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Design of an X-cut thin-film lithium niobate
waveguide as a passive polarization rotator
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Abstract: The transverse-electric and transverse-magnetic modes of an X-cut thin-film lithium
niobate waveguide vary in effective indices and exchange power when the waveguide makes an
oblique angle with its crystallographic Z-axis, i.e. its optics axis. We leverage this phenomenon
to design a passive fundamental-mode polarization rotator. In our design, the lithium niobate
waveguide is tilted at an optimum angle with respect to its Z-axis, such that material anisotropy
induces phase-matched polarization conversion. We discuss the rotator’s ideal-device length,
crosstalk, and bandwidth. The proposed design yields compact (shorter than 1 mm), low-loss,
passive polarization rotators for telecom wavelengths.
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1. Introduction

Lithium-niobate-on-insulator (LNOI) waveguides, also known as thin-film lithium-niobate
(LN) waveguides, have attracted considerable attention because of their excellent electro-optic
properties [1–4]. In particular, they have been used to make microring resonators [3,5]. Recently,
we developed a coupled-mode theory (CMT), describing coupling between the transverse-electric
(TE) and transverse-magnetic (TM) modes when the LN core is either X-cut or Y-cut and its
crystallographic Z-axis (i.e. its optic axis) makes an oblique angle with the etched waveguide
[6]. In this paper, we utilize this theory to design a passive polarization rotator, which directly
transfers power from its fundamental TE mode to its fundamental TM mode. Essentially, the
rotator consists of an X-cut LNOI waveguide tilted at an optimum angle with respect to its Z-axis,
such that the core’s material anisotropy induces both polarization coupling and a vanishing modal
birefringence, resulting in phase-matched polarization conversion.

The guided modes of anisotropic waveguides have been analyzed for decades [7–11]. In
particular, the effect of LN’s material birefringence on the polarization properties of X-cut
LNOI waveguides has been the topic of several theoretical and experimental investigations
[6,12–14]. It has also been utilized to design polarization-engineering devices such as TE/TM-
pass polarizers [15,16], polarization beam splitters [17–19], and birefringence-free waveguides
[20,21]. Polarization rotation via the electro-optic effect in LNOI [22] and via material anisotropy
of oblique deposition of columnar thin films [23] have also been proposed. However, a design for
a passive LNOI polarization rotator utilizing LN’s material birefringence has yet to be presented.
That is the objective of this paper.

The influence of LN’s material birefringence on the polarization characteristics of guided
modes has also been investigated for bulk titanium-indiffused lithium niobate (Ti:LiNbO3)
waveguides. In this context, slight off-Z-axis propagation was originally proposed [24] so
material birefringence compensates for residual geometric birefringence in electro-optical
polarization rotators. In that work, it was also identified that off-Z-axis propagation induces
passive polarization coupling. Later, both the change in polarization effective indices and
polarization coupling in off-Z-axis Ti:LiNbO3 waveguides were analyzed [25–27] using CMT
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[28]. A passive polarization rotator based on passive coupling in Ti:LiNbO3 waveguides was
even proposed and characterized through a vectorial beam propagation method [29].

However, the optical guiding properties of LNOI differ drastically from those of Ti:LiNbO3, so
polarization rotation in LNOI waveguides must be examined independently, as we do in this paper.
This is because LNOI waveguides have an index contrast much larger than that of Ti:LiNbO3
waveguides, roughly by an order of magnitude [5]. Consequently, LNOI waveguides possess
much larger geometric birefringence, so polarization-mode phase-matching can be achieved at
much greater deviations from the Z-axis. This, we find, results in correspondingly more efficient
polarization rotation. Additionally, larger index contrast permits the etching of sharp waveguide
bends [5]. This allows one to tightly delimit the polarization rotator length with such bends, as in
our proposed design, depicted below.

The remainder of this paper is organized as follows. In Section 2., we describe the geometry of
the proposed polarization rotator, and examine analytically its polarization properties via CMT.
In Section 3., we evaluate the CMT design numerically and study the resulting characteristics of
the polarization rotator such as device length, crosstalk, and bandwidth. In Section 4., we present
our conclusions.

2. Proposed design and CMT analysis

2.1. Polarization rotator geometry

Our proposed design is shown in Figs. 1(a) and 1(b) in its two possible configurations. It consists
of a LNOI waveguide with a tilted section of length L, joined at its two ends by untilted (or
straight) segments. The direction of propagation along the tilted segment makes an oblique
angle ϕ with that along the straight sections. Along the straight segments, the direction of
propagation is parallel to either LN’s Y-axis or Z-axis, depending on the chosen configuration. In
Configuration Y (Fig. 1), the direction of propagation is parallel to the Y-axis. In Configuration
Z (Fig. 1(b)), it is parallel to the Z-axis. The CMT of polarization coupling in Sections 2.2 and
2.3 applies equally well to both configurations. The differences in performance between both
configurations are few and are summarized in Sections 2.4 and 3.3.

In practice, each joint consist of a circular arc, as shown for the first joint in Fig. 1(c). The
second joint is bent similarly to the first. Note that the deviation angle ϕ is equal to the angle
spanned by the curved segment with radius of curvature r. Naturally, the radii of curvature r
must be large enough to avoid noticeable bending losses. In our analytical design, we assume
that the radii are still small enough so polarization coupling in each of the circular joints is
negligible. However, the finite curvature of these joints induces residual crosstalk. In Section 2.3,
we provide a perturbative expression and a simple bound for this residual crosstalk. In Section
3.3, we evaluate these numerically for a LNOI polarization rotator.

2.2. CMT-based design of the tilted segment

To analyze polarization rotation in the tilted waveguide segment, we use our coupled-mode
formalism, originally developed for a curved uniaxial waveguide [6]. For simplicity, we assume
that only the fundamental TE mode and the fundamental TM mode are initially excited and
denote their amplitudes with as and ap, respectively. Coupling to higher-order modes can be
safely neglected, because generally it is heavily phase-mismatched. We consider the column
vector a ≡ (as, ap)

T , which can be loosely interpreted as a Jones vector [6]. The basis TE and
TM modes are normalized so a†a = |as |

2 + |ap |
2 equals the total power carried in the direction of

propagation.
Because the angle ϕ, between the waveguide direction and its core’s optic axis, is constant

along the straight oblique segment, the corresponding coupled-mode equations have constant
coefficients. Thus, they can be readily integrated to relate a(L), the Jones vector at the end of the
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Fig. 1. (a,b) Geometry of the proposed passive polarization rotator under its two possible
configurations. L is the length of the tilted segment. ϕ is the angle between the tilted segment
and the corresponding LN crystallographic axis. The orientation of the crystallographic axes
for each configuration is shown in the upper left corner. Light propagates from left to right.
(c) Geometry of the circular bend at the first waveguide joint. r is the joint’s bending radius.

oblique segment, to a(0), the Jones vector at its beginning. This yields the relation

a(L) = exp [iM(ϕ)L] a(0). (1)

Recall from Fig. 1 that L is the length of the oblique segment. M(ϕ) is a 2 × 2 Hermitian
matrix that depends on ϕ and has the form [6]

M(ϕ) =
⎛⎜⎝
∆(ϕ)/2 −iκ(ϕ)

iκ(ϕ) −∆(ϕ)/2
⎞⎟⎠ , (2)

where ∆(ϕ) and κ(ϕ) are the real-valued functions of ϕ

∆(ϕ) = ∆0 + ∆1 cos 2ϕ, κ(ϕ) = κ0 sin 2ϕ. (3)

Equation (1) is analogous to that obtained for directional couplers. It shows that power is
peridically exchanged between the TE and TM polarizations when κ(ϕ) is non-zero.

Physically, the functions ∆(ϕ) and κ(ϕ) are, respectively, the ϕ-dependent detuning in prop-
agation constants between the TE and TM modes; and the ϕ-dependent coupling coefficient.
Correspondingly, ∆0, ∆1, and κ0 are three real-valued, ϕ-independent coefficients, henceforth
referred to as “polarization parameters”. They represent, respectively: the direction-averaged
detuning; the amplitude of oscillation in detuning with varying ϕ; and the coupling coefficient
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when sin 2ϕ = 1. These parameters can be calculated in terms of the TE and TM modes’ field
distributions at ϕ = 0 and their corresponding propagation constants. The required formulas
were originally published in Ref. [6], but they are also reported in Appendix A. for completeness.

Given Eqs. (1) and (2), the oblique waveguide segment of length L acts as a full polarization
rotator if and only if

∆(ϕ) = 0, (4)

Lκ(ϕ) = π(2n + 1)/2, (5)

for some integer n. Equation (4) can be interpreted as requiring the TE and TM modes of the
oblique waveguide to be phase-matched, and it restricts ϕ to a discrete set of values. If Eq. (4) is
satisfied, then ϕ is fixed by it, and Eq. (5) becomes a constraint on L. This constraint is analogous
to setting the length of a directional coupler equal to an odd-integer multiple of its minimum
length for full power transfer.

As stated, Eq. (4) can only be met by a discrete set of tilt angles ϕ. For concreteness, we
restrict ϕ to lie in the first quadrant, i.e. ϕ ∈ [0, π/2]. Then ϕ satisfying Eq. (4) becomes unique
and given by

ϕ =
1
2

acos
(︃
−
∆0
∆1

)︃
=
π

4
+

1
2

asin
(︃
∆0
∆1

)︃
, (6)

where acos(x) ∈ [0, π] and asin(x) ∈ [−π/2, π/2] for x ∈ [−1, 1]. Alternative polarization-
rotator designs can be made because solutions ϕ for Eq. (4) can be found in any quadrant
[mπ/2, (m+ 1)π/2] for integer m. These alternative values are found through the transformations
ϕ → −ϕ, ϕ → ϕ − π, and ϕ → −ϕ + π. The first of these transformations results in a rotator
with identical performance. The last two are comparatively undesirable: they only increase |ϕ|,
which leads to longer circular arcs at the joints, and, thus, larger insertion loss.

Of course, Eq. (6) yields a real-valued ϕ if and only if |∆0/∆1 | ≤ 1. Additionally, |∆0/∆1 |
cannot be unity, because then κ(ϕ) vanishes and Eq. (5) cannot be satisfied. Hence, a necessary
condition for Eqs. (4) and (5) to be satisfied simultaneously is

|∆0/∆1 | <1. (7)

As evident from the formulas in Appendix A, the polarization parameters depend implicitly on
the optical frequency and the waveguide cross-section. Hence, Eq. (7) is a necessary condition
on these parameters for the waveguide segment to function as a full polarization rotator for some
orientation angle ϕ.

Given Eq. (6) for ϕ, the second condition for full power transfer, i.e. Equation (5), can be
satisfied if the tilted-segment length L is set equal to

L =
π

2|κeff |
, where κeff ≡ κ0

√︂
1 − (∆0/∆1)

2. (8)

As our notation suggests, κeff acts as the effective coupling constant along the tilted segment.
Of course, Eq. (5) is still satisfied if L is set equal to an odd-integer multiple of the right-hand

side of Eq. (8). Nonetheless, just as in directional-coupler design, the smallest possible L is
preferable because it results in the largest bandwidth for polarization-convertion and incurs the
lowest possible material loss.

If ϕ was chosen to lie outside the first quadrant, the sign of the radical (and hence that of
κeff) in Eq. (8) might change. Such change in sign does not change the power exchange between
polarization modes, however.
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2.3. Residual crosstalk due to finite curvature at the joints

Let r be the bending radius of both of the curved segments joining the tilted segment to one of
the straight segments in Fig. 1. In Section 2.2, we assumed r to be small enough that polarization
coupling along the curved segments is negligible. However, polarization coupling along these
segments does occur, resulting in residual crosstalk Xr, i.e. a non-zero normalized power
remaining in the original polarization mode after propagation along the rotator. In Appendix B,
we show that, to first-order perturbation theory in r |κ0 |, Xr is given by

Xr = 4r2

|︁|︁|︁|︁|︁∫ φ

0
dϕ′κ(ϕ′) exp

[︃
ir
∫ φ′

0
dϕ′′∆(ϕ′′)

]︃ |︁|︁|︁|︁|︁2 . (9)

Hence, neglect of the curved segments is accurate if Xr ≪ 1. In deriving Eq. (9), we assume
r to be common to both joints for simplicity. This simplification is sufficient because we are
mostly interested in studying the effect of finite curvature on Xr, rather than the interference due
to mismatch in the joints’ curvatures.

The right-hand side of Eq. (9) is a complicated transcendental function of r. However, it
admits a simple bound, quadratic in r, given by

Xr ≤ (r/r0)
2 , where r0 ≡

1
2|κ0 | sin2 ϕ

. (10)

Thus, if r ≪ r0, then Xr ≪ 1. As discussed in Appendix B, the crosstalk Xr approaches its
upper bound in Eq. (10) if the accumulated phase-mismatch , i.e. the argument of the exponential
in Eq. (9), is negligible.

In addition to introducing polarization crosstalk, waveguide curvature at the rotator’s joints
induces bending losses and mode distortion [30]. Neither of these effects are modeled by our
CMT description of mode coupling, as discussed in Ref. [6]. However, these effects can be
inhibited in LNOI by leveraging the platform’s large index contrast [5]. Nonetheless, if the
bending radius r becomes comparable to the waveguide width and/or the optical wavelength,
bending loss and mode distortion may become prominent [30]. Bending loss, in particular, may
noticeably increase the rotator’s insertion loss if r if chosen too small. Thus, there exists a
trade-off between bending loss and residual polarization crosstalk one should engineer when
fabricating a rotator using our proposed design.

2.4. Differences between configurations

In the framework of CMT, the difference between the two configurations of Fig. 1 lies in
their respective values for the polarization parameters. Because the core’s (LN’s) material
birefringence is small, CMT in general, and Eq. (3) in particular, are accurate for any orientation
ϕ. Hence, we can estimate the polarization parameters for one configuration from those for
the other by applying the shifts ∆(ϕ) → ∆(ϕ ± π/2) and κ(ϕ) → κ(ϕ ± π/2) and matching the
resulting expressions to the original form, Eq. (3). Thus, to the accuracy of CMT, the polarization
parameters transform as

∆0 → ∆0, ∆1 → −∆1, κ0 → −κ0, (11)

when going from Configuration Y to Configuration Z, or vice versa.
Of course, even if accurate, CMT is only approximate so Eq. (11) is not exact. Nonetheless,

we have verified Eq. (11) to be accurate for small normalized material birefringence, i.e. when

|n2
e − n2

o | ≪ n2
e + n2

o, (12)

where ne (no) is the core’s extraordinary (ordinary) index of refraction. This is unsurprising as
when Eq. (12) holds, the perturbation due to the reorientation of the permittivity dyadic is small,
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so CMT is expected to hold. For LN at a wavelength near 1550 nm, ne = 2.14 and no = 2.21 [5],
so Eq. (12) is well satisfied.

Next, we examine the effect of Eq. (11) on the design of the polarization rotator. Under the
transformation of Eq. (11), Eq. (8) for L remains invariant; and Eq. (6) for ϕ is reflected about
π/4.

The change in ϕ makes intuitive sense, as this shift in ϕ geometrically corresponds to one of
two cases. In one case, the new value for ϕ corresponds to the original orientation, measured from
the new axis reference: Z instead of Y , or vice versa. In the second case, the new ϕ corresponds
to a direction given by one of the quadrant transformations discussed in the paragraph following
Eq. (6). Ultimately, polarization rotation along the tilted segment is unaltered by the choice of
configuration.

On the other hand, the geometry of the curved joints does change between configurations.
Applying Eq. (11) to Eq. (6), it follows that if |ϕ|<π/4 for one configuration, we have π/4< |ϕ| ≤
π/2 for the other, and vice versa. Thus, for a fixed bending radius r, the length r |ϕ| spanned
by each curved segment changes between configurations. For fixed r, larger |ϕ| implies longer
propagation length and hence, larger propagation loss.

Hence, one would expect that the configuration resulting in smaller |ϕ| would be preferable, as
it would result in smaller propagation loss and smaller crosstalk Xr due to residual polarization
coupling. However, such conclusion is generally incorrect for two reasons. First, LNOI’s high
index-contrast enables bent waveguides with small r and low losses. Hence, propagation losses
along the curved joints can be made negligible compared to those along the tilted segment,
independent of the configuration. Thus, the main criterion to choose the rotator configuration
should be to minimize Xr. Second, phase-mismatch between the polarization-modes along the
curved segments may result in the configuration with larger |ϕ| having the smaller Xr. This point
if further discussed in Section 3.3.

3. Numerical analysis of a LNOI rotator

In this section, we evaluate numerically the polarization parameters of a particular LNOI
waveguide and examine its resulting polarization properties. The waveguide consists of a LN
core with silicon-dioxide as bottom cladding and air as top cladding. We design the LNOI
polarization rotator to operate at telecom wavelength, λ0 = 1550 nm. At this wavelength, LN has
the ordinary and extraordinary refractive indices of 2.21 and 2.14, respectively [5]; and silicon
dioxide has a refractive index of 1.44.

For simplicity, we assume the core layer to be wide enough so its width can be taken as infinite.
Hence, its height (or thickness) h is the only geometrical parameter characterizing the waveguide
cross-section. This assumption facilitates numerical evaluation of the polarization parameters,
while still yielding results close to those for rectangular waveguides with finite width. In Ref. [6],
this approximation was examined numerically and found to be accurate for the LNOI platform.
This infinite-width simplification is also consistent with the observation that waveguide width
has negligible effect on polarization coupling, so long as it is larger than twice its height, as
reported in Ref. [14].

For concreteness, we design the rotator using Configuration Y. As discussed in Section 2.4,
the only significant difference between configurations is the residual crosstalk Xr due to finite
joint curvature. Xr for both configurations is calculated and compared in Section 3.3.

3.1. Polarization parameters and tilt-segment orientation

To let our results be general, we normalize the polarization parameters by dividing them by the
optical wavenumber k0 = 2π/λ0. Once normalized, these parameters depend not on the height h
and the wavelength λ0 separately, but only on the optical thickness h/λ0. This follows from the
scale invariance of Maxwell’s equations [31].



Research Article Vol. 29, No. 26 / 20 Dec 2021 / Optics Express 44180

Figure 2(a) shows the dependence of the polarization parameters on h/λ0 in the range of
0.4–0.8. In this interval, the ratio ∆0/∆1 has a magnitude of the order of unity, which allows the
condition in Eq. (7) to be satisfied over an appreciable sub-interval. The coupling coefficient
κ0/k0 varies considerably (by a factor of 6) over this range. ∆0/k0 decreases monotonically with
optical thickness, going from 0.06 to -0.02. In contrast to these two, ∆1/k0 remains relatively
constant around the value of -0.04.

Fig. 2. (a) Polarization parameters ∆0, ∆1, and κ0 as functions of optical thickness h/λ0.
The negative of ∆1 is plotted, rather than ∆1 directly, so the point where ∆0 = −∆1 is visually
evident. (b) Ratio ∆0/∆1 (solid) and the angle ϕ (dashed) as functions of optical thickness
h/λ0.

We find that, over the studied h/λ0 interval, Condition 7 is satisfied if and only if h>0.4655λ0.
This agrees with the previous observation [14] that, for a given thickness h, full mode-hybridization
is possible for some waveguide orientation ϕ if and only if the wavelength λ0 is below a threshold
value. In this case, the threshold value would be that of h/0.4655 = 2.148h.

From the values of the polarization parameters in Fig. 2, we evaluate the parameter ratio ∆0/∆1
and the concomitant tilt angle ϕ for phase-matched polarization coupling, via Eq. (6). The results
are plotted in Fig. 2(b) as a function of h/λ0, starting from the minimum value of h/λ0 = 0.4655
necessary to satisfy Condition 7. As expected from Fig. 2(a), the curve for ∆0/∆1 follows closely
the shape of −∆0/k0 because ∆1/k0 remains relatively constant and negative in the considered
interval for h/λ0. As h/λ0 increases, the monotonic increase of ∆0/∆1 leads to a monotonic
increment in ϕ, as follows from Eq. (6). As a consequence of the nonlinear relationship between
∆0/∆1 and ϕ [Eq. (6)], the rapid increment in ∆0/∆1 immediately after h/λ0 = 0.4687 results
in an even faster increase in ϕ with h/λ0. Then, the increase in ϕ slows down as it approaches
ϕ = π/4, since there the derivative of ϕ with respect to ∆0/∆1 reaches its minimum.

3.2. Effective coupling coefficient and rotator bandwidth

From Eq. (8), |κeff | is inversely proportional to the length of the tilted segment and, thus, to the
associated propagation loss in decibels. Hence, a larger |κeff | is more desirable, as it results in a
device with smaller footprint and lower insertion loss. Figure 3(a) shows the variation of |κeff |/k0
with h/λ0. It vanishes when h = 0.4655λ0, where ∆0 = −∆1, as a consequence of its definition,
Eq. (8). Then, it rapidly increases with h/λ0 and reaches a maximum of 5.7556 × 10−4 when
h = 0.5283λ0. Afterwards, |κeff |/k0 decreases slowly with increasing h/λ0 over the sampled
interval. The presence of a maximum in |κeff | can be understood from Eq. (8) as a consequence
of the interplay in the dependence on h/λ0 of its two factors: |κ |, which decreases monotonically
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with increasing h/λ0; and
√︁

1 − (∆0/∆1)2, which increases from zero at h = 0.4655λ0, where
∆0 = −∆1, as found in Fig. 2(b).

Fig. 3. (a) Effective coupling coefficient |κeff | and normalized rotator bandwidth B(Xδ)

(Xδ = 10%, 1%, 0.1%) as functions of optical thickness h/λ0. (b) Contours of constant
detuning-induced crosstalk Xδ as function of waveguideˆ\primes thickness h/λ0 and relative
detuning δk0/k0.

Because |κeff | is maximized at h = 0.5283λ0 for a given wavelength, this thickness h results in
the minimum rotator length L. For example, at λ0 = 1550 nm, the minimum-length thickness
is 819 nm. From Figs. 2(b) and 3(a), the corresponding tilt angle ϕ and waveguide length L
are 0.5045 radians (29 degrees) and 673 µm, respectively. LNOI waveguides with losses of 0.1
dB/cm or less can be reliably fabricated through dry-etching [5]. For a 673 µm-long polarization
rotator, losses are thus estimated to be 6×10−3 dB or less. Even if this loss value increases to 10−2

dB when the waveguide thickness and other parameters do not have their optimum values, losses
for our proposed polarization rotator are low enough to be acceptable for practical application.

For practical use, the bandwidth of the polarization rotator is of interest. Full polarization
rotation (100% power transfer) occurs only for a target wavenumber, k0, even when residual
crosstalk Xr from Eq. (9) is negligible. When k0 deviates from this target value, a fraction Xδ of
the input power is left in the input polarization. This results in polarization crosstalk and thus
limits the device’s bandwidth.

To evaluate the ideal rotator’s bandwidth, we evaluate Xδ directly from Eq. (1) and study it
as a function of wavenumber shift, δk0, for various rotator thicknesses. To isolate the effect of
wavelength detuning, we assume r is large enough so Xr in Eq. (9) can be safely neglected. Thus,
in Fig. 3(b), we report a contour-plot of Xδ as a function of h/λ0 and the normalized wavenumber
shift, δk0/k0. For a given optical thickness, the dependence of Xδ on detuning is easy to describe.
Naturally, Xδ vanishes for δk0 = 0. For small |δk0 |/k0 (e.g. |δk0 |/k0<5 × 10−3 for h>0.5λ0), Xδ

increases quadratically with δk0. For larger |δk0 |/k0, Xδ begins to saturate and tends towards its
maximum Xδ = 1.

Next, we examine the shape of the lines of constant Xδ in Fig. 3(b). We note that they all
converge at the point h/λ0 = 0.4655, δk0 = 0. Clearly, a polarization rotator with thickness
h = 0.4655λ0 has vanishing bandwidth. As h/λ0 increases beyond this value, the contours of
constant Xδ spread out rapidly until h = 0.6196λ0, where they all reach their respective maxima
in |δk0 |. Thereafter, the constant-crosstalk lines seemingly converge slowly towards a point
located to the right of the sampled parameter space (large h ≫ λ0) with δk0 = 0.

The behavior of Xδ in Fig. 3(b) suggests that any measure of the rotator’s bandwidth displays
a maximum around h = 0.6196λ0. To confirm this statement, we evaluate the normalized
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bandwidth B(Xδ), defined as a dimensionless quotient. Its numerator is the absolute difference
between the detunings δk0 of smallest magnitude resulting in a crosstalk of Xδ ; its denominator,
the device’s nominal wavenumber k0. We compute B(Xδ) for Xδ = 10%, 1%, and 0.1% as a
function of h/λ0 using a numerical nonlinear-equation solver. The results are shown in Fig. 3(a)
with the y-scale on the right side. As expected, all three curves for B(Xδ) vanish at h = 0.4655λ0
and peak at h = 0.6196λ0. After the maximum, all curves feature the slow descent observed in
the lines of constant Xδ of Fig. 3(b).

Analysis of the B(Xδ) curves in Fig. 3(a) allows the determination of the required rotator
geometry for a given bandwidth specification. For example, if the acceptable crosstalk is −20 dB
(Xδ = 1%), B(Xδ) is close to 0.2% for h>0.55λ0. At the telecom wavelength of 1550 nm, this
translates to a detuning of up to 1.5 nm on each side. If we are willing to accept a larger crosstalk
of up to −10 dB (Xδ = 10%), the detuning can be as large as 4.5 nm.

3.3. Residual crosstalk due to finite curvature at the joints

Next, we evaluate the residual crosstalk Xr due to polarization coupling along the curved joints
for the LNOI rotator. As discussed in Sec. 2.3, this is governed by Eqs. (9) and (10). First,
we evaluate r0, the upper bound on the bending radii r, defined in Eq. (10). Thus, in Fig. 4(a)
we plot r0 on a logarithmic scale as a function of h/λ0 for both configurations, Y and Z; and
label them r(y)0 and r(z)0 , respectively. From Fig. 4(a), two features are most prominent. First, r(y)0
diverges as h/λ0 approaches 0.4655 from the right. Second, r(y)0 >r(z)0 if h<0.6667λ0 and r(0)0 <r(e)0
if h>0.6667λ0.

Fig. 4. (a) Bound r0 on the bending radius r as a function of optical thickness h/λ0. r0
is such that r ≪ r0 ensures negligible polarization coupling along the curved joints. r(y)0
(r(z)0 ) is r0 for Configuration Y (Configuration Z). (b) Residual crosstalk Xr as a function of
optical thickness h/λ0, calculated for different bending radii (r/λ0 = 101, 102, 103). Solid
lines correspond to Configuration Y; dashed lines, to Configuration Z.

These two features can be understood from the definition of r0, Eq. (10). The divergence of
r(y)0 is a consequence of the facts that r0 is inversely proportional to sin2 ϕ and that ϕ vanishes at
h = 0.4655λ0, as seen in Fig. 2(b). Meanwhile, the crossing of r(y)0 and r(z)0 at h = 0.6667λ0 occurs
because, in this neighborhood of h/λ0, ∆0 vanishes, as seen in Fig. 2(a). Consequently, ϕ = π/4
for both configurations, according to Eqs. (6) and (11). Because |κ | is (approximately) invariant
between configurations, Eq. (10) then yields identical expressions for r0 for both configurations
when ϕ = π/4. We acknowledge that this argument is not exact, as r(o)0 and r(e)0 in Fig. 4(a)
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intersect at h = 0.6667λ0, but ∆0 vanishes for Configuration Y at h = 0.6427λ0, as seen in Fig. 2.
However, we attribute this slight discrepancy to the approximate (rather than exact) nature of
CMT, as discussed in Sec. 2.4.

These features of Fig. 4(a) suggest that, to minimize Xr, one should use Configuration Y
if h<0.6667λ0 and Configuration Z if h>0.6667λ0, regardless of r. However, to achieve a
stronger conclusion, we must examine the transcendental expression for Xr in Eq. (9), rather
than just its simpler bound, Eq. (10). Thus, we evaluate Xr from Eq. (9) numerically for both
configurations, for a continuum of values of h/λ0, and for discrete values of r/λ0; specifically,
r/λ0 = 101, 102, 103. The results are plotted on a logarithmic scale in Fig. 4(b).

For r/λ0 = 10, the curve for Xr in Fig. 4(b) is well described as that of r0/λ0 in Fig. 4(a),
albeit subjected to a vertical stretch and a reflection over the y-axis. This implies that Xr is well
approximated by the upper bound 10. This is expected, because for sufficiently small r (lower
than or of the order of |∆1 |

−1), the phase factor in the integrand of Eq. (9) approximates unity,
and Eq. (10) becomes an equality for Xr.

For larger values of r (r ≫ |∆1 |
−1), however, the phase factor in Eq. (9) oscillates rapidly with

the integrand. Consequently, Xr becomes much smaller than its upper bound of r/r0. Of course,
the effect is more noticeable for larger ϕ, as then the phase of the integrand in Eq. (9) oscillates
more over the integration domain. To see this, compare the curves for r/λ0 = 102 and r/λ0 = 103

with those for r/λ0 = 101. If the integrand still oscillated slowly in phase, the r/λ0 = 102 and
r/λ0 = 103 would be identical to those for r/λ0 = 101, merely shifted along the logarithmic
y-axis by factors of 102 and 104, respectively. However, the r/λ0 = 102 and r/λ0 = 103 curves
are noticeably below those predicted through these shifts to the r/λ0 = 101 lines, as expected.

Additionally, we observe that the r/λ0 = 102 and r/λ0 = 103 curves get closer to their
corresponding r/λ0 = 101 lines, the larger tilt angle ϕ is. Specifically, for Configuration Y, the
r/λ0 = 102 and r/λ0 = 103 lines grow closer to the r/λ0 = 101 line as h/λ0 increases, because ϕ
increases with h/λ0, as seen in Fig. 2(b). For Configuration Z, the r/λ0 = 102 and r/λ0 = 103

curves grow closer to r/λ0 = 101 curve as h/λ0 decreases. This is because ϕ increases with
decreasing h/λ0 in this configuration, by applying the arguments of Sec. 2.4 to ϕ in Fig. 2(b).
This agrees with our claim that larger ϕ leads to larger inhibition of Xr due to phase-mismatch.

The net effect is that Configuration Y yields a smaller residual crosstalk Xr at any waveguide
thickness, for r/λ0 = 102 and r/λ0 = 103. This is because, at small h/λ0, its upper bound of r/r0
tends to zero as ϕ → 0; and, for large h/λ0, the larger ϕ leads to a larger accumulated phase-
mismatch. Only for small r (r/λ0 ≈ 101), phase-mismatch is small overall and the conclusion
from Fig. 4(a) holds, which recommends Configuration Z for large h/λ0 (h>0.6667λ0).

4. Conclusion

We utilized our recently developed couple-mode theory to design a passive polarization rotator,
coupling fundamental polarization modes. It consists of a LNOI waveguide tilted at an optimum
angle, such that material anisotropy induces phase-matched polarization coupling. We discussed
how the device’s tilt angle and length depend on the core’s thickness h and the incident wavelength
λ0 through the optical thickness h/λ0. We discussed two sources of crosstalk: the finite curvature
of the waveguide joints, and wavelength detuning from the device’s nominal wavelength. From
this discussion, we showed that joint-curvature crosstalk is negligible for experimentally feasible
bending radii, and we characterized the crosstalk-limited bandwidth of the device. Our results
suggest that compact (length <1 mm), low-loss, passive polarization rotators can be fabricated
with our proposed design.

Appendix A: formulas for the polarization parameters

In this appendix, we provide explicit formulas for the polarization parameters ∆0, ∆1 and κ0 in
terms of the normal modes of a LiNbO3 waveguide, for which the direction of propagation is
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either parallel or perpendicular to the optic axis (ϕ = 0). These are derived in Ref. [6] and are
given by

∆0 = βs − βp − ∆1, ∆1 = ξ
(︂
K(1)

ss + K(3)
pp

)︂
, κ0 = −ξℑK(2)

sp . (13)

In Eq. (13), βs and βp are, respectively, the propagation constants of the TE and TM modes at
ϕ = 0. The parameter ξ is a dimensionless measure of the uniaxial core’s material birefringence.
In terms of the material’s extraordinary refractive index ne and ordinary index no, ξ is defined as
the ratio

ξ ≡ ±(n2
e − n2

o)/(n
2
e + n2

o), (14)

where the positive (negative) sign is taken when the direction of propagation is parallel (perpen-
dicular) to the optic axis at ϕ = 0.

In Eq. (13), K(1)
ss , K(2)

sp , and K(3)
pp are overlap integrals with units of reciprocal length. To write

explicit formulas for them, we use a Cartesian coordinate system {x̂, ŷ, ẑ} such that ẑ is the
direction of propagation, x̂ lies in the plane of propagation; and ŷ is normal to this plane. The
three axes are orientated such that the direction of positive ŷ points towards the waveguide’s
upper cladding.

Let Exs and Exp be the x component of the electric field for the TE and TM modes, respectively.
Introducing the transverse part of the magnetic fields for these two modes (i.e., Hts ≡ Hs−ẑ(ẑ·Hs)]),
the overlap integrals can be written as

K(1)
ss =

ϵ̄k0η0
4

∬
C

dxdy |Exs |
2 ,

K(2)
sp =

i
4

∬
C

dxdy
[︁
z ·

(︁
∇t×H∗

ts
)︁
Exp − E∗

xsz ·
(︁
∇t×Htp

)︁ ]︁
,

K(3)
pp =

1
4ϵ̄k0η0

∬
C

dxdy
|︁|︁∇t×Htp

|︁|︁2 .

(15)

In Eq. (15), k0 = ω/c; ω is the mode’s angular frequency; c, the speed of light in vacuum; η0,
the impedance of vacuum; C, the waveguide’s cross-section area; and ∇t×, the transverse curl
operator [32]. ϵ̄ ≡ (n2

e + n2
o)/2 can be interpreted as the core’s permittivity, averaged over the

plane of propagation. In writing Eq. (15), we assume that the modes are normalized to carry unit
power, as conventional in CMT.

The term (∇t×Ht) in Eq. (15) can be interpreted in terms of the longitudinal component of the
displacement field Dz. This follows immediately from the relation

∇t×Ht = −iωDzz, (16)

obtained from projecting Ampere’s law along the ẑ axis. Substituting Eq. (16) into Eq. (15), one
gets

K(2)
sp = −

ck0
4

∬
C

dxdy
(︁
D∗

zsExp + E∗
xsDzp

)︁
,

K(3)
pp =

ck0
4ϵ0ϵ̄

∬
C

dxdy
|︁|︁Dzp

|︁|︁2 .
(17)

The combination of Eqs. (13) and (17) shows that power exchange between the s and p modes
(due to κ0) arises from the coupling between the longitudinal displacement field Dz and the
transverse electric field Ex of orthogonally polarization modes. It is important to remember that
the Dz in Eq. (17) follows from Eq. (16). It is related to the electric field of the corresponding
mode through the permittivity dyadic of the untilted (ϕ = 0) waveguide, rather than that of the
tilted segment.

As in Sec. 3., it is often convenient to consider the idealized case where the waveguide
cross-section is infinitely large along one transversal direction. We found in Ref. [6] that
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polarization coupling vanishes if the infinitely extended direction is along y, but not if it is along
x. Thus, we need consider only the latter case. In that situation, two changes to Eqs. (15) and (17)
must be made. First, the integrals over x and y become only over the y coordinate of the core.
Second, the TE and TM modes are normalized to carry unit power per length along x, rather than
unit power when integrated over both transverse dimensions.

Appendix B: crosstalk due to polarization coupling along the curved joints

Consider the joints at the beginning and both ends of the tilted segment of the polarization rotator
in 1. To minimize propagation losses, each consists of a circular arc of radius with a central angle
equal to the tilt angle ϕ. In the polarization rotator design of Sec. 2.2, we assume these circular
arcs are short enough so polarization coupling along them is negligible. Nonetheless, because
of their finite size, polarization coupling does occur along them, resulting in a small fraction
of power remaining in the original polarization, i.e. crosstalk. In this appendix, we derive a
perturbative expression and bound for this crosstalk.

To do so, we first need a general relation between the propagation coordinate z (not to be
confused with the crystallographic Z-axis of LN) and the local tilt angle χ of the waveguide, that
accounts for the curved joints. The simplest relation of this sort is given by

χ(z) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
(z − z0)/r, z0 ≤ z<z1,

ϕ, z1 ≤ z<z2,

(z3 − z)/r, z2 ≤ z ≤ z3,

(18)

where r is the radius of curvature common to both joints and the discrete lengths points zn are

z0 = −rϕ, z1 = 0, z2 = L, z3 = L + rϕ, (19)

where, as in the main text, L and ϕ are the length and tilt angle of the oblique waveguide segment,
respectively.

As stated in Section 3.3, we are mostly interested in the effect of nonzero bending radii, and
not so much in the interference due to mismatch in their values. Hence, we take r as common to
both joints in Eq. (18), for simplicity. It is straightforward to generalize the subsequent analysis
to distinct bending radii.

Next, we consider the propagation matrix U(z3, z0), defined as the 2 × 2 matrix relating
the Jones vector a(z3) at the endpoint z3 to a(z0) at the initial point z0. It is analogous to the
time-evolution operator from quantum mechanics [6,33]. Given its composition property [33],
U(z3, z0) can be evaluated as the product

U(z3, z0) = U(z3, z2)U(z2, z1)U(z1, z0). (20)

Next, we evaluate each propagation matrix in the right-hand side of Eq. (20) to find an explicit
expression for the net propagation matrix U(z3, z0).

We assume that the tilted segment is designed according to Sec. 2.2; i.e. with its tilt angle ϕ
given by Eq. (6), and its length L given by Eq. (8). Then,

U(z2, z1) = exp[iM(ϕ)L] = isgn(κeff)σ3 (21)

where sgn(·) is the signum function, and σn (n = 1, 2, 3) represent the Pauli matrices, defined as

σ1 ≡
⎛⎜⎝
1 0

0 −1
⎞⎟⎠ , σ2 ≡

⎛⎜⎝
0 1

1 0
⎞⎟⎠ , σ3 ≡

⎛⎜⎝
0 −i

i 0
⎞⎟⎠ . (22)

The Pauli matrices are labeled following optics convention [6,34], so that the Stokes parameters
Sn of the Jones vector a are given by Sn = a†σna (n = 1–3).
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Next, we evaluate U(z1, z0) and U(z3, z2). They are solutions to the differential equation [6]

i
dv
z

U(z, zn) = M [χ(z)]U(z, zn), (n = 0, 2) (23)

for z ∈ (zn, zn+1), along with the initial condition

U(zn, zn) = I, (24)

where I is the 2 × 2 identity matrix.
Equations (23) and (24) do not admit general closed-form solutions, so we solve them

approximately via perturbation theory. To do so, we express M(χ) as the sum of two parts: one
modeling the χ-dependent effective-index detuning between the polarization modes, and one
modeling the χ-dependent coupling strength. Thus, using the Pauli matrices σn, we write

M(χ) =
1
2
∆(χ)σ1 + κ(χ)σ3. (25)

We assume
|κ0 |(zn+1 − zn) ≪ 1, (n = 0, 2) (26)

so the second term in the right side of Eq. (25) makes only a perturbative contribution to the
polarization dynamics along the curved joints. Then, the corresponding U(zn+1, zn) matrices
have a rapidly converging Dyson series in κ(χ) [33].

Thus, we truncate these series after their second term to obtain the approximations

U(zn+1, zn) ≈ U(0)(zn+1, zn) + U(1)(zn+1, zn), (n = 0, 2) (27)

where U(0)(z2n+1, z2n) is the zeroth-order term

U(0)(zn+1, zn) = exp
{︃

1
2

iσ1

∫ zn+1

zn

dz∆[χ(z)]
}︃

, (28)

and U(1)(z2n+1, z2n) is the first-order correction

U(1)(zn+1, zn) = i
∫ zn+1

zn

dzU(0)(zn+1, z)κ[χ(z)]σ3U(0)(z, zn). (29)

We note that, although Condition 26 is sufficient for Eq. (27) to hold, it is not necessary, as the
non-vanishing mismatch ∆(χ) for χ ∈ (0, ϕ) further inhibits coupling along the bends.

Given Eqs. (21) and (27) for the propagation matrices U(zn+1, zn), we may directly evaluate
Eq. (20) for U(z3, z0) and thus the crosstalk Xr due to finite joint curvature. Let as ≡ (1, 0)T , then
one finds that Xr is given by

Xr =
|︁|︁|︁a†s U(z3, z0)as

|︁|︁|︁2 = 4r2
|︁|︁|︁|︁∫ φ

0
dχκ(χ) exp [iθr(χ)]

|︁|︁|︁|︁2 , (30)

where θr(χ) is the accumulated phase-mismatch

θr(χ) ≡ r
∫ χ

0
dχ′∆(χ′). (31)

Clearly, Eqs. (30) and (31) together are equivalent to Eq. (9).
Because of the dependence of θr(χ) on r, the right-hand side of Eq. (30) is a transcendental

function of r. For a given waveguide cross-section and bending radius, the right-hand side of
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Eq. (30) can be evaluated numerically for Xr. However, it is useful to have a simpler expression
for a quick estimation of Xr. Such an expression can be obtained by noting that|︁|︁|︁|︁∫ φ

0
dχκ(χ) exp [iθr(χ)]

|︁|︁|︁|︁ ≤ sgn(ϕ)
∫ φ

0
dχ |κ(χ) exp [iθr(χ)]| = sgn(ϕ)

∫ φ

0
dχ |κ(χ)| . (32)

The inequality in Eq. (32) is a well known property of complex-valued integrals [35]. Physically,
the right-most side of Eq. (32) can be interpreted as the magnitude of the coupled amplitude to
first-order perturbation, when phase-mismatch between the polarization modes is neglected.

To compute the integral in Eq. (32), we take ϕ to lie in either the first or fourth quadrant, so the
bending segment spans the smallest possible arc. Then, combining Eqs. (30) and (32), we find
the bound for Xr:

Xr ≤ 4r2 |κ0 |
2 sin4 ϕ (33)

Evidently, Eq. (33) is equivalent to Eq. (10). As noted for Eq. (32), Xr approaches the
right-hand side of 33 when the accumulated phase-mismatch θr(χ) [Eq. (31)] is negligible (i.e.
|θr(χ)| ≪ π) for χ ∈ (0, ϕ).
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25. J. Čtyrokỳ, “Analysis of polarization effects in near-Z-axis Ti: LiNbO3 devices,” J. Opt. Commun. 14, 32–38 (1993).
26. S. Bhandare, R. Noé, and D. Sandel, “Origin of reciprocal circular birefringence observed in X-cut, Z-propagation

LiNbO3 polarization transformers,” Appl. Phys. B 73(5-6), 549–553 (2001).
27. J. D. Bull and N. A. Jaeger, “Parasitic mode conversion in Z-propagating lithium-niobate waveguides,” J. Lightwave

Technol. 25(1), 387–393 (2007).
28. D. Marcuse, “Coupled-mode theory for anisotropic optical waveguides,” The Bell Syst. Tech. J. 54(6), 985–995

(1975).
29. A. V. Tsarev, “New compact polarization rotator in anisotropic LiNbO3 graded-index waveguide,” Opt. Express

16(3), 1653–1658 (2008).
30. C. Vassallo, Optical waveguide concepts, Optical wave sciences and technology (Elsevier, 1991), pp. 228–231.
31. J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic crystals: molding the flow of light

(Princeton University Press, 2008), 2nd ed., pp. 20–21.
32. D. Marcuse, Theory of dielectric optical waveguides, Quantum electronics–principles and applications (Academic

Press, 1974), pp. 98–99.
33. A. Messiah, Quantum mechanics (North-Holland Pub. Co, 1961), Chap. XVII.
34. J. N. Damask, Polarization optics in telecommunications (Springer, 2005), pp. 54–55.
35. J. W. Brown and R. V. Churchill, Complex variables and applications, Brown-Churchill series (McGraw-Hill Higher

Education, 2004), 7th ed., pp. 114-115.

https://doi.org/10.1109/JPHOT.2020.3025017
https://doi.org/10.1364/OL.42.003578
https://doi.org/10.1016/j.optcom.2021.127334
https://doi.org/10.1364/OE.426672
https://doi.org/10.1364/OE.20.000601
https://doi.org/10.1364/OE.20.000601
https://doi.org/10.1049/el:19870951
https://doi.org/10.1049/el:19870951
https://doi.org/10.1515/JOC.1993.14.1.32
https://doi.org/10.1007/s003400100677
https://doi.org/10.1109/JLT.2006.887182
https://doi.org/10.1109/JLT.2006.887182
https://doi.org/10.1002/j.1538-7305.1975.tb02878.x
https://doi.org/10.1364/OE.16.001653

