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Coupled-mode theory of the polarization dynamics inside a microring resonator with a uniaxial core
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The use of a uniaxial birefringent material such as lithium niobate (LiNbO3, LN) as the core of a microring
resonator leads to coupling between transverse-electric and transverse-magnetic modes. We develop a theoretical
framework to study polarization evolution inside such a resonator. We write Maxwell’s equations in the form of
a Schrödinger equation and use it to obtain coupled-mode equations modeling the continuous reorientation of
the optic axis as light propagates inside the microring resonator. We show that the mode-coupling problem is
isomorphic to a quantum-mechanical two-level system modulated in frequency and driven by a classical optical
field. We analyze the polarization coupling by using the well-known techniques of quantum mechanics such as
time-dependent perturbation theory, the rotating-wave approximation, and the adiabatic approximation. As an
example, we consider a LN ring resonator and describe the evolution of the state of polarization of injected light
along the ring’s circumference.
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I. INTRODUCTION

Microring resonators have attracted attention for over a
decade due to their diverse applications, with optical fre-
quency combs being one example [1–3]. Recently, lithium
niobate (LiNbO3, LN), a uniaxial dielectric, has been used
to fabricate such resonators because of its excellent electro-
optic properties [4–7]. It has been noticed that the material
birefringence of LN couples the transverse-electric (TE) and
transverse-magnetic (TM) modes in a microring resonator [8],
resulting in unusual polarization dynamics that are not yet
fully understood. The objective of this paper is to develop a
theory for the polarization evolution in LN-based microring
resonators.

Modes of uniaxial planar waveguides have been studied for
over forty years [9–14]. It has been found that the mode hy-
bridization depends on the relative orientation of the optic axis
with respect to the plane of the core layer and the direction of
propagation. Of course, even an isotropic planar waveguide
exhibits geometric birefringence due to the difference in the
effective refractive indexes of its TE and TM modes. When an
anisotropic material is used to form a planar waveguide, the
modal birefringence is determined by a combination of both
geometric and material properties. In a microring resonator,
the curvature of the ring waveguide leads to additional com-
plication when the optic axis of the material lies in the plane
of the core layer. In this case, the angle between the optic axis
and the direction of propagation varies continuously as light
propagates along the ring. In general, this continuous rotation
complicates the polarization evolution of the guided radiation.
We have developed a simple theoretical approach to model
the polarization dynamics resulting from the curvature of a
uniaxial microring resonator.

*lcortesh@ur.rochester.edu

The paper is organized as follows: In Sec. II, we pro-
vide an intuitive description of the physics governing the
polarization-mode dynamics and introduce the zero-bending
model, which replaces the ring waveguide with a straight
waveguide in which the optic axis changes continuously. In
Sec. III, we leverage this model to develop a coupled-mode
theory for the TE and TM modes of a microring resonator.
In Sec. IV, we determine the coupling matrix due to the
continuous optic axis reorientation and discuss the effect of
polarization coupling on the resonances of a microring res-
onator. In Sec. V, we approximate the modes with those of a
slab waveguide and demonstrate that the resulting polarization
dynamics are isomorphic to those of a frequency-modulated
two-level atom driven by a classical optical field. We exploit
this analogy and study polarization coupling in a microring
resonator using well-known techniques and concepts of quan-
tum mechanics such as time-dependent perturbation theory,
the rotating-wave approximation, and adiabatic following. In
Sec. VI, we demonstrate the usefulness of our theory by ap-
plying it to the case of a LN waveguide with a silica (SiO2)
substrate and air cladding. In Sec. VII, we summarize our
results.

II. INTUITIVE DESCRIPTION AND THE
ZERO-BENDING MODEL

We consider a microring resonator of radius r, as sketched
in Fig. 1. A straight bus waveguide is used to inject light into
this resonator at the location where the ring comes closest
to the bus waveguide. Generally, the injected light excites a
coherent sum of the TE and TM modes of the ring waveguide,
depending on its state of polarization (SOP). The core of the
ring waveguide is made of a uniaxial anisotropic material.
The extraordinary (optic) axis of this uniaxial material lies
in the plane of the ring in a fixed direction ûe (see Fig. 1).
As the injected light travels along the ring, sweeping the arc
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FIG. 1. A microring resonator and the orientation of its optic
axis ûe.

angle φ, its SOP changes continuously. This occurs because
the relative angle between the optic axis and the direction of
propagation varies along the ring.

To understand the evolution of the SOP, one may examine
the components of the permittivity dyadic

↔
ε of the guiding

core in a coordinate frame rotating with the ring waveguide.
In this rotating frame, the diagonal components of

↔
ε oscillate,

causing an analogous oscillation in the effective indices of the
local guided modes. In the rotating frame, the permittivity
also develops nondiagonal components, also oscillating in
magnitude along the ring. If these nondiagonal elements link
electric-field components of different guided modes, these
become locally coupled and exchange energy. This intuitive
description will be given mathematical precision in the sec-
tions that follow.

The analysis of light propagation even in an isotropic
curved waveguide is known to be challenging [15]. Adding
material anisotropy to such a waveguide makes the problem
even more difficult. It is then desirable to find an equivalent
formulation that preserves the fundamental physics. For this
purpose, we propose the “zero-bending model” (ZBM), il-
lustrated by Fig. 2. Effectively, the ZBM replaces the curved
waveguide with a straight waveguide along which the extraor-
dinary axis rotates continuously with propagation distance z
forming a rotation angle φ = z/r. At a distance z = 2πr, cor-
responding to one round trip inside the microring resonator,

FIG. 2. Rotation of the optic axis in the zero-bending model
(ZBM) that replaces the curved waveguide with a straight waveguide.

the optic axis returns to the initial orientation, so the ZBM
waveguide is periodic along z with a period 2πr.

The mathematical simplification afforded by the ZBM
comes at a cost. This consists of the neglect of any effect of the
finite curvature of the ring on light propagation other than the
continuous reorientation of the optic axis. The most prominent
among the neglected effects are the bending loss and the field
displacement [15]. The impact of these two effects scales with
the ring’s curvature. Hence, we expect the results obtained
via the ZBM to be accurate when the ring radius r is large
compared with both the wavelength of light λ and the char-
acteristic dimension d of the waveguide’s cross section. This
conclusion follows from dimensional analysis, as these are the
only other characteristic lengths of the problem, and has been
proven to be correct for isotropic bent waveguides [15]. Both
conditions, r � λ and r � d , are usually satisfied in practice,
indicating that our ZBM-based description is applicable to
most experimental situations. Of course, higher index contrast
between the ring core and substrate results in lower bending
losses. So we expect the ZBM to be more accurate in higher-
contrast microrings, all else being equal.

III. COUPLED-MODE FORMALISM

Adopting the ZBM, we analyze light propagation in a
straight birefringent waveguide oriented along the direction of
propagation ẑ. As usual, Maxwell’s equations are the starting
point of our coupled-mode theory (CMT). Following earlier
work [16,17], we write Maxwell’s equations in the form of a
Schrödinger equation. This has the advantage of immediately
yielding orthogonality relations for the guided modes and
facilitating the formulation of a CMT, even for an anisotropic
waveguide.

For this formulation, we decompose all field vectors into
parts that are transverse and parallel to the direction of prop-
agation, ẑ. Similarly, the relative permittivity dyadic

↔
ε is

decomposed as [18]

↔
ε = ↔

ε t + εzẑẑ + �εtzẑ + ẑ�εzt , (1)

where
↔
ε t is a transverse dyadic, εz is a scalar and both �εtz and

�εzt are transverse vectors. In this paper, the juxtaposition of
two vectors indicates a tensor product.

Assuming the time dependence exp(−iωt ) for all elec-
tromagnetic fields and using Eq. (1), we write the two curl
equations of Maxwell in the form of a single Schrödinger
equation, with z playing the role of time. In Dirac notation
this equation is written as [16,17]

−i
∂

∂z
B̂|ψ〉 = Â|ψ〉, (2)

where |ψ〉 specifies the optical field in a plane transverse to ẑ
and is related to the transverse electric and magnetic fields, Et

and Ht , by

|ψ〉 ≡
( √

ε0Et√
μ0Ht

)
. (3)

As usual, ε0 and μ0 stand for the electric permittivity and
the magnetic permeability of vacuum, respectively, and their
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square roots are included so that all components of |ψ〉 share
the same units.

In Eq. (2), B̂ and Â are two linear operators of the form

B̂ =
(

0 −ẑ×
ẑ× 0

)
, Â =

(
Âee Âeh

Âhe Âhh

)
. (4)

Here, Âee, Âeh, Âhe, and Âhh are operators that map the vector
space of transverse fields onto itself. They depend on the
components of

↔
ε as

Âee = k0

(
↔
ε t − �εtz�εzt

εz

)
− k−1

0 ∇t × ∇t×,

Âeh = i

( �εtzẑ
εz

)
· (∇t×),

Âhe = −i∇t ×
(

ẑ
�εz,t

εz
·
)

,

Âhh = k0 − k−1
0 ∇t ×

(
1

εz
∇t×

)
,

(5)

where ∇t× is the transverse curl operator, k0 ≡ ω/c, and c is
the speed of light in vacuum.

To exploit the mathematical machinery of quantum me-
chanics, the inner product of the two states |ψa〉 and |ψb〉
needs to be defined. We define it as the positive-definite
quadratic form [16]

〈ψa|ψb〉 ≡ 1

4

∫∫ (
η−1

0 E∗
ta · Etb + η0H∗

ta · Htb
)
dxdy, (6)

where η0 = √
μ0/ε0 is the impedance of vacuum. Both op-

erators Â and B̂ are Hermitian under the inner product (6) for
localized fields like those of guided modes [17]. The definition
in Eq. (6) has the additional property that 〈ψ |B̂|ψ〉 gives the
time-averaged power carried by |ψ〉 along z.

We can use Eq. (2) to characterize the guided modes of
a longitudinally invariant waveguide. Since the z dependence
of a propagation mode, |β〉, is exp(iβz) for some propagation
constant β, each mode satisfies

βB̂|β〉 = Â|β〉. (7)

As recognized in Ref. [16], Eq. (7) is a generalized eigenvalue
equation for the operator pair {Â, B̂}, with the eigenvalue β

and the eigenvector |β〉.
Given Eq. (7) and that both Â and B̂ are Hermitian op-

erators, all off-diagonal matrix elements 〈β|B̂|β ′〉 vanish for
β ′ �= β∗ [19]. Furthermore, all eigenvalues are real for modes
carrying nonzero power [16]. So, if we treat only copropa-
gating guided modes and normalize them so they carry unit
power along z, we get the orthonormality relation

〈β|B̂|β ′〉 = δβ,β ′ , (8)

where δβ,β ′ equals 1 if β = β ′ and 0 otherwise.
Given the relations (7) and (8), we employ the mathe-

matics of quantum-mechanical time-dependent perturbation
theory to develop a CMT for birefringent waveguides. In this
approach, the state |ψ (z)〉 is approximated as a coherent su-
perposition of the normal modes |βn〉 even when the operator

Â becomes a z-dependent operator Â′(z) in Eq. (2):

|ψ (z)〉 =
∑

n

ãn(z)|βn〉. (9)

Of course, this approximation is valid only when the differ-
ence between Â′(z) and Â is relatively small.

Substituting this expansion in Eq. (2) [with Â′(z) instead
of Â] and making use of the orthonormality relation (8), we
obtain the following set of coupled equations for the mode
amplitudes ãn(z):

−i
dãn

dz
= βnãn +

∑
m

Dnm(z)ãm, (10)

where Dnm(z) ≡ 〈βn|D̂(z)|βm〉 are the matrix elements of
the perturbation operator D̂(z) ≡ Â′(z) − Â. We use these
coupled-mode equations in the next section to study TE-TM
mode coupling in a microring resonator.

If we wished to forgo the ZBM, we could write Maxwell’s
equations in cylindrical coordinates and consider propagation
of the optical field along the azimuthal coordinate. In this
case, the decomposition of

↔
ε in Eq. (1) would need to single

out the azimuthal component, rather than one along z. The
main theoretical difficulty in such a formulation arises from
the well-known fact that the propagation constant β becomes
complex, on account of bending loss [20]. This implies that
the analog of operator Â is not Hermitian and the orthogo-
nality relations (8) need no longer hold for bent waveguides.
Although orthogonality relations have been obtained for bent
waveguides with simplified geometries [21,22], the presence
of bending loss prohibits the formulation of orthogonality
relations for a general waveguide cross section. Of course,
one may decide to neglect bending losses and treat Â as
approximately Hermitian, and, as a result, have Eq. (8) hold as
an approximation. In such a case, however, the ZBM should
be accurate and result in simpler calculations.

IV. POLARIZATION COUPLING IN THE
ZERO-BENDING MODEL

A. Perturbation due to permittivity reorientation

Equation (10) describes how the mode amplitudes ãn(z) are
coupled through the dielectric perturbation D̂(z) = Â′(z) − Â.
The next step is to find an expression for D̂(z). For both
the unperturbed and perturbed systems, the permittivity is a
symmetric dyadic with a value n2

o along the two ordinary axes
and n2

e along the extraordinary (optic) axis. For the unper-
turbed system, we take the optic axis along the z axis. This
orientation matches φ = 0 in Fig. 1 and z = 0 in Fig. 2. With
this choice, the unperturbed basis modes are TE- and TM-
polarized modes; this identification aids subsequent physical
interpretation. In the perturbed system, the optic axis rotates
on the x-z plane, forming the angle φ = z/r with respect to
the z axis, as depicted in Fig. 2.

Based on this description, we write the core’s unperturbed

and perturbed permittivities,
↔
ε and

↔
ε

′
, as

↔
ε = n2

o(x̂x̂ + ŷŷ) + n2
e ẑẑ,

↔
ε

′
(φ) = n2

o(ûo(φ)ûo(φ) + ŷŷ) + n2
e ûe(φ)ûe(φ), (11)
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where the unit vectors ûo(φ) and ûe(φ) are given by

ûo(φ) = cos φx̂ + sin φẑ,

ûe(φ) = − sin φx̂ + cos φẑ. (12)

We substitute Eq. (11) into Eq. (5) to evaluate both Â and
Â′ and use them to write the perturbation D̂ in the form

D̂(z) =
3∑

n=1

D̂(n) fn(φ, ζ ), (13)

where ζ ≡ (n2
e − n2

o)/(n2
e + n2

o) is a measure of the guiding
core’s material birefringence and D̂(n) are z-independent Her-
mitian operators defined as

D̂(1) =
(

k0ε̄C(x, y)x̂x̂ 0

0 0

)
,

D̂(2) =
(

0 −iC(x, y)x̂ẑ · (∇t×)

i∇t × [ẑx̂C(x, y)] 0

)
,

D̂(3) =
(

0 0

0 (k0ε̄)−1∇t × [C(x, y)∇t×]

)
. (14)

Here, ε̄ = (n2
e + n2

o)/2 and C(x, y) is a generalized function
(or distribution) which equals unity inside the waveguide’s
cross section and zero outside of it. The scalar functions
fn(φ, ζ ) in (13) depend on z = rφ through

f1(φ, ζ ) = ζ (1 − cos 2φ) − ζ 2 f (φ, ζ ) sin2 2φ,

f2(φ, ζ ) = ζ f (φ, ζ ) sin 2φ,

f3(φ, ζ ) = (1 + ζ )−1 − f (φ, ζ ), (15)

where the auxiliary function f (φ, ζ ) is defined as

f (φ, ζ ) ≡ (1 + ζ cos 2φ)−1. (16)

Equations (13) to (16) indicate that the z dependence
of D̂(z) comes only from the φ dependence of the scalars
fn(φ, ζ ), which are periodic in φ = z/r with a period of π .
Therefore, D̂(z) is periodic in z with period πr. This agrees
with physical intuition, as the ring in Fig. 1 is invariant when
rotated by 180 degrees around the axis normal to the plane of
propagation.

In Fig. 1, we assumed the bus waveguide to be aligned with
the optic axis, so it was natural to define φ = 0 at the point on
the ring closest to the bus. In practice, one could have the bus
perpendicular to the optic axis, as the bus would still possess
independent TE and TM modes. Of course, our analysis can
still be applied to such a configuration. The net effect is that
formulas (13) to (16) still apply, provided the birefringence
parameter ζ is replaced with −ζ . In Fig. 1, we also assumed
that light is injected into the bus from the left side, so that it
travels counterclockwise along the ring. Our analysis can also
be used when light is injected from the right side and travels
clockwise inside the ring. It is easy to verify that Eqs. (13)
to (16) can still be used if we replace φ with −φ. If the bus
is perpendicular to the optic axis and light travels clockwise
inside the ring, one needs to replace both ζ with −ζ and φ

with −φ.

B. Resonance condition for microring resonators

In Sec. III, we found that the mode amplitudes ãn(z) satisfy
the coupled-mode equations (10). These equations can be
solved to find the field amplitudes at any point z = rφ along
the ring, if we know their values at some z0 = rφ0. Because
the coupled-mode equations are linear, we can write their
solution in the form

ã(φ) = Ũ (φ, φ0)ã(φ0), (17)

where a(φ) is a column vector whose nth element equals
ãn(φ) and Ũ (φ, φ0) is a square matrix. The evolution matrix
Ũ (φ, φ0) is unitary because the propagation constants βn are
real and the perturbation operator D̂(z) is Hermitian. As is
well known, a unitary matrix has a complete set of orthonor-
mal eigenvectors and all its eigenvalues have unit magnitude.

The microring’s resonance frequencies are implicitly de-
termined by the round-trip matrix Ũ (2π, 0), which maps the
initial amplitudes ã(0) to those obtained after one round trip
around the ring. To see this, observe that the eigenvectors
of Ũ (2π, 0) represent the polarization states that reproduce
themselves after each round trip up to a phase factor equal to
the corresponding eigenvalue. If this eigenvalue equals one,
the eigenstate reproduces itself exactly after a round trip,
i.e., a(2π ) = a(0). This is the resonance condition. Recall
that D̂(z) depends on frequency through the wave number
k0 ≡ ω/c in Eq. (14), and consequently so does Ũ (2π, 0).
Hence, there exists a discrete set of values of the frequency
ω for which one of the eigenvalues of Ũ (2π, 0) equals one.
These values of ω constitute the resonance frequencies of the
microring resonator. Because coupling between the TE and
TM modes changes the eigenvalues of Ũ (2π, 0), we expect
this coupling to shift the ring’s resonance frequencies.

V. APPROXIMATE ANALYTIC SOLUTION
OF COUPLE-MODE EQUATIONS

A. Simplification of the coupled-mode equations

Given the form of the perturbation operator D̂ in Eq. (13),
the coupled-mode equations (10) in general must be solved
numerically. In theory, one could leverage the periodicity of
D̂(z) to employ Floquet theory [23]. However, this approach
obscures the physics and still requires new approximations,
like the truncation of an infinite Fourier series. In this section
we find approximate analytical solutions to Eqs. (10) after
introducing suitable simplifications.

The approximations we make are as follows: First, we
assume that the originally unbent ring waveguide (the un-
perturbed waveguide in the ZBM) either supports only
fundamental TE and TM modes or only these two modes are
excited by the light injected into the ring. Even in the presence
of higher-order modes, this assumption holds if the difference
between the effective indices of different order is sufficiently
large that coupling between them is phase-mismatched. For
brevity, we follow convention and denote the fundamental TE
and TM modes by s and p, respectively.

Second, we assume that the material anisotropy is small,
so the anisotropy parameter ζ satisfies |ζ | � 1 and we can
expand fn(φ, ζ ) in Eq. (13) in a power series in ζ and retain
only terms up to the first order. This assumption is consistent
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with the use of CMT and usually holds in practice. For ex-
ample, |ζ | = 0.032 for a LN waveguide at wavelengths near
1550 nm [8].

Third, we assume that the cross section of the ring waveg-
uide is such that its one dimension is much larger than the
other one, i.e., the modes are strongly confined only along one
dimension. Hence, we may approximate the waveguide cross-
section as one dimensional by taking the larger dimension as
infinite. These assumptions facilitate numerical calculations
and reduce the number of free parameters in the problem.

Next we examine again the geometry of the ring waveguide
in Fig. 2, where both the ring and the optic axis lie in the x-z
plane and the y axis is normal to this plane. To approximate the
waveguide cross section as one dimensional, we could extend
it infinitely in either the x or y direction. If the waveguide
is kept narrow in the x direction but is much thicker in the
y direction, we call it an out-of-plane slab waveguide. If the
waveguide is relatively thin but much wider in the x direction,
we refer to as an in-plane slab. We find that these two config-
urations behave quite differently from the standpoint of mode
coupling.

It can be shown [24] that the matrix element Dsp(z) van-
ishes for the out-of-plane slab waveguide, indicating that the
s and the p modes do not couple in such waveguides. In fact,
the only effect of the permittivity reorientation is a shift of the
propagation constant for the p mode. This agrees with pre-
vious theoretical investigations of the normal modes of such
slab waveguides [27]. In contrast, the s and the p modes gen-
erally undergo coupling for in-plane slab waveguides. Thus,
unless otherwise stated, we focus subsequent analysis only on
in-plane waveguides which width is much larger than their
thickness. This is also often the case in practice, so the in-
plane waveguide is the configuration of technological interest,
too.

This distinction between the coupling behavior of in-plane
and out-of-plane waveguides can be understood by analyzing
the electric-field components of the guided modes for each
waveguide geometry. The electric field of the TE mode of
the in-plane waveguide lies in the plane of propagation. So
does the longitudinal electric field of its TM mode. These
two fields are coupled by the anisotropic permittivity dyadic
because it possesses nondiagonal components mapping trans-
verse fields to longitudinal ones and vice versa. In contrast, the
out-of-plane waveguide has the electric field of its TE mode
normal to the plane of propagation. Rotation of the direction
of propagation relative to the in-plane optic axis cannot result
in nondiagonal permittivity elements mapping this TE field
into the plane. Consequently, in an out-of-plane waveguide, a
TE mode cannot couple to a TM mode, whose electric field
lies completely in the plane of propagation.

We should also mention that the TE-TM mode coupling
depends on whether the in-plane waveguide’s cladding and
substrate (assumed isotropic) have the same or different re-
fractive indexes. If these indexes are the same (symmetric
case), the TE (TM) modes have definite spatial parity and
even orders couple only to TM (TE) modes of odd orders
[24]. If such a waveguide supports only fundamental modes,
no coupling occurs between its TE- and TM-polarized modes
to the accuracy of CMT. If the cladding and substrate re-
fractive indexes differ (asymmetric case), however, the modes

no longer have definite parity so the fundamental TE- and
TM-modes couple.

B. Analysis of the simplified coupled-mode equations

With the preceding simplifications, the amplitude vector
ã(φ) becomes two dimensional with elements ãs(φ) and ãp(φ)
and can be interpreted as a Jones vector. Of course, one should
be careful with this interpretation because the guided modes
possess nonhomogeneous spatial distributions and longitudi-
nal components due to mode confinement. In addition, each
polarization mode is normalized to carry unit power, rather
than keeping a constant intensity ratio at any point in space.
Hence, the electric field generally does not trace the traditional
polarization ellipse, as in plane-wave optics.

Consider next the matrix elements D(l )
nm of the operators

D̂(l ) (l = 1, 2, 3) with n, m taking values s or p. As proved in
Ref. [24] for the in-plane geometry, only four of the twelve
possible matrix elements are nonvanishing. These are D(1)

ss ,
D(2)

sp , D(2)
ps = [D(2)

sp ]∗, and D(3)
pp . Also, D(1)

ss and D(3)
pp are purely

real because the matrices D(l ) are Hermitian.
To further simplify the problem, we introduce a new col-

umn vector a(φ) via

ã(φ) = exp [iθ (φ)]a(φ), (18)

where θ (φ) is the common phase acquired by ã(φ) during
propagation along the ring:

θ (φ) = 1
2 r(βs + βp)φ + 1

2 rζ
(
D(1)

ss − D(3)
pp

)(
φ − 1

2 sin 2φ
)
,

(19)

where we have performed a small ζ truncation, as discussed
in Sec. V A.

Then, setting φ = z/r as the independent variable, the
coupled-mode equations become

−i
da

dφ
= H (φ)a, (20)

where H (φ) is a φ-dependent 2 × 2 matrix, akin to a time-
dependent Hamiltonian in quantum mechanics. It may be
written in terms of the Pauli spin matrices σn (n = 1, 2, 3) as

H (φ) = 1
2 (�0 + �1 cos 2φ)σ1 + (κ sin 2φ)σ3, (21)

where

σ1 =
(

1 0
0 −1

)
, σ2 =

(
0 1
1 0

)
, σ3 =

(
0 −i
i 0

)
.

(22)

We follow optics convention [34,35] and label the Pauli ma-
trices so that the Stokes parameters Sn are obtained through
Sn = a†σna.

In Eq. (21), we introduced three parameters that govern
polarization dynamics of the microring. These are the ring-
averaged detuning �0; the detuning-oscillation amplitude �1;
and the coupling coefficient κ . The three parameters can be
explicitly evaluated from the relations

�0 = r(βs − βp) − �1,

�1 = −rζ
(
D(1)

ss + D(3)
pp

)
,

κ = −rζ{
D(2)

sp

}
, (23)
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where, naturally, βs and βp are the propagation constants of
the unperturbed s and p modes, respectively.

Expressions (20) and (21) constitute the main result of
this section. They describe how the amplitudes of TE and
TM modes evolve along a microring resonator with the angle
φ. These equations are mathematically equivalent to those
governing a frequency-modulated two-level atom driven by
a classical optical field [30]. The first term, proportional to
σ1, represents a local mode detuning that oscillates between
(�0 − �1) and (�0 + �1) along the ring. The last term
represents polarization coupling whose magnitude oscillates
between −κ and κ . As shown later, the combination of these
two effects leads to complicated polarization dynamics on the
Poincaré sphere.

We find that the form of the matrix H (φ) in Eq. (21)
agrees with the intuitive description of polarization coupling
in Sec. II. The oscillation of its diagonal term, modeling local
detuning, is a consequence of the oscillation in the diagonal
components of the permittivity in the frame rotating with
the ring waveguide. Observe that the detuning extrema occur
when φ is an integer multiple of π/2, when the direction
of propagation is either parallel or perpendicular to the optic
axis, so the diagonal permittivity elements are themselves ex-
tremized. On the other hand, the oscillation of the nondiagonal
term of H (φ), proportional to σ3, occurs due to the oscillation
of the nondiagonal permittivity elements in the rotating frame.
Thus, mode coupling is strongest when φ is an odd multiple
of π/4, just where the nondiagonal permittivity elements are
extremized.

Note that H (φ) varies in the three-dimensional parameter
space spanned by �0, �1, and κ . Since H (φ) alone gov-
erns the polarization dynamics in Eq. (20), the polarization
dynamics also vary in this space. Generally, Eq. (20) must
be solved numerically. Nonetheless, approximate analytic so-
lutions can be obtained in certain regions of the parameter
space by employing analytic tools for quantum systems with
a time-dependent Hamiltonian [36]. In the following sections,
we discuss these approximate solutions and their regions of
validity.

Again, because Eq. (20) is linear with the Hermitian H (φ),
we may write its solution as a(φ) = U (φ, 0)a(0), where
U (φ, 0) is unitary and satisfies

−i
dU

dφ
= H (φ)U (φ, 0), (24)

with the initial condition U (0, 0) = 1. Of course, we may
relate this U (φ, 0) to the full round-trip matrix Ũ (φ, 0) of
Sec. IV B through the relation

Ũ (φ, 0) = exp [iθ (φ)]U (φ, 0), (25)

with θ (φ) given by (19). In what follows, we provide approxi-
mate expressions for U (φ, 0) and investigate its properties and
the corresponding polarization eigenstates of the ring.

C. Perturbative regime

One way to solve Eq. (24) approximately is using a pertur-
bative approach. As is known from quantum mechanics [36],
this type of solution is accurate when H (φ) can be written as
H = H0 + V , where V is a small perturbation. Then, we may

write the solution in the form of a rapidly converging Dyson
series:

U (φ, 0) =
∞∑

l=0

U (l )(φ, 0), (26)

where the lth terms U (l )(φ, 0) scales as the lth power of the
perturbation.

The zeroth-order term U (0)(φ, 0) is defined as the evolution
operator for zero perturbation. So we can evaluate this term
analytically, we take H0 as the first term on the right-hand-side
of (21) (proportional to σ1). It follows that

V (φ) = (κ sin 2φ)σ3, (27)

and

U (0)(φ, 0) = exp

(
i
∫ φ

0
dφ′H0(φ′)

)

= exp

[
1

2
iσ1

(
�0φ + 1

2
�1 sin 2φ

)]
. (28)

The first-order correction U (1)(φ, 0) is then given by [36]

U (1)(φ, 0) = i
∫ φ

0
dφ′U (0)(φ, φ′)V (φ′)U (0)(φ′, 0). (29)

Substituting V (φ) and U (0) from Eqs. (27) and (28), the
integration in (29) can be performed by employing the Jacobi-
Anger expansion [37]

exp (iz sin θ ) =
∞∑

n=−∞
Jn(z) exp (inθ ), (30)

where Jn(z) is the Bessel function of the first kind and integer
order n, evaluated at z. After some algebra, we obtain

U (1)(φ, 0) = iκφ

∞∑
n=−∞

Wn(�1)sinc[φ(n + �0/2)]

× (σ2 cos χn − σ3 sin χn), (31)

where

Wn(�1) ≡ [Jn−1(�1/2) − Jn+1(�1/2)]/2, (32)

sinc(x) ≡
{

sin (x)/x, for x �= 0

1, for x = 0,
(33)

and

χn(φ) ≡ 1
4�1 sin 2φ − nφ. (34)

As is usual in quantum dynamics, we can neglect terms of
order higher than one in the Dyson series (26) for a small
perturbation V .

The most striking feature of Eq. (31) is the appearance
of an infinite number of coupling resonances occurring when
n + �0/2 = 0 for some integer n. Each of these resonances is
the product of three factors. One factor is the unitary matrix
(σ2 cos χn − σ3 sin χn). The second one is the sinc term rep-
resenting the decrease in strength of the resonance as �0/2
moves away from −n. This kind of dependence is typical for
a quantum-mechanical system driven by a sinusoidal classical
field [38]. The third factor is the weighting function Wn(�1).
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For �1 = 0, Wn(0) = (δn,1 − δn,−1)/2, and the infinite sum
reduces to only two terms with n = ±1. As �1 moves away
from zero, new resonances appear for other values of n. Even
though the amplitudes of original two resonances decrease,
they remain prominent for small values of |�1|.

As discussed in Sec. IV B, U (2π, 0) determines the ring’s
polarization eigenstates and the resonances of the microring
resonator. From Eq. (28), U (0)(2π, 0) = exp(iπ�0σ1). From
Eq. (31), the first-order term U (1)(2π, 0) becomes propor-
tional to σ2 because χn = −2πn and the σ3 term vanishes.
Furthermore, when �0 is an integer, U (1)(2π, 0) simplifies to

U (1)(2π, 0) =
{

0, for �0 odd

i2πκσ2Wm(�1), for �0 even,
(35)

where m is the integer satisfying

�0 + 2m = 0. (36)

So when �0 is an odd integer, the first-order correction
to the round-trip matrix U (2π, 0) vanishes and U (2π, 0) ≈
exp(iπ�0σ1) to first order in V . In addition, note that even
for fixed �1 and κ , the maximum amplitude of U (1)(2π, 0)
does not necessarily align with even values of �0, as Eq. (35)
seems to suggest. This is because, as �0 moves away from
−2m, the resonant term n = m diminishes in strength but the
other terms of the infinite sum in (31) become nonzero and
start to contribute to U (1)(2π, 0).

We briefly address the validity of the perturbative solution.
We truncated the Dyson series in Eq. (26) to its first two
terms. This series is known to converge rapidly when the
perturbation V is small. From Eq. (27), V can be said to be
small for any φ only if κ is small. How small κ must be is
a subtle question. A necessary condition is that the power
transferred between the TE and TM modes must be negligi-
ble, i.e., |U12(φ, 0)|2 � 1. Assuming that Wn(�1) ≈ 1 for the
coupling resonance with n closest to −�0/2, we get |κ| � 2
as a necessary condition for the perturbative approximation to
be valid.

D. Resonant regime

As we just saw, the modulation of level spacing induced
by �1 results in an infinite set of coupling resonances in the
perturbative regime. It turns out that this conclusion holds
even beyond the accuracy of the first-order perturbation [24].
When �0 approximately satisfies Eq. (36) for some integer
m, the mth resonance in Eq. (31) is most strongly excited.
It follows that, if the coupling strength κ is small enough,
it is justified to neglect all other coupling resonances, since
only the mth resonance has its effect accumulate and become
non-negligible as φ varies from 0 to 2π .

Under this approximation, U (φ, 0) is found to be given
by [24]

U (φ, 0) ≈ exp [iσ1χm(φ)] exp (iφHRWA), (37)

where χm(φ) is defined in Eq. (34) and the matrix HRWA is
given by

HRWA = 1
2 (�0 + 2m)σ1 + κWm(�1)σ2, (38)

with Wm(�1) defined in (32). The neglect of the nonresonant
terms of H (φ) is known as the rotating-wave approximation
(RWA) in quantum mechanics [30].

Recalling from Eq. (34) that χm(2π ) = −2πm, we find

U (2π, 0) ≈ exp (i2πHRWA). (39)

Thus, the eigenvectors of HRWA are approximately those of
U (2π, 0). After a round-trip, they each acquire a phase of
θ (2π ) ± π�RWA, where θ (2π ) is the common round-trip
phase from Eq. (19) and �RWA is the difference between the
eigenvalues of HRWA. It is straightforward to verify that

�RWA =
√

(�0 + 2m)2 + 4κ2W 2
m (�1). (40)

In particular, when (36) is nearly satisfied, HRWA is close
to proportional to σ2, and its polarization eigenstates ap-
proximately correspond to the Jones vectors (1, 1)T /

√
2 and

(1,−1)T /
√

2. These are also approximately the polarization
eigenstates of the round-trip matrix U (2π, 0), if the RWA
applies.

To understand these results, we note that, in the absence
of coupling (κ = 0), TE and TM modes are independent and
acquire different phases after a round trip. When Eq. (36) is
satisfied, they acquire the same phase (up to a multiple of 2π ).
Hence, a nonzero coupling lifts the phase-factor degeneracy
and determines the eigenvector structure of U (2π, 0).

We refer to the region where Eq. (36) approximately ap-
plies and |κ| is small enough for Eq. (37) to hold as the
resonant regime. If |κ| becomes too large, the contributions
to H (φ) neglected in the RWA may noticeably alter the polar-
ization dynamics, despite their effect not accumulating over
φ. This pair of conditions may appear stricter than those gov-
erning the perturbative regime, which requires only |κ| to be
small. However, this is not the case because Eq. (37) is valid
for values of |κ| larger than those for which (29) holds. To see
this, note that the expression in Eq. (37) is unitary, while the
two-term Dyson series U ≈ U (0) + U (1) is not. This feature
implies that Eq. (37) automatically conserves the total power
a†a, while the sum U (0) + U (1) only approximately does so if
|κ| � 2.

E. Adiabatic regime

In the adiabatic regime, if the polarization state a(φ) is
an eigenstate of the matrix H (φ), it continuously follows the
local eigenstate of H (φ) as φ increases and H (φ) varies. Let
a(±)(φ) be the local eigenstates, i.e., the two Jones vectors
satisfying the eigenvalue equation

H (φ)a(±)(φ) = k±(φ)a(±)(φ), (41)

with eigenvalues k(±)(φ) depending on φ. The adiabatic the-
orem states that, in the limit |k+(φ) − k−(φ)| → ∞, U (φ, 0)
tends toward [36,39]

UA(φ, 0) =
∑

n∈{+,−}
exp

[
i
∫ φ

0
dφ′kn(φ′)

]

× exp [iγn(φ)]a(n)(φ)[a(n)(0)]†. (42)

The argument of the first exponential in this expression is
known as the dynamic phase. The argument of the second one,
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γn(φ), is the so-called geometric phase. In the adiabatic ap-
proximation [39], U (φ, 0) ≈ UA(φ, 0). A good rule of thumb
[33,36] for its validity is that the difference in eigenvalues
should be much larger than the characteristic frequency at
which H (φ) changes. For our problem, this condition requires
|k+ − k−| � 2 from Eq. (21).

The calculation of the geometric phase γn(φ) in Eq. (42)
is generally cumbersome. Nevertheless, following Berry [31],
we can evaluate its value when H (φ) returns to its original
value H (0). For our microring resonator, this happens when φ

is an integer multiple of π . Applying Berry’s general result,
we may write [24]

exp [iγ±(π )] =
{−1, |�0| < |�1|
+1, |�0| > |�1|

(43)

and

exp [iγ±(2π )] = exp [i2γ±(π )] = 1 for |�0| �= |�1|. (44)

No expression for the geometric phase exists when |�0| =
|�1|, because the adiabatic approximation does no longer hold
in that case, as explained in Ref. [24].

Naturally, the round-trip matrix U (2π, 0) can be approxi-
mated with UA(2π, 0) in the adiabatic regime. Additionally, it
takes a substantially simpler form compared with the general
expression in Eq. (42). To see this, recall from Eq. (21) that the
eigenstates of H (0) = H (2π ) are (1, 0)T and (0, 1)T . Also,
it is easy to see that the trace of H (φ) vanishes. Hence, its
eigenvalues satisfy k+(φ) = −k−(φ) = �(φ)/2 where �(φ)
is the eigenvalue difference. From Eq. (21), �(φ) is readily
found to be

�(φ) =
√

[�0 + �1 cos (2φ)]2 + 4κ2 sin2 (2φ). (45)

Using this result, one gets the simple expression

UA(2π, 0) = exp

[
±iσ1

∫ π

0
dφ�(φ)

]
. (46)

In (46), ± is taken as “+” if the TE mode at φ = 0 has
higher effective index than the TM mode and is taken as “−”
otherwise.

So we find that, in the adiabatic regime, the ring’s polariza-
tion eigenstates are always TE and TM polarizations. The net
effect of the polarization coupling induced by κ is merely to
alter the phase difference after a round-trip according to (45)
and (46).

VI. A PRACTICAL EXAMPLE

To illustrate the usefulness of our coupled-mode formal-
ism, we examine a specific example and focus on a material
platform based on LN [8]. More precisely, we model a mi-
croring resonator made with a waveguide whose LN core
with silicon dioxide (SiO2) substrate and air cladding. The
resonator is excited with a laser operating at the 1550 nm
wavelength. At this wavelength, the ordinary and extraor-
dinary refractive indexes of LN are no = 2.21 and ne =
2.14, respectively. Silicon dioxide is isotropic with a re-
fractive index of 1.444 for this wavelength. Air is isotropic
with a refractive index of unity. We consider waveguides of

different thickness, but for concreteness, we fix the ring radius
to 100 μm.

To observe interesting polarization dynamics, �0 must be
of the order of unity. Otherwise, the dynamics become adi-
abatic with local eigenstates never deviating far from fully
TE and fully TM modes. This requirement on �0 between
the fundamental modes leads us to consider multimoded LN
waveguides with thicknesses in the range of 0.7 to 1.0 μm,
in agreement with previous experimental work [8]. However,
we neglect higher-order modes in our analysis and examine
coupling only between the fundamental TE and TM modes.
As mentioned in Sec. V A, this is legitimate if the difference
in propagation constants between the fundamental and higher-
order modes is much larger than the matrix elements ζD(l )

mn of
the perturbation, which we assume to be true. The validity of
this assumption is verified in Sec. VI A.

A. Local effective indices and comparison
with finite-element calculations

To validate our coupled-mode description, we compare its
predictions with those obtained with commercial numerical
software. Specifically, we calculate the effective indices n(+)

eff

and n(−)
eff for the two modes of the ring waveguide as a func-

tion of the φ and use them to compute the angle-dependent
polarization-averaged index n̄eff = (n(+)

eff + n(−)
eff )/2 and the

modal birefringence B(φ) = n(+)
eff − n(−)

eff . From our CMT, we
have

B(φ) = �(φ)/(k0r), (47)

with �(φ) given by (45). In the absence of material bire-
fringence, B(φ) does not depend on φ and reduces to the
geometric birefringence due to mode confinement. In the
presence of material anisotropy, B(φ) varies with φ and re-
veals key features of the polarization coupling, as we will see
shortly. To evaluate n̄eff , we use Eqs. (18) and (19) to obtain

n̄eff (φ) = β̄(φ)/k0 = (k0r)−1dθ/dφ, (48)

where

β̄(φ) = β̄0 + β̄1 cos 2φ, (49)

along with

β̄1 = −ζ
(
D(1)

ss − D(3)
pp

)
/2,

β̄0 = (βs + βp)/2 − β̄1. (50)

As stated, we want to compare the CMT results for n̄(φ)
and B(φ) with numerical values calculated with commercial
software. We wish to show that our simplified CMT of polar-
ization coupling, with Hamiltonian matrix (21), is legitimate
not only for in-plane slab waveguides, but also for thin waveg-
uides with a finite two-dimensional (2D) cross section. To
do this, we evaluate the matrix elements D(1)

ss , D(2)
sp , and D(3)

pp
for the TE and TM modes of ridge waveguides with fully
2D cross sections, assuming that they are wide enough for
all other matrix elements to be comparatively negligible. We
then calculate the parameters �0, �1, and κ from Eq. (23)
for in-plane slabs and calculate B(φ) using (45) and (47) and
n̄eff (φ) using (48) and (49). For the numerical computations,
we use the fully tensorial version of the finite-element method
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(FEM) mode solver in Photon Design’s FIMMWAVE software
suite.

The results are displayed in Fig. 3 (top and middle) over
the half ring −π/2 � φ � π/2. Only half of the ring need
be considered because the local modes are periodic in φ with
period π , as evinced, for instance, by Eq. (15). In Fig. 3,
CMT results are depicted with solid lines and FEM results are
shown with circles. We consider ridge waveguides, all with
a common thickness (height) of 1 μm and ridge widths of
1.6, 1.8, and 2.0 μm. For reference, we also depict n̄(φ) and
B(φ) for an in-plane slab with the same thickness of 1 μm.
We set 1 μm for the thickness of the LN film because then
�0 ≈ 0 for the in-plane slab at 1550 nm causing the effects of
polarization coupling to be more evident.The bottom part of
Fig. 3 shows an expanded view B(φ) over a narrower range,
π/6 � φ � π/4. This auxiliary plot allows us to resolve the
minima in B(φ) around φ = π/4. These minima are important
because they reveal information about the coupling strength,
as we elaborate below.

Figure 3 shows that there is close agreement between the
CMT and the FEM curves for both n̄(φ) and B(φ). From this,
we can draw two conclusions. First, we confirm that Eqs. (45)
and (49) accurately predict the φ dependence of �(φ) and
β̄(φ), even for waveguides of two-dimensional cross section,
so long as they are sufficiently thin. Second, we deduce that
Eqs. (23) and (50) are accurate expressions for the parame-
ters determining the local effective indices. Both conclusions
support our CMT description of the polarization dynamics.

Note that the middle plot in Fig. 3, of B(φ) over the half
ring, is not useful to determine the coupling strength κ . This
is because |κ/�1| ≈ 0.01 for our LN waveguides, so the
effect of a nonzero κ is negligible everywhere except in the
regions where (�0 + �1 cos 2φ) ≈ 0. This occurs when φ ≈
±π/4 because (�0/�1) ≈ 0. Thus, we need to examine B(φ)
around φ = ±π/4 to determine whether the CMT values for
κ are accurate. This is why the bottom part of Fig. 3 is useful.
The good agreement between the CMT and FEM values for
B(φ) in Fig. 3 (bottom) legitimizes the use of Eq. (23) for the
coupling strength κ for our LN films.

In aggregate, the plots of Fig. 3 confirm that H (φ) gives
an accurate prediction for the local effective indices along the
ring, despite neglecting coupling with higher-order modes, as
argued in the opening paragraphs of this section. This is legiti-
mate if the matrix elements ζD(l )

mn inducing coupling are much
smaller than the difference in propagation constants between
modes of different order. In the evaluation of the local indices,
this condition follows from quantum-mechanical stationary
perturbation theory [19]. The good agreement between the
CMT and FEM results shows that this neglect of higher-order
modes is valid for the LN waveguides under consideration.

Observe that the in-plane slab curves for n̄(φ) and
B(φ) have generally the same shape as those for the ridge
waveguides with finite width. However, the slab curves are
noticeably distinct for the ridge widths considered. The n̄(φ)
curve for the slab, in particular, is visibly offset from the three
n̄(φ) curves for ridge waveguides. Nonetheless, this offset
can be intuitively understood as a consequence of decreased

FIG. 3. Variation of the polarization-averaged effective index
n̄(φ) (top) and the modal birefringence B(φ) (middle) as a function
of the microring angle φ for different ridge waveguide widths. The
bottom plot depicts B(φ) in the neighborhood of the index anticross-
ings. Solid lines correspond to coupled-mode theory (CMT) results.
Circles correspond to finite-element method (FEM) results.
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FIG. 4. Effective-index anticrossing in a LN microring resonator
modeled as an in-plane slab with a thickness of 1 μm. The solid
line and dashed line show the effective indices of the two modes (+
and −, respectively) as a function of the ring angle φ. The dotted
curve and dash-dot line shows the indices of the hypothetical bare
TE (s polarization) and TM (p polarization) modes, respectively, in
the absence of polarization coupling (κ = 0).

transversal confinement. Because the optical modes of the
slab waveguide are less confined than those of a ridge waveg-
uide but obey the same wave equation inside the core, they
acquire a larger phase per longitudinal translation, i.e., they
possess larger effective indices. This argument also explains
the monotonic increase in n̄(φ) for fixed φ and increasing
ridge width in Fig. 3 (top).

In contrast, the difference between B(φ) [Fig. 3 (middle)]
for the slab waveguide and that for ridge waveguides is not as
significant as that for n̄(φ) [Fig. 3 (top)]. Thus, even if it might
be imprecise to use the an in-plane slab model to calculate the
phase accumulated along the ring, it may still yield accurate
predictions for the polarization dynamics.

In Fig. 3, B(φ) approaches zero near φ = ±π/4. As ex-
plained above, it never vanishes because of the intermodal
coupling due to κ , as can be verified from Eq. (45). Hence,
we expect the effective indices to exhibit an anticrossing
behavior, well-known in the context of quantum-mechanical
two-level systems. Figure 4 shows this feature by plotting the
effective indices of the eigenmodes of H (φ) for the in-plane
slab in the region near φ = π/4 in solid and dashed lines. For
comparison, the dotted and dash-dot lines depict the effective
indices of the “bare” TE and TM modes when the coupling
is absent (i.e., κ is artificially set to zero). The curves depict
the typical anticrossing behavior of a two-level system [19]:
n(+)

eff starts close to n(s)
eff for φ < π/4, but deviates from it in

a parabolic manner as φ approaches the crossing point near
φ = π/4. After the crossing, n(+)

eff asymptotically approaches
n(p)

eff . The opposite transition occurs for n(−)
eff .

There are two reasons why an analysis of the anticrossing
in Fig. 4 is worthwhile. First, one may use the anticrossing
effect to estimate the coupling coefficient κ from numer-
ical data. If H (φ) has the form given in Eq. (21), the
level-spacing minima (the anticrossing point) occur when

FIG. 5. Hamiltonian parameters plotted as a function of the
waveguide thickness 2d .

2φ = ±π + arccos[�0�1/(�2
1 + 4κ2)]. To first order in κ ,

one finds that �min, the value of �(φ) at these minima, is
given by

�min = 2|κ|
√

1 − (�0/�1)2, (51)

under the assumption that |�0/�1| � 1. Thus, one can use
Eq. (51) to determine |κ| if �0 and �1 are known or if �0 = 0.

Second, examination of the anticrossings elucidates the
nature of the local modes. For instance, from the proxim-
ity of n(+)

eff to n(s)
eff for φ < π/4 (and far from the intended

crossing), we deduce that n(+)
eff is a mostly s-polarized mode

by a perturbation argument [19]. Similarly, we deduce that
this mode becomes mostly p polarized after it passes the
anticrossing. We also infer that the + mode is fully hybridized
at the anticrossing. In fact, it can be regarded as circularly
polarized, if the caveats outlined in Sec. V B are respected.
This is easily verified by diagonalizing H (φ) in Eq. (21) for
�0 + �1 cos(2φ) = 0, as this is a necessary condition for the
anticrossing to appear. These observations suggest that, if the
ring radius r is large enough for the polarization dynamics
to be adiabatic, one would observe s-polarized light become
circularly polarized (again, recalling the caveats of Sec. V B)
and then p polarized as it passes the anticrossing. Similarly,
p-polarized light would become circularly polarized (of op-
posite handedness) and then s polarized as it traverses the
anticrossing.

Note, though, that for this adiabatic evolution to occur, the
adiabatic condition �(φ) � 2 should hold for all φ, so the
minimum value �min from Eq. (51) must satisfy �min � 2.
Conversely, this requires |κ| � 1. Since κ is proportional to
the ring radius r, the adiabatic condition bounds r from below.
For instance, we find in Sec. VI B, from Fig. 5, that |κ| is in
the order of 0.3 for LN microrings with radius of 100 μm.
Thus, satisfying |κ| � 1 for the same ring cross-section re-
quires increasing r at least to 1 ∼ 3 mm. This should still be
experimentally feasible, although, as losses in LN waveguides
have been reported to be in the order of 0.1 dB/cm [40].
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B. Influence of slab thickness

In this section, we analyze the effect of the waveguide’s
geometry on the Hamiltonian parameters �0, �1, and κ and
the concomitant polarization dynamics along a ring round-
trip. Staying in the in-plane slab model, the only geometrical
parameters to vary are the ring radius r and the slab thick-
ness (or height) 2d , keeping notation consistent with the
Supplementary Material [24]. Given Eq. (23), it is clear that
changes in the ring radius r only rescale the Hamiltonian
matrix. Although such rescaling can change the polarization
dynamics (say, by taking it from the resonant to the adiabatic
regime), this change is easily predictable. For this reason,
we keep the ring’s radius fixed at 100 μm and focus on the
dependence of the polarization dynamics on the waveguide’s
thickness.

Figure 5 shows how the parameters �0, �1, and κ vary as
a function of 2d . Both �0 and κ vary appreciably as thickness
is varied from 600 to 1300 nm; �0 even changes its sign.
The coupling parameter κ decreases in magnitude by a factor
of five over this thickness range. In contrast, �1 maintains
a comparatively constant value of approximately 16 over the
entire thickness range.

In particular, the large variation in �0 from 25 to −5 sug-
gests drastic changes in the polarization evolution as 2d varies
from 600 to 1300 nm. Recall from Sec. V E that the evolution
falls in the adiabatic regime when the eigenvalue difference
�(φ) is large compared with two. It follows from Eq. (45) that
this is the case when (|�0| − |�1|) � 2. Since this applies in
the neighborhood of 600 nm, we expect the dynamics to fall in
the adiabatic regime in this thickness range. As 2d increases
past 600 nm, �0 rapidly decreases toward zero. Because we
always have |κ| < 1, the decrease in |�0| causes the dynamics
to leave the adiabatic regime because it is no longer true
that �(φ) � 2 for all φ. The polarization dynamics are then
susceptible to the excitation of coupling resonances when
�0 approaches an even integer, as discussed in Sec. V D. In
the thickness range 800–1300 nm, |�0| has relatively small
values, on the order of unity. Consequently, we expect the
excited resonances to have non-negligible weights Wn(�1)
and polarization coupling to be most pronounced when such
resonances occur.

To verify these predictions, we solved the coupled-mode
equations (20) numerically over one round trip with the initial
condition that the pure TE (TM) mode is excited initially
at φ = 0 for 2d from 600 to 1300 nm. As φ increases, the
mode coupling leads to the transfer of power to the TM
(TE) mode. We denote the fraction of power transferred as
Psp(φ) and use it to calculate two quantities: the round-trip
power (RTP), Psp(2π ) and the mean coupled power (MCP),
i.e., the fraction of coupled power averaged over a round trip
(2π )−1

∫ 2π

0 dφPsp(φ). Because of the unitary evolution of the
Jones vector along the ring, both the RTP and the MCP are
independent of whether TE or TM light is injected at φ = 0.
Although both the RTP and the MCP are measures of the
polarization hybridization, they provide different information.
The RTP measures the net hybridization after one round trip
and the hybridization of the ring’s polarization eigenstates. On
the other hand, the MCP is a global measure of the average
hybridization over the ring.

FIG. 6. Round-trip power (solid blue line) and mean coupled
power (dashed orange line) as a function of slab height 2d (top).
Round-trip power as a function of �0 (bottom). Inset compares the
numerically calculated round-trip power (solid blue line) with that
predicted by first-order perturbation (dotted orange line).

Figure 6 depicts the RTP and MCP as a function of 2d .
Both quantities exhibit multiple aligned peaks representing
resonances. From the previous discussion, we expect these
resonances to appear when �0 approaches an even integer.
The solid trace in Fig. 6 confirms this by plotting RTP as
a function of �0. Even though the RTP peaks mostly align
with even integer values of �0, the alignment is not perfect
and deviates occasionally from Eq. (39). As explained in
Sec. V C, such deviations are due to the effect of neighboring
resonances on the polarization evolution. This can be verified
through comparison of the numerically calculated RTP with
that predicted by the perturbative formula (31).

As seen in the inset of Fig. 6, the perturbative calculation
mostly retraces the RTP. The inset zooms into the �0 ≈ 8, 10
peaks so the difference between the numerical and perturba-
tive RTP can be resolved. Small deviations arise only from
a slight overestimation of the maxima’s magnitudes. This
difference is most pronounced for these two peaks because
they are the largest in magnitude, but it exists for all the
resonance peaks. The slight overshoot of the perturbative RTP
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is explained by noting that the perturbative approximation
U (2π, 0) ≈ U (0)(2π, 0) + U (1)(2π, 0) neglects coupling sat-
uration, i.e., it assumes the power of the launched TE or TM
polarization is not depleted because of polarization coupling.
The close agreement between the perturbative and numerical
RTP and the location of the RTP minima at odd-integer �0

values allows us to interpret the RTP minima as a consequence
of Eq. (35). Thus, we verify that the slab thicknesses corre-
sponding to odd-integer �0 possess TE- and TM-polarized
round-trip eigenstates.

Returning to the upper plot in Fig. 6, we note that the
resonance peaks are tightly packed in the neighborhood of
2d = 600 nm and progressively spread out as 2d increases.
Inspecting Fig. 5, we can attribute this behavior to the fact
that, although �0 varies monotonically with 2d , the variation
is nonlinear. For smaller values of d , �0 changes more rapidly
with d . This argument is confirmed in the lower trace. When
we plot the RTP with respect to �0, the resonance valleys and
peaks become evenly spaced.

C. Polarization evolution along the microring

Our CMT can be used to study how an initial SOP evolves
along the microring as it is affected by the competing geomet-
rical and material birefringence. In this section, we analyze
the polarization dynamics along the microring in the resonant
and adiabatic regimes of the parameter-space and verify the
validity of the approximate solutions given in Secs. V D and
V E.

First, we investigate the resonant regime and fix the
waveguide thickness at 800 nm, for which �0 ≈ 10, and
a coupling resonance results with m = −5 (see Sec. V D).
We numerically integrate the coupled-mode equations (20)
with an initially TE-polarized mode [a(0) = (1, 0)T ] and plot
the resulting Stokes vector S(φ), with components Sj (φ) =
a†(φ)σ ja(φ), on the Poincaré sphere to track the evolution
of the SOP. The resulting plot is presented in Fig. 7 (top).
The numerically computed S(φ) is represented by the solid
blue curve, while the behavior predicted by the RWA solution,
obtained from Eq. (37), is drawn with a dashed orange curve.

Although the numerical and the RWA curves in Fig. 7 trace
noticeably different trajectories on the Poincaré sphere, they
both describe a similar overall nutation of the SOP away from
the initial TE-polarization. This is seen in the lower plot of
Fig. 7, where we plot the fraction of power transferred to the
initially unexcited TM-polarization as a function of φ, i.e.,
Psp(φ) in the notation of Sec. VI B. It is evident that the RWA
solution successfully describes the accumulating effect of the
polarization coupling, while ignoring the small-mode-power
oscillations of the numerical solution. These oscillations are
associated with the off-resonant terms of the Hamiltonian
matrix, which are neglected in the RWA.

Lastly, we examine a case where the polarization dynamics
lie in the adiabatic regime by choosing 2d = 500 nm. In
this case, �0 = 52.4 and �1 = 16.6, hence �(φ) � (|�0| −
|�1|) � 2 for all φ. Once again, we evaluate the fraction of
power Psp(φ) coupled into the TM mode when the TE mode is
excited at φ = 0. Figure 8 presents Psp(φ) as computed from
a numerical solution of Eq. (20) and compares it with the
values predicted from the adiabatic approximation. Clearly,

FIG. 7. Evolution of the SOP on the Poincaré sphere of initially
s-polarized light for 2d = 800 nm (top). Fractional power transfer
as a function of angle φ (bottom). The solid blue trace shows the
numerically evaluated evolution; the dashed orange trace shows the
evolution under the RWA.

there is very good agreement between the two curves for all
φ. The only features that the adiabatic approximation does not
reproduce are the rapid, small-amplitude oscillations on top of
the accumulated power. These can be understood as artifacts
of a finite (contrary to infinitely small) rate of change of the
Hamiltonian matrix.

VII. CONCLUSIONS

We developed a theoretical framework for studying the
evolution of polarization inside a microring resonator whose
waveguide has a core made with a uniaxial birefringent ma-
terial. We introduced a zero-bending model that replaces the
ring waveguide with a straight one but retain the continuous
reorientation of the optic axis relative to the direction of
propagation. We wrote Maxwell’s equations in the form of
a Schrödinger equation and used it to obtain the equations
governing the resulting coupling between TE and TM
polarizations.
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FIG. 8. Fraction of power coupled into the initially unexcited
polarization for 2d = 500 nm, calculated numerically (solid blue
line) and via the adiabatic approximation (dashed orange line).

We solved the coupled-mode equations in the simple case
when only fundamental TE and TM modes are coupled due
to the reorientation of the optic axis. We found that the result-
ing coupled-mode equations are identical to the Schrödinger
equation of a two-level atom under optical excitation and ex-
ternal frequency modulation. We leveraged this isomorphism
and used analytical tools from quantum mechanics to study
the polarization dynamics inside the microring under different
parameter regimes. Our formalism can be used to characterize
the polarization properties of microrings made with a uniaxial
material such as lithium niobate. The study of such micror-
ings is of great technological importance, since they are the
building block of many electro-optical and nonlinear optical
devices.
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