
Letter Vol. 46, No. 16 / 15 August 2021 /Optics Letters 4053

Impact of the boundary’s sharpness on temporal
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We investigate the impact of the finite rise time of a spa-
tiotemporal boundary inside a dispersive medium used
for reflection and refraction of optical pulses. We develop
a matrix approach in the frequency domain for analyzing
such spatiotemporal boundaries and use it to show that the
frequency range over which reflection can occur is reduced
as the rise time increases. We also show that total internal
reflection can occur even for boundaries with long rise times.
This feature suggests that spatiotemporal waveguides can be
realized through cross-phase modulation even when pump
pulses have relatively long rise and fall times. ©2021 Optical
Society of America

https://doi.org/10.1364/OL.432180

Reflection of optical fields at a temporal boundary has attracted
considerable attention in recent years [1–10]. Initially, a station-
ary boundary was considered [1,3], assuming that the refractive
index changes suddenly at all spatial points at the same time.
Such a temporal boundary is not easy to realize in practice, and
it also ignores the dispersive nature of common optical media. A
moving temporal boundary, called a spatiotemporal boundary,
was considered in 2007 for a one-dimensional dispersionless
medium, and Maxwell’s equations were solved without any
approximations [2]. Such a boundary was also used in Ref.
[4] to study the temporal reflection of optical pulses inside a
dispersive waveguide such as an optical fiber. A moving spa-
tiotemporal boundary can be realized in experiments by using
the nonlinear phenomenon of cross-phase modulation [11]
induced by a pump pulse [6], or by applying a microwave pulse
to a traveling-wave phase modulator.

In past studies, the moving spatiotemporal boundary was
assumed to be infinitely sharp such that the refractive index
changes instantaneously at its location. In practice, any bound-
ary will have a finite rise time. One expects the results obtained
for a sharp boundary to remain valid as long as the rise time is
much shorter than other time scales of interest (such as the width
of the pulse being reflected at the boundary). However, it is not
known how the results obtained for a sharp boundary needs to
be modified when the rise time of a spatiotemporal boundary is
not negligible.

In this work, we investigate the impact of the finite rise time
of a spatiotemporal boundary on the phenomena of temporal
reflection and refraction. We employ a super-Gaussian function

to model variations in the rise time of a boundary in terms of
two controllable parameters. We divide the boundary region
into multiple short-duration sections and develop a transfer-
matrix approach in the frequency domain to study how the
frequency of a specific plane-wave component changes as this
plane wave passes from one section to the next. We discuss how
this approach allows us to calculate the reflectivity spectrum
for any spatiotemporal boundary with an arbitrary rise time.
Our results show that the frequency range over which temporal
reflection can occur is reduced as the rise time increases. They
also show that total internal reflection (TIR) is not affected
by the finite rise time of the boundary and can occur even for
shallow boundaries (with a long rise time), as long as the change
in the refractive index across it exceeds a certain amount. We
verify these predictions through numerical simulations of short
optical pulses propagating inside an optical fiber.

We consider a pulsed beam propagating inside a single-mode
waveguide (such as an optical fiber) such that it maintains
its spatial shape and size. In this situation, the electric field
associated with this pulse can be written in the form

E(r, t ′)= êF (x , y )A(z, t ′) exp[i(β0z−ω0t ′)], (1)

where ê is the polarization unit vector, F (x , y ) is the transverse
spatial profile of the beam, and A(z, t ′) is its slowly varying
amplitude A(z, t ′). Note that here t ′ is the time in laboratory
frame. The field’s rapidly varying part is assumed to oscillate at
a reference frequency ω0, and β0 is the propagation constant at
this frequency. At other frequencies present within the pulse’s
spectrum, the propagation constant can be expanded in Taylor
series aroundω0 as [11]

β(ω)= β0 + β1(ω−ω0)+
1

2
β2(ω−ω0)

2, (2)

provided that the spectrum of the incident pulse is narrow
enough to make the higher-order terms negligible. Here,
β1 = 1/vg is related to the group velocity, and β2 accounts for
the group-velocity dispersion (GVD).

We assume that a spatiotemporal boundary, moving at the
speed VB , has been created inside the dispersive medium using
a suitable technique (e.g., cross-phase modulation through a
pump pulse) so that the refractive index of the medium differs by
a small amount1n on the two sides of this boundary. The prob-
lem is simplified by working in a frame in which the boundary is
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Fig. 1. Staircase approximation used to model a spatiotemporal
boundary with a finite rise time. The step size is exaggerated for better
visualization.

stationary. Introducing the reduced time t = t ′ − z/VB in this
frame, the propagation of the pulse is governed by [4]

∂ A
∂z
+1β1

∂ A
∂t
+ i

β2

2

∂2 A
∂t2
= iβB s (t)A, (3)

where 1β1 = β1 − 1/VB , βB = (ω0/c )1n, and s (t) governs
the shape of the boundary with values in the range of zero to
one. A spatiotemporal boundary becomes purely temporal in
this frame, and we refer to the reflection on this boundary as
temporal reflection. In most previous studies on temporal reflec-
tion, s (t)was taken to be a step function of the form h(t − TB ),
assuming an infinitely sharp boundary located at t = TB . In this
work, we consider boundaries with a finite rise time Tr set by the
functional form of s (t) (see Fig. 1). For the present, we leave s (t)
unspecified and only note that its value rises from zero to one
over a finite duration related to the rise time of the boundary. In
general, one can solve Eq. (3) numerically, but such an approach
provides little physical insight.

For a sharp boundary with Tr = 0, it is known that a pulse
splits into two parts after it arrives at the boundary, which can be
identified as the reflected and transmitted parts [4]. Their spec-
tra are shifted from the spectrum of the incident pulse in such a
way that the reflected part never crosses the boundary. It appears
to move backward in the moving frame, even though it just
moves slower compared to the incident pulse. We have recently
developed an analytic, frequency-domain approach that allows
us to calculate the frequency shifts, as well as the reflection and
transmission coefficients as a function of the incident frequency
[10]. We extend this approach to temporal boundaries of arbi-
trary shapes by making a reasonable approximation. As shown in
Fig. 1, we divide the boundary region into N segments, each of
finite duration such that s (t) can be treated as a constant inside
it. In other words, we replace the actual shape of the boundary
with a staircase. This can be done for a boundary of any shape
if we make N large enough that s (t) does not vary much inside
each segment. As we discuss next, we can use a transfer-matrix
approach to move from one segment to the next, while employ-
ing our sharp-boundary results for each segment. Our approach
is similar to that used for calculating the reflectivity of a stack of
multiple dielectric layers [12]. The main difference is that we
deal with temporal boundaries, in place of the spatial interfaces
associated with the dielectric layers. We note that Eq. (3) is based
on the slowly varying envelope approximation (SVEA) and

requires pulses to be much wider than a single optical cycle. The
error induced by SVEA has been discussed in Ref. [2].

Consider one spectral component of the pulse before the
first segment with the frequency ω=ω0 + δ0. It propagates
as a plane wave A0e i(K z−δ0t). It follows from Eq. (3) that
K =1β1δ0 + β2δ

2
0/2. As this plane wave traverses the bound-

ary region, its frequency changes from one segment to the next.
As K remains the same because of momentum conservation [4],
only two plane waves exist in each section, but their frequencies
change from one section to the next. One of these waves pro-
duces a reflected wave at a shifted frequency, and the other leads
a transmitted wave. In the nth segment, where s (t)= s n is a
constant, the two frequencies satisfy the dispersion relation

K = βB s n +1β1δn +
1

2
β2δ

2
n . (4)

We denote the two solutions of this quadratic equation as δn±
and write the superposition of two plane waves as

A(z, t)= An+e i(K z−δn+t)
+ An−e i(K z−δn−t). (5)

Using this form, we can traverse the entire boundary region
while keeping track of the frequency shifts in each segment.

To find the transfer matrix between two adjacent segments,
let δ± denote the frequency shifts on the left side and δ′

±
on the

right side. Using the boundary conditions that both A and its
derivative ∂ A/∂t should be continuous across the interface
separating the two segments, we obtain

A+ + A− = A′
+
+ A′

−
, (6)

δ+A+ + δ−A− = δ′+A′
+
+ δ′
−

A′
−

. (7)

These equations can be written in the matrix form(
A+
A−

)
=

1

τ

(
1 ρ
ρ 1

)(
A′+
A′−

)
, (8)

where ρ and τ are, respectively, the reflection and transmission
coefficients defined as

ρ =
δ+ − δ

′
+

δ′+ − δ−
, τ =

δ+ − δ−

δ′+ − δ−
. (9)

Asρ and τ are different for each section, we define the transfer
matrix of the nth section as

Tn =
1

τn

(
1 ρn
ρn 1

)
. (10)

Within the nth section, two plane waves acquire time-
dependent phase shifts. These can be included through a
diagonal propagation matrix:

Pn =

(
e iδn+(tn+1−tn) 0

0 e iδn−(tn+1−tn)

)
. (11)

We use the transfer and propagation matrices to cross all seg-
ments, starting from the far end of the last segment. The result-
ing matrix of the entire spatiotemporal boundary is the product
of 2N + 1 matrices such that

M =

(
N∏

n=1

Tn Pn

)
Tn+1. (12)
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In terms of the four elements of this matrix, the incident,
reflected, and transmitted waves are related as(

Ain
AR

)
=

(
M11 M12
M21 M22

)(
AT
0

)
. (13)

It follows that the reflectivity and transmissivity of a
spatiotemporal boundary are given by

R = |M21/M11|
2, T = |1/M11|

2. (14)

One simple way to consider boundaries with different
rise times is to employ a specific shape controlled by the
super-Gaussian function:

s (t)=
{

exp[−((t − TB )/T0)
2m
], for t < TB ,

1, for t ≥ TB ,
(15)

such that s = 1 at the boundary location t = TB . The parame-
ters T0 controls the duration of the boundary, while m governs
its sharpness. Increasing m makes the boundary sharper. If we
use the engineering definition of the rise time and define Tr as
the time it takes for s (t) to increase from 10% to 90% of its final
value, we obtain

Tr = T0[(− ln 0.1)1/2m
− (− ln 0.9)1/2m

]. (16)

We have found it useful to normalize βB using its
minimum value required for temporal TIR to occur. As
discussed in Ref. [4], for a sharp boundary, TIR occurs
when βB > (1β1 + β2δ0)

2/(2β2). We normalize βB as
B = 2βBβ2/(1β1 + β2δ0)

2. Physically, B represents the value
of the index change relative to the value required for TIR to
occur. We also normalize T0 as τ0 = |(1β1 + β2δ0)/β2|T0.
Note that when normalizing, we used the quantity1β1 + β2δ0.
This is the effective 1β1 of the incident wave of frequency
ω0 + δ0. As the frequency shifts, the group-velocity mismatch
between the incident wave and the moving boundary changes,
and the reflectivity of the moving boundary changes. We
have found that the reflectivity of a spatiotemporal boundary
depends only on three dimensionless parameters: B, τ0,m. We
calculate its value numerically by dividing the boundary into a
large number of segments (see Fig. 1) such that B differs at most
by 0.005 between two neighboring segments.

To discuss the dependence of reflectivity on the rise time of a
spatiotemporal boundary, we fix the input frequency at ω=ω0
and set δ0 = 0. Figure 2(a) shows the reflectivity as a function of
τ0 for several values of m using B = 0.98, a value just below the
TIR threshold of B = 1. In all cases, R decreases monotonically
as the boundary’s duration increases, but the rate of decrease
depends on the rise time Tr . As Tr is reduced for larger values of
m [see Eq. (16)], R remains relatively large over a wider range of
τ0. This feature shows that sharpness of the boundary plays an
important role even when τ0 is not small.

The dependence of reflectivity on the parameter B is even
more critical because TIR can occur for B ≥ 1. Figure 2(b)
shows R as a function of B for several combinations of τ0 = 1
(solid lines) and τ0 = 5 (dashed lines). In each case, the rise time
is reduced by changing m = 1 to m = 3. The most important
feature here is that reflectivity becomes 100% when B > 1,
regardless of the boundary’s duration and shape. This means
that the TIR occurs even for boundaries with a relatively long
rise time, provided the index change across the boundary is large
enough to ensure B > 1.
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Fig. 2. (a) Reflectivity plotted as a function of τ0 for several values of
m using B = 0.98. (b) Reflectivity plotted as a function of B for τ0 = 1
(solid lines) and τ0 = 5 (dashed lines) with m = 1 and 3.

Another feature of Fig. 2(b) is that R decreases rapidly as B
is reduced below one, and the decrease becomes more rapid for
boundaries with longer durations. For example, when τ0 = 5
and B = 0.9, the reflectivity is only 4% for m = 1 (and 8.4% for
m = 3). For even longer boundary durations, R becomes close
to zero as soon as B is reduced below one, i.e., the reflectivity
becomes a step function of B for long boundary durations.
For such boundaries, an incident wave will not experience any
reflection until the index change becomes large enough to make
B ≥ 1. At that point, the pulse undergoes TIR and is completely
reflected.

The preceding discussion applies to one spectral compo-
nent of a pulse at the frequency ω0. We also need to consider
the frequency dependence of the reflectivity. For this pur-
pose, we choose 1β1 = 0.1 ps/m, β2 = 0.005 ps2/m, and
βB = 1.2 m−1. The last value corresponds to an index change
of about 3× 10−7 across the spatiotemporal boundary at wave-
lengths near 1µm. Its use results in B = 1.2, indicating that the
index change is large enough for TIR to occur in some frequency
range. Figure 3 compares the reflectivity spectrum of a sharp
boundary (dashed curve) with that of three boundaries with
different rise times (m = 1, 5, and 10) using T0 = 0.5 ps for the
boundary’s duration.

As seen in Fig. 3, TIR occurs for1 f values below 0.3 THz.
The reason it ceases to occur for larger values1 f is related to a
larger speed mismatch of the wave relative to the moving bound-
ary. As 1 f increases beyond 0.3 THz, 1β1 keeps increasing,
which decreases the reflectivity further. The rate of decrease
depends on the boundary’s rise time, and it becomes more and
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Fig. 3. Dependence of the reflectivity spectrum on the rise time of a
spatiotemporal boundary (duration 0.5 ps) is shown using three values
of m. Dashed curve shows for comparison the case of a step-function
boundary.

more rapid as Tr increases (or m decreases). For a Gaussian-
shaped boundary with m = 1, the reflectivity becomes nearly a
step function of1 f . In practical terms, for such boundaries, a
narrowband signal is either totally reflected or fully transmitted,
depending on its frequency.

One may ask whether this behavior can occur for picosecond
pulses whose spectrum is relatively wide. We use numerical
simulations to show that it occurs for a 2-ps-wide Gaussian
pulse launched into an optical fiber containing the moving
boundary. More specifically, we solved Eq. (3) with the input
Ain(t)= exp[−t2/(2T2

1 )] and chose T1 = 2 ps. We used the
same values as in Fig. 3 for parameters 1β1 and β2. The spa-
tiotemporal boundary had a Gaussian shape with T0 = 0.5 ps,
which corresponds to a normalized time of τ0 = 10. We consid-
ered two cases with B = 0.95 and B = 1.05. Recall that B = 1
corresponds to the TIR threshold.

Figure 4 shows the numerical results in these two cases by
plotting the temporal evolution of the incident pulse over a
400-m-long fiber. In (a), most of the pulse energy crosses the
boundary. In (b), nearly all energy is reflected because the index
change across the boundary is larger by 10%, and exceeds the
TIR threshold of B = 1. The reflection is not 100% because,
even though the TIR condition is satisfied for the central
frequency of the pulse, a portion of the pulse’s spectrum lies
outside the TIR region because of a relatively large bandwidth
of the pulse. For wider pulses with smaller bandwidths, the
change from full transmission to total reflection becomes more
dramatic and exhibits a switch-like behavior in the sense that
a relatively small change in the refractive index produces large
changes in the transmitted energy of a probe pulse, when pump
pulses are used to create a spatiotemporal boundary using the
Kerr nonlinearity of an optical fiber.

In our past work, spatiotemporal boundaries formed inside
a dispersive medium were taken to be infinitely sharp such that
the refractive index changed instantaneously at its location.
Here, we have investigated the impact of a finite rise time of the
index change across the boundary on the spatiotemporal reflec-
tion and refraction of optical pulses. We developed a matrix
approach in the frequency domain for analyzing such temporal

Fig. 4. Reflection and refraction of a 2-ps Gaussian pulse at a spa-
tiotemporal boundary with 0.5-ps rise time (m = 1) for (a) B = 0.95
and (b) B = 1.05 (B = 1 is required for TIR to occur).

boundaries and used it to study the impact of a finite rise time.
Our results show that the frequency range over which reflection
occurs is reduced as the rise time increases. We also show that
TIR can occur even for boundaries with a relatively long rise
time. This feature suggests that temporal waveguides can be
realized through cross-phase modulation even when pump
pulses used in the experiment have relatively long rise and fall
times.
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