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• Pulse trains with THz scale repetition rates are needed for
 Terahertz radiation generation [1]
 Optical manipulation of molecules [2], etc.

• THz repetition rates are not achievable with electronics
• All-optical methods need to be used:

• Here we study the robustness of pulse trains generated 
through reshaping a dual-color pump in a dispersion-
decreasing fiber in the presence of relative power 
fluctuations between the two pumps

Simulations

Conclusions

Robustness of Dual-Pump-Induced Ultrahigh Repetition 
Rate Pulse Trains Against Input Power Fluctuations
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• Robust pulse trains can be generated by dual-color pumping 
a dispersion-decreasing fiber

• Repetition rate dictated by pump frequency separation
• The simulations indicate this technique is surprisingly stable 

against input power fluctuations
• Power fluctuations have zero effect on the coherence 

properties near the pump wavelength
• Soliton self-frequency shift is a main coherence degradation 

mechanism and only an issue for higher frequency 
separations
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• Two frequency separations studied in detail: 800 GHz & 2 THz 
• Relative power between the CW beams normally distributed 

around unity with a standard deviation of 5%
 Power fluctuations are pessimistic, much larger than most 

commercial lasers
• Shot-to-shot fluctuations characterized using mutual degree of 

coherence |g12| (angle brackets denote ensemble average):

,

where the variable u can be either time or wavelength

• Both frequency separations lead to the generation of pulse 
trains that manifest as frequency combs in the spectral domain

• Wherever there is optical power, there is coherence
 In spite of the pessimistic 5% relative power fluctuations

• Pump wavelength remains the most coherent
• For 800 GHz initial frequency separation, soliton self-frequency 

shift is slower and hence the coherence remains better for the 
red part of the spectrum
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• Microring resonators [3,4]
• Robust, not widely tunable

• Reshaping a dual-pump [5]
• Tunable, possibly unstable

• Light propagation in single-mode fibers down to the few-
cycle regime is accurately described by the generalized
nonlinear Schrödinger equation (GNLSE) [6]:

• 20 meters of tapered photonic crystal fiber
• Dispersion changes linearly from 𝛽ଶ = −8.56 ps2/km to 0
• Input: two CW beams centered around 1060 nm
 Frequency separation varied in a controlled manner
 Relative powers made to fluctuate randomly
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Dual-color input
Center wavelength 1060 nm
Fixed frequency separation
Fluctuating powers
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• Example simulation (below), 800 GHz frequency separation, 
beams of equal power (1 W each)

• Temporal profile (left) and spectra (right) at various propagation 
distances

• Beating input signal turns into a pulse train in the fiber
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Temporal (left) and spectral (right) profiles and mutual degrees of
coherence for 800 GHz and 2 THz input frequency separations.
The average power levels were 1 W and 4 W, respectively,
chosen such that each beat period can reshape into a single
fundamental soliton. The temporal traces on the right show a
single beat period. The ensembles for both frequency separations
consist of 200 simulations.


