Coupled-mode theory of the polarization dynamics inside a microring resonator with a uniaxial core

Luis Cortés Herrera Xiaotong He Jaime Cardenas Govind P. Agrawal

University of Rochester

May 11, 2021

Lithium-niobate (LN) microcavities¹

Cheng Wang et al. (2018). "Nanophotonic lithium niobate electro-optic modulators". In: *Optics express* 26.2, pp. 1547–1555 New smart-cut technology allows fabrication of LN microcavities LN microring resonators enable low-voltage EO modulators broadband EO frequency comb generation ultra-efficient parametric wavelength conversion Kerr comb generation

¹Di Zhu et al. (2021). "Integrated photonics on thin-film lithium niobate". In: *arXiv* preprint *arXiv*:2102.11956.

LN material birefringence and cavities

LN is a uniaxial crystal The Z crystal axis is its extraordinary axis

For efficient EO, LN modulators are X-cut or Y-cut, with Z-axis in plane of propagation

The angle between the direction of propagation and the extraordinary axis varies continuously

Zero-bending model

Neglects other effects of bending (bending losses, field displacement) Accurate if ring radius much larger than wavelength and cross-section dimensions²

²Charles Vassallo (1991). *Optical waveguide concepts*. English. Vol. 1. New York;Amsterdam; Elsevier. ISBN: 9780444886842;0444886842;

Coupling between transverse and longitudinal fields

In thin-film rings, TE field is in plane-of-propagation (x)TM field has longitudinal E field (z)Diagonal permittivities (ϵ_{xx} and ϵ_{zz}) change along ring, So indices of TE and TM modes vary along ring Non-diagonal ϵ_{xz} , ϵ_{zx} couple TE and TM fields

Coupled-mode equations

Applying Maxwell's equations to ZBM³,

$$-i\frac{\mathrm{d}}{\mathrm{d}\phi}\begin{pmatrix}\mathbf{a}_s\\\mathbf{a}_p\end{pmatrix} = H(\phi)\begin{pmatrix}\mathbf{a}_s\\\mathbf{a}_p\end{pmatrix},\tag{1}$$

$$H(\phi) = \frac{1}{2} (\Delta_0 + \Delta_1 \cos 2\phi) \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$
variation of effective indices
+ $\kappa \sin 2\phi \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}$ polarization coupling

³Luis Cortes-Herrera et al. "Coupled-mode theory of the polarization dynamics inside a microring resonator with a uniaxial core". Under review.

Effective indices of local modes

Simplified Hamiltonian $H(\phi)$ is accurate for thin, horizontal

Index anti-crossings highlight coupling

Resonant coupling

As in QM⁴, coupling is resonant when $\Delta_0 = 2m$, for $m \in \mathbb{Z}$ Rotating-wave approximation (RWA) becomes accurate

⁴MP Silveri et al. (2017). "Quantum systems under frequency modulation". In: *Reports on Progress in Physics* 80.5, p. 056002.

Polarization rotators

Conclusions

Birefringence of LN induces non-trivial polarization dynamics along microrings

For small effective index detuning, polarization coupling can become resonant

Polarization coupling can be leveraged to design passive polarization rotators