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We show that the temporal analog of a Fabry–Perot resonator (FPR) can be realized by using two moving temporal
boundaries, formed by intense pump pulses inside a dispersive medium (such as an optical fiber). We analyze such
FPRs using a transfer-matrix method, similar to that used for spatial structures containing multiple thin films. We
consider a temporal slab formed using a single square-shape pump pulse and find that the resonance of such an FPR
has transmission peaks whose quality ( Q) factors decrease rapidly with an increasing velocity difference between
the pump and probe pulses. We propose an improved design by using two pump pulses. We apply our transfer-
matrix method to this design and show considerable improvement in the Q factors of various peaks. We also show
that such FPRs can be realized in practice by using two short pump pulses that propagate as solitons inside a fiber.
We verified the results of the transfer-matrix method by directly solving the pulse propagation equation with the
split-step Fourier method. ©2021Optical Society of America

https://doi.org/10.1364/JOSAB.428411

1. INTRODUCTION

Temporal variations in the refractive index of a dielectric
medium are useful for a variety of applications, including opti-
cal signal processing. Reflection of optical fields at a temporal
boundary with different refractive indices on its two sides has
attracted attention in several contexts [1–14]. A stationary
boundary is often employed, assuming that the refractive index
changes suddenly at all spatial points at the same time. However,
such a temporal boundary is not easy to realize in practice,
and the dispersion of the medium is usually not considered. A
moving temporal boundary was employed in [5] to study the
temporal reflection of optical pulses inside a dispersive medium.
It was found that the spectra of reflected and refracted pulses
shifted from the spectrum of the incident pulse in such a way
that the reflected part never crossed the boundary, even though
all parts of the original pulse moved in the same direction. A
moving temporal boundary can be realized in experiments using
the nonlinear phenomenon of cross-phase modulation [15]
induced by a pump pulse, or by applying a microwave pulse to a
traveling-wave phase modulator.

The properties of a new kind of material, known as the space-
time metamaterial, have been studied in recent years [7–9]. A
time-domain laser cavity was also studied in [10]. The cavity was
formed in time domain by temporal reflection. A pulse train can
be generated from the cavity. Another interesting development
is related to a device called a time-domain Fabry–Perot resonator
(FPR). It is formed by two temporal boundaries separated in
time and its properties were recently studied [11]. This idea

has also been extended to the temporal analog of a device made
with multiple thin films of different dielectric materials [12].
However, all films were assumed to be dispersion-free, without
any frequency dependence of the refractive indices. In this work,
we consider a temporal FPR built by using two moving tempo-
ral boundaries inside an optical waveguide (such as an optical
fiber) and includes the full effects of group-velocity dispersion
(GVD). We developed a transfer matrix method and used it to
explain the behaviors of temporal FPR.

Recently, we developed an analytic approach to study tem-
poral reflection at a moving boundary [16]. In Section 2, we
use this approach and present a transfer-matrix method for
time-domain FPRs that is similar to the method used to find
the reflectivity of a structure containing multiple thin films. In
Section 3, we discuss the similarity and differences between the
spatial and temporal FPRs. In Section 4, we study a temporal
FPR formed using two short pump pulses separated in time by a
fixed duration. As an example, we found that a FPR formed by
two solitons works quite well. This configuration was numeri-
cally considered earlier with less attention to the FPR resonances
and the reflectivity spectrum [13]. The main results of our paper
are summarized in Section 5.

2. TRANSFER-MATRIX METHOD

We consider the propagation of an optical pulse (called the
probe) inside a dispersive medium, such as a single-mode fiber.
We ignore all spatial effects, assuming that the pulsed beam
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maintains its spatial dimensions, but include the frequency
dependence of the refractive index n(ω). To simplify the prob-
lem, we expand the propagation constant, β(ω)= (ω/c )n(ω),
of the optical mode in a Taylor series as

β(ω)= β0 + β1(ω−ω0)+
1

2
β2(ω−ω0)

2, (1)

where ω0 is a reference frequency near the central frequency of
the pulse. Note that it does not have to be the central frequency.
We neglected the third- and higher-order dispersion terms in the
Taylor expansion, assuming that the input spectrum is relatively
narrow compared to its central frequency. The parameter β1

is related inversely to the group velocity of the pulse, and β2 is
known as the GVD parameter [15]. The refractive index can
be made time dependent by injecting intense pump pulses
together with the probe pulse. Each pump pulse changes the
refractive index by a small amount through the nonlinear Kerr
effect only over its duration. We include such changes through
β ′0(t)= β0 + b(t), where b(t)= (ω0/c )1n(t) and 1n(t) is
the change in the refractive index induced by a pump pulse.

To study the evolution of the probe pulse, we work in a frame
where the pump pulses traveling with the speed Vp appear sta-
tionary. Introducing t = t ′ − z/Vp , where t ′ is the time in the
laboratory frame, the evolution of the probe pulse is governed
by [5]

∂ A
∂z
+1β1

∂ A
∂t
+ i

β2

2

∂2 A
∂t2
= ib(t)A, (2)

where A(z, t) is the slowly varying amplitude of the probe pulse
and1β1 = β1 − 1/Vp . The electric field is related to A through
E (z, t ′)= A(z, t ′) exp[i(β0z−ω0t ′)]. The preceding equa-
tion is similar to the nonlinear Schrödinger equation and can be
solved with the split-step Fourier method [15].

To solve Eq. (2) analytically, we work in the spectral domain
and separately consider each frequency component of the
Fourier spectrum. Second, we divide the time window over
which b(t) 6= 0 into small segments such that b(t) can be treated
as a constant in each segment. We can use this procedure for any
form of b(t) provided we make segments relatively short when
b(t) changes rapidly. In the nth segment, we can set b(t)= bn

in Eq. (2). The resulting equation has an analytic solution in the
form of a plane wave:

A(z, t)= A0 exp[i(1βnz−1ωnt)], (3)

where1ωn is the frequency shift in the nth segment (from the
reference frequencyω0) and the change in propagation constant
in this segment is given by

1βn = bn +1β11ωn +
1

2
β21ω

2
n . (4)

It is known from earlier work that the propagation constant
is preserved across a temporal boundary [5]. This requirement
implies that 1βn should be the same in all segments. Because
b(t) is induced by a pump pulse, it is nonzero only over the
duration of this pulse. Consider a specific spectral component
at the frequency ω0 +1ω+. Just before it arrives at the first
segment, where b(t)= 0 because the pump pulse is absent,
Eq. (4) leads to

1β0 =1β11ω+ +
1

2
β21ω

2
+

. (5)

Because the propagation constant should be the same in all seg-
ments, we can use1βn =1β0. Using this result in Eq. (4), the
frequency shift in each segment is found to be

1ωn,± =
1

β2

[
−1β1 ±

√
(1β1 + β21ω+)

2
− 2bnβ2

]
.

(6)
The physical meaning of these two solutions can be understood
by noting that a plane wave incident on the nth segment under-
goes temporal reflection and refraction, resulting in two plane
waves of different frequencies. These waves travel at different
speeds because of the GVD such that one of them travels slower
than the incoming wave. In the moving frame used here, this
wave appears to be moving backward.

Accounting for both plane waves, the general solution of
Eq. (2) in the nth segment should be written as

A(t)= A+(t)+ A−(t)= A+e−i1ωn,+t
+ A−e−i1ωn,−t ,

(7)
where we suppress the dependence on z to simplify the notation.
We can use this equation to relate the amplitudes at the two ends
of the nth segment of duration τn = tn+1 − tn . The resulting
matrix relation is found to be(

A+(tn)
A−(tn)

)
=

(
e i1ωn,+τn 0

0 e i1ωn,−τn

)(
A+(tn+1)

A−(tn+1)

)
. (8)

The next step is to find the transfer matrix between two neigh-
boring segments. For this purpose, we make use of the boundary
conditions across a temporal boundary. These require that both
A and ∂ A/∂t should be continuous across the boundary. If we
denote the amplitudes on the two sides of the boundary with
A(t) and A′(t) and write them as superpositions of the two
plane waves of different frequencies as indicated in Eq. (7), we
obtain

A+ + A− = A′
+
+ A′

−
, (9)

1ω+A+ +1ω−A− =1ω′+A′
+
+1ω′

−
A′
−

. (10)

Solving the linear equations, we can write the result in the form(
A+
A−

)
=

(
1ω′+−1ω−
1ω+−1ω−

1ω′−−1ω−
1ω+−1ω−

1ω+−1ω
′
+

1ω+−1ω−

1ω+−1ω
′
−

1ω+−1ω−

)(
A′+
A′−

)
. (11)

This equation can be simplified considerably by noting from
Eq. (6) that 1ω+ +1ω− =−21β1/β2. The same is true for
1ω′
+

and1ω′
−

. Thus, we have1ω+ +1ω− =1ω′+ +1ω
′
−

.
Using these relations, Eq. (11) can be rewritten as(

A+
A−

)
=

1

τ

(
1 ρ

ρ 1

)(
A′+
A′−

)
, (12)

where we have defined the temporal amplitude reflection and
transmission coefficients as

ρ =
1ω+ −1ω

′
+

1ω′+ −1ω−
, τ =

1ω+ −1ω−

1ω′+ −1ω−
. (13)



2378 Vol. 38, No. 8 / August 2021 / Journal of the Optical Society of America B Research Article

We can now follow the same procedure that is used in the spatial
case of a structure containing multiple thin films. In fact, our
transfer matrix in Eq. (12) is written in the same form used
for the spatial case. The only difference is that frequencies are
involved in our case whereas angles are involved in the spatial
case. This is an example of space-time duality that has been
exploited for temporal imaging using a time lens [17].

3. TEMPORAL SLAB

In the spatial case, a dielectric slab with two partially reflecting
ends forms a FPR such that its transmission becomes 100%
at specific frequencies that correspond to its resonances. A
temporal slab provides the simplest example of a time-domain
FPR. It is made by using two temporal boundaries such that the
refractive index is different inside the region separating these
boundaries from that outside of it. Assuming that the temporal
slab occupies the region 0< t < T, the function b(t) in Eq. (2)
has the form

b(t)=
{

b0 0< t < T,
0 otherwise.

(14)

We denote the frequencies outside the slab as 1ω± and the
frequencies inside the slab as 1ω′

±
. Physically, a plane wave

with frequency 1ω+ propagates in the t < 0 region and its
frequency changes to1ω′

+
at the boundary at t = 0. This wave

gets reflected at the boundary at t = T and its frequency changes
to 1ω′

−
. Some part of this reflected wave enters the region

t < 0 and its frequency changes to1ω−. This process is exactly
like what happens in a spatial slab. So, for resonance to occur,
the reflected waves from the two boundaries must interfere
destructively. This can only happen if1ω′

±
is real.

We use the transfer-matrix method developed in Section 2 to
find the transmission coefficient of the temporal slab and deter-
mine the condition for resonance to occur with 100% transmis-
sion through the slab. We denote the reflection and transmission
coefficients at the boundary t = 0 as ρ and τ , and at the bound-
ary t = T asρ ′ and τ ′. It is easy to show thatρ ′ =−ρ. Similar to
the spatial case, the transfer matrix of the temporal slab is found
by multiplying the following matrices:

M =
1

τ

(
1 ρ

ρ 1

)(
e i1ω′+T 0

0 e i1ω′−T

)
1

τ ′

(
1 −ρ
−ρ 1

)
,

=
1

ττ ′

(
e i1ω′+T

− ρ2e i1ω′−T
−ρ(e i1ω′+T

− e i1ω′−T)

ρ(e i1ω′+T
− e i1ω′−T) e i1ω′−T

− ρ2e i1ω′+T

)
.

(15)

The wave amplitudes on the two sides of the temporal slab are
related to the matrix elements Mi j as(

A+(0)
A−(0)

)
=

(
M11 M12

M21 M22

)(
A+(T)

0

)
. (16)

It follows that the reflection and transmission coefficients of a
temporal slab are given by

ρslab =
A−(0)
A+(0)

=
M21

M11
, (17)

τslab =
A+(T)
A+(0)

=
1

M11
. (18)

Using M11 from Eq. (15), the transmissivity of the slab is found
to be

Tslab = |τslab|
2
=

(
1+

4|ρ|2

(1− |ρ|2)2
sin2
[(1ω′+ −1ω

′
−)T/2]

)−1

.

(19)
This expression has the same form as the one found for a

space-domain slab acting as an FPR. Similar to the spatial case,
multiple peaks with 100% transmission occur when the reso-
nance condition, (1ω′

+
−1ω′

−
)T = 2mπ , is satisfied, where

m is an integer. Also, similar to a spatial FPR, the larger is the
value of |ρ|2 or T, the sharper the transmission peak becomes,
and the higher is the Q factor of that peak. However, there is one
critical feature that makes a temporal slab quite different from
a spatial slab: Whereas the reflectivity |ρ|2 at the two interfaces
is nearly constant over a wide spectral range in the spatial case, it
changes rapidly in the temporal cases because |ρ|2 depends on
the incident frequency1ω+.

To quantify the impact of this critical difference, Fig. 1
shows both |ρ|2 and Tslab as a function of normalized frequency
shift defined as 1 f = (β2/1β1)1ω+ using a specific set
of parameter values: 1β1 = 0.1 ps/m, β2 = 0.005 ps2/m,
b0 = 1.2 m−1, and T = 1 ps. As seen there, multiple transmis-
sion peaks do occur but their Q factors and shapes vary so much
that only a few resonances exist that are not even equally spaced.
The first peak is the narrowest because |ρ|2 is the largest in its
vicinity (about 55%). The second peak is broader because |ρ|2 is
about 32% in its vicinity. For the same reason, the transmission
does not drop to zero between two neighboring peaks. These
features are quite different from the spatial case in which all
transmission peaks have nearly the same contrast and the same
Q factor.

Another noteworthy feature of a temporal slab is the presence
of a frequency range over which |ρ|2 becomes 100% because of
total internal reflection (TIR). In this case, the frequency shifts
1ω′
±

inside the slab become imaginary, resulting in the for-
mation of evanescent waves decaying exponentially with time.

Fig. 1. Transmissivity of the temporal slab (solid line) and reflectiv-
ity of its front boundary (dashed line).
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However, for a sufficiently narrow slab (duration T relatively
small), the temporal analog of frustrated TIR can still occur.

The results seen in Fig. 1 can be used to understand how an
incoming pulse splits into the reflected and transmitted parts as
it crosses a temporal slab. We first find the spectral contents of
the incoming pulse by using the Fourier transform

Ãin(ω)=

∫
∞

−∞

Ain(t)e iωt dt . (20)

The amplitudes of the reflected and transmitted pulses are cal-
culated by considering refection and transmission of individual
frequency components and then taking the inverse Fourier
transform:

Ar (t)=
1

2π

∫
∞

−∞

ρs (ω) Ãin(ω)e−iωt dω, (21)

At(t)=
1

2π

∫
∞

−∞

τs (ω) Ãin(ω)e−iωt dω, (22)

whereω plays the role of the frequency shift1ω+. Alternatively,
we can solve Eq. (2) numerically with b(t) given in Eq. (14).

We used the split-step Fourier method [15] to solve
Eq. (2) numerically. We chose the same parameter values
used for Fig. 1 and assumed a Gaussian input pulse using
Ain(t)= exp(−t2/2T2

0 ) with T0 = 20 ps. Figs. 2(a) and 2(b)
show two cases at different wavelengths for the index change
shown in Fig. 2(c). The dashed lines in Figs. 2(a) and 2(b) mark
the position of the temporal slab. Note that the temporal slab
over which index changes does not vary with z in the moving
frame. Fig. 2(d) shows that the pulse’s spectrum is centered at
the second transmission peak in Fig. 2(a) and at the first trans-
mission valley in Fig. 2 (b). In both cases, temporal evolution
of the pulse is shown over a distance of 2 km. This distance is
long but feasible in practice when optical fibers are used for the
dispersive medium. A higher-index region at t = 60ps forms a
temporal slab whose duration is much narrower (1 ps) compared
to the pulse width. The value b0 = 1.2 m−1 inside this slab
region corresponds to an index change of only 3× 10−7 and can
be realized in practice using a short, intense pump pulse with a
duration of 1 ps.

Figure 2(a) shows that the pulse reaches the front boundary
at a distance of 500 m and reaches the other end of the slab after
a short distance. The important feature is that more than 90%
of the pulse energy is transmitted through the slab when the
pulse’s spectrum is centered at a resonance of the FPR formed by
the slab. The reason that some energy (about 7%) is reflected is
related to the finite distance it takes for the pulse to cross the slab.
Indeed, we see two reflected pulses that correspond to reflections
at the two interfaces of the slab. The situation in Fig. 2(b) is quite
different when compared to Fig. 2(a). In this case, the reflected
pulse contains most of the input energy. This is expected from
Fig. 2(c), where we see that the reflectivity is about 84% at the
first valley. We note that the reflected pulses appear to be moving
toward the negative time (t = 0 corresponds to the peak of
input pulse). This is not a violation of causality because t is a
relative time in a frame in which that temporal slab is stationary.
Physically, when the probe pulse crosses the pump pulse (the
temporal slab), a part of the probe pulse changes its frequency
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Fig. 2. Temporal evolution of a 20 ps Gaussian pulse when its
spectrum is centered at (a) the second transmission peak and (b) the
first minimum. The dashed lines in (a) and (b) represent the position of
the temporal slab. (c) Temporal window over which the refractive index
change occurs. (d) Location of pulse spectra within the transmission
curve (red) of the temporal slab. Blue solid line is the incident spectrum
of (a) and dashed line is the incident spectrum of (b); spectral intensity
is plotted for convenience.

so that it speeds up and appears to move away from the pump
pulse.

4. IMPROVED TIME-DOMAIN FPRS

We saw in Section 3 that a temporal window, with a higher (or
lower) refractive index compared to its surroundings, behaves
like a FPR in the time domain. However, its resonances are not
uniform because the reflection coefficient of each temporal
boundary exhibits a strong frequency dependence. As a result,
its transmission peaks have low Q factors and their contrast
(difference between the transmission’s peak and valley) dimin-
ishes after one or two peaks. We show in this section that FPRs
with high Q factors can be designed by using two temporal
slabs separated in time. In practice, this configuration can be
realized by using two identical pump pulses that serve as two
high-reflectivity mirrors of a temporal FPR. The exact shape
of two pump pulses is not important, but it should not change
much as these pulses propagate inside the dispersive medium.
This feature suggests immediately the use of optical solitons for
making such FPRs [13].

We use the transfer-matrix method developed in Sections 2
and 3 to understand the properties of the proposed FPR, shown
schematically in Fig. 3 using two identical pump pulses. As pulse
shapes will be different in practice, we develop our theory for an
arbitrary shape of pump pulses. We denote the elements of the
transfer matrix of a single pump pulse as M11, M12, M21, and
M22. These elements are functions of the frequency shift 1ω+
and can be calculated by dividing the pump pulses into many
segments and multiplying the matrices.

The transfer matrix of the FPR shown in Fig. 3 is obtained by
multiplying the following three matrices:

MF P =

(
M11 M12

M21 M22

)(
e i1ω+T 0

0 e i1ω−T

)(
M11 M12

M21 M22

)
.

(23)
It follows from Eq. (18) that the transmissivity of the FPR is

given by



2380 Vol. 38, No. 8 / August 2021 / Journal of the Optical Society of America B Research Article

Fig. 3. Design of the proposed time-domain FPR. Two identical
pump pulses of duration Tpump, separated by an interval T, act as
temporal mirrors. The bottom part shows the transfer matrices of three
sections.

TF P = |M2
11e i1ωT

+M12 M21|
−2, (24)

where 1ω=1ω+ −1ω−. Using the relation (see
Supplement 1)(

M11 M12

M21 M22

)
=

(
M∗22 M∗21
M∗12 M∗11

)
exp

[
−i

21β1

β2
Tpump

]
,

(25)
we can simplify TF P as

TF P =

(
1+

4|0|2

(1− |0|2)2
sin2 φ

2

)−1

, (26)

where 0 =M21/M11 is the amplitude reflection coefficient of a
single pump pulse,

φ =1ωT + 21β1Tpump/β2 + 2φ0 − π, (27)

and φ0 is the phase of complex number M11. Equation (26) has
the same functional form as Eq. (19), except that the bandwidth
of each transmission peak width depends on the temporal reflec-
tivity |0|2 of each pump pulse, instead of a single boundary. This
feature improves the performance of the proposed FPR because
|0|2 usually changes less rapidly with frequency than the reflec-
tivity of a single temporal boundary and allows the formation of
several more narrowband transmission peaks.

To illustrate the performance of the proposed FPR, we con-
sider a practical configuration: The pump pulse’s wavelength
is in the anomalous region of the optical fiber while the probe
pulse is in the normal dispersion region. The two pump pulses
propagate as two optical solitons and their center is delayed by
Tc [15]. A high-index region forms over the width of each pulse
because of a Kerr-induced increase in the refractive index of the
fiber’s mode. In this case, b(t) in Eq. (2) has the form

b(t)= b0

[
sech2

(
t

T0

)
+ sech2

(
t − Tc

T0

)]
. (28)

As an example, we choose1β1, β2 the same as in Fig. 1 and set
b0 to 1.2 m−1, which corresponds to a maximum index increase
of only1n = 3× 10−7. We use T0 = 50 fs and Tc = 1.4 ps. We
calculated the transfer matrix of each pump pulse by dividing it
into 500 segments from−4T0 to 4T0. We used this matrix to cal-
culate both |0|2 and the transmissivity TFP of the FPR, and the
results are shown in Fig. 4.

Fig. 4. Frequency dependence of TF P (solid line) and |0|2 (dashed
line) for a temporal FPR formed using two pump pulses propagating as
solitons inside an optical fiber.

A comparison of Figs. 1 and 4 shows the improvement real-
ized by using two solitons as temporal boundaries of an FPR.
Similar to the single-slab case, there are multiple transmission
peaks in Fig. 4, but they are much sharper (narrower) compared
to the slab case and thus have high Q factors. This difference
can be solely attributed to the frequency dependence of |0|2

compared to that of a single, sharp temporal boundary. The
reflectivity of a relatively short soliton (FWHM about 90 fs)
varies smoothly with frequency and remains>50% over a large
frequency range, resulting in the several sharp transmission
peaks seen in Fig. 4.

Just as was done in Fig. 2, we simulated the transmission of
a probe pulse through the FPR at the peak and valley of one
transmission peak in Fig. 4 by numerically solving Eq. (2). We
used a Gaussian-shape probe pulse with T0 = 20 ps, and the
results are shown in Figs. 5(a) and 5(b). Figure 5(c) shows the
refractive index changes in the time domain and Fig. 5(d) shows
the locations of the probe spectra in Figs. 5(a) and 5(b).
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Fig. 5. Temporal evolution of a 20 ps Gaussian pulse when its spec-
trum is centered at (a) a transmission peak and (b) a transmission valley.
The dashed lines in (a) and (b) represent the position of the temporal
FPR. (c) Refractive index changes in the time domain. (d) Location of
pulse spectra within the transmission curve (red) of the FPR. Blue solid
line is the incident spectrum in (a) and the dashed line is the incident
spectrum in (b); spectral intensity is plotted.
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pump pulses change the refractive index in time domain, as shown in
(b). The dashed lines in (a) represent the location of the temporal FPR.
The probe pulse’s spectrum is centered at a transmission peak of the
FPR. (c) Spectra of the incident (blue solid line) and transmitted pulses
(blue dashed line) superposed on the transmission curve of the FPR
(red).

As predicted by our transfer-matrix method, the probe pulse
is almost completely transmitted when its spectrum is centered
at the transmission peak. In contrast, it is mostly reflected when
its spectrum is centered at the transmission valley. In both
cases, there is some energy leakage due to the finite width of
the resonator. The reason for almost perfect transmission and
reflection is related to a relatively large width of the probe
pulse, chosen to ensure a narrow spectrum that fits within the
bandwidth of the transmission peak.

When the probe pulse becomes shorter than 10 ps, its spec-
trum becomes wider than the transmission peak, and the FPR
behaves like an optical filter. To verify this, we simulated the
case of a probe pulse with T0 = 2 ps, and the results are shown in
Fig. 6. Pump-induced temporal changes in the refractive index
are shown in Fig. 6(b). We see in Fig. 6(a) that only a fraction
of the pulse’s energy is transmitted even though the pulse’s
spectrum is centered at the peak with 100% transmission. This
is because the probe spectrum is wider than the transmission
peak, as seen in Fig. 5(c), resulting in a significant amount of
reflection. Both the reflected and transmitted pulses have long
tails, caused by multiple reflections occurring inside the FPR.
Figure 6(c) shows the spectrum of the transmitted pulse together
with the transmission curve of the FPR. The transmitted spec-
trum is narrower than that of the incident pulse and fits within
the transmission peak, as expected on the physical ground.
These results indicate clearly that a temporal FPR can be used as
an optical filter.

5. CONCLUSION

In this paper, we show that the temporal analog of a FPR can
be realized by using two moving temporal boundaries inside
a dispersive medium such as an optical fiber. In practice, such
boundaries are created using a pump-probe configuration in
which one or more short pump pulses are launched together
with a probe pulse. Each pump pulse increases the refractive

index of the single mode of the fiber through the nonlinear Kerr
effect, but this increase lasts only over the duration of the pump
pulse.

To calculate the transmissive properties of such time-domain
FPRs, we develop a transfer-matrix method similar to that
used to analyze the reflectivity of a spatial structure containing
multiple thin films. We show that this method can be used
to calculate the transfer matrix of pump pulses of any shape.
As a simple example, we first consider a temporal slab formed
by using a single pump pulse with sharp leading and trailing
edges (a rectangular shape pulse) and acting as a simple FPR.
We found that such an FPR has several transmission peaks
corresponding to resonances similar to that occurring in spatial
FPRs, but the bandwidth (or Q factor) and contrast of these
peaks decrease rapidly with increasing frequency. The reason
behind this behavior is related to the reflection coefficient of
each boundary that forms a slab. In contrast to the spatial FPRS
for which the mirror’s reflectivity remains constant over a wide
bandwidth, temporal reflection is very sensitive to the frequency
of incident light.

We propose what we believe, to the best of our knowledge,
is an improved design for time-domain FPRs using two tem-
porally separated pump pulses so that each pump pulse acts as
a reflective element of the FPR. We apply our transfer-matrix
method to this design for pulses of arbitrary shapes and obtain
an expression for the transmissivity of such FPRs that appears
identical to the corresponding result for space-domain FPRs.
We also show that temporal FPRs formed in the anomalous-
GVD region of optical fibers by using two short solitons to
form multiple sharp transmission peaks with relatively high Q
factors. We verified the results of the transfer-matrix method
by directly solving the pulse propagation equation with the
split-step Fourier method. We showed that that a probe pulse
can be totally transmitted through such an FPR when its spec-
trum overlaps with that of a transmission peak of the FPR. If
the spectrum width is larger than the transmission peak width,
the temporal FPR acts like an optical filter, just as its spatial
counterpart.

Even though we used the Kerr effect as an example of chang-
ing the refractive index inside an optical fiber to present our
numerical results, a planar waveguide can also be used for exper-
imental realization of a temporal FPR. In particular, the use of a
silicon waveguide may allow the refractive index to be changed
electrically using a p-n junction. The refractive index can also be
changed electrically inside a lithium-niobate waveguide using
the electro-optic effect.
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