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Role of frequency dependence of the nonlinearity
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We reveal the crucial role played by the frequency depend-
ence of the nonlinear parameter on the evolution of
femtosecond solitons inside photonic crystal fibers (PCFs).
We show that the conventional approach based on the self-
steepening effect is not appropriate when such fibers have
two zero-dispersion wavelengths, and several higher-order
nonlinear terms must be included for realistic modeling of
the nonlinear phenomena in PCFs. These terms affect not
only the Raman-induced wavelength shift of a soliton but
also impact its shedding of dispersive radiation. © 2021
Optical Society of America

https://doi.org/10.1364/OL.433238

The concept of solitons has proved valuable in the context of
optical fibers [1] and has found applications in diverse areas such
as mode locking of fiber lasers and supercontinuum generation
[2]. The formation of solitons requires balancing of the disper-
sive and nonlinear effects governed by two frequency-dependent
parameters,β(ω) andγ (ω), known as the propagation constant
and the nonlinear parameter, respectively [1]. The generalized
nonlinear Schrödinger equation (GNLSE) incorporates this
frequency dependence by expanding the two parameters as a
Taylor series around the central frequency of the pulse launched
into an optical fiber. For femtosecond pulses, multiple terms
in the expansion of β(ω) are included, but only the first two
terms are typically retained for γ (ω). The GNLSE also includes
the Raman contribution to the fiber’s nonlinearity to account
for the Raman-induced frequency shift (RIFS) or the soliton
self-frequency shift [3].

Both dispersive and nonlinear effects are modified consid-
erably in a photonic crystal fiber (PCF) [4]. Such fibers can be
designed to exhibit two zero-dispersion wavelengths (ZDWLs).
The RIFS of a soliton is reduced, and even canceled, in the wave-
length region of a PCF exhibiting a negative dispersion slope [5].
During such a process, solitons shed some of their energy in the
form of nonsolitonic radiation (NSR) or Cherenkov radiation
[6]. Other important factors that influence the RIFS include
third-order dispersion [1] and self-steepening [7], a nonlinear
process related to the first-order term in the Taylor expansion
of the nonlinear parameter γ (ω). A recent analytical approach
to the RIFS has studied its impact [8]. In most past work, the

second and higher-order nonlinear terms in this expansion have
been ignored [1,9].

In this Letter, we use numerical simulations to show that the
full frequency dependence of γ (ω)must be accounted for PCFs
designed to exhibit two ZDWLs. We also show that sufficiently
accurate results can be obtained by including the terms up to
third order in the Taylor expansion of the nonlinear parameter
γ (ω). We study how the higher-order terms dynamically shape
the Raman soliton. More specifically, the higher-order terms
modify the magnitude of the RIFS of the Raman soliton, which
in turn affects its speed and the arrival time at the end of the
fiber. Our numerical simulations show that these terms control
not only the RIFS of a soliton but also its shedding of dispersive
radiation close to the second ZDWL of the fiber.

Propagation of a short optical pulse inside optical fibers is
governed by GNLSE, written often in the time domain [1]. To
include the full frequency dependence, it is useful to write the
GNLSE in the spectral domain as

∂ Ãω
∂z = i β̃(ω) Ãω + iγ (ω)(1− f R)F(A|A|2)+ i f Rγ (ω)

×F
(

A
∫
∞

0 h R(t ′)|A(z, t − t ′)|2dt ′
)
,

(1)

where A(z, t) is the pulse envelope in time domain,
and Ãω(z)=F(A) is its Fourier transform. Further,
β̃(ω)= β(ω)− β(ω0)− β1(ω0)(ω−ω0), and h R is the
Raman response function [10]. The nonlinear parameter is
defined as γ (ω)= n2ω/[c Aeff(ω)]. Although the frequency
dependence of n2 can be ignored in practice, the strong fre-
quency dependence of Aeff(ω)must be included for most PCFs.
This was done in [11] with a different modeling method. Only
when we replace Aeff with its value at the central frequency ω0

can we write γ in the form γ (ω)= γ0 + γ1(ω−ω0), with
γ1 = γ0/ω0 [1,9].

It is shown that the number of photons remains con-
served for Eq. (1) only for the specific value of γ1 = γ0/ω0
[12,13], i.e., γ (ω)= γ0ω/ω0 denoted as γpc. As we want to
include the full frequency dependence of Aeff and include the
higher-order nonlinear terms, we make use of the so-called
photon-conserving GNLSE (pcGNLSE) for our study [13]:
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∂ Ãω
∂z = i β̃(ω) Ãω + i γ̃ (ω)2 F(C ∗B2)+ i γ̃

∗(ω)

2 F(B∗C 2)

+i f R γ̃
∗(ω)F

(
B
∫
∞

0 h R(t ′)|B(z, t − t ′)|2dt ′ − B |B |2
)
,

(2)

where γ̃ (ω)=ωd̃ , B̃ω = d̃ Ãω, C̃ω = d̃∗ Ãω, and d̃ =
4
√
γ (ω)/ω. This equation can employ an arbitrary form of

γ (ω). It has been used recently to study modulation instability
[14,15], self-steepening in nonlinear waveguides [16], and
the evolution of short solitons in fibers [17,18]. Its soliton-like
solutions have also been obtained recently [19]. We solve Eq. (2)
numerically using the fourth-order Runge–Kutta method [20].

We focus on a specific class of PCFs exhibiting two ZDWLs
with a design given in [21]. Figure 1(a) shows the frequency
dependence of the group-velocity dispersion (GVD) β2 and
the nonlinear parameter γ calculated for one such fiber. We
use these realistic profiles to compute the values of various
parameters appearing in the Taylor expansions:

γ (ω)= γ0 + γ1(ω−ω0)+
γ2

2!
(ω−ω0)

2
+
γ3

3!
(ω−ω0)

3
+ · · · ,

(3)

β̃(ω)=
β2

2!
(ω−ω0)

2
+
β3

3!
(ω−ω0)

3
+ · · · , (4)

where γn =
dnγ
dωn andβn =

dnβ
dωn are evaluated atω=ω0. We con-

sidered up to the sixth-order term in the expansion of γ (ω) but
found that results were sufficiently accurate when we included
only terms up to the third-order. In contrast, we needed to
include terms up to the 15th order for the GVD expansion.

As we are interested in the evolution of solitons, we solved
Eq. (2) with the input A(0, t)=

√
(P0)sech(t/T0), where

P0 is the peak power of the input pulse, and T0 is a measure of
its width such that the full width at half maximum (FWHM)
is Ts = 1.76T0. The order N of a soliton is governed by the
relation N2

= γ0 P0T2
0 /|β2|. We choose T0 = 20 fs for an

input pulse at the wavelength of 1060 nm. The peak power
of the input pulse is selected as P0 = 180 W to ensure that a
fundamental soliton (N = 1) is formed inside the fiber.

Figure 1 reveals the dynamic interplay between the higher-
order nonlinear and dispersion terms on the shaping of the
Raman soliton. Figures 1(b)–(d) compare the spectral evolution
of this fundamental soliton for three different forms of γ (ω),
keeping the GVD profile the same. Figure 1(b) corresponds
to the actual nonlinear profile of the PCF (dotted line) shown
in (a) and includes terms up to the third-order (γ3) in (3); (c)
includes only the first-order term [dashed line in (a)] and repre-
sents the prediction of conventional GNLSE; and (d) assumes
that γ (ω)= γ0 and ignores all frequency dependence of the
nonlinear parameter (no self-steepening).

In addition to the common qualitative feature of RIFS
suppression through spectral recoil from the NSR beyond
the second ZDWL [5], we also see significant differences in
Figs. 1(b)–(d) produced by different forms of the nonlinearity
profile. More specifically, the distance at which the soliton’s
wavelength approaches the second ZDWL and the NSR is
emitted is quite different for the three nonlinearity profiles. For
this reason, suppression of the RIFS occurs at different fiber
lengths for different γ (ω). The rate at which the soliton’s wave-
length increases is the largest in (d) with the soliton reaching
the second ZDWL at a distance of only 13 m. This distance
increases to 23 m and 43 m in (c) and (d), respectively. Thus, we
can conclude that the standard GNLSE overestimates the RIFS

Fig. 1. (a) Dispersion (blue) and three nonlinear profiles for a
specific PCF [3≈ 1.4 µm (distance between air holes), core diameter
≈ 1.30 µm]. Vertical lines indicate ZDWLs. Spectral evolution of a
soliton (N = 1) over 50 m of this PCF for (b) dotted, (c) dashed, and
(d) flat nonlinear profiles. Purple and white vertical lines in (b), (c),
(d) indicate the first and second ZDWLs. (e) Temporal profiles of the
soliton at 50 m in the three preceding cases. (f ) Optical spectra at 10 m
in three cases compared to the input spectrum.

for most PCFs, and the actual frequency dependence of the
nonlinear profile must be used for comparison with experiments
performed with such fibers.

As an example, consider an experiment performed in a 50-
m-long PCF and the temporal and spectral data recorded at
this distance. Figure 1(e) compares the predictions for three
nonlinearity profiles by plotting the temporal profile of the fun-
damental soliton, delayed in time because of its deacceleration
by the RIFS, at the fiber’s output. Different heights of the three
peaks indicate clearly that the soliton’s energy is quite different
in the three cases. In particular, the peak power of the soliton is
enhanced by more than a factor of three when we compare the
actual frequency dependence of γ (ω) (blue) with the prediction
of its linear approximation (red curve). The yellow curve indi-
cates the most delayed soliton with the least peak power for the
frequency independent nonlinear profile.

In Fig. 1(f ), we compare the soliton’s spectra for three non-
linearity profiles at a distance of 10 m with the input spectrum
(dashed black curve). The spectrum is shifted most when γ is
treated as being constant, and the smallest shift occurs when we
use the actual profile, γ = γPCF. This feature indicates that the
width of the soliton is also different in the three cases when the
spectrum becomes close to the second ZDWL [1]. This is the
reason that different amounts of energy are lost to the NSR in
the three cases. From a practical standpoint, the width, as well as
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Fig. 2. Temporal evolution of a second-order soliton using
(a) actual nonlinear profile and (b) its linear approximation. (c),
(d) Corresponding spectrograms at 1 m. (e), (f ) Spectrograms in the
same two cases at 0.4 m for a third-order soliton.

the amplitude of the output pulse can be controlled by tailoring
the nonlinearity profile of the PCF used in an experiment.

One may wonder how the preceding evolution scenario
changes for higher-order solitons. In this section, we first con-
sider a second-order soliton and choose P0 = 715 W to ensure
N = 2. Figures 2(a) and (b) show the temporal evolution of this
soliton over a distance of 1 m using (a) γ (ω)= γPCF and (b)
γ (ω)= γpc. As expected, the second-order soliton undergoes
fission and splits into two fundamental solitons of different
widths [9,22]. This fission occurs at a distance of around 3.5 cm,
and the speed of the shortest fundamental soliton is reduced
more and more due to an increasing RIFS. We observe in (b)
that NSR is emitted starting at a distance of 62 cm. No NSR
is seen in (a). To understand this difference better, we show
in Figs. 2(c) and (d) the simulated spectrograms at a distance
of 1 m. In both cases, we see two fundamental solitons with
different spectra. The absence of the NSR in (a) can be solely
attributed to the fact that the soliton’s wavelength has just
reached the second ZDWL at a distance of 1 m. This happens at
a shorter distance in (b), resulting in the formation of a disper-
sive wave. Note that soliton’s delays are also slightly different,
3.1 ps in (c) and 3.4 ps in (d).

Next, we increase the peak power to 1.61 kW, resulting in
the formation of a third-order soliton (N = 3). Figures 2(e)
and (f ) show the simulated spectrograms at a distance of 0.4 m
in the same two cases: (e) γ (ω)= γPCF and (f ) γ (ω)= γpc.
As expected, the third-order soliton has split into three funda-
mental solitons with different widths and different spectra. A
dispersive wave forms in both cases when the soliton’s wave-
length becomes close to the second ZDWL, but it is much less

Fig. 3. (a) Wavelength shift (RIFS) as a function of distance for a
second-order soliton when terms up to fourth order are included in the
Taylor expansion of γ (ω). (b) Temporal evolution of the soliton in the
same four cases.

Table 1. Values of the Four Coefficients Obtained by
Fitting γPCF to a Cubic Polynomial

γ0 = 0.1402 W−1 m−1

γ1 = 1.412× 10−1 W−1 m−1 fs
γ2 = 1.3033× 10−5 W−1 m−1 fs2

γ3 =−1.5185× 10−8 W−1 m−1 fs3

intense and much less spread in (e) because of a reduced rate
of the RIFS of the soliton. Interestingly, there is an additional
spectral feature around 1620 nm in (f ). This feature results
from the trapping of the NSR by the middle soliton [23,24]. A
fraction of NSR energy released by the shortest soliton is trapped
by the middle soliton because of their temporal overlap and
its spectrum shifts toward the blue side through cross-phase
modulation. This does not occur in (e) because of the reduced
spreading of the dispersive wave. It is important to stress that the
frequency dependence of the nonlinearity plays a pivotal role in
controlling the trajectory of both the soliton and the NSR.

An important question is how many terms should be retained
in the Taylor expansion of γ (ω) given in Eq. (3). In Fig. 3(a),
we show how the wavelength of a second-order soliton changes
with distance inside the fiber when the number of terms in
this expansion is increased from one to four. When only the
first term is included, γ becomes a constant with no frequency
dependence. In this case (solid line), wavelength first increases
linearly with distance, as expected from theory, and then begins
to saturate after 0.43 m because of the onset of the RIFS suppres-
sion, as discussed earlier. When the linear γ1 term is included,
saturation of the RIFS stops because of the reduced slope of the
dashed line in Fig. 3(a). The inclusion of γ2 (dotted line) and γ3
(dashed-dotted line) reduces this slope further and also makes
the RIFS increase sublinear. We have found that the RIFS does
not change much as more terms are included, indicating that the
nonlinear profile can be well approximated with a cubic polyno-
mial. The values of the four coefficients for the cubic polynomial
fitted to theγPCF for a specific PCF are given in Table 1.

The temporal delay of the soliton induced by the wavelength
shift is plotted for the same four cases in Fig. 3(b). This delay is a
result of the reduction in the soliton’s speed because of its chang-
ing wavelength. The resulting temporal delay of the soliton does
not increase linearly with distance, even when the wavelength
itself increases linearly. Note that NSR cannot be seen in (b)
because of a reduced range of the amplitude scale shown on the
right. The smallest delay occurs when all four terms are included
in the Taylor expansion so thatγ (ω)= γPCF.
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Fig. 4. Distance at which the RIFS is fully suppressed is plotted as
a function of a (left) and b (right) for a fundamental soliton (top row)
and a second-order soliton (bottom row).

The suppression of RIFS occurs for any PCF with two
ZDWLs [5]. To understand how this suppression depends
on parameters γ1 and γ2, we introduce their dimensionless
versions a and b by writing the frequency dependence of the
nonlinearity in the form γ (ω)= γ0(1+ a(ω−ω0)/ω0 +

b(ω−ω0)
2/2ω2

0), where a = γ1ω0/γ0 and b = γ2ω
2
0/γ0.

At the input wavelength of 1060 nm, we find a = 1.7903 and
b = 0.2936 for the PCF used in this work. However, these values
will change for other PCFs. We note that it has been common
in the past to use the values a = 1 and b = 0, which correspond
to the self-steepening case. In Fig. 4, we vary these two param-
eters to study how the distance at which the RIFS is suppressed
depends on their values. The top and bottom rows correspond
to N = 1 and 2, respectively. In (a) and (c), we vary a , keep-
ing b = 0 fixed. In (b) and (d), we vary b, keeping a = 1.8
fixed.

Several features of Fig. 4 are noteworthy. The length scale
is reduced by a factor of 50 when we switch from N = 1 to
N = 2 soliton. The lowest order fit that matches the simulation
points (data) is cubic for (a) and (c) and quadratic for (b) and
(d). A salient feature is that the nature of the curve is opposite
for increasing a and b. The main reason behind this trend is
the RIFS of the soliton towards the second ZDWL. The rate
of RIFS decreases with increasing a but increases with b. As a
result, it takes a longer length in the first case and a shorter length
in the second case to reach the second ZDWL. Note that b is
varied over a wide range such that 0< b < 10. This range can be
realized in practice by doping the fiber with nanoparticles made
of gold [15].

Although we used a PCF as an example to emphasize the role
of the frequency dependence of the nonlinear parameter on
the evolution of short solitons, our conclusions should apply
to any high-confinement optical waveguide, including tapered
fibers and suspended-core fibers. The frequency dependence of
γ (ω) in such fibers cannot be replicated using the conventional
GNLSE based on the self-steepening effect and includes only
the first order in a Taylor expansion. To ensure the conservation
of the photon number, we used the recently proposed modified
GNLSE to reveal the importance of few-cycle solitons in a non-
linear waveguide. Our numerical simulations reveal that the rate
of RIFS (along the fiber’s length) is influenced by higher-order

nonlinear terms, in addition to third-order dispersion and self-
steepening. These terms also control the shedding of dispersive
radiation close to the second ZDWL of the fiber. For the specific
PCF design used in this work, the RIFS of the soliton is reduced
compared to the self-steepening case often used in literature,
which in turn affects the temporal delay of the soliton. The peak
power of the soliton is also affected close to the second ZDWL
of the fiber owing to a reduction in the amount of dispersive
radiation. These features are important when solitons are used
to design a wavelength-tunable optical source.
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