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Abstract: The evolution of partially coherent beams in longitudinally modulated graded-index
media is studied. The special cases of Gaussian Schell-model beams and parametric modulation,
when the modulation period is half the fiber self-imaging period, are examined in detail. We
show that the widths of the intensity and coherence of Gaussian Schell-model beams undergo
amplification in parametrically modulated parabolic graded-index media. The process is an
analog of quantum mechanical parametric amplification and generation of squeezed states.
Our work may find application in spatial and temporal imaging of partially coherent beams in
fiber-based imaging systems.
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1. Introduction

Longitudinal modulation of optical waveguides is integral to photonic components such as filters,
gratings, mode converters, and periodic polling in nonlinear optics [1]. The propagation of light
in modulated waveguides is also of fundamental importance. Optical waveguides provide a test
bed to construct optical analogs of diverse quantum effects such as coherent population transfer,
Zeno dynamics, Bloch oscillations, and Anderson localization (see [2] for a review). In particular,
the effect of harmonic modulation of optical waveguides on light propagation and localization
has been extensively studied, and its connection to quantum mechanics elaborated [3,4].

With few exceptions [5,6], most of the works on modulated waveguides remain concerned
with spatially coherent beams. The sources in nature, however, are partially coherent, and the
subject of partial coherence is a field of its own [7]. Partial coherence is not always undesirable,
as it has been proven to be robust against turbulent media [8]. It is therefore natural to extend the
previous work to partially coherent beams. We can also ask what, if any, is the corresponding
quantum mechanical analog?

We address these issues for the particular case of a parametrically modulated graded-index
(GRIN) waveguide. We first show that the corresponding quantum mechanical analog for
parametric modulation of such a waveguide is the degenerate parametric amplifier and the
corresponding generation of squeezed states [7]. This connection, to the best of our knowledge,
has not been made in the literature. We then show how partially coherent Gaussian Schell-model
(GSM) beams evolve in parametrically modulated media. Two interesting features are shown:
(1) The widths of the GSM beam’s intensity (also referred to as spectral density) and coherence
are parametrically amplified. (2) The beam undergoes self-imaging of intensity alongside the
parametric amplification. Note that the energy of the beams is constant in our analysis, in contrast
to the conventional temporal parametric amplification. It is only the width parameters of the
beam that are amplified. Furthermore, we consider temporally coherent monochromatic beams
in this work, and are concerned only with spatial coherence.
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We consider GRIN media with a parabolic refractive index profile given by

n2(x, z) = n2
0 − a(z)x2, (1)

where a(z) governs the longitudinal modulation of the parabolicity of the refractive index. The
case of a constant a(z) = a0 corresponds to the usual parabolic GRIN media. As is well known,
the longitudinal propagation of a paraxial field in parabolic GRIN media is mathematically
equivalent to the temporal evolution of a quantum harmonic oscillator’s wave function in a
quadratic potential [9,10]. The analogy has been used to analytically derive the propagation
of fields and coherence functions through GRIN media. Ponomarenko [11] used the results of
coherent state evolution to show that the CSD is self-imaged upon propagation in a parabolic
GRIN medium with a(z) = a0. Here we extend the results in [11] for a sinusoidal modulation of
a(z) at twice the ‘spatial’ frequency of the GRIN oscillator.

The paraxial wave equation for an optical field of amplitude A(x, z) = ⟨x|A(z)⟩ and wavelength
λ0 can be written as

i∂z |A⟩ = H(z)|A⟩

=

(︃
p2

2m
+

mκ2(z)x2

2

)︃
|A⟩,

(2)

where H(z) is the z dependent Hamiltonian, m = k0 = 2π/λ0, p = −i∂x, and κ(z) =
√︁

a(z)/n0 is the
longitudinal spatial frequency of the GRIN medium. Equation (2) is equivalent to the Schrödinger
equation of a quantum harmonic oscillator with a time-dependent frequency ω(t), ℏ = 1, and z
playing the role of time. For a parametrically driven oscillator, a(z) = a0(1 + ϵ sin (2κ0z + θm)).
We impose the constraint a(z)>0 so that the Hamiltonian has positive eigenvalues. Physically,
this corresponds to an inverted parabolic refractive index profile which is necessary to guide a
mode. The z evolution of the state is given by the unitary transformation |A(z)⟩ = U(z)|A(0)⟩,
where U(z) satisfies the paraxial equation.

To set the stage, we first revisit important results for ϵ = 0, a(z) = a0. In this case, H in Eq. (2)
is independent of z. Firstly, the eigenmodes are the Fock states i.e. the Hermite–Gauss (HG)
beams. These beams remain invariant, upto a Gouy phase [12], upon propagation. Secondly, an
initially coherent state |A(0)⟩ = |α0⟩ evolves as |A(z)⟩ = |α0e−iκ0z⟩, i.e., the state remains coherent
upon evolution. The coherent states correspond to a set of complex Gaussian beams of width
σ =

√︁
1/2mκ0, with each beam characterized by an arbitrary position displacement and tilt phase,

and the beam centroid exhibiting a sinusoidal motion with frequency κ0 =
√a0/n0. Finally, any

arbitrary input field and coherence function will self-image with a period Λ0 = 2π/κ0 [11,13].
The general treatment for the case of time-dependent quadratic Hamiltonians such as given by

Eq. (2) is a well-known problem, and has been treated in, for example, [14–17]. These works
showed that time-dependent quadratic Hamiltonians lead to squeezing of input fields. In general,
any Fock state evolves into a squeezed Fock state, and any coherent state evolves into a squeezed
coherent state, also known as the two-photon coherent state [16]. The particular details of the
squeezing are determined by the form of κ(z). There are only a handful of systems for which
there are closed form solutions. Among these, the most well-known is the parametric amplifier
[7], the spatial analog of which we consider in this work.

The solution |A(z)⟩ to Eq. (2) is found as follows. Using the harmonic oscillator ladder
operators a, a† such that a = (ip +mκ0x)/

√
2mκ0, and writing κ2(z) = κ2

0 β(z), the Hamiltonian in
Eq. (2) can be recast into the form

H = κ0[f0(z)K0 + f (z)K+ + f ∗(z)K−], (3)

where K0 = (a†a/2 + 1/4), K+ = a†2/2, K− = a2/2, f0(z) = 1 + β(z), and f (z) = [β(z) − 1]/2.
For the parametrically driven oscillator, we have β(z) = 1 + ϵ sin (2κ0z + θm). For this case, we
have f (z) = ϵ sin (2κ0z + θm)/2, and f0(z) = 2 + ϵ sin (2κ0z + θm). We now make the so-called
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rotating wave approximation (RWA). Note that the terms e±i2κ0zK± are ‘non-resonant’ in Eq. (3).
Similarly the term ϵ sin(2κ0z) is non-resonant when multiplied with K0. Using arguments from
time-dependent perturbation theory, it can be shown that the contributions from the non-resonant
terms are at least 1/κ0 times smaller than the resonant terms. Note that the difference in magnitude
of resonant versus non-resonant effects is independent of the magnitude of ϵ . It is therefore an
excellent approximation to ignore these terms, as is also verified by our simulations with the
complete Hamiltonian of Eq. (3). Once these terms are ignored, then f = iϵ exp [−i(2κ0z + θm)]/4
and f0(z) = 2. Under the RWA, the Hamiltonian then becomes

H = κ0(a†a + 1/2) +
iκ0ϵ

4
[e−i(2κ0z+θm)K+ − K−e+i(2κ0z+θm)]

= H0 + V ,
(4)

where H0 is the unperturbed harmonic oscillator Hamiltonian of frequency κ0. The z evolution
operator for the Hamiltonian in Eq. (4) can be written as [18]

U(z) = exp[−iκ0z(a†a + 1/2)]exp[
κ0zϵ

4
(K+e−iθm − K−eiθm )],

= exp[−ih(z)K0]exp[χ(z)K+ − χ∗(z)K−],
(5)

where h = 2κ0z and χ = (κ0zϵ/4) exp (−iθm).
We now explain the transverse structure of the field A(x, z) = ⟨x|A(z)⟩ = ⟨x|U(z)|A(0)⟩. The

squeeze operator S(χ) = exp(χK+ − χ∗K−) can be decomposed as S(χ) = ei θχ2 a†aS(|χ |)e−i θχ2 a†a

[19]. The operator U(z) can then be written as

U(z) = e−i h−θχ
2 (a†a+1/2)S(|χ |)e−i θχ2 (a†a+1/2). (6)

Each factor on the right side of Eq. (6) has a distinct physical interpretation. The operator
exp[−iθ(a†a+1/2)] corresponds to a fractional Fourier transform (frFt) such that ⟨x|exp[−iθ(a†a+
1/2)]|A⟩ is an frFt of order θ of the field A(x). The operator S(|χ |) scales the field such that
⟨x|S(|χ |)|A⟩ = e−|χ |/2A(e−|χ |x) [20]. The propagation is then a cascaded operation of an frFt of
order θχ/2, a scaling by factor |χ |, and an frFt of order (h − θχ)/2. Note that the propagation
of the field in unmodulated GRIN media which have a(z) = a0, χ = 0, h = 2κ0z corresponds
to an frFt of order κ0z in general [13]. Of course, the solution is valid only when the paraxial
approximation holds.

2. Coherent field propagation

To propagate any arbitrary field, it is sufficient to have knowledge of propagation of modes
forming a complete set. We therefore explicitly write out the propagated fields for the Fock
states , i.e., the HG beams. Let an HG mode of order n be denoted by ϕn(x) = ⟨x|n⟩ =(︃√

mκ0/π

2nn!

)︃1/2
Hn(

√mκ0x)e−mκ0x2/2, where Hn denotes Hermite polynomials of order n, and

A(x, z = 0) = ϕn(x). Then

A(x, z) = ⟨x|U(z)|n⟩ = ⟨x|e−i h−θχ
2 (a†a+1/2)S(|χ |)e−i θχ2 (a†a+1/2) |n⟩,

= e−i θχ2 (n+1/2)⟨x|e−i h−θχ
2 (a†a+1/2)S(|χ |)|n⟩,

(7)

where we have used the property eθa†a |n⟩ = eθn |n⟩, i.e., the HG beams are the eigenfunctions of
the frFt. The function ⟨x|e−i h−θχ

2 (a†a+1/2)S(|χ |)|n⟩ is the frFt of order (h − θχ)/2 of the squeezed
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function e−|χ |/2ϕn(e−|χ |x). Denoting D = e−|χ | , B = (h − θχ)/2, and using the scaling property
of the frFt [21], we find

⟨x|e−iB(a†a+1/2)S(|χ |)|n⟩ = e−iC(n+1/2)eiΠ ϕn(
Dx
s )√︁

s/D
, (8)

A(x, z) = e−i(C+ θχ
2 )(n+1/2)eiΠ ϕn(

Dx
s )√︁

s/D
, (9)

where C = arctan[D2tan (B) ], s = [1 + sin2 (B)(D4 − 1)]1/2, and Π = mκ0(cot (C)/2)(s2 −

1)(Dx/s)2 = mκ0 sin (2B)(D4 − 1)(x/2s)2 is a z-dependent quadratic phase. Note that B, C, D,Π, s
are all functions of z, and the factor of (D/s)1/2 preserves the normalization of the squeezed HG
mode ϕn(Dx/s).

Equation (9) has been previously derived in the context of squeezed Fock states [19,22]. In
the context of GRIN media specifically, Eq. (9) shows that, like free space propagation, HG
beams retain their general structure upon propagation in parametrically modulated GRIN media.
The only quantities affected by any longitudinal refractive index modulation are the beam width
and curvature. We stress the fact that such self-evolution of HG beams is true for arbitrary
longitudinal modulation. The fact that Gaussian wavepackets retain their Gaussian structure in
time-dependent quadratic potentials has been known since the beginning of Quantum Mechanics
(see [23] and references therein), but has not been pointed out in the context of modulated
parabolic GRIN waveguides to the best of our knowledge.

Figure 1 shows the Gaussian beam corresponding to the ground state wavefunction ϕ0(x)
evolving in a parametrically driven GRIN medium. We use the well known beam propagation
method to propagate beams in GRIN media [24]. The algorithm consists of a cascade of free space

Fig. 1. Simulated amplitude of an input Gaussian mode (A(x, 0) = ⟨x|0⟩) propagating
through the parametrically modulated GRIN medium. The cyan dashed line indicates a
location where the beam has no transverse quadratic phase, and also where the beam flips
from being divergent to being convergent. The red dashed and dotted lines indicate locations
where the beam intensity is equal to the input intensity, i.e., locations where the beam is
self-imaged. The width of the beam is parametrically amplified.
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propagation and lens focusing operations. The simulation parameters are : ϵ = 0.04, θχ = 0,
Total Z array size=1000, Total X array size=512, dx=0.25 µm, dz=0.01 Λ0 where Λ0 = 2.4 mm
and λ = 1 µm. For the GRIN parameters we choose n0 = 1.47, a0 = 2n2

0∆/R
2, where ∆ = 0.0088

is the index step and R = 50 µm is the fiber core radius. Even though the exact numbers are
proprietary, these parameters are close to those of commercially available fibers [25]. Note that
the self-imaging period Λ0 = 2.4 mm implies a parametric modulation on a scale of Λ0/2 = 1.2
mm. While they do not occur naturally in GRIN fibers, longitudinal refractive index modulations
on a mm scale can be achieved, among other means, by i) modulating an applied stress on the
fiber, ii) modulating the doping of the fiber core, and iii) using ultraviolet absorption techniques
employed in the design of fiber gratings [26].

3. Gaussian Schell-model beam propagation

The beams considered so far were spatially coherent. We now extend our results to propagation
of partially coherent beams. The evolution of partially coherent beams in unmodulated GRIN
media (ϵ = 0) is well known. We refer the reader to [27] for the treatment of GSM beams and
to [11,28] for propagation of beams with arbitrary coherence properties through unmodulated
GRIN media. In this section, we consider the specific class of extensively studied GSM beams
propagating through parametrically modulated GRIN media.

Any partially coherent field is characterized by the Cross-Spectral Density (CSD) W(x1, x2, z) =
⟨A∗(x1, z)A(x2, z)⟩. The CSD for a GSM beam is given by

W(x1, x2, z = 0) = I0 exp [−(c + d)(x2
1 + x2

2) + 2dx1x2], (10)

where I0 is a positive constant, c = 1/4σ2
I , and d = 1/2σ2

µ such that the beam’s intensity is I(x) =
W(x, x) = I0 exp (−x2/2σ2

I ) and the spectral degree of coherence µ(x1, x2) = exp [−(x2
1 − x2

2)/2σ
2
µ]

[29]. Note that the parameters c, d can depend on z, as will be shown later. The CSD can be
expressed as an incoherent sum over individually coherent modes ψn [30] as

W(x1, x2, z) =
∑︂

n
λnψ

∗
n(x1, z)ψn(x2, z), (11)

where λn is the intensity in each mode, the set of modes ψn need not be complete or orthogonal in
general, and the discrete sum over n can also be replaced by an integral in terms of a continuum
of modes. The modes of the GSM beams can be found by solving the eigenvalue equation∫

dx1W(x1, x2, 0)ψ∗
n(x1, 0) = λnψn(x2, 0), (12)

where λn are the eigenvalues. An important result of coherence theory is that the modes ψn(x) of
a GSM source are scaled versions of the HG beams ϕn(x) with the eigenvalues given by

λn = I0

(︃
π

c + d + q

)︃1/2 (︃ d
c + d + q

)︃n
, (13)

and q = (c2+2cd)1/2 [29]. The modes ψn(x) = r1/4ϕn(r1/2x), where r = 2q/mκ0, form a complete
set. Note that when q = mκ0/2, r = 1, and the GSM modes coincide exactly with the modes of
the unmodulated GRIN medium. We can refer to this case as the CSD being ‘mode-matched’ to
the GRIN medium. Note that using appropriate magnification optics with magnification factor
of

√
r, any beam which is not mode-matched can be matched to a particular GRIN medium.

We shall be concerned with mode-matched GRIN beams in our analysis. If the beam is not
mode-matched, i.e., r ≠ 1, the GSM modes are scaled versions of the Fock modes and therefore
no longer eigenfunctions of the operator a†a. One cannot then in general replace the operator
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exp (−iθχa†a/2) with exp (−iθχn/2) in Eq. (7), and the self-imaging property discussed below
might not hold. There is, however, the special case of a real χ for which we can obtain an analytic
solution by the replacement χ −→ χ +

√
r and the following results still hold.

For mode-matched GRIN beams, each coherent mode ϕn = ψn evolves according to Eqs. (7)
and (9). In general, each mode acquires a quadratic phase Π as given in Eq. (9). By direct
inspection of Eqs. (9) and (11), we see that the mode-matched GSM CSD evolves as

W(x1, x2, z) =
D
s

∑︂
n
λne−i(Π1−Π2)ϕn

(︃
Dx1

s

)︃
ϕn

(︃
Dx2

s

)︃
, (14)

where Πi is a function of xi and z, and D, s are also functions of z, as explained after Eq. (9).
In writing Eq. (14) we have used the fact that ϕ∗n = ϕn. As expected from the coherent mode
evolution in Eq. (9), we see that the longitudinal evolution of the CSD involves two features: i)
scaling of the coherent modes by the factor D/s, and ii) accruing a quadratic phase Π1 −Π2. Due
to the quadratic phase, the CSD in Eq. (14) is not strictly a scaled version of the input CSD given
by Eq. (10). Nevertheless, we can draw some important general conclusions. The beam intensity
remains Gaussian, while the width of the beam intensity varies longitudinally as c(z) = c(0)D2/s2,
which implies σI(z) = σI(0)s/D. Similarly, the amplitude of the CSD, which does not depend
on the phase Π, also varies according to d(z) = d(0)D2/s2, which implies σµ(z) = σµ(0)s/D.
Therefore, the beam intensity and coherence functions retain their Gaussian form and their rms
widths evolve simply by the factor of s/D. We now examine these findings in detail.

In certain conditions the quadratic phase can vanish, and then the CSD is an exact scaled
version of the input CSD. Firstly, if we restrict ourselves to symmetric points about the
GRIN axis such that x1 = −x2, the quadratic phase vanishes and we obtain the simple result
W(x,−x, z) = (D/s)W(Dx/s,−Dx/s, z = 0), i.e., the input CSD simply scales by the z-dependent
factor D/s, and the factor of (D/s) upfront preserves normalization of the modes ϕn. Note that
symmetric coherence functions are simpler to measure experimentally than the more general
two-point CSD [31–33]. Secondly, there are locations z0 where Π itself vanishes. For distances
z0 and an integer j such that s = 1, 2B = (2κ0z0 − θχ) = jπ, the quadratic phase vanishes. Upto a
global phase, the mode profile at z0 is then given as ϕn(D0x), with D0 = exp (−κ0ϵz0/4). The
CSD at z0 is then given as

W(x1, x2, z = z0) = D0
∑︂

n
λnϕ

∗
n(D0x1)ϕn(D0x2),

= D0W(D0x1, D0x2, z = 0).
(15)

which corresponds to a GSM beam with c(z) = D2
0c(0), d(z) = D2

0d(0). As explained above, the
beam intensity and coherence functions retain their Gaussian form and their rms widths evolve
under the envelopes described by σI(z0) = σI(0) exp (κ0ϵz0/4), σµ(z0) = σµ(0) exp (κ0ϵz0/4).
The exponential growth of intensity width and coherence width is the spatial analog of the
parametric amplification of a quantum state [34]. Note that the beam energy, which is proportional
to

∫
dxI(x, z), is invariant for all z because the dynamics are unitary. This is in contrast to the

conventional temporal parametric amplification in which the beam energy increases exponentially
over time. The analogy to quantum amplification applies only to the spatial intensity width and
coherence widths of the beam. As an example, for a completely coherent beam as in Fig. 1, the
cyan dashed line corresponds to κ0z0 = 7π. Notice that the beam undergoes both focusing and
expansion in Fig. 1.

Another interesting result is the phenomenon of self-imaging of intensity I(x, z) = W(x, x, z).
By self-imaging we mean the condition I(x, 0) = I(x, zi) for a particular zi. This occurs
whenever D = s, which corresponds to the solution of the transcendental equation exp (−2|χ |) =
1 + sin2 [(h − θχ)/2][exp (−4|χ |) − 1]. For the Gaussian field propagation in Fig. 1, the different
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zi are marked by the blue circles in Fig. 2. Figure 2 shows the overlap integrals of the propagated
complex field (amplitude) with the input complex field (amplitude). The field overlap gradually
decreases, but there are revivals in the (absolute) amplitude overlap at each zi. The small ripples
in the field overlap simulations are the contributions from the non-resonant terms that were
ignored in writing Eq. (4).

Fig. 2. (Dimensionless) Overlap integral for the input field
[︁
|
∫

dxA∗(x, z)A(x, 0)|
]︁

and
amplitude

[︁∫
dx|A(x, z)| |A(x, 0)|

]︁
as a function of z/Λ0 where Λ0 = 2.4 mm is the spatial

period associated with the GRIN oscillator. The simulated results are derived from the
propagated Gaussian field shown in Fig. 1. The dashed black line shows the theoretically
expected overlap integral for the field, while the solid blue line shows the corresponding
results for the simulation. The blue circles show theoretically expected points of self-imaging
of intensity, while the solid red line shows the intensity overlap calculated for the simulated
Gaussian beam in Fig. 1. Note also that by choice we use a field amplitude overlap metric
instead of the intensity overlap metric because the former is bounded above by unity while
the latter has an upper bound greater than unity, i.e., it is possible to have

∫
dx I2(x, z)>1.

For the simulated results, the overlap integral has been normalized to the maximum value,
which also occurs at the input plane z = 0.

A mode-matched GSM beam can be characterized by the factor η = σµ/σI , which characterizes
the ‘degree of global coherence’ of a beam [29]. The limits η −→ 0,∞ correspond to completely
spatially incoherent and coherent fields respectively. Note that for a mode-matched beam each η
maps to a unique σI , and the two are related as

σI =
1

√
2mκ

(︃
1 +

4
η2

)︃1/4
. (16)

Figure 3 shows the evolution of intensity of GSM beams with different η values. Qualitatively, all
the beams evolve in a similar fashion. Each beam experiences periodic focusing and defocusing,
with the widths being parametrically amplified. Also, as shown for the coherent field in Fig. 2,
there are locations zi where the intensity self images. Physically, these are the locations between
a focusing and expansion of the beam where the beam width equals the input beam width. Note
that zi only depends on the GRIN parameters, and not on the beam parameters. More importantly,
η(z) = σµ(z)/σI(z) remains invariant, a feature also shared by free space propagation of GSM
beams [7, Eq. 5.6-109].
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Fig. 3. Spectral Density propagation for GSM beams with different η parameters. The input
beam is assumed to be mode matched and therefore the more incoherent the beam (smaller
η), the wider the beam width. All beams exhibit the exponential amplification of beam width
and self imaging of intensity as depicted in Fig. 2. For these figures, ϵ = 0.05 and X array
size=1024. The rest of the parameters are the same as used in Fig. 1.

Figure 4 shows the evolution of the second moment ⟨∆x2(z)⟩ =
∫

dxx2I(x, z) of a GSM beam
with η = 0.5. The solid red line plots the numerically computed ratio ⟨∆x2(z)⟩/⟨∆x2(0)⟩. The
blue lines are the envelopes given by D±2 = exp (∓κ0ϵz0/2). The exponential growth is due to
parametric modulation of the refractive index. The oscillation of the beam width is due to the
focusing and expansion of the beam in the GRIN medium, and is given simply by the factor of
(s/D)2. Note that s/D has a quasi-spatial frequency of 2κ0, which is also the frequency of the
parametric drive a(z). As shown in Fig. 4, this means that, apart from the width amplification
and suppression, the beam expands and focuses every Λ0/2. In the quantum mechanical analogy,
it would be the variance of the quadrature (a + a†) that would be parametrically amplified [7,
Chap. 22], and the dashed blue line is the analog of the effective ‘vacuum’ noise of the field
mode. The focusing of the beam width below the dashed blue line is the analog of generating
a ‘temporal’ squeezed state [7, Chap. 21]. Care must be taken, however, when making these
analogies. The analogy is mathematically exact because the Hamiltonian in Eq. (4) has the same
form as a temporal parametric amplifier. However, the mechanism to generate the parametric
modulation can correspond to different physical processes in each case. While in the GRIN
medium the refractive index is modulated longitudinally in space, the temporal parametric
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amplifier uses nonlinear interaction between electric fields to generate a time-varying polarization
in the medium. The former is a linear optics problem, while the latter falls in the domain of
nonlinear optics. Another feature expressed in Fig. 4 is the self-imaging of the beam. When
the solid red line crosses the dashed blue line, ⟨∆x2(z)⟩ = ⟨∆x2(0)⟩ and the beam self images.
These are precisely the locations zi, also discussed in Fig. 2. Notice that the lower envelope
exp (−κ0ϵz0/2) shows that the beam focus also becomes narrower with propagation, a feature that
might find application in fiber-based imaging systems. A similar result was also reported in [5],
although using a slightly different approach based on Green’s functions. Recall, however, that
our results are valid under the paraxial approximation. At some point the paraxial approximation
will break down because the diffraction angles required by the beam to expand and focus within
Λ0/2 increase with propagation.

Fig. 4. Longitudinal evolution of beam width for a mode-matched input GSM beam with
η = 0.5. The solid red line denotes the simulation results for the ratio ⟨∆x2(z)⟩/⟨∆x2(0)⟩,
where ⟨∆x2(z)⟩ =

∫
dxx2I(x, z) is the transverse beam width at z, and ⟨∆x2(0)⟩ is the input

beam width. The dashed blue line denotes the input beam width level. The solid blue lines
are theoretical envelopes exp[±κ0ϵz0/2]. The beam width is parametrically amplified as
shown by the exponential envelopes. As explained in the text, this parametric amplification is
mathematically analogous to the quantum mechanical amplification of the photon number in
a conventional parametric amplifier. The phase of the beam width oscillations is controlled
by θm, the phase of the longitudinal refractive index modulation. For this figure, we set
θm = 0. The beam is self-imaged at the locations where the solid red line crosses the dashed
blue line, see Fig. 2. All simulation parameters are the same as used for Fig. 3.

4. Beam displacement and tilt: centroid amplification

The previous results of coherence width amplification and self-imaging assumed the input beam
to be normally incident and centered on the input face of the GRIN medium. If the input GSM
beam is displaced from the GRIN core or strikes at an angle, the beam centroid is parametrically
amplified upon propagation. Beam centroid amplification has been observed in spatial solitons
[35]. A coherent mode ϕn(x) that is displaced in position by x0 and in momentum by p0 is
characterized by a complex parameter α = (ip0 + mκ0x0)/(2mκ0)

(1/2) such that |α, n⟩ = D(α)|n⟩,
where D(α) = exp(αa† − α∗a) is the displacement operator. The states |α, n⟩ are also referred to
as displaced Fock states [22]. Similar to the derivation leading to Eq. (9), we find the expression
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for ⟨x|U(z)|α⟩, given the initial state A(x, z = 0) = ⟨x|α, n⟩ as

A(x, z) = ⟨x|U(z)|α, n⟩ = ⟨x|e−i h
4 e−i h

2 a†aS(χ)D(α)|n⟩,

= e−i h
4 ⟨x|e−i h

2 a†aD(α′)e+i h
2 a†ae−i h

2 a†aS(χ)|n⟩,

= e−i h
4 ⟨x|D(α′ei h

2 )e−i h
2 a†aS(χ)|n⟩.

(17)

In deriving Eq. (17), we have used the relation S(χ)D(α) = D(α′)S(χ), where α′ = µα + να∗,
µ = cosh (|χ |), ν = sinh (|χ |)eiarg(χ). We also used the relation e−iθa†aD(α)eiθa†a = D(αeiθ ).

Finally, we can use the relation ⟨x|D(α)|Ψ⟩ = e−iIm(α)Re(α)ei
√

2mκ0Im(α)x Ψ

(︃
x − Re(α)√

mκ/2

)︃
, that

shows how D(α) shifts a function and adds a linear tilt phase, to write A(x, z) as

A(x, z) = e−iIm(α̃)Re(α̃)ei
√

2mκ0Im(α̃)x⟨x − xt |U(z)|n⟩, (18)

where α̃ = α′ei h
2 , xt =

Re(α̃)√
mκ/2

, and ⟨x|U(z)|n⟩ is found from Eqs. (7) and (9). For example, if the
beam is normally incident, p0 = 0, and displaced in position by x0, then xt is given as

xt = x0

[︃
cosh (κ0ϵz/4) cos (κ0z) + sinh (κ0ϵz/4) cos (κ0z + θm)

]︃
. (19)

We can now write the CSD for input GSM beams displaced by the complex parameter α, as

W(x1, x2, z,α) = e−i
√

2mκ0Im(α̃)(x2−x1)
∑︂

n
λn⟨x1 − xt |U(z)|n⟩⟨n|U(z)|x2 − xt⟩,

= e−i
√

2mκ0Im(α̃)(x2−x1)
∑︂

n
λnϕn(x1 − xt, z)ϕ∗n(x2 − xt, z),

= e−i
√

2mκ0Im(α̃)(x2−x1)W(x1 − xt, x2 − xt, z,α = 0),

(20)

where W(x1, x2, z,α = 0) corresponds to the propagated CSD with no input displacement in
position or momentum. The intensity for the displaced GSM beams is also displaced by xt,
while the spectral degree of coherence still depends on (x2 − x1). There is an extra tilt phase
exp [−i

√
2mκ0Im(α̃)(x2 − x1)] added to the CSD. The general observations for z = z0 made in

Eq. (15) still hold. At z = z0, we have

W(x1, x2, z0,α) = e−i
√

2mκ0Im(α̃)(x2−x1)D0W (D0(x1 − xt), D0(x2 − xt), z = 0,α = 0) , (21)

and the intensity and coherence rms widths still grow exponentially with the envelopes
exp (±κ0ϵz0/4) while maintaining a constant global degree of coherence. Figure 5(a) shows the
intensity evolution of a zeroth order Gaussian mode ϕ0(x) which is displaced by 0.27σ at the
fiber input. The centroid evolution of the beam is depicted in Figs. 5(b) and (c) for θm = 0, π
respectively; these figures show phase-sensitive centroid amplification or suppression as predicted
by Eq. (19).

Many features of our work such as mode matching and beam focusing share similarities with
the work done in [5,6]. Our results could, in principle, be derived from the analysis in these papers,
which solve the general problem of propagation of partially coherent beams in longitudinally
modulated GRIN media. In our work we examine in detail the special case of a parametric
modulation, which was not the focus of these previous works. To the best of our knowledge, we
are not aware of any other works that show the i) the connection to the squeezing Hamiltonian of
quantum mechanics to parametrically modulated GRIN media, and the corresponding parametric
amplification of the intensity and coherence widths, ii) the use of the CMD for the GSM beam
propagation in longitudinally modulated GRIN media.
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Fig. 5. (a) Centroid amplification of an input Gaussian mode which is displaced from the
optical axis by 0.27σ. The centroid amplification is sensitive to the pump phase θm. (b)
Simulated centroid (solid blue line) of the beam in (a), and the envelope (dashed red line)
predicted by Eq. (19) for θm = 0. (c) Centroid evolution for θm = π. All other simulation
parameters are same as in Fig. 3.

5. Conclusion

In summary, using results from quantum theory of parametric amplifiers we have shown the
amplification of intensity width and coherence width of GSM beams in parametrically modulated
GRIN media. We also show that self-imaging of GSM beams still occurs alongside amplification.
Moreover, the degree of global coherence is invariant upon propagation, a feature shared by
GSM beams in free space. Our results can be used in fiber-based imaging systems, and also
to study quantum statistics of squeezed states in an optical analog setting. Our analysis can be
extended to the time domain, and employed in temporal imaging with partially coherent pulses.
Specifically, our work can be extended to partially coherent temporal GSM pulses propagating in
‘temporal’ GRIN media, i.e., nonlinear dispersive fibers [36]. There, the temporal coherence
function would be amplified and the pulse would also show self-imaging.
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