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We study temporal reflection of an optical pulse from the refractive-index barrier created by a short pump soli-
ton inside a nonlinear dispersive medium such as an optical fiber. One feature is that the soliton’s speed changes
continuously as its spectrum redshifts because of intrapulse Raman scattering. We use the generalized nonlinear
Schrödinger equation to find the shape and spectrum of the reflected pulse. Both are affected considerably by the
soliton’s trajectory. The reflected pulse can become considerably narrower compared to the incident pulse under
conditions that involve a type of temporal focusing. This phenomenon is explained through space–time duality
by showing that the temporal situation is analogous to an optical beam incident obliquely on a parabolic mirror.
We obtain an approximate analytic expression for the reflected pulse’s spectrum and use it to derive the temporal
version of the transformation law for the q parameter associated with a Gaussian beam. © 2022 Optica Publishing

Group

https://doi.org/10.1364/JOSAB.462985

1. INTRODUCTION

Considerable attention has been paid recently to the reflection
of optical pulses at a temporal boundary, across which the refrac-
tive index of a medium changes by a fixed amount. In some
studies, the refractive index was assumed to change everywhere
in the medium at the same time, a situation not easy to imple-
ment experimentally [1–7]. A more realistic situation has also
been considered in which a moving temporal boundary is cre-
ated, either optically or electrically, inside a dispersive medium
[8–10]. When an optical pulse, moving at a different speed,
arrives at the boundary, it splits into two parts with different
optical spectra that move at different speeds. One part changes
its speed so much that it never crosses the boundary. This is
interpreted as temporal reflection. The spectral shifts of the
reflected and refracted parts can be found from the momentum
conservation relation [8]. When the index change at the moving
boundary is large enough, the temporal analog of total internal
reflection (TIR) can also occur. The TIR effect was studied ear-
lier under the name “optical event horizon,” and the frequency
shift of the reflected pulse was observed experimentally using
optical fibers or silicon waveguides as dispersive media [11–16].

In practice, a moving temporal boundary is created optically
via the optical Kerr effect by launching a short pump pulse into
a dispersive nonlinear medium such as an optical fiber. In this
case, the refractive index increases by δn = n2 I (t) inside the
region occupied by the pulse, where n2 is the Kerr coefficient,
and I (t) is the intensity. As it is desirable to maintain the shape
of the pulse, it helps if the pump pulse propagates as an optical

soliton. To insure a high index change, the peak power of the
pump pulse needs to be high. In most earlier work, the width of
pump pulses is implicitly taken to be >1 ps as several higher-
order effects have been ignored. In this paper, we focus on
femtosecond pump pulses and ask how the process of temporal
reflection is affected by the higher-order effects that influence
such short solitons. The most important higher-order effect is
intrapulse Raman scattering (IRS), which shifts the spectrum
of the soliton toward the red side in a continuous fashion and
changes its speed at the same time. As the pump pulse acts as a
moving temporal boundary, the speed of the boundary does not
remain constant for such short pump pulses.

The paper is organized as follows. In Section 2, we use the
generalized nonlinear Schrödinger equation to derive the cou-
pled equations that govern the evolutions of the pump pulse and
the probe pulse that is reflected by the pump pulse. In Section 3,
we discuss the behavior of the pump soliton with the effects
of IRS included. In Section 4, we use numerical simulations
to discuss temporal reflection of the probe pulse and how its
magnitude depends on the frequency and width of the pump
pulse. In Section 5, we discuss a new phenomenon that we call
temporal focusing. Here, we stress the space–time analogy that
exists between short-pulse evolution in a dispersive medium and
paraxial-beam propagation in free space. We use this analogy to
show that a probe pulse reflected by the Raman soliton can be
focused and become much narrower than the incident pulse.
In Section 6, we derive analytically the optical spectrum of the
reflected pulse. We use this result to derive a transformation law
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for probe pulses that appear similar to the complex q parameter
used for Gaussian beams. We summarize our main results in
Section 7.

2. THEORETICAL MODEL

We use optical fibers as an example of a nonlinear dispersive
medium suitable for experiments on temporal reflection.
It is well known that the following generalized nonlinear
Schrödinger equation is an excellent model for short pulses
propagating inside an optical fiber [17]:

∂ A
∂z
−

∑
m≥2

im+1

m!
βm
∂m A
∂tm
= iγ A(z, t)

∫
∞

−∞

R(t ′)|A(z, t − t ′)|2dt ′,

(1)
where γ is the nonlinear parameter and βm is the mth order
dispersion parameter at the input pump pulse central frequency
ω1 and is defined βm = dmβ/dωm

|ω1 . Fiber losses are neglected
in Eq. (1) because of the relatively short lengths (<0.1 km)
required for this work. The pulse’s envelope A(z, t) is related to
the electric field as

E (z, t)=
1

2
{A(z, t) exp[i(β(ω1)z−ω1t)] + c.c.}, (2)

where ω1 is the central frequency of the incident pump pulse.
The reduced time t is related to time in the laboratory frame tlab

as t = tlab − β1z. Also, R(t) is the nonlinear response function
of the form

R(t)= (1− f R)δ(t)+ f R h R(t). (3)

The first term is the instantaneous response from the electrons,
and the second term is a delayed response governed by the
Raman response function h R(t). In our simulations, we used its
following functional from [18]:

h R(t)= (1− fb)
τ 2

1 + τ
2
2

τ1τ
2
2

e−
t
τ2 sin

t
τ1
+ fb

2τb − t

τ 2
b

e−
t
τb ,

(4)
where τ1 = 12.2 fs,τ2 = 32 fs,τb = 96 fs, fb = 0.21, f R =

0.245.
To realize temporal reflection, the group-velocity difference

between the pump and probe pulses should be relatively small
[8]. One way to achieve this is to notice that a single-mode silica
fiber has its zero-dispersion wavelength around 1310 nm, where
β2 vanishes. Asβ2 has different signs on the opposite sides of this
wavelength, for any wavelength of the pump, a wavelength exists
on the opposite side that has the same group velocity. Figure 1
shows how the group index ng varies with wavelength for silica
fiber. The group velocity is related to it as vg = c/ng . For exam-
ple, if we choose the pump’s wavelength near 1500 nm, where
solitons can form, the group velocity at 1145 nm will match that
of the pump pulse. In practice, the central wavelength of the
probe pulse should be in the range of 1145± 20 nm to ensure a
relatively high reflectivity.

As the pump and probe have spectra that are widely sep-
arated for our choice of their wavelengths, we can consider
their envelopes separately. The input pump pulse central fre-
quency isω1, while the probe pulse central frequency is near the
group-velocity matched frequency of ω1, denoted as ω2. We

Fig. 1. Group index of a single-mode fiber. For a 1500 nm pump
soliton, the group velocity matching wavelength λGVM is 1145 nm.

use frequency ω2 to define the probe pulse envelope. Thus, the
envelope A in Eq. (1) can be decomposed into the pump and the
probe:

A(z, t)= A1(z, t)+ A2(z, t)e i(1βz−1ωt), (5)

where 1ω=ω2 −ω1, 1β = β(ω2)− β(ω1)− β1(ω1)1ω,
and subscripts 1 and 2 stand for the pump and probe envelopes,
respectively. Substituting the preceding form into Eq. (1) and
separating the terms in the two spectral regions, we obtain the
following two equations:

∂ A1
∂z −

∑
m≥2

im+1

m! βm1
∂m A1
∂tm = iγ A1(1− f R)(|A1|

2
+ 2|A2|

2)

+iγ f R
∫
∞

−∞
h R(t ′)(|A1|

2
+ |A2|

2)(z, t − t ′)dt ′,
(6)

∂ A2
∂z −

∑
m≥2

im+1

m! βm2
∂m A2
∂tm = iγ A2(1− f R)(|A2|

2
+ 2|A1|

2)

+iγ f R
∫
∞

−∞
h R(t ′)(|A2|

2
+ |A1|

2)(z, t − t ′)dt ′.
(7)

We will use these equations to discuss temporal reflection from
ultrashort pump pulses. The terms oscillating at frequencies
other than those of the pump and probe were neglected in
writing them. This is justified because they are the results of
four wave mixing between the pump and probe, which requires
a phase-matching condition that is usually not satisfied in
practice.

3. RAMAN-INDUCED FREQUENCY SHIFT

When a femtosecond pulse is injected into a fiber, its spectrum
is wide enough that Raman scattering can happen among its
own spectral components, with the result that its spectrum
shifts continuously toward the red side when it propagates in the
anomalous dispersion region as a soliton. The spectral shift leads
to a deacceleration of the soliton and a continuous reduction
in the speed of the pulse [17]. In the moving frame we work in,
this slowing down appears as a z-dependent time delay. When
only the second-order dispersion is considered, the shape and
width of the soliton do not change during propagation, but
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its central frequency redshifts linearly with the propagation
distance z [19]. In the time domain, the pulse is delayed by an
amount that increases with z as z2. This can be inferred from
Eq. (6) by neglecting the terms containing A2 and keeping only
the β2 term in the sum. If A1(0, t)=

√
P1sech(t/T1), then the

solution at a distance z can be written as [17]

A1(z, t)=
√

P1sech

(
t − q p

T1

)
e−i�p z+iφp , (8)

where the Raman-induced frequency and the temporal shift are
given by

�p =−
8TR |β21|z

15T4
1

, q p =
4TRβ

2
21z2

15T4
1

= az2. (9)

Here TR ≈ 3 fs is a time constant determined by the
Raman response function. We introduce a coefficient
a = 4TRβ

2
21/(15T4

1 ) to simplify the notation in the follow-
ing sections. The important point relevant for this work is that
the pump pulse slows down and is delayed by an amount that
increases as z2, while its shape and width remain unchanged.

4. TEMPORAL REFLECTION

To understand why the probe pulse can be reflected by the pump
pulse, we simplify the probe’s evolution Eq. (7). We neglect the
higher-order dispersion terms in the sum, retaining only the
β2 term. We also neglect the nonlinear terms containing |A2|

2

because the probe is much weaker than the pump. The resulting
equation can be written in the compact form

∂ A2

∂z
+

iβ22

2

∂2 A2

∂t2
= ib(z, t)A2, (10)

where the pump-induced change in the refractive index is
given as

b(z, t)= 2γ (1− f R)|A1(z, t)|2

+ γ f R

∫
∞

−∞

h R(t ′)|A1(z, t − t ′)|2dt ′

≈ γ (2− f R)|A1(z, t)|2. (11)

The term on the second line results from the Raman effect.
Equation (10) resembles Schrödinger’s equation in quan-

tum mechanics with b(z, t) representing a barrier. Thus, our
temporal-reflection problem is analogous to the scattering of a
particle from a barrier in quantum mechanics. When the index
change is large enough, we expect the probe pulse to be com-
pletely reflected by the pump pulse. However, as the pump pulse
exhibits a Raman-induced delay, the exact quantum analog of
the temporal reflection will be reflection from a non-stationary
energy barrier.

To study how the Raman-induced delay of the pump pulse
affects temporal reflection, we solved Eqs. (6) and (7) numer-
ically. The dispersion parameters are β21 =−15.7 ps2/m,
β22 = 12.3 ps2/m. The input pump pulse at 1500 nm has the
amplitude A1(0, t) of the form in Eq. (8) with T1 = 100 fs. The
probe pulse’s spectrum is centered at 1155 nm, 10 nm longer

Fig. 2. Reflection of a probe pulse from a soliton that continuously
redshifts. See text for parameters. (a) Pump temporal. (b) Pump spec-
tral. (c) Probe temporal. (d) Probe spectral.

than the group-velocity matching wavelength of 1145 nm. Its
shape corresponds to a Gaussian pulse:

A2(0, t)= exp

[
−
(t − Td )

2

2T2
2

− iδi t
]
, (12)

where T2 = 1 ps (corresponding to a width of 1.66 ps), and δi is
the frequency difference between 1155 and 1145 nm. All sim-
ulation results in this paper use this δi unless stated otherwise.
Td = 2.5 ps is the delay of the incident probe pulse with respect
to the pump pulse.

The results for a 60-m-long optical fiber are shown in Fig. 2,
where we plot the evolution of the shape and spectrum of
the pump (top row) and the probe (bottom row) pulses. As
expected, the pump’s spectrum in (b) shifts continuously
toward the red side through IRS. As a result of this shift, the
pump pulse slows down inside the fiber with a delay that varies
as z2, resulting in a bent trajectory in (a). In (c), the probe pulse
is initially trailing the pump pulse by 2.5 ps, but it is traveling
faster and catches up with the pump pulse at a distance of about
10 m. After that distance, most of its energy gets reflected by the
pump pulse, while a small fraction of pulse energy is transmitted
through the pump pulse and appears on its other side. The fre-
quency of the reflected probe pulse has shifted from the incident
frequency by about 6 THz, as seen in Fig. 2(d).

It is not easy to calculate analytically the reflectivity of a probe
pulse from a redshifting pump soliton. However, if we make
a suitable approximation, we can make some progress. The
approximation consists of neglecting the spectral shift of the
pump during the reflection process. In that situation, temporal
reflection becomes the quantum analog of a particle scattered by
a uniformly moving quantum barrier with a hyperbolic-squared
shape. This problem is exactly solvable [20].
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We first calculate the frequency of the reflected wave using
momentum conservation or the phase-continuity relation
[21]. We assume that over the duration that the probe is being
reflected, the trajectory of the pump soliton can be treated as
linear. Mathematically, we approximate the pump’s trajectory
near z= z0 as

tb = az2
≈ a [z2

0 + 2z0(z− z0)], (13)

where a is a constant given in Eq. (9) and z0 is the location where
the center of the incident probe pulse hits the pump pulse. It is
calculated from the quadratic equation

az2
0 = Td + β22δi z0. (14)

Under the linear trajectory approximation, we consider
the central frequency components of the incident pulse and
the reflected pulse. These two plane wave components can be
written as

Ai ∝ e i(1βi z−δi t), Ar ∝ e i(1βr z−δr t). (15)

Along the boundary, the phase difference between the two waves
should remain constant, implying the following equation:

d
dz
(1βi z− δi tb)=

d
dz
(1βr z− δr tb), (16)

with dtb/dz≈ 2az0 obtained from Eq. (13). Combined with
the dispersion relation 1β j = β22δ

2
j /2 for j = i, r , we obtain

the reflected frequency δr :

δr =
4az0

β22
− δi

= 2�p0
β21

β22
− δi , (17)

where �p0 is the Raman-induced frequency shift (RIFS) of
the pump at z0. Physically, Eq. (17) shows that the reflected
pulse’s frequency depends on the RIFS at the location z0. In the
preceding discussion, we considered the central frequency com-
ponent of the incident probe pulse. The reflected frequency δr

calculated from Eq. (17) is the central frequency of the reflected
pulse.

Under the linear-trajectory approximation, we can use the
result from [20] and write the reflectivity in the form

R =

[
1+

sinh2
(πD/2)

cosh2
(π
√

B − 1/2)

]−1

, (18)

where B = 8(2− f R)|β21/β22| and D= (δi − δr )T1. Besides
parameter B , the reflectivity depends on D, indicating that the
pump ’s width T1 plays a role together with the frequency shift of
the reflected pulse. The dependence of R on D is shown in Fig. 3
for three values of B , where it is shown that high reflectivity
occurs for values of D roughly in the range of −5< D< 5. It
seems from Fig. 3 that the use of narrower pump pulses (small
T1) is preferable to enhance the reflectivity. However, a shorter
pump pulse also experiences a larger RIFS, not a desirable
feature in the present context.

As an example, consider a probe pulse with a Gaussian shape
as in Eq. (12). If Td is positive, the pump pulse will slow down

Fig. 3. Reflectivity as a function of D= (δi − δr )T1 for three values
of B based on Eq. (18).

because of the RIFS, and the pump and probe pulses will even-
tually collide, regardless of the frequency shift δi . By explicitly
calculating the location z0 from Eq. (14), we find the frequency
difference δr − δi explicitly:

δr − δi = 2

√
δ2

i +
4a Td

β22
. (19)

We can use this result in Eq. (18) to calculate the probe’s reflec-
tivity. Although this method is not rigorous, it provides a good
estimate within a few percent. Its accuracy degrades for short
probe pulses with a large spectral bandwidth because the result
in Eq. (18) takes into account only the central frequency of
the probe pulse. The linear-trajectory approximation becomes
less accurate for probe pulses wider than 10 ps. In that case, the
leading part of the probe pulse experiences high reflectivity with
a small frequency shift, while the opposite occurs for the trailing
part. The result is that the central frequency of the reflected
pulse is smaller than that calculated from Eq. (17).

From Eq. (19), we can see that to maximize R , we should
choose δi = 0, i.e., the probe pulse should be group-velocity
matched with the pump pulse at the input end. Additionally,
we want the delay Td to be as small as possible. Its lowest value
is limited by the probe pulse’s duration because the pump and
probe should not overlap at the input end. The minimum value
of δr − δi is proportional to

√
a or scales as 1/T2

1 . As a result,
D scale as 1/T1, i.e., the larger T1 is, the higher the reflectivity
becomes. However, a larger T1 implies a smaller frequency shift.
Thus, a trade-off exists between the frequency shift and the con-
version efficiency. For negative values of Td , a collision between
the pump and probe pulses does not always occur. Even when a
collision occurs, the reflected pulse broadens broaden rapidly, an
undesirable feature in practice.

5. TEMPORAL FOCUSING

We have observed numerically a new feature for probe pulses
reflected by a short soliton, whose spectrum is affected by the
RIFS. When a relatively long probe pulse, initially trailing the
pump, hits the pump pulse, the reflected pulse undergoes a
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Fig. 4. Temporal focusing of a T2 = 2.5 ps pulse. The pulse’s tem-
poral evolution is shown in (a). The shapes of the focused pulse (at z=
45 m, where the reflected pulse has the smallest width) and input pulse
are given in (b).

temporal focusing phase and becomes shorter than the incident
probe pulse, before broadening again, even in a medium exhibit-
ing normal dispersion at the probe’s wavelength. This behavior
is shown in Fig. 4, where we display the temporal focusing for
a T2 = 2.5 ps pulse with delay Td = 6 ps. In (a), the reflected
pulse gets narrower before broadening again. This is temporal
focusing. We show the reflected pulse shape at the position
where it has the smallest width, and compare it with the input
pulse in (b). Clearly, the reflected pulse has a much shorter width
than the input pulse. The FWHM of the focused pulses is 0.4 ps,
and the focusing ratio is 10.4. Temporal focusing is stronger for
longer input pulses. However, there are two drawbacks. The
first one is that a longer input pulse has a smaller reflectivity. The
other is that when the probe pulse becomes too long, the focused
pulse is distorted.

To understand the origin of temporal focusing, we make
use of the well-known space–time duality between the spatial
diffraction of a beam and temporal evolution of a pulse inside
a dispersive medium [22–24]. This duality suggests that there
must be a spatial analog of temporal focusing seen in Fig. 4. The
new feature in this figure is that reflection occurs at the curved
trajectory followed by the pump soliton because of the RIFS. In
the spatial domain, reflection of an optical beam at a parabolic-
shaped mirror corresponds to this situation. To match with our
time-domain case, the bending of the mirror should occur in
only one spatial dimension (see Fig. 5).

When a Gaussian beam is obliquely incident on such a par-
tially reflecting parabolic mirror, the transmitted beam shape
is not affected by the mirror, but the reflected beam is. As seen
in Fig. 5, the reflected beam undergoes a focusing phase before
it broadens. These features help us understand that reflection
from a short soliton with a Raman-induced bent trajectory is the
temporal analog of focusing by a concave mirror. From scalar
diffraction theory, we know that a larger beam, when focused,
can be brought down to smaller size. This explains why temporal

Fig. 5. Spatial analog: reflection of a Gaussian beam from a partially
reflecting parabolic-shaped mirror.

Fig. 6. Temporal defocusing induced by a pump soliton: (a) probe
temporal evolution and (b) probe spectral evolution. The 1135 nm
probe is a Gaussian pulse with T2 = 0.5 ps and leads the pump pulse by
2.5 ps initially.

focusing is stronger for a longer input pulse. The distortion seen
in Fig. 4 is the analog of the aberration that occurs when a large
beam is obliquely incident on a parabolic mirror.

In Fig. 4, we consider the case where the probe pulse trails the
pump pulse initially. If the incident probe leads the pump pulse
and travels slower than the pump pulse, the pump’s trajectory
acts as a convex mirror, instead of a concave mirror. In the spatial
case, the reflected beam will diverge after hitting a convex mir-
ror. Thus, we expect the reflected pulse to become broader. An
example is shown in Fig. 6. The reflected pulse has a much wider
spectrum and is broadening very fast. This is consistent with our
physical intuition.

6. ANALYTICAL THEORY

In this section, we develop an analytical model for the reflected
pulse spectrum and use it to discuss the phenomenon of tempo-
ral focusing. We focus on the case where the probe pulse trails the
pump pulse initially so that the pump’s trajectory acts as a con-
cave mirror.

The probe pulse propagates freely in a dispersive medium
before and after reflection. If we include only the second-order
disperison, their slowly varying envelops evolve as [17]
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Ai (z, t)=
1

2π

∫
∞

−∞

Ãi (ω) exp

(
i
2
β22ω

2z− iωt
)

dω,

(20)

Ar (z, t)=
1

2π

∫
∞

−∞

Ãr (ω) exp

(
i
2
β22ω

2z− iωt
)

dω,

(21)
where the second equation applies after the collision of two
pulses. The incident field for the Gaussian probe is used from
Eq. (16). Its use allows us to calculate the inital spectrum Ãi (ω)

through a Fourier transform.
At the boundary, the reflected and incident fields satisfy the

relation

Ar (z, tb)=
√

R Ai (z, tb), tb = az2, (22)

where the reflectivity R is given in Eq. (18). Here we have made
the assumption that R does not change during the whole reflec-
tion process, and we can use its value at the center of the probe
pulse. Writing Ar (z, tb) as in Eq. (21), we obtain

1

2π

∫
Ãr (ω) exp

(
i
2
β22ω

2z− iaωz2

)
dω=

√
R Ai (z, az2).

(23)
We want to deduce the spectrum of the reflected pulse from

the preceding equation. This is not easy but can be done if we
employ physical intuition. First, the right side is only non-zero
near z0. Second, the reflected spectrum Ãr (ω) is centered at δr
given by Eq. (17). Based on these observations, we can simplify
the left side as∫

Ãr (ω) exp i(β22ω
2z/2− aωz2)dω

=
∫

Ãr (ω) exp i(β22ω
2z/2− aω(2z0z− z2

0)− aω(z− z0)
2)dω

≈ e−iaδr (z−z0)
2 ∫

Ãr (ω)e iaωz2
0 exp[i(β22ω

2/2− 2aωz0)z]dω,
(24)

where we replaced ω in the term aω(z− z0)
2 with δr . As the

integral is now related to an inverse Fourier transform, the
reflected pulse spectrum is found to be

Ãr (ω)= F (β22ω
2/2− 2az0ω)(β22ω− 2az0)

× e−ia z2
0ωH(ω− 2az0/β22), (25)

where H(x ) is the step function, and F (k) is calculated using

F (k)=
√

R
∫

Ai (z, az2)e iaδr (z−z0)
2
e−ikzdz. (26)

Equation (25) provides an approximate analytic expression for
the spectrum of the refelected pulse and is our main result in
this section. The step function restricts the frequencies to the
range ω> 2az0/β22 to ensure that the reflected pulse stays on
the same side of the pump pulse as the incident pulse. To check
the accuracy of Eq. (25), we compare in Fig. 7 its prediction
to the numerically obtained spectrum in Fig. 2. It is evident that
the analytical expression agrees quite well with the numerical
results.

For an input Gaussian pulse, Ai (z, az2) can be calculated
analytically. By keeping only terms up to the second order
in z− z0, the reflected pulse spectrum can be obtained in a
closed form from Eq. (25). To simplify the notation, we define

Fig. 7. Comparison of the analytically predicted and numerically
simulated spectra for the reflected pulse using the parameters in Fig. 2.
The analytical curve is based on Eq. (25). The incident pulse spectrum
is also plotted as a reference.

Fig. 8. Reflected pulse’s RMS pulse width as it propagates. The
parameters are the same as in Fig. 2. The numerical RMS pulse width
obtained directly is compared with the RMS pulse width predicted by
the Gaussian approximation Eq. (28).

a complex q parameter for a Gaussian pulse similar to that for a
Gaussian beam and write its spectrum as

Ã j (ω)∝ exp[−q j (ω−ω0)
2/2], ( j = i, r ). (27)

The reflected pulse is found to be approximately Gaussian with
its central frequency at δr . The q parameter of the reflected pulse
right after reflection is given by

1

qr (z0)
=

1

qi (z0)
−

8ia

β2
22(δr − δi )

, (28)

where qi (z0)= T2
2 − iβ22z0 is the q parameter of the probe

right before reflection. This equation is similar to the transfor-
mation law for the q parameter of Gaussian beams. It shows
that the space–time duality between the beams and pulses holds
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Fig. 9. Simulation result of a short probe pulse collimated by
the Raman soliton. (a) Probe temporal. (b) Probe spectral. (c) Pulse
spectra.

even for the q parameter. Using Eq. (28), we can find the spec-
tral and temporal shapes of the reflected pulse. To check the
accuracy of the Gaussian approximation, we compare in Fig. 8
the analytic prediction of the root mean square (RMS) width of
the reflected pulse with the numerical values obtained from the
simulation shown in Fig. 2. One can conclude that the Gaussian
approximation works reasonably well.

Equation (28) can be used to understand the temporal focus-
ing phenomenon discussed earlier. For a longer incident pulse,
qi (z0)≈ T2

2 , and the second term of Eq. (28) gives rise to a
positive imaginary part of qr (z0). This corresponds to a negative
chirp, and as it propagates, the chirp is compensated for by the
dispersion, and the pulse becomes shorter than the incident
pulse.

One interesting phenomenon occurs when a shorter input
probe pulse is considered. In this case, the imaginary part in
qi (z0) cannot be neglected, resulting in a positive imaginary
part in 1/qi (z0). This imaginary part can be cancelled by the
second term in Eq. (28). In Fig. 9, we show such a result. The
input pulse is a short pulse with T2 = 200 fs. The frequency shift
from the reference frequency δi/(2π)=−1.42 THz, and the
delay is 3.69 ps. In Fig. 9(a), we see that before reflection, the
pulse is broadening very fast because it is short. After hitting
the boundary and being reflected, the reflected pulse maintains
its width without broadening. This is the temporal analog of
collimation. Physically, the chirp generated during propagation
gets cancelled by the reflection on a curved boundary. In the
spectral domain, (c) shows that the reflected pulse has a much
smaller spectral width than the incident pulse. This suggests
that it may be possible to use this phenomenon to realize spectral
compression.

7. CONCLUSION

In this paper, we studied temporal reflection of an optical pulse
from the refractive-index barrier created by a short pump soliton
inside a nonlinear dispersive medium such as an optical fiber.
The new feature is that the soliton’s speed changes continuously

as its spectrum redshifts because of IRS. We used the generalized
nonlinear Schrödinger equation, well known in the context of
optical fibers, to obtain the shape and spectrum of the reflected
pulse numerically and found that both are affected considerably
by the soliton’s Raman-induced spectral shift and temporal
deceleration.

We observed that the spectrum of a reflected pulse becomes
narrower under conditions that lead to a novel type of temporal
focusing. This phenomenon is explained through space–time
duality based on the similarity between the pulse propagation
in a dispersive medium and beam propagation in the parax-
ial approximation. We showed that the temporal situation in
our case is analogous to an optical beam incident obliquely
on a parabolic mirror. Using this physical picture, we showed
that temporal reflection can lead to focusing, defocusing, or
collimation of optical pulses, just like a curved mirror can do
so for optical beams. We were able to obtain an approximate
analytic expression for the reflected pulse’s spectrum and use it
to derive the temporal version of the transformation law for the
q parameter associated with Gaussian beams.

In this paper, we have considered fully coherent pump pulses.
It is reasonable to ask how the results are affected for a partially
coherent pump pulse exhibiting amplitude and phase fluc-
tuations. As temporal reflection in our case happens inside a
single-mode fiber, it is relatively insensitive to external pertur-
bations. Phase fluctuations of the pump should not affect the
results because the cross-phase modulation used in this paper
does not depend on the pump’s phase. Amplitude fluctuations
are also not of much concern because pump pulses propagate as
solitons, which are known to be stable against perturbations. As
a result, the effects described in this paper should be observable
in experiments.
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