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We study vectorial modulation instability occurring inside a birefringent graded-index (GRIN) fiber when the two
polarization components of the optical field are coupled nonlinearly through cross-phase modulation. In the scalar
case in which only modes of one polarization are excited, the geometric parametric instability is known to produce
an infinite number of sidebands around the wavelength of the input optical beam. We show that the birefringence
of a GRIN fiber splits each of these sidebands into a triplet, whose frequency spacing depends on the differential
group delay between the orthogonally polarized components. We verify the predictions of the linear stability
analysis numerically by solving two coupled nonlinear Schrödinger equations that include spatial self-imaging
effects through an effective nonlinear parameter. We present results for both continuous and pulsed optical beams
experiencing normal or anomalous group-velocity dispersion inside a GRIN fiber. ©2020Optical Society of America
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1. INTRODUCTION

The nonlinear phenomenon of modulation instability (MI)
has been extensively studied in the context of nonlinear fiber
optics [1]. In the case of single-mode fibers, MI occurs when
the input beam experiences anomalous group-velocity disper-
sion (GVD), and it leads to temporal modulation of an intense
continuous wave (CW) as it propagates down the fiber. In the
spectral domain, this leads to the generation of two sidebands
on the opposite sides of the CW’s central frequency. This pic-
ture changes drastically in the case of a graded-index (GRIN)
fiber because of the self-imaging property of such fibers that
leads to periodic spatial variations in an optical beam’s size as it
propagates down the fiber [2].

As early as 2003, it was found that the MI creates an infinite
number of sideband pairs, irrespective of whether the GVD is
normal or anomalous at the wavelength of the incident CW
Gaussian beam [3]. This kind of MI is called geometric para-
metric instability, and it was studied extensively after 2015, both
theoretically and experimentally [4–7]. Its physical origin is
related to the phenomenon of self-imaging [2]. Periodic spatial
variations create through the Kerr effect a periodically varying
refractive index along the length of a GRIN fiber, producing a
kind of nonlinear Bragg grating. This grating provides quasi-
phase matching for spatiotemporal instability, resulting in the
generation of multiple pairs of spectral sidebands at specific
wavelengths on both sides of the input beam’s wavelength.
Other noteworthy studies include MI in a few-mode step-index

fiber [8,9], a few-mode GRIN fiber [10], and a GRIN fiber with
an axially modulated core diameter [11].

It is well known in the case of single-mode fibers that MI is
affected considerably by the fiber’s birefringence [12–17]. This
type of MI is called vectorial because it involves the vector nature
of the electric field through coupling between its two polari-
zation components. However, to the best of our knowledge,
vectorial MI occurring inside a birefringent GRIN fiber has not
been considered before. In this paper, we study the vectorial MI
inside such a fiber when both polarization components of the
fiber’s modes are excited and are coupled nonlinearly through
cross-phase modulation (XPM). We show that birefringence
of the GRIN fiber splits each sideband into a triplet, whose fre-
quency spacing depends on the differential group delay (DGD)
between the orthogonally polarized components. We verify
the predictions of our linear stability analysis numerically by
solving two coupled nonlinear Schrödinger (NLS) equations
that include spatial self-imaging effects through an effective
nonlinear parameter.

2. COUPLED NLS EQUATIONS

The refractive index of a birefringent GRIN fiber in the
parabolic-index approximation takes the form [18]

n2
j (ρ)= n2

0 j [1− 21(ρ/a)2] + n2 I , ρ =
√

x 2 + y 2, (1)
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where j = x , y , and n0x and n0y represent the refractive index
along the x and y directions, respectively, at the center of the
fiber’s core of radius a . Their values are different because of the
stress applied along the x direction. It is useful to define an aver-
age value as n0 = (n0x + n0x )/2. The relative index difference
is then given by 1= (n0 − nc )/n0, where nc is the cladding’s
refractive index. The last term in Eq. (1) represents the nonlinear
contribution, which depends on the local intensity I and the
Kerr coefficient n2 (about 3.2× 10−20 m2/W for silica glass).

Although a modal description is often used for GRIN fibers,
it becomes too complicated when the fiber supports a large
number of modes, especially when birefringence is induced
through an elliptical core. We do not employ the modal picture
in this paper. We consider a pulsed optical beam with its spec-
trum centered at the frequencyω0. It is launched into the GRIN
fiber such that its polarization direction makes an angle from
the x axis. The electric field at any point inside the birefringent
GRIN fiber can then be written as

E(r, t)= Re
(
x̂ E x e i(β0x−iω0t)

+ ŷ E y e i(β0y−iω0t)), (2)

where E x and E y are the amplitudes of the x and y polarized
components, respectively. The propagation constants, β0x and
β0y , are defined as β0 j =ω0n0 j/c , where c is the speed of light
in vacuum. Using Maxwell’s equations, the spatiotemporal
evolution of the pulsed beam is found to be governed by the
following two coupled equations [1,19]:
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(4)

where ∇2
T is the transverse Laplacian operator, and

β0 = (β0x + β0y )/2. These equations assume that the dif-
ference 1β = β0x − β0y is so small that we can replace β0x

and β0y with their average value β0. This assumption is valid in
practice even for the so-called highly birefringent fibers because
the ratio 1β/β0 remains below 10−4. Different group veloc-
ities of the two polarization components are included through
vgj = 1/β1 j , with j = x , y . Their difference is related to the
DGD parameter defined as d = β1x − β1y . The GVD param-
eter β2 is the same for both polarization components. The three
nonlinear terms govern the effects of self-phase modulation
(SPM), XPM, and intermodal four-wave mixing (FWM). Note
that The FWM term still depends on the fiber’s birefringence
through1β.

Equations (3 and 4) include all spatial and temporal effects
and require long computation time because of their four-
dimensional nature. They can be simplified considerably with a
variational approach [19]. In the case of a CW Gaussian beam,

the time derivatives vanish, and these equations can be solved
using a variational technique outlined in Ref. [20]. Assuming
that spatial evolution is not affected by the pulse nature of the
beam, we make the approximation

E j (r, t)≈ F (x , y , z)A j (z, t), ( j = x , y ), (5)

where A j (z, t) is the slowly varying pulse envelope and
F (x , y , z) governs periodic spatial variations of the Gaussian
beam along the fiber’s length owing to self-imaging. This equa-
tion assumes that the spatial self-imaging pattern is the same for
both polarization components. This is a common assumption
and is expected to be valid for most fibers. For a pulsed Gaussian
beam with peak powers below the self-focusing threshold, the
beam maintains its self-imaging nature inside GRIN fibers
[19]. The spatial evolution of a Gaussian beam is then governed
by [20]

F (x , y , z)=
w0

w(z)
exp

[
−

ρ2

2w(z)

]
, (6)

where the beam waistw(z) varies with z in a periodic manner as

w(z)=w0

√
cos2(πz/z p)+C 2sin2(πz/z p). (7)

Herew0 is the 1/e width of the input Gaussian beam (full width
at half maximum is 1.665w0), and the parameters z p and C are
defined as

z p =
πa
√

21
, C = z p/(β0πw

2
0). (8)

Physically, z p represents the self-imaging period, and C is the
compression factor by which the beam width is reduced in the
middle of each self-imaging cycle. For a typical GRIN fiber,
z p < 1 mm, and C ∼ 0.1 can be varied by changingw0.

We can simplify Eqs. (3) and (4) considerably by using
Eq. (5), multiplying the result with F ∗(x , y , z), and integrating
over the transverse coordinates [19]. This procedure elimi-
nates the x and y dependence and results in two coupled NLS
equations given by

∂9x

∂z
+β1x

∂9x

∂t
+ i

β2

2

∂29x

∂t2

= iγ (z)
[(
|9x |

2
+

2

3
|9y |

2

)
9x +

1

3
9∗x9

2
y e (−i21βz)

]
,

(9)

∂9y

∂z
+β1y

∂9y

∂t
+ i

β2

2

∂29y

∂t2

= iγ (z)
[(
|9y |

2
+

2

3
|9x |

2

)
9y +

1

3
9∗y9

2
x e (i21βz)

]
,

(10)

where 9 j =
√

S A j is normalized with the area S(z)=∫∫
∞

−∞
|F (x , y , z)|2dxdy such that |9 j |

2 represents the
optical power. The self-imaging effects appear in these equa-
tions through the z dependence of the nonlinear parameter γ
defined as
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γ (z)=
n2ω0

c Aeff(z)
=

γ0

f (z)
, f (z)=

Aeff(z)
Aeff(0)

, (11)

where the z-dependent effective area is defined as

Aeff(z)= S2(z)
/(∫∫

∞

−∞

|F (x , y , z)|4dxdy
)

. (12)

The function f (z) represents the factor by which the effective
area Aeff(z) changes at a distance z from its initial value at z= 0.
This function is also periodic in z with the period z p .

It is useful for numerical purposes to normalize this set
of equations by introducing the following dimensionless
variables [1]:

Ux=9x/
√

P0, Uy =9y/
√

P0,

ξ = z/LNL, τ = (t − β̄1ξ)/T0, (13)

where P0 is the peak power of the input pulse launched into the
fiber, and the nonlinear length is defined as LNL = (γ0 P0)

−1.
The average group delay is defined as β̄1 = (β1x + β1y )/2,
and τ is the time in a frame moving at this group velocity and
normalized using T0 =

√
|β2|LNL. Equations (9) and (10) now

take the form
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where s = sgn(β2), and σ = (β1x − β1y )LNL/T0 is a meas-
ure of the DGD. We have ignored the FWM terms assuming
that they are not phase matched because of the relatively large
birefringence of the fiber [1]. The self-imaging effects are
included in these equations through the periodic function
f (ξ)= cos2(πqξ)+C 2sin2(πqξ), where q = LNL/z p is the
ratio of the nonlinear length to the self-imaging period. This
ratio exceeds 100 for even P0 = 1 kW because LNL > 10 cm
while z p < 1 mm.

3. LINEAR STABILITY ANALYSIS

To discuss vectorial MI, we follow a standard procedure based
on the linear stability analysis [1]. Equations (14) and (15) can
be solved in the CW case (no time derivatives), and the solution
is given as
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√
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3
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√
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]
, (17)

where Px = |Ux |
2
= cos2 θ and Py = |Uy |

2
= sin2 θ are the

relative powers of two polarization components such that
Px + Py = 1. Here θ is the polarization angle of the input
beam from the slow axis of the fiber. Except for the nonlinear

phase shifts induced by SPM and XPM, the CW wave should
remain unchanged as it propagates inside the GRIN fiber, if this
solution is stable to perturbations.

In a linear stability analysis, we perturb the CW solution
by replacing

√
P j with

√
P j + p j (ξ, τ ), where p j is a small

perturbation of the form

p j (ξ, τ )= a j (ξ)e−i�τ
+ b j (ξ)e i�τ , (18)

and� is the frequency of this perturbation. After linearizing the
resulting equations in a j and b j , we obtain the following two
linear ordinary differential equations:
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A similar set of equations can be derived for ∂b j/∂ξ . These
equations are linear but inhomogeneous because of the presence
of f −1(ξ). However, they can still be solved by exploiting the
periodic nature of the self-imaging phenomenon following the
procedure in Ref. [21]. We first expand f −1(ξ) in a Fourier
series as

f −1(ξ)=

∞∑
m=−∞

cm exp(ikmξ), km = 2πqm, (21)

where cm are the Fourier coefficients. Close to a reso-
nance with the pth Fourier component, we introduce the
transformation a j (ξ)= u j (ξ) exp[i(K + k p/2)ξ ] and
b j (ξ)= v j (ξ) exp[i(−K + k p/2)ξ ], where K is the wave
number of the perturbation. This results in an eigenvalue equa-
tion of the form [M][V ] = K [V ] for the eigenvector defined as
[V ]T = [ux , v

∗
x , u y , v

∗
y ]. The stability matrix [M]has the form

[M] =


(A+ Bx ) Cx D0 Dp

−C∗x (A− Bx ) −D∗p −D0

D0 Dp −(A− By ) C y

−D∗p −D0 −C∗y −(A+ By )

 ,
(22)

where A= σ�/2, B j = (s�2
− k p)/2+ c 0 P j , C j = c p P j ,

and

D0 = 2c 0

√
Px Py /3, Dp = 2c p

√
Px Py/3. (23)

The four eigenvalues of the stability matrix [M] are used to find
the frequencies for which perturbation becomes unstable. If an
eigenvalue K of the perturbation has a negative imaginary part,
the corresponding eigenvector begins to grow exponentially
with ξ , leading to instability of the CW solution. Using the form
e i K ξ , the power gain of MI is given by g (�)=−2Im(Km),
where Km is the eigenvalue of the stability matrix in Eq. (22)
with the highest negative imaginary part.
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4. VECTOR MI: NORMAL GVD

To discuss and compare our analytic and numerical results, we
consider a standard GRIN fiber with the core radius a = 25 µm
and 1= 0.009. As we present our results in normalized units,
they can apply for a variety of input conditions. As an example,
we consider a quasi-CW Gaussian beam at 1064 nm wave-
length that is launched into the GRIN fiber with a spot size
w0 = 18 µm and 100 kW peak power. It is polarized linearly
at an angle of 45o so that Px = Py = 50 kW, and it propagates
in the normal-GVD region (β2 = 17 ps2/km). The nonlinear
length is 10.8 cm and the scaling time is T0 = 43 fs in this sit-
uation, but these can vary over a wide range for different input
conditions. The parameters governing spatial-width oscillations
are z p = 592 µm, C = 0.07, and q = 182. Our choice of σ = 5
corresponds to a DGD of approximately 2 ps/m.

Using the preceding parameters, we first obtain the MI gain
spectrum by using the stability matrix in Eq. (22) for different
values of c p . We verify the predictions of our theory by solving
Eqs. (14) and (15) numerically in the frequency domain with
the fourth-order Runge–Kutta method [22]. For each polariza-
tion component, the input field is U j (0, τ )= 0.5+ n j (τ )with
j = x , y , where the noise n j (τ ) is included in the frequency
domain by adding a random quantity to each spectral compo-
nent of U j (0, τ )with a random phase and a constant amplitude
set at 10−5 (noise power 100 dB below the input power level).

In Fig. 1, we show on top the gain spectrum obtained through
our linear stability analysis. The bottom two traces show the
spectra obtained numerically at a distance of 1.5 LNL (16 cm)
for the x - and y -polarized components. When the input beam
is orientated along the slow or fast axes of the GRIN fiber axes,
only the frequencies shown by vertical dotted lines appear in the
spectrum. This situation corresponds to the scalar case studied
in the context of the geometric parametric instability [4–6]. The
nonlinear grating induced by self-imaging creates an infinite
number of sidebands, whose frequency shifts from the center
frequencyω0 are given by [5]

�p =±
√

2s(πqp− c 0 P j ), ( j = x , y ), p = 0,±1,±2, . . . .
(24)

We shall refer to these sidebands as nonlinear grating-induced
(NGI) sidebands. In the case of normal GVD (s = 1), the p = 0
NGI sideband does not exit. However, when GVD is anomalous
(s =−1), p = 0, a sideband pair forms in addition to other
pairs for p < 0.

It is now relatively easy to interpret the MI spectra in Fig. 1
for a birefringent GRIN fiber. The nonlinear grating induced
by self-imaging still creates an infinite number of sidebands.
The fiber’s birefringence splits each of these sidebands into a
triplet, because of the XPM-induced coupling between the
orthogonally polarized beam components traveling at different
speeds. The frequency separation of this triplet is relatively
small, compared to the spacing of grating-induced sidebands,
and depends on the DGD parameter σ and the polarization
angle θ of the input beam. The spacing becomes maximum for
θ= 45◦ for which the two polarization components are equally
intense. We shall refer to these as the XPM sidebands.

It is important to investigate the state of polarization (SOP)
of the two XPM sidebands, located on opposite sides of each
NGI sideband. For this purpose, we analyze the eigenvectors of

Fig. 1. MI Gain spectrum (top) from the linear stability matrix
for a Gaussian beam propagating in the normal-GVD region of a
birefringent GRIN fiber. Numerical results are shown below for the
x - (middle) and y - (bottom) polarized components. Vertical dotted
lines indicate the sideband frequencies predicted in the scalar case.
Sidebands marked by the red and blue arrows are polarized along the x
and y directions. See text for values of the parameters used.

the matrix M in Eq. (22). The eigenvector associated with each
eigenvalue with a negative imaginary part describes the SOP
of that specific frequency component. As one may expect, the
NGI sidebands have the same SOP as that of the input beam.
However, that is not the case for the XPM sidebands. Indeed,
the eigenvector analysis shows that the red shifted sideband is x
polarized, whereas the blue shifted sideband is y polarized. This
is similar to how vector MI manifests in highly birefringent step-
index fibers and is related to a phase-matched FWM process in
which frequency shift of the XPM sidebands is balanced by the
group-velocity mismatch [13].

The optical spectra, obtained by solving the coupled NLS
equations numerically, are displayed in Fig. 1 for the x - (middle)
and y - (bottom) polarized components. Several things are note-
worthy when we compare these with the predictions of the linear
stability analysis. First, the locations of the NGI sidebands are in
agreement with the predictions based on Eq. (24) shown by the
dotted vertical lines in Fig. 1. As expected, these sideband pairs
are present on both polarization axes. Second, the XPM side-
bands (forming a triplet) should be polarized along either the x
or y axis. Numerical results indeed show that the spectral ampli-
tudes of the two SPM sidebands are asymmetric and typically
differ by more than 20 dB. The reason that the amplitude of the
forbidden sideband does not vanish in numerical simulations
is related to the presence of many other FWM-type processes
occurring in the nonlinear regime in which a linear stability
analysis does not hold. The growth of frequency components
in the central region is also related to such FWM processes.



Research Article Vol. 38, No. 1 / January 2021 / Journal of the Optical Society of America B 205

Fig. 2. (a) Zoomed view of the first-order sidebands in Fig. 1 gener-
ated along the x and y axes. (b) Frequencies of the triplet located near
�/2π = 5.4 in Fig. 1 are plotted as a function of the DGD parameter
σ . All other parameters are the same as in Fig. 1. The solid lines show a
linear fit to the data. Blue and red curves correspond to the blue and red
shifted components of the triplet.

At distances shorter than LNL, the two XPM sidebands are
indeed orthogonally polarized.

As we mentioned earlier, the frequency shift of the XPM-
induced triplet depends on the DGD parameter σ and should
become larger for its larger values. Numerical simulations, as
well as the eigenvalues of the matrix M in Eq. (22), confirm
this expectation. In Fig. 2, we show the three frequencies as a
function of σ for the triplet located near�/2π = 5.4 in Fig. 1.
As one may expect, the frequency the NGI sideband (middle
line) is not impacted by the DGD. In contrast, the frequency
shift of XPM sidebands increases with σ in a linear fashion.
However, the slopes are slightly different in Fig. 2 for the blue
and red shifted components. If we represent this shift by δ± for
the two components, we can fit the data with the simple relation
δ± = S±σ , where S+ = 0.086, and S− =−0.073. The reason
behind the different slopes is related to the presence of σ in the
definition of A= σ�/2 in Eq. (22). Physically speaking, the
dispersion relations are different for the two XPM sidebands
because of DGD.

One may ask how the spectra in Figs. 1 and 2 change for
negative values of the DGD parameter σ . Our results show that
the two XPM-induced sidebands of each triplet flip around the
central frequency so as to form a mirror image. In other words,
the SOP of the XPM sidebands gets flipped. This is expected on
physical grounds because a negative DGD implies that slow and
fast axes of the birefringent fiber should be interchanged.

The linear stability analysis produces an exponential growth
of all MI sidebands at distances shorter than the nonlinear
length LNL. At distances longer than this length, the growth
of these sidebands begins to saturate as the system enters the
nonlinear regime. We have used numerical simulations in
this regime, and the results are shown in Fig. 3 at distances of

Fig. 3. Temporal (left) and spectral (right) patterns of the x -
polarized component of a quasi-CW Gaussian beam at distance
of one (top), two (middle), and three (bottom) nonlinear lengths
(ξ = 1, 2, 3). All other parameters are the same as in Fig. 1. The
horizontal lines (left column) indicate input power traces, and verti-
cal dashed red lines (right column) indicate frequencies of the NGI
sidebands.

z/LNL = 1, 2, and 3. Only the x -polarized component is shown
because the y -polarized component behaves in a qualitatively
similar manner. In each case, the temporal trace is shown on the
left and the corresponding spectrum on the right. At a distance
of z/LNL = 1, the system is in the linear regime, and the MI
leads to weak temporal modulation of the CW beam because
of the onset of multiple MI sidebands seen on the right side.
At a distance z/LNL = 2 (middle row in Fig. 3), the system has
entered the nonlinear regime. The spectrum shows that many
other sidebands have formed through other FWM-type proc-
esses, not accounted for by the linear stability analysis. In the
time domain, the amplitude of modulations has become so large
that the CW beam has been converted into an irregular pulse
train. At a distance z/LNL = 3 (bottom row in Fig. 3), the pulse
train becomes almost chaotic because of much larger amplitudes
and bandwidths of all MI sidebands located at widely different
frequencies. The sideband triplets are no longer discernible and
appear to merge to form much wider sidebands.

We have also studied the evolution of a pulsed Gaussian
beam inside a GRIN fiber. We keep all parameters the same
as in Fig. 3 and solve Eqs. (14) and (15) numerically with the
input U j (0, τ )= 0.5 sech(τT0/Tp) for j = x , y . The results
are shown in Fig. 4 at a distance of z/LNL = 5 using Tp = 1 ps.
Top and bottom rows show the temporal and spectral profiles
for the x - and y -polarized components of the pulse, respectively.
The temporal profiles develop considerable high-frequency
oscillations because of the onset of the NGI and XPM sidebands
seen in the spectrum on the right side. The shifted nature of
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Fig. 4. Temporal (left) and spectral (right) profiles of a 1 ps input
pulse at a distance of z= 5LNL for the x - (top) and y -polarized (bot-
tom) components of a pulsed Gaussian beam. All other parameters
are the same as in Fig. 1. Input profiles (red traces) are shown for
comparison.

these profiles indicates that the two polarization components
propagate with different group velocities, as dictated by the
fiber’s DGD, which is taken into account by usingσ = 5.

The spectral profiles show several interesting features. First,
the central peak is broadened considerably compared to the
input spectrum because of SPM. Second, only a few sidebands
are generated on the opposite sides of this central peak. Third,
the locations of these sidebands are close to but do not match
precisely with the NGI-sideband frequencies given in Eq. (24).
Fourth, a closer inspection of the temporal profiles reveals that
the pulse exhibits rapid oscillations at a high frequency corre-
sponding to the sidebands generated at about �/(2π)= 5 (as
shown in the insets), but its envelope is also slowly modulated
at a much smaller frequency that is related to the XPM-induced
sidebands discussed earlier in this section.

5. VECTOR MI: ANOMALOUS GVD

In this section, we discuss how the MI behavior changes when
the Gaussian beam is launched at a wavelength such that it expe-
riences anomalous GVD inside the GRIN fiber. We can still use
Eqs. (14) and (15) with the only change s =−1. The stability
matrix in Eq. (22) remains valid after this change. In the scalar
case, the NGI sideband frequencies are predicted by Eq. (24).
Using s =−1 in this equation, these frequencies are given by

�p =±
√

2(c 0 P j − πqp), ( j = x , y ), p = 0,−1,−2, . . . .
(25)

Note that p can take only a negative value to ensure that �p

is a real quantity. As q is a large number in practice, �p is rel-
atively large for all p < 0 compared to the p = 0 sidebands. If
we use P j = 1/2 for a Gaussian beam polarized at 45◦ from the
slow axis, then p = 0 sidebands occur at frequencies given by
�p =±

√
c 0. This pair does not require a nonlinear grating and

Fig. 5. MI Gain spectrum (top) for a Gaussian beam propagating
in the anomalous-GVD region of a birefringent GRIN fiber (s =−1).
Numerical results are shown below for the x - (middle) and y - (bottom)
polarized components at a distance of z= LNL. All other features are
identical to those in Fig. 1, where the normal-GVD case is shown.

occurs even in step-index fibers. All other sidebands need this
grating and occur only for GRIN fibers. Their frequencies are
much larger and are also slightly different from those found in
the case of normal GVD because of a sign change of the second
term for p < 0.

To study the impact of a fiber’s birefringence, we followed
the same procedure used in Fig. 1. The results are shown
in Fig. 5 after a quasi-CW Gaussian beam has propagated
a distance of one nonlinear length (ξ = 1). The sideband
frequencies shown in the top part were obtained using
p = 0,−1,−2,−3,−4,−5 in the stability matrix given
in Eq. (22). The most dramatic new feature in the anomalous-
GVD case is the generation of two pairs of sidebands near the
center. Only one pair is predicted by Eq. (25). The second pair
has its origin in the fiber’s birefringence. All other sidebands
split into a triplet, a feature identical to that found in the case
of normal GVD. This splitting again depends on the DGD
parameter σ and varies with it in a linear fashion as shown in
Fig. 3. Temporal evolution in the case of anomalous GVD is
also similar to that seen for the normal-GVD case in Fig. 3. The
main difference is that temporal modulations become deeper at
shorter distances and evolve into a pulse train whose individual
pulses behave as solitons that are known to form in the case of
anomalous GVD [1].

To show the formation of solitons in the anomalous-GVD
region, we show in Fig. 6 the temporal evolution of the x - and
y -polarized components of a pulsed Gaussian input beam. We
keep the values of all parameters the same as in Fig. 5 and solve
Eqs. (14) and (15) numerically using s =−1 and the input
U j (0, τ )= 0.5 sech(τT0/Tp) for j = x , y , with Tp = 1 ps.
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Fig. 6. Temporal evolution of 1 ps sech pulse over ξ = 5 in the
anomalous-GVD region (s=−1). All other parameters are the same as
in Fig. 4.

Similar to the normal-GVD case, the two polarization compo-
nents travel at different speeds because of DGD and change little
over a distance of one nonlinear length, except for developing
weak oscillations. However, these oscillations become deeper
after that distance, and both polarization components evolve
into a train of solitons of different widths and peak powers. This
behavior also occurs in step-index fibers, but solitons are much
narrower in the case of GRIN fibers because of the much larger
frequency shifts of the NGI sidebands for them. As the width
of these solitons is related to the time scale T0 = 43 fs for our
simulations, higher-order effects such as third-order dispersion
and the Raman-induced frequency shift should be included for
a more accurate study of such solitons.

6. DISCUSSION AND CONCLUSION

We have theoretically investigated MI occurring inside a bire-
fringent GRIN fiber when the two polarization components
of the incident optical field are coupled nonlinearly through
the nonlinear phenomenon of XPM. When the input beam
is launched along the slow or fast axis of this fiber, only modes
of one polarization are excited. The scalar theory developed
earlier can be applied in this case, and the geometric parametric
instability produces an infinite number of sidebands around the
wavelength of the input optical beam (called NGI sidebands in
this paper). We have found that each of these sidebands splits
into a triplet because of XPM-induced coupling between the
two polarization components (called XPM sidebands in this
paper). We used a linear stability analysis to develop a 4× 4
stability matrix whose eigenvalues predict the frequencies of
both the NGI and XPM sidebands and also provide the gain
experienced by these sidebands. In addition, eigenvectors of this
matrix were used to find the SOP of each sideband. Our results
show that the frequency spacing of each triplet depends on the
DGD parameter linearly. We also found that the red and blue
shifted components of the triplet are polarized orthogonally,
whereas the central component has the same SOP as the input
beam.

We verified the predictions of the linear stability analysis
numerically by solving two coupled NLS equations that include

spatial self-imaging effects through an effective nonlinear
parameter. We present results for both continuous and pulsed
optical beams experiencing normal or anomalous GVD inside
a GRIN fiber. We have also studied the evolution of MI in the
nonlinear regime beyond the linear stability analysis by increas-
ing the propagation distance up to three nonlinear lengths. As
expected, temporal modulations become deeper and irregular
with increasing distance. In the case of anomalous GVD, these
modulations turn into a train of short solitons. We have studied
this behavior by considering a pulsed Gaussian beam containing
1 ps wide pulses. Our study adds to the growing literature on the
nonlinear effects occurring inside GRIN fibers, and our results
should prove useful for applications where birefringent GRIN
fibers are needed.
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