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Refractive index inside a graded-index (GRIN) waveguide is not uniform but decreases in the radial direction in a 
nearly parabolic fashion. It is this index gradient that confines light to the waveguide's core. Wave propagation in 
GRIN fibers was studied during the 1970s, motivated by their applications in optical communication systems. More 
recently, GRIN fibers have been used to study the spatiotemporal nonlinear phenomena. This article focuses on the 
propagation of pulsed optical beams in GRIN waveguides. The modes of a GRIN medium with a parabolic index 
profile are used to the self-imaging phenomenon that is unique to GRIN waveguides. Evolution of a pulsed Gaussian 
beam is considered using a non-modal approach, resulting in a four-dimensional propagation equation. It is extended 
to include the Kerr nonlinearity, responsible for both the self-focusing and self-phase modulation. The resulting 
equation is solved approximately to obtain an effective nonlinear Schrodinger equation that includes the effects of 
self-imaging. This equation is used to discuss the formation of fundamental and higher order solitons inside GRIN 
waveguides. The impact of intrapulse Raman scattering is also considered. © Anita Publications. All rights reserved.
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1 Introduction

 I met Bishnu Pal first time in 1971, when I joined the Ph D program of the Indian Institute of 
Technology (IIT) in New Delhi, India. We both left IIT Delhi for Europe after completing our Ph D degrees 
in optics and photonics, but our friendship has continued to this day. It is with great pleasure that I contribute 
this article to the special issue of the Asian Journal of Physics being published to honor Prof Bishnu Pal.
  I have chosen graded-index waveguides as the topic of this article because it was Bishnu who 
introduced me to graded-index (GRIN) fibers. Such fibers were developed around the year 1970 and were a 
hot topic of study during my Ph D years at IIT Delhi. Prof Ajoy Ghatak was Bishnu’s thesis adviser. He was 
also my teacher during my M Sc studies and acted as my mentor during the Ph D years. Even though Prof 
Ghatak was not my thesis adviser, I coauthored a paper with him that was published in November 1974 [1].
This paper is being cited even after 48 years because it remains relevant to the current research on GRIN 
fibers. I am indebted to Prof Ghatak and Prof Pal for introducing me to the field of optical waveguides in 
general, and to GRIN fibers in particular. 
 GRIN fibers contain a central core, where the refractive index is not uniform and decreases 
parabolically in the radial direction. In contrast to the step-index fibers, it is the index gradient that confines 
light to the waveguide. Wave propagation in GRIN fibers was studied during the 1970s, motivated mostly 
by their applications in optical Communication systems [2-5]. Even though GRIN fibers were initially used 
for such systems, the use of single-mode fibers became dominant after 1985. It was only after 2010 that 
multimode fibers attracted renewed attention for enhancing the capacity of optical communication systems 
through space-division multiplexing [6-8]. This revival led to a resurgence of interest in GRIN fibers, 
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especially in their nonlinear properties [9-14]. Among the nonlinear phenomena that have attracted attention 
is the issue of formation of solitons inside multimode fibers.
 The soliton issue was addressed as early as 1980 in several publications [15,16]. Theoretical work 
carried out during the 1990s indicated that the formation of temporal solitons was indeed feasible inside a 
GRIN medium [17-19]. It eventually led in 2013 to the observation of such a soliton [10]. In this experiment, 
only three lowest-order modes of the fiber were excited. It was shown in 2018 that GRIN fibers support 
propagation of temporal solitons even when a large number of modes participate in their formation [20], but 
their spatial width oscillates along the fiber because of periodic self-imaging [21]. Since then, much work has 
been done to understand the formation of solitons inside GRIN fibers [22-24]. 
 The article is organized as follows. In Section 2, the modes of a GRIN waveguide with a parabolic 
index profile are discussed, and the ladder-like structure of their propagation constants is emphasized. Section 
3 is devoted to the self-imaging phenomenon that is unique to GRIN waveguides. A modal-expansion aproach 
is used to show that the optical field at any point inside the waveguide can be obtained, without any reference 
to the underlying modes [1]. This result is used in Section 4 to study the propagation of Gaussian beams 
inside a GRIN waveguide, and it is shown that the beam’s width varies in a periodic fashion. The case of an 
off-center Gaussian beam is also discussed. Evolution of a pulsed Gaussian beam is considered in Section 5 
using a non-modal approach, resulting in a four-dimensional propagation equation. This equation is extended 
in Section 6 to include the Kerr-type nonlinearity, responsible for both the self-focusing and self-phase 
modulation (SPM). It is solved approximately to obtain an effective nonlinear Schrödinger (NLS)equation 
that includes the effects of periodic self-imaging. Section 7 is devoted to the topic of spatiotemporal solitons 
forming inside GRIN waveguides. The main results are summarized in Section 8.

2 Wave propagation in GRIN media

 It is often simpler to solve Maxwell’s equations in the frequency domain. For this purpose, we 
define the Fourier transform of the electric field E(r, t) as

 ~
E(r,ω) = ∫

∞
– ∞ E(r,t) eiωtdt. (1)

Maxwell’sequations in the frequency domain are then combined to obtain the following equation:
 ∇ × ∇ × ~

E = µ0 ε ω2 ~
E. (2)

Keeping in mind that ε is not a constant for a GRIN medium, we can write this equation in the form

 ∇2 ~E + µ0 ε ω2 ~
E + ∇ 

1
ε ∇ ε · ~

E  = 0. E (3)

Using ε = ε0 n2 (r), where n is the refractive index, together with µ0 ε0 = 1/c2, Eq (3) becomes

 ∇2 Ẽ + n2(r) k 2
0 Ẽ + ∇  

1
n2 ∇ n2 · ~

E  = 0, (4)

where, k0 = ω/c = 2π/λ is related to the wave length of radiation.
 The last term in Eq (4) is finite because the index gradient ∇n is not zero for a GRIN medium. 
It has been found in recent years that this term leads to the optical analog of the spin-orbit coupling for 
vortex beams carrying the orbital angular momentum [25,26]. Its magnitude is, however, negligible when the 
refractive index n(r) varies on a spatial scale much longer than a wavelength.We assume this to be the case 
and focus on the simpler Helmholtz equation
  ∇2 Ẽ + n2(r) k 2

0 Ẽ = 0. (5)
 The refractive index of GRIN fibers decreases radially inside the core of radius a from its value n0 
at the center to the cladding value nc as
 n2(r) = n2

0
 [1 − 2∆ (x2 + y2 )/a2], (6)
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where, ∆ = (n1 – nc)/n1 plays an important role and is defined in the same way as for step-index fibers [8]. To 
obtain ananalytic solution, it is necessary to assume that Eq (6) applies for all values ρ = (x2 + y 2)1/2. Figure 1 
shows the nature of this approximation by comparing the actual profile of a GRIN medium to a parabolic shape.
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Fig 1. Actual index profile of a GRIN fiber (solid line) is compared to its parabolic approximation 
(dashed line).The dotted vertical line marks the core-cladding boundary.

 There are two ways of solving Eq (5). We can solve it as an initial-value problem, where Ẽ is 
specified at the input end of a GRIN medium located at z = 0. Alternatively, we can adopt the modal approach 
in which Eq (5) is solved as an eigenvalue problem, whose eigenfunctions, called optical modes, do not 
change with z. We follow the modal approach and assume that any solution of Eq (5) has the form
 Ẽ = p̂ U (x,y) eiβz,  (7)
where p̂ is the polarization unit vector, U(x, y) is the eigenfunction, and β is the propagation constant (or 
eigenvalue) that is yet to be determined. Using n(r) from Eq (6), Eq (5) for a GRIN medium is reduced to

 d 2U
dx 2

 + d 2U
dy 2

 +{n2
0 k2

0 [1 − 2∆(x 2 + y2)/a2] − β2}U = 0. (8)

 The preceding equation can be solved with the method of separation of variables. Its general solution 
takes the form [27]

 Umn (x,y) = 

Nm Hm (qx) exp − 1

2
 q2 x2

  Nn Hn (qy) exp − 1
2
 q2y2

 , (9)

where the integers, m and n, start at 0, q2 = n0 k0 2 ∆ /a, Hm (qx) is a Hermite polynomial of the mth order, and 
Nm is a normalization constant such that
 ∫ ∫

∞
– ∞ U *

m' n' (x,y) Umn (x,y) dx dy = δm' m δn' n. (10)

 Each Hermite-Gauss mode is denoted by HGmn and its propagation constant depends on the GRIN 
parameters as
 βm n = n0 k0 [1 − (m + n + 1)(4∆/V )]1/2, (11)
where, similar to the case of step-index fibers, we defined a dimensionless parameter V, as

 V = (qa)2 = n0 k0 a 2 ∆. (12)
 The value of this parameter exceeds 20 for GRIN fibers designed with a = 25µm, and the total 
number of modes scales as V 2/4 for such fibers. As the ratio ∆/V is relatively small (< 10−3), the second term 
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in Eq (11) remains small compared to 1, if we limit m+n to values well below1000. By making a binomial 
expansion, we can approximate βmn as
 βmn ≈ k0 [n0 − (m + n + 1) δn], δn = 2n0∆/V. (13)
 It is common to define an effective mode index as, –n = β/k0. If we introduce a single integer 
as g = m + n + 1, we can write it in the simple form, –ng = n0 − gδn, where g labels different mode groups. 

Fig 2. Schematic showing the effective mode indices (dashed lines) for several mode 
groups within parabolic profile of a GRIN medium. The dotted vertical line at ρ = a 
marks its core-cladding boundary.

Figure 2 shows schematically the ladder-like structure of –ng values for several mode groups within the 
parabolic profile of a GRIN medium. The first group for g = 1 contains the HG00 mode with the largest 
value –n1 = n0 δ n; this mode is called the fundamental mode. As m and n change such that g increases by 1, 
–ng decreases by the same amount δn. The largest value of the integer g is set by the condition that –ng must 
remain larger than the cladding index nc = n0 (1– ∆) for the modes to remain confined within the core of the 
GRIN medium. The ladder-like structure of the eigen values is analogous to the energy levels of a harmonic 
oscillator and is a consequence of the parabolic nature of the index profile. It leads to a phenomenon called 
self-imaging, which manifests as periodic focusing and defocusing of an optical beam inside a GRIN medium 
such that the input shape of the beam is reproduced at certain locations [21].

3 Propagation Kernel of GRIN media

 Let us first consider the propagation of a continuous-wave (CW) beam entering a GRIN medium at 
z = 0 with an electric field E(x, y, 0). It excites multiple modes such that
 E(x, y, 0) = ∑

m
 ∑

n
 cmn Umn (x, y), (14)

where the double sum extends over all modes.The expansion coefficients cmn are found by multiplying this 
equation with U *

m' n'  (x, y) and integrating over the entire transverse plane. Using the orthogonality of modes 
indicated in Eq (10), we obtain
 cmn = ∫∫

∞
– ∞ U *

m n (x,y) E (x, y, 0) dx dy.  (15)
 As all modes propagate without change in their spatial profiles and only acquire a z-dependent phase 
shift with propagation inside the GRIN medium, E(x, y, z) is obtained by multiplying each mode with a phase 
factor such that 
 E (x, y, 0) = ∑

m
 ∑

n
 cmn Umn (x,y) exp (iβm n z). (16)

Substituting cmn
 from Eq (15), we can write the result in the form

 E(x, y, z) = ∫∫
∞
– ∞ K (x, x ′; y, y ′ ) E (x ′, y ′, 0) dx′ dy ′,  (17)
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where the propagation kernel is given by

 K(x, x ′; y, y′ ) = ∑
m

 ∑
n

 Umn (x,y) U *
m n (x ′,y ′) eiβmnz. (18)

 It was found in 1974 that the double sum in Eq (18) can be carried out for GRIN fibers because of 
the ladder-like structure of the modal propagation constants [1].The final result is given by

 K(x, x ′; y, y′ ) = 
k

2πi 
beiψ

sin(bz) 
 exp 


ikb

2 sin(bz) 
[cos(bz)(x′2 + y′2) – 2(xx ′ + yy ′ )]

 
, (19)

where k = n1k0, b = 2 ∆/a, and the phase ψ varies as

 ψ (x, y, z) = kz + 1
2

 k b cot(bz) (x2 + y2). (20)

Noting that sin(bz)/b = z in the limit b → 0, it is easy to see that the kernel in Eq (19) reduces to

 Kh (x, x ′; y, y′ ) = 
k eikz

2πiz exp 

ik
2z

 [(x – x' )2 + (y – y' )2]

, (21)

which is the form expected for a homogeneous medium of constant refractive index.
 It is well known that a GRIN fiber reproduces its input field periodically along its length.This self-
imaging property follows from the observation that the Kernel in Eq (19) is reduced to the form
 K (x, x ′; y, y′ ) = δ(x − x′) δ(y − y′) eikz (22)
at distances that are integer multiples of the fundamental period 2π/b.This can be seen by noting that cos (bz) 
=1 at such distances and K in Eq (19) can be written as K = f (x − x′ ) f (y − y′ ) eikz, where the function f (x) 
is defined as

 f (x) = p
π

 e−px2, p = 
kb

2i sin (bz). (23)

 It is easy to show that ∫
∞
– ∞

 f (x) dx = 1. At distances z = 2mπ/b, where m is an integer, p becomes 
infinitely large, and f (x) is reduced to the delta function δ(x).
 It follows from Eqs (17) and (22) that the field E(r) becomes identical to the input field at all such 
distances, resulting in self-imaging.The self-imaging period,

 Lp = 2π
b

 = 2πa
2 ∆

, (24)

depends only on the two GRIN parameters, a and ∆, and is typically ~1 mm for standard GRIN fibers. Self-
imaging also occurs in the middle of each period, with one major difference. In this case, the delta functions 
in Eq (22) are replaced with δ (x + x′ ) and δ(y + y′ ). As a result, E(x, y, Lp/2) = E(–x, –y, 0), i.e.,the image is 
flipped in both transverse dimensions. If the input field is radially symmetric, the sign change has no impact, 
and the input field is reproduced (or self-imaged) for the first time at the distance Lp/2.

4 Gaussian-beam propagation

 As a simple example, we consider the propagation of a Gaussian beam through a GRIN fiber and 
choose the input field at z = 0, to be
 E(x, y, 0) = A0 exp [− (x2 + y2) / 2w2

0], (25)
where, A0 is the peak amplitude and w0 is the initial spot size of the Gaussian beam. We find the electric field 
at any point inside the GRIN medium by using Eq (25) in Eq (17) together with the propagation kernel in Eq 
(19). The result can be written as 

  E (r)
 
= 

A0 k
2πi  

beiψ

sin(bz) H(x,  x ′ )H(y,  y ′ ), (26)
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where the function H(x, x′) is defined as

 H(x, x′) = ∫
∞
– ∞

 exp – 
x′2

2w2
0
 + ikb

2sin(bz) [cos(bz) x′2 – 2xx ′]  dx ′, (27)

The preceding integral can be done easily with the final result [21]
 E(r) = A0 F(r) exp [iϕ(r)], (28)
where the beam’s spatial profile retains its Gaussian form,

 F(r) = 
w0

w(z) exp 

– x

2 + y2

2w2(z) 
. (29)

and its phase ϕ(r) is given by

 ϕ(r) = 
k

2w 
dw
dz  (x 2 + y 

2) + kz + tan−1(Cf tanbz). (30)

The spot size w(z) in Eq (29) evolves with z inside the GRIN medium in a periodic fashion as
 w(z) = w0 [cos2 (2πz/Lp) + C 2

f  sin2 (2πz/Lp)]1/2, (31)
where the parameter Cf  is defined as

 Cf  = Lp/(2 π k w2
0). (32)

 These results show that the amplitude, the width, and the phase of a Gaussian beam evolve in a 
periodic fashion such that the beam recovers all of its input features periodically at distances z = m(Lp/2) (m 
is any positive integer) because of the self-imaging phenomenon. At distances z = (m – 1/2)Lp/2, the beam’s 
width takes its minimum value w0Cf . The reduction in width is similar to the action of a lens. The focal 
length, Lf  = Lp/4, of a GRIN lens is defined as the shortest distance at which the beam first comes to a focus. 
If we use a = 1mm and ∆ = 0.05 as typical values for a GRIN rod, the numerical value of Lf is close to 5mm.

Fig 3. Evolution of an on-axis Gaussian beam inside a GRIN fiber over one self-imaging 
period. Beam’s cross section along the y = 0 plane is shown for Cf = 0.4.

 As an example, Fig 3 shows the evolution of a Gaussian beam over one self-imaging period using Cf 
= 0.4. For this value of Cf, the beam width is reduced by a factor of 2.5 at the point of maximum compression 
and its peak intensity is enhanced by a factor of 6.25. Compression by a factor of 10 and intensity enhance- 
ment by a factor of 100 can be realized by making Cf = 0.1.
 The Gaussian beam described by Eq (25) is launched such that its center coincides with the core’s 
central axis, and its intensity profile is radially symmetric around this axis. In the modal picture, only radially 
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symmetric modes are excited by such an input beam. If the peak of the Gaussian beam is shifted by a distance 
s along the x axis, the input field in Eq (25) is replaced with
 E (x, y, 0) = A0 exp (− [(x − s)2 + y2] / 2w2

0). (33)
 The optical field at any point r = (x, y, z) is found using Eq (33) in Eq (17) together with the kernel 
in Eq (19).The final result has the form given in Eq (28), but the beam’s amplitude is now governed by [14]

 F(r) = 
w0

w(z) exp 

– 1

2 w2(z)
 [(x − s cos bz)2 + (y − s sin bz)2]

 
, (34)

where, w(z) varies with z in a periodic fashion as indicated in Eq (31).
 Figure 4 shows how an off-axis Gaussian beam evolves over one self-imaging period by plotting 
its intensity variations over one period after choosing s = w0 and Cf = 0.4. Similar to the on-axis launch, the 
beam’s width oscillates with z, compressing and recovering its input value periodically. The new feature is that 
the beam’s center also oscillates in a helical fashion around the fiber’s axis. Even though the Gaussian beam 
in Fig 4 recovers its initial width w0 at z = Lp/2, its center is located on the opposite site at x = s, resulting in a 
flipped image. The self-imaging period for a shifted Gaussian beam doubles because its intensity distribution 
is not radially symmetric around the GRIN rod’s axis.

5 Pulse propagation in GRIN fibers

 When a pulsed beam is launched into a GRIN fiber, its spatial width continues to evolve periodically 
and exhibit self-imaging. However, one must consider the dispersion-induced reshaping and broadening 
of each pulse. A model approach was employed during the 1970s for this purpose, and it was useful to 
include the effects of random mode coupling along the fiber’s length [28-30]. Here, we focus on a non-model 

Fig 4. Evolution of an off-axis Gaussian beam (centered at x = w0) inside a GRIN fiber over 
one self-imaging period. Beam’s cross section along the y = 0 plane is shown for Cf = 0.4.

approach that is useful when mode coupling is negligible. In this case, Eq (5) applies to each spectral 
component of the pulse and is solved using
 Ẽ (r,ω) = p̂ Ã (r,ω) exp [i β(ω) z), (35)
where, β(ω) = n0 (ω)ω/c is the propagation constant. If we neglect the second derivative d2A/ z2 in the 
paraxial approximation, Ã (r, ω) satisfies 

 2iβ (ω) ∂ Ã
∂z

 + ∂ 2 Ã
∂x2  + ∂ 2 Ã

∂y2  – 2∆ 
β2

a2 (x2 + y2) Ã (r,ω) = 0 (36)
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Its inverse Fourier transform,

 A(r, t) = 1
2π

 ∫
∞

– ∞
 Ã(r,ω) exp[i (β − β0) z − i(ω − ω0)t]dω.  (37)

then provides us with the spatial as well as temporal dependence of the slowly varying amplitude.
 It is useful to convert Eq (36) to the time domain. We use the preceding equation to calculate the 
spatial derivative,

 ∂A
∂z

 = 1
2π

 ∫
∞

– ∞
 
∂ Ã
∂z  + i( β − β0) Ã  

exp[i(β − β0) z − i (ω − ω0)t] dω.
 

(38)

We substitute 
∂ Ã
∂z  from Eq (36) and approximate β(ω) with itsTaylor expansion around the central frequency 

ω0 in the form β(ω) = β0 + β1 Ω + 1
2

 β2 Ω2, where Ω = ω – ω0. With this simplification, the frequency 

integration in Eq (38) can be done to obtain thefollowing four-dimensional equation:

 ∂A
∂z

 + 1
2 i β 0

 
 
∂ 2 A
∂ x 2

 + ∂ 2 A
∂ y 2

 

 + β1 

∂A
∂t

 + 
i β2
2  ∂ 2 A

∂ t 2
 + 

i β 0 ∆
a 2

 (x2 + y2) A = 0. (39)

 Equation (39) governs the spatiotemporal evolution of a pulsed optical beam inside a GRIN medium. 
Its main advantage is that it includes all modes of a GRIN medium automatically.
 We can simplify the four-dimensional problem by considering the length scales associated with the 
spatial and temporal evolutions. The length scale of spatial changes is provided by the self-imaging period 
Lp given in Eq (24), with a typical value 1 mm for GRIN fibers. The length scale of temporal evolution is 
governed by the dispersion length LD, defined as LD = T 2

0 / |β2|, where T0 is a measure of pulse duration. When, 
T0 = 1ps, this length is 100m for typical values of β2 of GRIN fibers at wavelengths near 1550nm.
 The vast disparity in the two length scales implies that spatial evolution of a pulsed beam is not 
much affected by the GVD effects for pulses with a narrow bandwidth such that ∆ω ≪ ω0. In contrast, the 
spatial self-imaging effects may influence the temporal effects. A simple way to implement this idea is to 
decouple the spatial effects with the approximation 
 Ã(r, ω) ≈ F(r, ω0) Ãt(z, ω),  (40)
where the spatial distribution of the beam is at the central frequency ω0. This is justified for a narrow-
bandwidth pulse for which the spatial self-imaging features do not vary much over its bandwidth [31]. Using 
again the Taylor expansion for β(ω), we find that At (z, t) satisfies the one-dimensional equation

 
∂At

∂z  + β1 
∂At

∂t
 + 

i
2 β2 

∂ 2 At

∂ t 2
 = 0. (41)

 This equation is identical to the one used single-mode fibers and implies that self-imaging does not 
affect the pulse’s evolution. We will see later that this is not the case when nonlinear effects are considered.
 One should consider the conditions under which the use of Eq (41) is justified. As a modal approach 
was not used, it contains only two dispersion parameters, β1 and β2, calculated at the central wavelength of 
the pulsed beam. Also, the spatial and temporal features evolve independently, without any coupling between 
them. In spite of these simplifications, it represents a valid solution (i) when the input beam excites a large 
number of modes,(ii) bandwidth of pulses is small relative to the central frequency of the optical spectrum, 
and (iii) mode coupling is negligible.

6 Nonlinear propagation equation

 The refractive index of any material increases slightly at high intensities because of the Kerr effect 
such that n(r, I) = n(r) + n2 I, where I is the local intensity. The parameter n2 is called the Kerr coefficient, and 
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its numerical value is about 3×10−20m2/W for silica glass. The physical origin of the Kerr nonlinearity lies in 
the anharmonic response of electrons to electromagnetic fields. 
 Equation (39), governing the spatiotemporal evolution of a pulsed optical beam inside a linear 
GRIN medium, can be extended to the nonlinear case by adding the following nonlinear term to it:

 ∂A
∂z

 + 1
2 i β 0

 

∂ 2 A
∂ x 2

 + ∂ 2 A
∂ y 2

 + β1 
∂A
∂t

 + 
i β2
2  ∂ 2 A

∂ t 2
 + 

i β 0 ∆
a 2

 (x2 + y2) A = i k0 n2 | A|2 A. (42)

 This equation governs the spatiotemporal evolution of optical pulses inside a nonlinear GRIN 
medium and includes simultaneously the effects of diffraction, dispersion, and the Kerr nonlinearity. The β1 
term does not play an important role because it can be removed by a simple scaling of time, T = t – β1z.
 It is not easy to solve Eq (42) analytically, and its numerical solutions are time-consuming because 
of its multi-dimensional nature. To get some physical insight, consider first the case of a homogeneous 
medium by setting ∆ = 0 in Eq (42). If we neglect the diffraction terms for an optical beam with a large spatial 
size and use T = t – β1z, we obtain the usual NLS equation:

 ∂A
∂z

 + 
i β2
2  ∂ 2 A

∂ T 2
 = i k0 n2 | A|2 A. (43)

 This well-known equation has been studied in many different contexts and can be solved exactly 
with the inverse-scattering method to find specific solutions known as solitons [19]. In the context of optical 
fibers, solitons represent pulses whose shape either does not change along the fiber, or follows a periodic 
evolution pattern [14]. Their formation requires negative values of β2 that correspond to the group-velocity 
dispersion (GVD) being anomalous.
 When diffraction terms are added to Eq (43), we obtain Eq (42) without the GRIN term (∆ = 0). 
The soliton-like solutions of this equation were investigated during the 1990s and are called spatiotemporal 
solitons,or optical bullets, because of their confinement in both space and time [19]. Similar to the case of 
Eq (43), such solitons requires anomalous GVD. However, unlike Eq (43), they are not stable beacuse of the 
self-focusing effects. One should ask whether Eq (42), describing pulse evolution inside a nonlinear GRIN 
medium, has stable solutions in the form of a spatiotemporal soliton. Such solutions were investigated during 
the 1990s by solving Eq (42) with the variational method [17,18]. It was found that their stability is improved 
by the GRIN nature of the medium, but they are only stable marginally.
 The spatiotemporal solitons are difficult to realize in practice because they must be launched with 
precise input conditions. Given the self-imaging property of a GRIN medium, we know that any CW beam 
evolves in a periodic fashion with a relatively small period of < 1mm. This suggests that we may be able to 
find solitons that maintain a constant temporal width, but whose spatial width follows a periodic pattern along 
the medium’s length.
 Even though the following analysis can be extended to other beam shapes, we focus on a pulsed 
Gaussian beam, launched into a GRIN fiber with a planar wavefront at z = 0. In the CW case, the solution is 
given in Eq (28). To apply this CW solution to a pulsed Gaussian beam,we assume that the band width of the 
pulse is narrow enough that the spatial profile F(r) of the beam is not affected much by the nonlinear effects.
With this approximation, the solution of Eq (42) is sought in the form [31]
 A(x, y, z, t) = F(x, y, z) At (z, t), (44)
where, At (z, t) describing the temporal evolution of pulses does not depend on the spatial coordinates x and y 
because this dependence is contained in the spatial part F(x, y, z).
 To obtain an equation for At(z, t), we follow a procedure well known in the case of single-mode 
fibers [14], while keeping in mind that F(x, y, z) is not the spatial profile of any specific mode but changes 
with z. When we substitute Eq (44) in Eq (42), we obtain



410 Govind P.Agrawal  

 Fs 
dAt
dz  

+ β1 
dAt
dt

 + 
i β2
2  

d 2 At

d t 2
 – i k0 n2 | Fs|2 | At|2 At 

, 

 + At 
dFs
dz

 + 1
2i β 0

 
∂ 2 Fs

∂ x 2
 + ∂ 2 Fs

∂ y 2  
i β 0∆

a2  (x2 + y2) Fs
 = 0 (45)

 The expression in the second line vanishes because Fs is its solution. We multiply Eq (45) with F*
s  

and integrate over the transverse coordinates x and y. The final result can be written as [31]

 
∂At
∂z

 + β1 
∂At
∂t

 + 
i β2
2  

∂ 2 At

d t 2
 + = i –γ (z) | At |2 At , (46)

where | At |2 has units of power and the effective nonlinear parameter is defined as

 –γ (z) = 
k0 n2

Aeff (z)
, Aeff (z) =  

∫ ∫
∞
– ∞

 |Fs(r)|2 dx dy 
2

 ∫ ∫
∞
– ∞

 |Fs (r)|4 dx dy
. (47)

 This is a remarkable result. It shows that the pulse evolution inside a GRIN fiber can be studied 
by solving a single NLS equation, even though multiple spatial modes may be propagating inside the fiber.
The oscillating spatial width of the Gaussian beam, resulting from self-imaging, gives rise to an effective 
nonlinear parameter –γ (z) that is also periodic in z. This is not surprising because the intensity at a given 
distance z depends on the beam’s width, becoming larger when the beam compresses and smaller as it 
expands. One can interpret this effect as a spatially varying effective mode area.
 The spatial integrals in Eq (47) can be performed analytically using the form of F(r) in Eq (29).The 
result is
 Aeff (z) = Aeff (0) f (z), f (z) = cos2 (2πz/Lp) + C 2

f  sin2 (2πz/Lp). (48)

 The functional form of the factor f(z) becomes obvious from the observation that Aeff (z) at any 
location scales with the spatial width as w2(z). We can use this relation to define –γ (z) = γ/f (z), where γ = k0n2/
Aeff  (0) is the initial value at z = 0. As a final step, we drop the subscript t from At and use the reduced time 
T = t – β1z to write Eq (46) in the form

 
∂A
∂z

 + 
i β2
2  

∂ 2 A
∂ T 2

 = 
i γ

f  (z)
 | A |2 A , (47)

This equation reduces to the standard NLS equation when Cf = 1. 
 Similar to the case of single-mode fibers, Eq (49) needs to be modified for pulses shorter than 
a few picoseconds [14]. The reason is related to the nature of the nonlinear response of a material to 
an electromagnetic field. In general, the molecular vibrations also produce a nonlinear response, in 
addition to the electrons. This response, known as the Raman response, is delayed in time, compared to 
the nearly instantaneous response of electrons, and this delay becomes relevant for short optical pulses. 
The Raman response is included by replacing the nonlinear index change (δn)NL = n2 |A|2 in Eq (42) with
 (δn)NL = (1 − fR) n2 |A| 2 + fR ∫

∞
0  hR (t′ )| A (r, t−t′ )|2 dt ′, (50)

where fR represents the fractional contribution of the delayed response and hR(t) is the Raman response 
whosefunctional form is governed by vibrations of silica molecules. Its use in Eq (42) leads to thee following 
modified form of the effective NLS equation given in Eq (49):

 
∂A
∂z

 – i ∑
M

n ≠ 2
 i 

n βn
n!

 
∂ n A
∂ T n

 = 
i γ

f  (z)
 (1 − fR) |A| 2 A + fR ∫

∞

0  hR (t′ ) | A (z, T − T ′ )| 2 dT ′ 
,
 

(51)

where we included the higher order dispersion terms in the Taylor expansion of β(ω), because the spectral 
width of ultrashort pulses becomes large enough that their contribution may not be negligible. Often, it 
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is sufficient to include the β3 term by choosing M = 3, but the β4 and higher-order terms may be needed, 
depending on the situation.
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Fig 5. (a) Measured Raman gain spectrum of silica fibers; (b) temporal form of the Raman 
response function deduced from the gain data (from Ref.[14]).

 The Raman response hR(t) in Eq (51) affects short pulses through the Raman gain. For pulses with 
a wide spectrum (>1THz), the Raman gain amplifies low-frequency components of a pulse by transferring 
energy from the high-frequency components of the same pulse.This phenomenon is called intrapulse Raman 
scattering. Because of it, the pulse spectrum shifts toward the low-frequency (red) side as the pulse propagates 
inside the fiber, a feature referred to as the Raman-induced self-frequency shift [14].
  The functional form of the Raman response hR(t) depends on the Raman-gain spectrum that has 
been measured for silica fibers. Figure 5 shows (a) the experimental data and (b) the temporal form of hR(t) 
deduced from it [32]. Assuming a single vibrational frequency of silica molecules is involved in the Raman 
process, hR(t) can be approximated as [33]    

  hR (t) = (τ –2
1  + τ –2

2 ) τ1exp (−t/τ2) sin(t/τ1), (52)
where τ2 is the damping time of vibrations.The commonly used values for silica fibers are τ1 = 12.2 fs, τ2 = 
32fs, and fR = 0.18. A modified form of hR(t) was proposed in 2006 by Lin and Agrawal [34] to include the 
low-frequency hump seen in Fig 5.:
 hnew

R  (t) = (1 − fb) hR(t) + fb [(2τb − t)/τ2
b] exp (−t/τb), (53)

where fb = 0.21 and τb = 96fs. This form requires fR = 0.245 and explains better the observed Raman-induced 
frequency shifts of short optical pulses inside silica fibers. 

7 Graded-Index Solitons

 The question whether solitons can form inside multimode fibers attracted attention as early as 1980 
[15,16]. It was realized that different group delays (or speeds) associated with different modes were likely to 
hinder the formation of such solitons. As intermodal group delays are relatively small for a GRIN fiber, it was 
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natural to consider soliton formation in such a medium. Indeed, theoretical work indicated that formation of 
temporal solitons was feasible inside a GRIN medium [17,18], By 2013, the formation of multimode solitons 
was observed in a GRIN fiber [10].
 We use Eq (49) to find temporal solitons whose spatial shape evolves in a periodic fashion, as 
dictated by the phenomenon of self-imaging. It is clear from the presence of f(z) in this NLS equation that 
perfect solitons cannot form inside GRIN fibers because Eq (49) is not integrable by the inverse scattering 
method. It was shown in 2018 that GRIN fibers support propagation of optical pulses that preserve their 
temporal shape and behave like a soliton, even though their spatial width oscillates along the fiber’s length 
[20]. Such pulses are referred to as the GRIN solitons to emphasize that a parabolic index profile is essential 
for their existence.
Before, solving Eq (49) approximately, it is useful to normalize it using the variables
 τ = T/T0,  ξ = z/LD,  U = A/ P0 , (54)
where, T0 and P0 are the width and the peak power of input pulses, respectively and LD = T 2/| β2 | is the 
dispersion length. The normalized NLS equation takes the form

 i 
∂U
∂ξ  + 

1 
2 

∂ 2 U
∂ τ 2

 + 
N 2

f (ξ ) |U |2 U = 0, (55)

where we assumed β2< 0 and introduced the soliton order as N = (γP0 LD)1/2. The periodically varying function 
f (z) given in Eq (48) can be written as,
 f  (ξ ) = cos2 (2πqξ ) + C 2

f
 sin2(2πqξ ), q = LD/Lp, (56)

where, Lp is the self-imaging period. As Lp ≪ LD in most cases, q is a large number (q > 100) under typical 
experimental conditions. Physically, it represents the number of times the spatial beam width oscillates inside 
a GRIN fiber within one dispersion length.
 The dispersion length provides the scale over which solitons evolve. For this reason, solitons cannot 
respond to beam width changes taking place on a scale of 1mm or less when LD exceeds 10cm. If we write 
the solution of Eq (55) as U = –

U + u, where 
–
U represents average over one spatial period zp, the perturbations 

u (ξ, τ) induced by spatial beam-width variations remain small enough that they can be neglected (as long as 
q ≫ 1). In other words, the average dynamics of the soliton can be captured by solving the averaged NLS 
equation

 i 
∂

–
U

∂ξ  + 
1 
2 

∂ 2 –U
∂ τ 2

 + 
–
N 2 |

–
U |2 

–
U = 0, (57)

where, 
–
N is the effective soliton order defined as

 
–
N 2 =N 2 〈 f −1(ξ )〉 = N 2/Cf. (58)

 It follows that Eq (57) has a solution in the form of a fundamental soliton when we choose 
–
N = 1 or 

N = Cf . This solution exists for a wide range of pulse widths as long as the peak power of pulses is adjusted 
to satisfy this soliton condition. As discussed before, Cf represents the fraction by which the beam width 
shrinks at z = Lp/4 before recovering its original width at z = Lp/2. Because of an oscillating beam width, the 
input peak P0 must be adjusted to make sure that 

–
N = 1 on average along the GRIN fiber.

 Figure 6 compares the temporal and spectral profiles of a fundamental GRIN soliton (
–
N = 1), after 

it has propagated a distance of 100 LD inside a GRIN fiber using Cf = 0.2 and q = 100. These results were 
obtained by solving Eq (55) numerically with the initial field U(0,τ) = U0 sech(τ), where U0 was chosen to 
ensure N = 1. On the logarithmic scale, perturbations induced by spatial oscillations are evident, but their 
magnitude remains below the 50dB level even after100 dispersion lengths. Higher-order solitons for which 
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both the spatial and temporal widths evolve periodically can also form inside GRIN fibers. Numerical results 
indicate that higher-order solitons are less stable compared to the fundamental GRIN soliton [20]. They also 
undergo breakup into multiple fundamental solitons if third-order dispersion is included in Eq (55). 

-20- 10 01 02 0
Time, T/T0

-60

-50

-40

-30

-20

-10

0

R
el

at
iv

e 
P

ow
er

 (d
B

)

-2 -1 012
Frequency, (  - 0)T0

-60

-50

-40

-30

-20

-10

0

S
pe

ct
ra

l D
en

si
ty

 (d
B

)

100 LD

100 LD

(a) (b)

Fig 6. Temporal and spectral profiles of a multimode soliton (–
N = 1) before (dashed line) and after it has 

propagated a distance of 100LD inside a GRIN fiber with C 2
g

 = 0.2 and q = 100.

 A GRIN soliton was observed in a 2013 experiment by launching 300 fs pulses (wavelength near 
1550 nm) into a 100m-long GRIN fiber. [10]. At a specific pulse energy of 0.5 nJ, the input and output 
pulses had nearly the same temporal shapes, but the spectra were different because of different spectral 
shifts of different modes.The temporal width of this soliton reach a constant value of about 200 fs after some 
initial oscillations. Later numericaland experimental work included more modes and presented evidence of 
multimode solitons composed of five or more modes [35]. By 2021, a systematic study of GRIN solitons 
showed that the the predictions of Eq (57) do not always agree with the experiments [22-24]. The reason is 
understood by noting that Eq (57) ignores not only the spatiotemporal coupling but also intrapulse Raman 
scattering that plays a significant role for short optical pulses used in the experiments.
 As discussed in Section 6, Eq (51) includes intrapulse Raman scattering. If we normalize this 
equation as indicated in Eq (54) and average over one self-imaging period, we can write it in the form

 i 
∂U
∂ξ  + 

1 
2 

∂ 2 U
∂ τ 2

 – iδ3 
∂ 3 U
∂ τ 3

 + 
N 2

Cf
 (1 − fR) |U | 2 A + fR U ∫

∞

0  hR (t ′ ) | U (z, T − T  ′ )| 2 dT  ′ 
 = 0,

 
(59)

where we used M = 3 and defined a third-order dispersion parameter as δ3 = β3 /(6β2T0). This equation 
allows us to consider the Raman-induced spectral shift of short pulses inside GRIN fibers. It can be solved 
numerically using the form of the Raman response given in Eq (53). It is found that the Raman-induced 
spectral shift is enhanced in GRIN fibers, compared to step-index fibers, because of the periodic spatial 
compression of a pulsed optical beam inside such fibers [36].
 Figure 7 shows the impact of intrapulse Raman scattering on the (a) temporal and (b) spectral 
evolution of a soliton over a distance of 10LD using δ3 = 0.02, N = 1, and Cf = 0.5. The soliton’s spectrum in 
part (b) shifts toward lower frequencies in a continuous fashion because of the Raman-induced transfer of 
energy from high to low frequencies.The soliton’s trajectory in part (a) bends toward the right side because 
of its continuous slowing down resulting from this spectral shift. Both of these features depend on the spatial 
compression factor Cf and are enhanced compared to the Cf  = 1 case for which the spatial width remains 
constant.
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 The formation of GRIN solitons was investigated in a 2021 study by launching a pulsed Gaussian 
beam with the15-µm spot size into a 120m long GRIN fiber with 25µm core radius such that the energy 
of each pulse excited three LG0m modes [24]. The width of pulses were in the 60–240 fs range and their 
wavelengths varied from 1300 -1700 nm. In most cases,the width of solitons was near 260fs when the energy 
of input pulses was in range of 2 to 6 nJ. Intrapulse Raman scattering played a substantial role in the formation 
of such solitons, and their wavelength at the fiber’s output was considerably longer (by as much as 400nm) 
than the wavelength of input pulses. It was found that most of the energy of solitons was in the fund-amental 
mode at the output end of the GRIN fiber.

Fig 7. (a) Temporal and (b) spectral evolution of a soliton over a distance of 10LD for δ3 = 0.02, N = 1, and 
Cf = 0.5. Soliton’s trajectory on the left bends because of the Raman-induced spectral shift seen in part (b).

Fig 8. (a) Temporal and (b) spectral evolution of a third-order soliton (N =3) over one dispersion length 
for δ3 = 0.02 and Cf = 0.5. Fission of this solitons broadens the spectrum and results in three fundamental 
solitons of different widths.
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 It is well known that higher-order solitons of the NLS equation, forming in single-mode fibers when 
the soliton order N exceeds 1, and they follow a periodic evolution pattern [14] with a period (π/2)LD. In 
the presence of higher-order effects, such as TOD and intrapulse Raman scattering, these solitons undergo 
a fission process that breaks them into multiple fundamental (N = 1) solitons of different widths.We expect 
the fission of higher-order solitons to occur even in the case of GRIN fibers because the underlying dynamics 
remains the same, except for the enhancement of the nonlinear effects when the spatial width shrinks in each 
self-imaging period [22].
 Figure 8 shows the (a) temporal and (b) spectral evolution of a third-order soliton (N =3) over the 
range ξ = 0 –1 for δ3 = 0.02 and Cf = 0.5. The periodic evolution does not occur because of the fission of the 
third-order soliton near ξ = 0.25, that is initiated by intrapulse Raman scattering.This soliton breaks into three 
fundamental solitons of different widths.The spectrum of each new soliton shifts toward lower frequencies 
and it slows down; the shortest soliton has the largest spectral shift and slows down the most. A new feature 
is the appearance of a blue-shifted peak in the spectrum at the time of soliton fission.This peak belongs to 
a dispersive wave, generated when the soliton sheds radiation because of its perturbation by third-order 
dispersion.These features are well known in the context of single-mode fibers [14].

8 Concluding Remarks

 In this article, written to honor the contributions of Prof Bishnu Pal to Optics and Photonics, I have 
discussed how he introduced me to the work on optical waveguides carried out during my Ph D days at IIT 
Delhi. A paper that I coauthored with Prof Ghatak in 1974 has turned out to be still relevant to those studying 
the nonlinear effects inside GRIN fibers. It was found in the 1974 paper that, even though an input beam 
incident on a GRIN fiber may excite hundreds of modes, the optical field at any point inside the fiber can be 
written, without any reference to the fiber modes, using a propagation kernel that is similar to that found in 
diffraction theory. This kernel shows that any input beam undergoes periodic compression and expansion 
such that its exact shape is reproduced along the length of a GRIN fiber (self-imaging) at distances separated 
by < 1 mm in typical GRIN fibers.The physical origin of self-imaging lies in a ladder-like structure of the 
modal propagation constants with equal spacing between any two neighboring modes of a GRIN medium 
with a parabolic index profile were used to derive the propagation kernel that governs evolution of CW 
beams inside a GRIN medium. I used this kernel to discuss first the self-imaging phenomenon and then 
to consider how a CW Gaussian beam evolves inside a GRIN fiber under the on-axis and off-axis launch 
conditions. Evolution of a pulsed Gaussian beam was discussed using a non-modal approach, resulting in a 
four-dimensional propagation equation, which could be extended to include the Kerr nonlinearity, responsible 
for both the self-focusing and self-phase modulation. The resulting equation was solved approximately to 
obtain an effective nonlinear Schrödinger equation that included the effects of periodic self-imaging. I used 
it to discuss the formation of fundamental and higher-ordersolitons inside a GRIN waveguide.The impact of 
intrapulse Raman scattering was also considered.
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