that, for efficient AFC, one should have γ0 � T −1

s and
γ0 � γe, i.e., the intrinsic decay should be small. Also, the
efficiency is limited by the upper bound η = 0.7951. This
value corresponds to γ0 = 0 for a Hann pulse.

Figure 3(b) indicates that one must make γ0Ts as small
as possible to obtain the largest AFC efficiency. However,
inspection of the plot for η in Fig. 3(b) by itself seem-
ingly implies that decreasing γ0Ts below unity results in
diminishing returns. Specifically, decreasing γ0Ts to γ0Ts − δ

(δ > 0) increases η to η + δ|dη/d (γ0Ts)|, for small δ, and
|dη/d (γ0Ts)| appears to be maximized at γ0Ts = 1, according
to the plot for η in Fig. 3(b). However, one must keep in
mind that the horizontal axis in Fig. 3(b) employs a logarith-
mic scale. Thus, the local slope of the plot for η does not
equal dη/d (γ0Ts). For this reason, we numerically evaluate
the derivative dη/d (γ0Ts) and plot it as an orange dashed line
in Fig. 3(b). This way, we realize that |dη/d (γ0Ts)| increases
monotonically with decreasing γ0Ts. Therefore, decreasing
γ0Ts to increase η actually never incurs diminishing returns,
as one might have expected from inspection of only the blue
solid curve in Fig. 3(b).

V. CONTINUOUS-WAVE INPUT

In this section we consider AFC with a continuous-wave
(cw) input of fixed power P0. Without loss of generality, we
suppose that this cw input is turned on at t = 0. We also
assume that the rise time of s+(t ) is negligible compared to
the resonator’s decay rates γ0 and γe. In this case, we can write
the input field s+(t ) in Eq. (11) as

s+(t ) = √
P0H (t ). (29)

With this expression for s+(t ), Eq. (11) can be solved for
ac(t0) in closed form. The solution corresponds to the step
response of a first-order differential equation, well known
from the theory of first-order electric circuits, i.e., RC and
RL circuits [37]. From it we may immediately evaluate the
converted energy Uc as

Uc = 27

4

γ 2
e γ0

γ 3
U (max)

c [1 − exp(−γ t0)]2, (30)

where we have defined

U (max)
c = 8

27

P0

γ0
≈ 0.296

P0

γ0
. (31)

When both P0 and γ0 are fixed, it follows from Eq. (30) that
the maximum possible converted energy is indeed given by
U (max)

c in Eq. (31).
Because the cw input of Eq. (29) carries infinite energy

Us, we cannot normalize Uc with respect to Us as in Sec. IV.
Nonetheless, normalization of Uc is still useful, as it will allow
us to perform a general parameter sweep, depending only on
the ratios of the resonator and modulation timescales rather
than their absolute magnitude. Hence, we take both the input
power P0 and the intrinsic decay rate γ0 as fixed, normalize
Uc with respect to the ratio U (max)

c from Eq. (31), and examine
the cw efficiency ηcw ≡ Uc/U (max)

c .
From Eq. (30) it is straightforward to verify that ηcw < 1.

Furthermore, ηcw converges to unity when Eq. (27) is satisfied,
with the pulse duration Ts replaced with the modulation time
t0. Additionally, we note that, when Eq. (27) (with the sub-
stitution Ts → t0) is satisfied, the output pulse’s duration γ −1

is necessarily much shorter than the modulation time because
γ −1 ∼ γ −1

0 � t0.
Given Eq. (29) for s+(t ), the cw efficiency ηcw depends

only on the normalized modulation time γ0t0 and the normal-
ized decay rate γe/γ0. Therefore, we may visualize a global
parameter sweep of ηcw with a simple contour plot. In Fig. 4(a)
we present such a contour plot of ηcw as a function of γ0t0
and γe/γ0. We only consider values γ0t0 > 0, because γ0 can
only be positive and because t0 < 0 results in ηcw = 0 in the
high-modulation limit, as a consequence of Eq. (29).

Figure 4(a) corroborates that ηcw is maximized if and only
if Eq. (27) is satisfied after the substitution Ts → t0. As in
Fig. 3(a), we show with a red dashed line the curve corre-
sponding to the locus of the values of γe that optimize η for
a fixed γ0t0 in Fig. 4(a). As identified above, for γ0t0 � 1,
this curve has Eq. (27) as an asymptote (with Ts → t0). This
asymptote is shown as a green dashed line in Fig. 4(a). Simi-
larly to Sec. IV, there exists a different asymptote for γ0t0 � 1
given by the curve

γet0 = 1.2564, γ0t0 � 1. (32)

To determine the value of 1.2564 in Eq. (32), we consider
Eq. (30) for γ0 = 0 and numerically optimize the resulting
expression for Uc with respect to γet0. The straight line cor-
responding to Eq. (32) is shown as a white dashed line in
Fig. 4(a).

As expected, Eq. (32) is of the form of Eq. (26), albeit
with the pulse duration Ts replaced with the modulation time
t0. Furthermore, we have already shown that the asymptote
for γ0t0 � 1 has the form of Eq. (27). Thus, both asymptotes
in Fig. 4(a) are analogous to those in Fig. 3(a). Nonetheless,
there is a clear difference between Fig. 3(a) for pulsed input
and Fig. 4(a) for cw input. In Fig. 3(a) the optimum η is
achieved when γ0Ts � 1, while in Fig. 4(a) the optimum ηcw

is attained when γ0t0 � 1.
We explain these similarities and differences between η

and ηcw through the following argument. It is intuitively clear
that the frequency-shifted energy Uc achieved with the cw
input from Eq. (29) should be the same as that achieved
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(b)

(a)

cw

cw
cw

FIG. 4. Global parameter sweep for the optimization of the AFC
energy efficiency ηcw for a cw input. (a) Contour plot of the AFC
energy efficiency ηcw for a cw input. The red dashed line depicts
the locus of optimum γe for a given value of γ0t0; the green dashed
line indicates its asymptote for γ0t0 � 1; and the white dashed line
shows its asymptote for γ0t0 � 1. (b) Optimized ηcw as a function of
γ0t0 and maximized over γe (blue solid line) and its derivative as a
function of γ0t0 (orange dashed line).

with a rectangular input pulse that starts at t = 0 and ends
at t = t0 (duration Ts = t0) and has total energy Us = P0t0.
In evaluating ηcw, we normalize Uc with respect to U (max)

c ,
proportional to P0/γ0 = Us/(γ0t0), rather than with respect to
Us = P0t0. Therefore, ηcw in Fig. 4(a) can be understood as η

for a square input pulse of duration Ts = t0, albeit multiplied
by a factor of 27γ0t0/8, as a consequence of normalization
with respect to U (max)

c in Eq. (31). The additional factor of
γ0t0 displaces the optimum normalized modulation time γ0t0
from γ0t0 � 1, as in Fig. 3(a), to γ0t0 � 1, as in Fig. 4(a). The
additional factor of γ0t0 does not change the optimal γe for a
given value of γ0t0. Consequently, the curves of optimal γe

for a pulsed square input and a cw input are the same. Recall
that the asymptote in Eq. (26) is applicable for any single-lobe
pulse, with only the value of k varying with the precise pulse
shape, as argued in Sec. IV. Thus, the γe asymptotes for the
Hann pulse are analogous to those for a square pulse. This

explains why the asymptotes in Fig. 4(a) resemble those in
Fig. 3(a).

As in Sec. IV, we also examine how the maximum attain-
able ηcw varies with the normalized modulation time γ0t0. This
is equivalent to plotting the value of ηcw along the optimal
γe curve of Fig. 4(a). The result is shown as the blue solid
line in Fig. 4(b). Notice that, as γ0t0 increases beyond unity,
ηcw rapidly converges to 1. From Eq. (31) we verify that,
since the maximum with respect to γe converges to γe = 2γ0,
the maximum ηcw for a fixed γ0t0 converges to unity almost
exponentially as γ0t0 tends to infinity. In turn, this causes the
derivative of ηcw (optimized with respect to γe) with respect
to γ0t0 to decay exponentially, as verified by inspection of
the orange dashed line in Fig. 4(b). Therefore, increasing
the modulation time γ0t0 to increase ηcw incurs diminishing
returns. To see this, we note as in Sec. IV B that increasing γ0t0
to γ0t0 + δ increases ηcw by δ · dηcw/d (γ0t0) for small δ(γ0t0).
As dηcw/d (γ0t0) decreases monotonically with γ0t0, so does
the gain in increasing γ0t0. This situation contrasts with that
for a pulsed input of Sec. IV B, where the increase in Uc due to
a small decrease in γ0Ts never results in diminishing returns.

VI. CONCLUSION

In this paper we presented a comprehensive theoreti-
cal analysis of the attainable energy efficiency of adiabatic
frequency conversion. We invoked the Cauchy-Schwarz in-
equality and used it to obtain a theoretical bound for AFC
efficiency, determine the optimal pulse shape to excite AFC,
and analyze how the pulse shape determines AFC efficiency.
Next we considered a fixed single-lobe input pulse shape
and analyzed how the AFC efficiency depends on its various
timescales. We showed that optimal AFC efficiency always
requires resonator overcoupling, albeit with a degree varying
with the input pulse duration. Then we examined the case
where AFC is excited by a continuous-wave optical input. We
again found that maximum output energy is achieved when
the resonator is overcoupled. Additionally, we interpreted the
conditions for optimal AFC under cw input in terms of the
results of AFC for a pulsed input. Our results are useful to
optimize any realization of AFC in an all-pass resonator. This
will enable shifting work on AFC from proof-of-principle
experiments to engineering for applications.
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APPENDIX: JUSTIFICATION FOR THE CONDITION IN
EQ. (8)

Let ã1(t ) stand for the second term on the right-side of
Eq. (7):

ã1(t ) ≡
∫ t

t0

dt ′κs+(t ′) exp[(i�0 + γ )(t ′ − t0)]. (A1)
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In this Appendix we discuss the condition when ã1(t ) is neg-
ligible compared to a(t0), so ã(t ) in Eq. (7) can be treated as a
constant.

The integral in Eq. (A1) cannot be performed analytically
for an arbitrary pulse shape s+(t ). Because our goal is to find a
rule of thumb rather than an exact formula, we choose a pulse
shape suitable for analysis. Thus, for simplicity, we take s+(t )
as a rectangular pulse. Then

s+(t ) =
√

Us

Ts

[
H

(
t + Ts

2

)
− H

(
t − Ts

2

)]
, (A2)

where Us is the pulse’s energy and Ts its duration.
Substituting Eqs. (5) and (A2) into Eq. (A1) and perform-

ing the integral, we obtain

|ã1(t )|2 = 4γeUs

(�2
0 + γ 2)Ts

exp(γ tm)

(A3)
× [cosh(γ tm) − cos(�0tm)],

where

tm ≡ min(Ts/2 − t0, t − t0). (A4)

As a(t0) in Eq. (7) is independent of �0, it follows from
Eq. (A3) that for sufficiently large detuning �0, one must have
|ã(t )|2 � |a(t0)|2. In this case, neglect of the second term on
the right-hand side of Eq. (7) is justified. However, Eq. (A3)
is a transcendental function of both �0 and γ . Hence, it is
useful to simplify it, even at the cost of generality. To do so,
we consider the high-quality limit, in which γ tm � 1. Then
exp(γ tm) ≈ 1 and |ã1(t )|2 becomes bounded by

|ã1(t )|2 � 8γeUs(
�2

0 + γ 2
)
Ts

. (A5)

If we assume that the ring cavity has been excited efficiently,
|a(t0)|2 ∼ Us. It follows that |a(t0)|2 � |ã1(t )|2 if

8γe � (
�2

0 + γ 2
)
Ts. (A6)

Usually in the case of AFC, we have |�0| � γ , so the post-
modulation output can be resolved from the premodulation
output. Using this feature, Eq. (A6) can be simplified to
Eq. (8).
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