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Temporal reflection and refraction of optical
pulses inside a dispersive medium: an analytic
approach
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We develop an analytic approach for reflection of light at a temporal boundary inside a dispersive medium and
derive frequency-dependent expressions for the reflection and transmission coefficients. Using the analytic results,
we study the temporal reflection of an optical pulse and show that our results agree fully with a numerical approach
used earlier. Our approach provides approximate analytic expressions for the electric fields of the reflected and
transmitted pulses. Whereas the width of the transmitted pulse is modified, the reflected pulse is a mirrored version
of the incident pulse. When a part of the incident spectrum lies in the region of total internal reflection, both the
reflected and transmitted pulses are distorted considerably. ©2021Optical Society of America

https://doi.org/10.1364/JOSAB.416058

1. INTRODUCTION

Reflection of electromagnetic waves at a temporal boundary
has attracted considerable attention in several contexts over
the last 20 years [1–11]. Recent examples include reflection in
space-time metamaterials [8,9], a change in a beam’s direction
in an anisotropic medium [10], and reflection at multiple tem-
poral boundaries [11]. Most of these studies have focused on a
nondispersive medium and ignored the frequency dependence
of the refractive index on each side of the temporal boundary.
The dispersive effects were included in a 2015 study [6] that
considered the reflection and refraction of optical pulses at a
moving boundary. It was found that the spectra of reflected and
refracted pulses shifted from the spectrum of the incident pulse
in such a way that the reflected part never crossed the boundary,
even though all parts of the original pulse moved in the same
direction. The conservation of momentum at the temporal
boundary was used in Ref. [6] to provide analytic expressions for
the spectral shifts induced at the temporal boundary.

Although temporal reflection of optical pulses has been stud-
ied extensively in recent years [8–22], it has required extensive
numerical simulations because no analytic expressions have yet
been found for the reflection and transmission coefficients at a
moving temporal boundary inside a dispersive medium.

In this paper, we provide the analytical expressions for these
coefficients by solving the problem in the frequency domain
and use them to predict the temporal and spectral features of
the reflected and refracted pulses. The paper is organized as fol-
lows. In Section 2, we discuss momentum conservation and the

boundary conditions across a temporal boundary and use them
to derive the frequency-dependent reflection and transmission
coefficients. In Section 3, we use our analytic expressions to
estimate the electric fields of the reflected and transmitted pulses
after making suitable, physically justified approximations.
These results apply for pulses of arbitrary shapes. We consider
two specific cases in Section 4 and discuss how the shapes and
spectra of the reflected and refracted pulses are modified for an
incident Gaussian pulse depending on the dispersive properties
of an optical fiber. We summarize our main results in Section 5.

2. ANALYTIC THEORY OF TEMPORAL
REFLECTION

We consider propagation of optical pulses inside a dispersive
medium (such as an optical fiber) with the propagation constant
β(ω). In the following discussion, we assume that the pulse’s
spectrum is relatively narrow (quasi-monochromatic approxi-
mation), and we can expand β(ω) around a reference frequency
in a Taylor series as

β(ω)= β0 + β1(ω−ω0)+
1

2
β2(ω−ω0)

2, (1)

where ω0 is a reference frequency close to the central frequency
of the pulse (but it does not have to be the central frequency)
and we neglected the third and higher-order dispersive terms.
Note that the pulse frequency should be away from any res-
onant frequencies of the material in order that Eq. (1) holds.
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We assume that the pulse is approaching a temporal boundary
moving at the speed VB . The refractive index changes across
this boundary by a constant amount 1n, and the propagation
constant after the boundary becomes

βt(ω)= β0 + βB + β1(ω−ω0)+
1

2
β2(ω−ω0)

2, (2)

whereβB =
ω0
c 1n.

The evolution of the pulse across the temporal boundary is
governed by the following equation [6] satisfied by the slowly
varying envelope A(z, t) of the pulse:

∂ A
∂z
+1β1

∂ A
∂t
+ i

β2

2

∂2 A
∂t2
= iβB H(t − TB )A, (3)

where we work in a frame in which the temporal boundary
appears stationary, i.e., t = t ′ − z/VB , where t ′ is the time in
the laboratory frame; 1β1 = β1 − 1/VB is the relative group
delay of the pulse in this time frame. In Eq. (3), H(t − TB ) is the
Heaviside step function taking the value 1 when t > TB and 0
when t < TB . TB is the time delay of the time boundary at the
incident plane (z= 0). Given the initial pulse shape A(0, t),
numerical solutions of Eq. (3) show that the pulse splits into two
parts moving at different speeds because of the spectral shifts
induced at the boundary [6].

We stress that the velocity VB is restricted to be subluminal,
but it can be larger than the pulse’s group velocity. Our problem
differs considerably from the case of a nondispersive medium
where the refractive index changes everywhere in space at the
same time [5,9]. In our case of a moving temporal boundary
inside an optical waveguide, spatial distribution of a pulsed
optical beam does not change during its propagation. This is the
reason why we ignore all spatial effects and solve Eq. (3) with the
amplitude A(z, t) specified at z= 0. In practice, a moving tem-
poral boundary is often created nonlinearly through the Kerr
effect by launching an intense pump pulse into the waveguide.

Our objective is to solve Eq. (3) analytically. The numerical
solutions of Eq. (3) indicate that any input pulse is partially
reflected and partially transmitted at the temporal boundary
such that the two parts have spectra shifted from that of the
input pulses. We expect the same to occur for a plane wave. In
other words, a plane wave at the frequency ω0 +1ω is also
reflected and transmitted at the boundary with different fre-
quency shifts such that the slowly varying amplitude takes this
form:

A=
{

e i(β ′z−1ωt)
+ Re i(β ′r z−1ωr t), t < TB

Te i(β ′t z−1ωt t), t > TB
, (4)

where R and T are the reflection and transmission coefficients,
respectively, that depend on 1ω. Here, 1ω is the frequency
shift of the input plane wave from the reference frequency ω0,
and1ωr and1ωt are frequency shifts of the reflected and trans-
mitted plane waves, respectively. These frequency shifts depend
on1ω.

We note that Eq. (4) does not violate causality because it is
based on plane waves, and the time variable t = t ′ − z/VB is
defined in a moving frame with t ′ representing the real time.
Causality only requires that the wave packets, representing the
reflecting and transmitted parts of the incident pulse, form only

after the pulse has arrived at the temporal boundary located at
zB = TB/1β1. As discussed later, this is indeed the case.

We find the frequency shifts 1ωr and 1ωt by substituting
the solution in Eq. (4) into Eq. (3) for z< zB and z> zB . This
yields the following relations:

β ′(1ω)=1β11ω+
β2
2 1ω

2

β ′r (1ωr )=1β11ωr +
β2
2 1ω

2
r

β ′t(1ωt)= βB +1β11ωt +
β2
2 1ω

2
t

. (5)

These are the dispersion relation in the moving frame. From
Eq. (3), A(z, t) should be continuous for all values of z. This
happens when the three propagation constants are equal, i.e.,

β ′ = β ′r = β
′

t . (6)

As discussed in Ref. [6], these conditions result from the
conservation of momentum in the moving frame. Combining
Eq. (5) and Eq. (6), we find two quadratic equations whose solu-
tions determine 1ωr and 1ωt with a given 1ω. The solution
for1ωr is found to be

1ωr =−
21β1

β2
−1ω. (7)

The solution for 1ωt is a more complicated and is given
by [6]

ωt =−
1β1

β2
+

1

β2

√
(1β1 + β21ω)

2
− 2β2βB . (8)

To find the reflection and transmission coefficients, R and T,
respectively, we make use of the temporal boundary conditions
at t = TB . Specifically, we demand that both A and ∂ A

∂t are con-
tinuous across the time boundary for any z. This requirement
results in the following two equations:

e i(β ′z−1ωTB ) + Re i(β ′r z−1ωr TB ) = Te i(β ′t z−1ωt TB )

− i1ωe i(β ′z−1ωTB ) − i1ωr Re i(β ′r z−1ωr TB )

=−i1ωt Te i(β ′t z−1ωt TB ). (9)

Using β ′ = β ′r = β
′
t from Eq. (6), we obtain the following

analytic expressions for R and T:{
R(1ω)= 1ωt−1ω

1ωr−1ωt
e i(1ωr−1ω)TB

T(1ω)= 1ωr−1ω
1ωr−1ωt

e i(1ωt−1ω)TB
. (10)

These expressions contain a linear phase shift that depends
on the boundary’s location TB . This phase shift is not important
and can be removed by choosing TB = 0. However, R and T
can still be complex quantities. Figure 1 shows how their moduli
and phases vary as a function of the frequency shift (1ν) using
the notation R = |R |e iφ(R) and T = |T|e iφ(T). The parameters
we used are appropriate for an optical fiber acting as a dispersive
medium [6] and have values 1β1 = 0.1 ps/m, β2 = 5 ps2/km
andβB = 0.5 m−1.

The most striking feature in Fig. 1 occurs near 1νc =
√

2β2βB−1β1
2πβ2

=−0.93 THz. When 1ν >1vc , both R and T
are real quantities. When 1ν <1νc , they become complex.
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Fig. 1. Frequency dependence of the reflection and transmission
coefficients for 1β1 = 0.1 ps/m, β2 = 5 ps2/km and βB = 0.5 m−1.
Solid and dashed curves show, respectively, the modulus and phase of
these two quantities.

The reason for this change is related to the form of Eqs. (7) and
(8). While 1ωr is always real, 1ωt can be complex depending
on the sign of the discriminant in Eq. (8). The condition for this
to happen is given by (1β1 + β21ω)

2 < 2β2βB . In this situa-
tion,1ωt becomes complex, and the transmitted wave becomes
evanescent. It can be shown that |R | = 1 holds for1ω<1ωc .
This is the temporal analog of total internal reflection (TIR)
discussed in Ref. [6]. We call 1νc the critical frequency. It will
play an important role in Section 4.

The preceding discussion applies to each specific frequency
component of a pulse. We can use it to study how an incident
pulse gets reflected and transmitted at the temporal boundary.
Consider an incident pulse with the slowly varying amplitude

A(z= 0, t)= Ain(t). (11)

We can decompose it into plane waves of different frequencies
using the Fourier transform:

Ã(1ω)=∫ Ain(t)e i1ωt dt . (12)

The evolution of each plane-wave component is governed by
Eq. (4). The total field can be calculated by integrating over the
input pulse’s spectrum to obtain the following:

If t < TB ,

A(z, t)=
1

2π

∫
Ã(1ω)e i(β ′(1ω)z−1ωt)d1ω

+
1

2π

∫
Ã(1ω)R(1ω)e i(β ′r (1ω)z−1ωr t)d1ω.

(13)

If t > TB ,

A(z, t)=
1

2π

∫
Ã(1ω)T(1ω)e i(β ′t (1ωt )z−1ωt t)d1ω. (14)

This is our main result. It is used to find the shapes and spectra
of the reflected and transmitted parts of any input pulse.

To validate our analytic theory of temporal reflection and
refraction, we consider a Gaussian pulse with the amplitude

Fig. 2. Temporal reflection and refraction of 1-ps Gaussian pulses
using the analytic reflection and transmission coefficients (left) and the
split-step Fourier method (right). In both cases, the relative intensity
|A(z, t)|2 is plotted on a 40-dB scale.

Ain(t)= e−
1
2 (t/Tw)2 and choose Tw = 1 ps. This pulse is

reflected at the boundary located at TB = 5 ps as it propagates
inside a dispersive medium. For the sake of comparison, we
use the same parameters as those used in Ref. [6] and given in
Fig. 1. We solved Eq. (3) numerically using the split-step Fourier
method [23]. We also used our analytic theory to calculate the
reflected and transmitted coefficients as a function of frequency
and carry out the integrations in Eqs. (13) and (14). The results
are compared in Fig. 2. As is evident, the two methods produce
identical results and indicate that our analytical approach is
valid. We stress at the reflected pulse is not moving backward
because the results are shown in a moving frame. Rather, the
incident pulse splits into two parts moving at different speeds
such that the reflected part never crosses the boundary.

3. REFLECTED AND TRANSMITTED PULSES

In this section, we investigate the properties of reflected and
transmitted pulses produced after a pulse with the amplitude
Ain(t) has arrived at the temporal boundary. From Eqs. (13) and
(14), the reflected and transmitted fields are obtained using

Ar (z, t)=
H(z− zB )

2π

×

∫
Ã(1ω)R(1ω)e i(β ′r (1ωr )z−1ωr (1ω)t)d1ω,

(15)

At(z, t)=
H(z− zB )

2π

×

∫
Ã(1ω)T(1ω)e i(β ′t (1ωt )z−1ωt (1ω)t)d1ω,

(16)

where zB is the distance when the pulse arrives at the tempo-
ral boundary. We have added the step function H(z− zB )
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because the reflected and transmitted pulses only exist after
z> zB . These integrals can be done numerically, but an analytic
solution is not possible without some approximations.

One may ask if energy is conserved during temporal reflec-
tion. This is not easy to answer because a moving temporal
boundary implies that another source of energy exists that was
used to create a moving boundary (e.g., microwave radiation
or a pump pulse). Here, we consider the intensity integral∫
|Ain(t)|2dt before and after the boundary to find the rela-

tion between the reflection and transmission coefficients.
The condition |R |2 + |T|2 = 1 does not conserve the value
of this integral. In this section, we use Eqs. (15) and (16) for
the reflected and transmitted pulses to find the relation that
conserves the intensity integral.

We assume that the incident pulse Ain(t) has a narrowband
spectrum with its central frequency at ω0 +1ωi where ω0 is
the reference frequency. Let 1ω be a variable that represents a
plane-wave component at that frequency. We can understand
the reflection at a temporal boundary using Fig. 3 [6], where we
plot the parabolic dispersion curves, as defined by the approxi-
mation of the Taylor series expansion in Eq. (1), of the medium
just before and after the temporal boundary (parameters used
are the same as in Fig. 1).

We indicate in Fig. 3 the spectral range of the incident pulse
by vertical dashed lines in region 1. The horizontal lines show
the range of β ′ corresponding to this frequency range. The
spectra of reflected and transmitted pulses correspond to the
crossing points of horizontal lines with the dispersion curves
because of the momentum conservation condition in Eq. (6).
Ranges marked by 2 and 3 correspond to the spectra of reflected
and transmitted pulses, respectively [6].

To find the Fourier amplitude of the reflected pulse, in
Eq. (15) we change the integration variable from1ω to1ωr to
obtain

Ãr (z, 1ωr )= Ã(1ω)R(1ω)e iβ
′

r (1ωr )z

∣∣∣∣ d1ω
d1ωr

∣∣∣∣ . (17)

Fig. 3. Parabolic dispersion curves before (blue curve) and after
(red curve) the time boundary. Vertical dashed lines (region 1) mark
the spectral bandwidth of the incident pulse and horizontal lines show
the range of β ′ in this frequency range. Regions 2 and 3 indicate the
spectral range of the reflected and transmitted pulses.

The reason for the absolute value of d1ω/d1ωr is that
when d1ω/d1ωr is negative, the integration interval must be
flipped, which gives another minus sign. Similarly, the Fourier
amplitude of the transmitted pulse can be written as

Ãt(z, 1ωt)= Ã(1ω)T(1ω)e iβ ′t (1ωt )z

∣∣∣∣ d1ω
d1ωt

∣∣∣∣ . (18)

If the coefficients R and T vary slowly with 1ω, which is
the case in Fig. 1 when the central frequency of the pulse is far
away from the TIR point, we can approximate both R and T
with their values at the central frequency of the spectrum of the
incident pulse: {

R(1ω)= R(1ωi )= R0

T(1ω)= T(1ωi )= T0
. (19)

From Eqs. (7) and (17), the spectrum of the reflected pulse is
easily obtained:

Ãr (z, 1ωr )= R0e iβ ′r (1ωr )z Ã
(
−

21β1

β2
−1ωr

)
, (20)

where we used d1ωr =−d1ω from Eq. (7). This result
shows that the spectrum of the reflected pulses is shifted by
−21β1/β2. The shift can be on the red or the blue side, depend-
ing on the relative signs of the two dispersion parameters. The
shape of the spectrum is a mirror image of the input spectrum, a
feature that is seen only when the input spectrum is asymmetric.

The exponential term in the spectrum of the reflected pulse
and the transmitted pulse will induce chirp and distortion when
z becomes larger. This is the result of the propagation inside a
dispersive medium and has nothing to do with the temporal
reflection. To study the effect of temporal reflection alone,
we consider a small segment near z= zB . Before the tempo-
ral reflection, the Fourier amplitude of the incident pulse is
Ã(zB , 1ω), and the temporal amplitude is denoted Ain(zB , t).
Then, we use the Fourier amplitude of the incident pulse just
before the temporal reflection instead of the Fourier ampli-
tude at z= 0. The phase term e iβ ′r (1ωr )z in Eq. (20) disappears
because we are considering a small segment. Then, converting
Eq. (20) back to time domain, we obtain

Ar (zB , t)= R0e i 21β1
β2

t Ain(zB ,−t). (21)

It follows that the reflected pulse is a mirrored version of the
pulse reaching the temporal boundary but with a reduced ampli-
tude. Its energy is given by |R0|

2 E p , where E p is energy of the
input pulse.

The calculation for the transmitted pulse is more complicated
because1ωt and1ω do not have a linear relationship. For nar-
rowband pulses, we can employ the Taylor expansion and, to the
first order,1ωt and1ω are linearly related as

1ωt =1ωt(1ωi )+ S1ω, (22)

where S = (d1ωt/d1ω)|1ω=1ωi is the slope. Combining
Eqs. (18) and (22), we have

Ãt(zB , 1ωt)=
T0

S
Ã
(

zB ,
1ωt −1ωt(1ωi )

S

)
. (23)
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By taking the inverse Fourier Theorem, we obtain the ampli-
tude of the transmitted pulse in the form

At(zB , t)= T0 A(zB , St)e−i1ωt (1ωi )t . (24)

To find an analytic expression for S, we consider the momen-
tum conservation for the transmitted pulse. It follows from
Eqs. (5) and (6) that

1β11ω+
β2

2
1ω2
= βB +1β11ωt +

β2

2
1ω2

t . (25)

Taking the derivative with respect to 1ω on both sides, we
obtain

S =
1β1 + β21ωi

1β1 + β21ωt(1ωi )
. (26)

Equation (24) shows that the temporal width of the trans-
mitted pulse is reduced by a factor of S. This also follows from
Eq. (23), which shows that the bandwidth of the transmitted
pulse changes by a factor of S. As the fraction of energy that goes
into the transmitted pulse is |T0|

2/S, the conservation of energy
integral requires

|R0|
2
+
|T0|

2

S
= 1. (27)

We have verified that this relation is satisfied in all cases.

4. TWO EXAMPLES

In this section, we show two examples of temporal reflection and
analyze them with our analytic theory to discuss the shapes and
spectra of reflected and transmitted pulses. In the first case, the
spectrum of incident pulse is far from the critical frequency in
Fig. 1. We consider a Gaussian pulse with Ain(t)= e−

1
2 (t/Tw)2

and use Tw = 1 ps. Figure 4 shows the spectrum of this pulse,
together with the reflection and transmission coefficients
predicted by our theory using the parameter values given in
Fig. 1

As seen in Fig. 4, the moduli of R and T are nearly constants
over the bandwidth of the incident pulse. This is exactly the
case we discussed in Section 3, so we expect the reflected pulse

Fig. 4. Frequency dependence of |R | and |T|. The spectrum of the
incident pulse is also shown.
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Fig. 5. Amplitude and instantaneous frequency shift of the reflected
pulse and the transmitted pulse.

to have the same shape and width of the incident pulse, and the
transmitted pulse to be slightly shorter. We plot in Fig. 5 the
amplitudes of the reflected transmitted pulses at a distance of
100 m, obtained numerically using Eqs. (15) and (16).

Both the reflected and transmitted pulses retain the Gaussian
shape of the input pulse but become chirped. We plot the time-
dependent frequency shift obtained using [23]

1ν(t)=−
1

2π

dφ
dt
, (28)

where φ(t) stands for the phase of A(t). As seen in Fig. 5, the
frequency chirp varies linearly for the reflected pulse and is
almost linear for the transmitted pulse. We can write the chirp
as 1ν(t)= ν0 +Ct , where C is a constant. Because of the
Gaussian shape of the pulses, we can theoretically predict the
chirp coefficient using [23]

C =
1

2π

z/L D

T2
w(1+ (z/L D)

2)
, (29)

where z is the propagation distance and L D = T2
w/|β2| is the

dispersion length [23]. The slope of the chirp in Fig. 5 agrees
with this analytical value of C . This agreement indicates that
the pulse does not experience distortion when it splits into
two parts at the temporal boundary, and the chirp is only from
propagation inside the dispersive medium.

In the second example, we discuss the situation where the
reflection and transmission coefficients cannot be treated as
being constant over the pulse’s bandwidth. In this case, a part of
the spectrum of the incident pulse satisfies the TIR condition.
We choose 1β1 = 0.07 ps/m, β2 = 5 ps2/km, βB = 0.5 m−1.
The incident pulse is still a Gaussian pulse with Tw = 1 ps and
the temporal boundary is at TB = 5 ps. Figure 6 shows the
pulse’s spectrum together with |R | and |T| as a function of1ν.

In this case, there is no good approximation for R and T. We
calculate the reflected and transmitted pulse at z= 200 m by
integrating Eqs. (15) and (16) numerically. Figure 7 shows the
temporal (top) and spectral (bottom) amplitudes of the reflected
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Fig. 6. Pulse spectrum and modulus of the reflection and transmis-
sion coefficients showing TIR over part of the spectrum.

Fig. 7. Amplitudes (top) and spectra (bottom) of the reflected (left)
and transmitted (right) pulses at z= 200 m.

and transmitted pulses, respectively. As seen there, both the
reflected and transmitted pulses become asymmetric. The
reflected pulse develops a long trailing edge, and the transmitted

pulse’s leading part is shorter than the trailing part. We can also
see the distortion in their spectra. This is caused by the rapid
change of |R | and |T| near the critical frequency. The distortion
will be more severe for shorter pulses and pulses with sharper
edges because their spectra are broader.

5. CONCLUSION

In this work, we have developed an analytical approach for
studying the reflection and refraction of optical pulses at a
temporal boundary inside a dispersive medium across which
the refractive index changes by a relatively small amount. We
decompose the incident pulses into its plane-wave spectral
components and derive expressions for the reflection and trans-
mission coefficients that depend on the frequency of the spectral
component. Using the analytical results, we study the temporal
reflection of an optical pulse and show that our results agree fully
with a numerical approach used earlier.

Our approach also provides approximate analytic expressions
for the electric fields of the reflected and transmitted pulses.
Whereas the width of the transmitted pulse is modified, the
reflected pulse is a mirror version of the incident pulse. We
applied our analysis to a Gaussian pulse propagating inside
an optical fiber. When a part of the incident spectrum lies in
the region of total internal reflection, both the reflected and
transmitted pulses are distorted considerably.

In practice, a moving temporal boundary can be created
through the nonlinear Kerr effect by injecting an intense short
pump pulse into an optical fiber in the region of anomalous
GVD (β2 < 0) and adjusting its energy such that it propagates
as a fundamental soliton [23]. A probe pulse at a slightly dif-
ferent wavelength will be reflected at this pump-pulse-induced
temporal boundary [22]. Such a pump-probe configuration
provides an ideal situation to which our theoretical analysis can
be applied.
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