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We present a general framework capable of describing the nonlinear propagation of pulsed optical beams of arbi-
trary shapes and phase fronts inside a graded-index (GRIN) fiber. The main assumption made is that the spatial
self-imaging features of the beam are not affected by the temporal evolution of optical pulses. A propagation kernel
known from the work done in the 1970s is used to obtain a distance-dependent nonlinear coefficient that cap-
tures all spatial effects within an effective nonlinear Schrödinger equation. We consider three specific beam shapes
(Gaussian, circular, and square) to study the impact of the shape, position, and curvature of optical beams on the
complex spatiotemporal dynamics specific to GRIN fibers. In particular, we focus on the impact of an input beam’s
shape on the modulation-instability sidebands and the generation of multiple dispersive waves when higher-order
solitons form inside a GRIN fiber. The results of our numerical analysis indicate that for beam widths chosen to
yield the same value of the effective mode area at the input end of the fiber, the nonlinear effects are pronounced
considerably when a Gaussian beam is launched into the fiber. We also found that even though the self-imaging
period is doubled when an off-centered Gaussian beam is launched into a GRIN fiber, it does not affect the nonlin-
ear evolution because the effective beam area still maintains the same periodicity, as long as the shift in the beam’s
center is not so large that it does not remain confined to the fiber’s core. ©2020Optical Society of America

https://doi.org/10.1364/JOSAB.379253

1. INTRODUCTION

Study of the nonlinear optical phenomena inside graded-index
(GRIN) multimode fibers has attracted considerable attention
in recent years [1–3]. Geometric parametric instability (GPI),
a kind of spatiotemporal instability occurring in GRIN fibers,
was studied first in 2003 [4] and observed in a 2016 experiment
[5]. Multimode solitons, whose formation attracted attention
during the 1990s [6–8], have also been observed and studied
in recent years [9–11]. Considerable effort has been dedicated
to examine the spatial-beam cleanup induced by the Kerr effect
[12–15]. Supercontinuum generation inside GRIN fibers is
also being studied [16–19]. In most of these studies, the shape
of the input beam is taken to be Gaussian, perhaps because
most lasers emit Gaussian-like beams. Moreover, it is assumed
that the beam is launched into a GRIN fiber such that its phase
front is planar (no curvature) at the input end of the fiber. So
far, almost nothing is known about how the nonlinear effects
inside a GRIN fiber are affected when the shape and curvature of
the input beam differ from that of a Gaussian beam. The reason
appears to be that the propagation problem is perceived to be
difficult for non-Gaussian input beams. Indeed, the variational
method used in 1992 assumed a Gaussian beam to study the

propagation of a continuous-wave (CW) beam inside GRIN
fibers [20].

The phenomenon of self-imaging, leading to periodic
restoration of the input shape of a Gaussian beam has been
found to play a crucial role in governing the nonlinear evolution
of short optical pulses inside GRIN fibers [2]. However, it is
well known that self-imaging is a linear property of any GRIN
medium for an input beam of arbitrary shape [21–23]. A modal-
expansion approach used in 1974 shows that the output field at
any point inside the GRIN fiber can be obtained, without any
reference to the fiber modes, using a propagation kernel that
is similar in nature to the one occurring in diffraction theory
[21]. This kernel can be used to describe evolution of optical
beams of arbitrary shapes inside a GRIN fiber and shows that all
beam shapes undergo self-imaging in a periodic fashion, and this
period does not depend on the beam shape or the phase-front
curvature. In this paper, we use this kernel to study the impact of
an input beam’s shape and curvature on the nonlinear effects in
GRIN fibers.

The paper is organized as follows. In Section 2, we review
the self-imaging theory and use it to show that the effective
nonlinear Schrödinger (NLS) equation, derived in the past for
input Gaussian beams and containing the nonlinear parameter
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γ (z) that oscillates periodically along the fiber’s length [24],
can be extended to pulsed beams of arbitrary spatial shapes. The
effects of beam shape appear in this equation through the form
of spatial oscillations of γ (z). In Section 3, we compare the γ (z)
oscillations for a Gaussian beam to the beams whose intensity
is uniform over a circular or square region. We also consider the
effects of a beam whose center is shifted from the center of the
fiber core. This case is interesting because a much larger number
of modes of the GRIN fiber are excited in view of the absence of
radial symmetry. In Section 4, we focus on the effects of input
beam shape on two major nonlinear phenomena: creation of
multiple sidebands through GPI or modulation instability and
evolution of higher-order solitons leading to the formation of
multiple dispersive waves. The effects of a curved phase front are
studied in Section 5, where we show that any curvature affects
the γ (z) oscillations significantly and breaks the axial symmetry
such that the minimum beam compression does not occur in
the middle of the self-imaging period. We also discuss how the
phase-front curvature affects the evolution of higher-order
solitons inside GRIN fibers. The main results are summarized in
the final section of this paper.

2. SELF-IMAGING OF PULSED OPTICAL BEAMS

We first consider the linear propagation of a weak CW beam
of frequency ω inside a GRIN fiber and neglect the nonlinear
effects. The refractive index of the GRIN fiber is assumed to
decrease radially inside the core of radius a from its value n1 at
the center to the cladding index nc as [25]

n2(x , y )= n2
1[1− 21(ρ/a)2], ρ =

√
x 2 + y 2, (1)

where1= (n1 − nc )/n1 plays an important role and is defined
in the same way as for step-index fibers [26]. The modes of
GRIN fibers are obtained by solving the Helmholtz equation for
the electric field Ẽ in the frequency domain:

∇
2Ẽ+ n2(x , y )k2

0 Ẽ= 0, (2)

where k0 =ω/c . This equation can be solved analytically to
find the optical modes of a GRIN fiber in the form of Hermite–
Gauss functions [25], if we assume that the index profile in
Eq. (1) applies for all values ofρ.

Any optical beam with the input field Ẽ (x , y , 0), in gen-
eral, excites multiple fiber modes that propagate with different
propagation constants βmn , where m and n are two integers.
If we denote the corresponding fiber modes by Fmn(x , y ), the
optical field E (x , y , z) at any point inside the GRIN fiber can
be written as

Ẽ (x , y , z)=
∑

m

∑
n

cmn Fmn(x , y ) exp(iβmnz), (3)

where the sum extends over the whole range of the two integers
(m, n = 0 to∞). We can find the expansion coefficients cmn in
terms of E (x , y , 0):

cmn =

∫∫
∞

−∞

F ∗mn(x , y )Ẽ (x , y , 0)dxdy . (4)

Substituting cmn into Eq. (3), we can sum the double series
following Ref. [21] to find Ẽ (x , y , z) in terms of a propagation

kernel:

Ẽ (x , y , z)=
∫∫

∞

−∞

K (x , x ′; y , y ′)Ẽ (x ′, y ′, 0)dx ′dy ′, (5)

where the propagation kernel K (x , x ′; y , y ′) is given by

K (x , x ′; y , y ′)=
β

2π i

(
b

sin(bz)

)
e iψ

× exp

[
i
2
βb cot(bz)(x ′2 + y ′2)

−
iβb

sin(bz)
(x x ′ + y y ′)

]
. (6)

Here,β = n1k0, b =
√

21/a , and the phaseψ is given by

ψ(x , y , z)= βz+
1

2
βb cot(bz)(x 2

+ y 2). (7)

The self-imaging property of the GRIN fiber arises from the
kernel in Eq. (6). It can be shown [3] that the kernel reduces to
the product of two delta functions at integer multiples of the
period 2π/b:

K (x , x ′; y , y ′)= δ(x − x ′)δ(y − y ′)e iβz. (8)

Hence, at distances z= 2mπ/b, where m is an integer, the
output field Ẽ (x , y , z) is identical to the input field Ẽ (x , y , 0).
Moreover, a mirrored image of the input field is formed at
shorter distances z= nπ/b, where n can be any odd integer.
Thus, for radially symmetric input fields such as a Gaussian
beam, the self-imaging period is given by

z p = π/b = πa/
√

21. (9)

For GRIN fibers, typically a = 25 µm and1= 0.01, resulting
in a self-imaging period of<1 mm.

The important question is how the self-imaging behavior
changes when the nonlinear contribution n2|E |2 to the refrac-
tive index is not negligible, where n2 is the Kerr coefficient and
|E |2 is the local intensity. It was shown in 1992 using a varia-
tional technique that the self-imaging of a Gaussian beam is not
affected much by the self-focusing induced by the Kerr nonlin-
earity [20], as long as the input power remains well below the
critical power required for beam collapse. This conclusion holds
for optical beams of all shapes. As the value Pc r exceeds 2 MW
for silica glass at wavelengths near 1 µm, self-imaging should
not be affected much by the self-focusing effects for peak-power
levels ∼100 kW [24]. However, for pulsed optical beams, the
temporal and spectral evolutions of pulses are affected consid-
erably by the spatial self-imaging of the beam. This is what we
focus on in this paper.

The temporal evolution of pulsed optical beams is governed
by a multi-dimensional nonlinear equation taking the form [24]

i
∂E
∂z
+

1

2β0
∇

2
T E −

β2

2

∂2 E
∂t2
− β01

ρ2

a2
E +

n2ω0

c
|E |2 E = 0,

(10)

where β0 = β(ω0),∇2
T is the transverse Laplacian operator, and

β2 takes into account the group-velocity dispersion (GVD).
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Although this equation can be solved numerically, such an
approach requires considerable computational resources. It
was found in 2017 that it can be reduced to a much simpler
equation [24], similar to that used for single-mode fibers, in
the regime in which temporal dynamics of the pulse does not
significantly affect spatial evolution of the pulsed beam. Using
E (r, t)= F (x , y , z)A(z, t), where F (x , y , z) governs the
spatial shape of the beam and A(z, t) represents its temporal
evolution along the fiber, the effective NLS equation has the
form

∂ A
∂z
+ i

β2

2

∂2 A
∂t2
= i γ̄ (z)|A|2 A. (11)

Its sole new feature compared to the standard NLS equation
is that the nonlinear parameter γ̄ (z) changes along the GRIN
fiber’s length in response to the spatial beam-width oscillations
induced by spatial self-imaging. We write this z dependence in
the form

γ̄ (z)=
ω0n2

c Aeff(z)
=

γ

f (z)
, f (z)=

Aeff(z)
Aeff(0)

, (12)

where the effective beam area Aeff(z) is defined as

Aeff(z)=

(∫∫
|F (x , y , z)|2dxdy

)2∫∫
|F (x , y , z)|4dxdy

= Aeff(0) f (z), (13)

and γ =ω0n2/c Aeff(0) is defined using the input value of Aeff.
In essence, f (z) governs the self-imaging induced changes in the
effective beam area.

3. SHAPE-DEPENDENT NONLINEAR
ENHANCEMENT

The shape and size of an optical beam change along a GRIN
fiber because of the graded nature of the refractive index inside
such a fiber. In particular, the beam undergoes a compression
phase before it recovers its original shape. Since the effective
beam area is reduced during the compression phase, the non-
linear effects are enhanced in a periodic fashion. Equation (13)
shows how the enhancement factor f −1(z) depends on the
beam shape governed by the function F (x , y , z). This function
can be calculated for any input beam using the propagation ker-
nel given in Eq. (6). In this section, we calculate f (z) for three
specific beam shapes and compare the extent of nonlinearity
enhancement for them.

A. Gaussian Beam

Consider first a Gaussian beam centered on the input facet of a
GRIN fiber. The input field E (x ′, y ′, 0) of such a beam has the
form

E (x ′, y ′, 0)= A0 exp

(
−

x ′2 + y ′2

2w2
0

)
, (14)

where A0 is the peak amplitude and w0 is the 1/e width of the
Gaussian beam (full width at half maximum about 1.665w0).
The output field at a distance z is obtained by inserting this
input field into Eq. (5) and evaluating the two integrals using the
known result

Fig. 1. Evolution over two self-imaging periods of four specific
input beams: (a) Gaussian; (b) off-centered Gaussian; (c) constant
intensity over a circular region; (d) constant intensity over a square
region. In all cases, intensity is color coded on a 40 dB scale.

∫
∞

−∞

exp(−px 2
+ q x )dx =

√
π

p
exp

(
q 2

4p

)
. (15)

Using E (x , y , z)= A0 F (x , y , z)e iφ , we can write F (x , y , z)
in the form

F (x , y , z)=
w0

w(z)
exp

(
−

x 2
+ y 2

2w2(z)

)
. (16)

The preceding result shows that a Gaussian beam retains its
shape inside the GRIN fiber but its width w(z) oscillates in a
periodic manner as

w(z)=w0

√
f (z), f (z)= cos2(πz/z p)+C 2 sin2(πz/z p),

(17)

where the parameter C is defined as

C =
z p

βS
, S = πw2

0 . (18)

Here, S is the beam’s cross-sectional area. Over one self-imaging
period z p , the beam width first decreases from w0 to w0C at
the mid-point and then recovers its input value at the end of
the period. Figure 1(a) shows how the Gaussian beam evolves
inside the fiber by plotting the intensity |F (x , y , z)|2 over two
self-imaging periods for C = 0.2. As seen there, the beam is
compressed by a factor of five at the midpoint of each period.
The effective beam area can be calculated analytically by sub-
stituting F (x , y , z) into Eq. (13). The result is found to be
Aeff(z)= Aeff(0) f (z), with Aeff(0)= 2πw2

0 .

B. Circular Beam

Next we consider an input beam with constant intensity over a
circular region. In cylindrical coordinates, the input field can be
written as
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E (ρ ′, φ′, 0)=

{
A0 if ρ ′ ≤ ρ0

0 otherwise,
(19)

whereρ0 is the radius of the circular beam. The field at a distance
z is found by writing Eq. (5) in the cylindrical coordinates as
follows:

E (ρ, φ, z)=
∫
∞

0

∫ 2π

0
K (ρ, ρ ′; φ, φ′)E (ρ ′, φ′, 0)ρ ′dφ′dρ ′,

(20)
where the kernel K (ρ, ρ ′; φ, φ′) takes the form

K (ρ, ρ ′; φ, φ′)
β

2π i

(
b

sin(bz)

)
e iβz

× exp

[
i
2
βb cot(bz)(ρ2

+ ρ ′2)−
iβbρρ ′

sin(bz)
cos(φ − φ′)

]
.

(21)

As E (ρ ′, φ′, 0)does not depend onφ′, the integration overφ′ in
Eq. (20) can be done using the result∫ 2π

0
exp

[
−i p cos(φ − φ′)

]
dφ′ = 2π J0(p), (22)

where J0 is the zero-order Bessel function. The integration over
ρ ′must be done numerically. Using r = ρ/ρ0, this integral takes
the form

E (r , φ, z)=
A0e iβz

iC sin(πz/z p)
exp

[
ir 2

2C
cot(πz/z p)

]
∫ 1

0
r ′ J0

(
r r ′

C sin(πz/z p)

)
exp

[
ir ′2

2C
cot(πz/z p)

]
dr ′,

(23)

where the parameter C is as defined as in Eq. (18) with S = πρ2
0 .

As expected, the field does not depend on φ, indicating that the
circular symmetry is preserved during the beam propagation.
Figure 1(c) shows how the circular beam evolves over two self-
imaging periods using C = 0.1. Note the fringe-like structure
appearing as the beam is compressed because of diffraction.
The effective beam area is found by doing the double integral in
Eq. (12) to obtain

Aeff(0)= πρ
2
0 , f (ξ)=

2
(∫
∞

0 r |F (r , ξ)|2dr
)2(∫

∞

0 r |F (r , ξ)|4dr
) . (24)

C. Square-Shaped Beam

As a third example, we consider the case of an input beam with
constant intensity over a square region. The input field in this
case is of the form

E (x ′, y ′, 0)=

{
A0 if |x ′| ≤ 1

2 l0 and |y ′| ≤ 1
2 l0

0 otherwise,
(25)

where l0 represents the length of each side. On substituting this
form into Eq. (5), the field at a distance z can be expressed as

E (x , y , z)=
A0e iψ

2iC sin(πz/z p)
V (x/l0, z/z p)V (y/l0, z/z p),

(26)
where the function V (X , Z) is defined as

V (X , Z)=
∫ 1

2

−
1
2

exp

[
π i

2C sin(πZ)
(cos(πZ)X ′2 − 2X X ′)

]
dX ′.

(27)

Figure 1(c) shows how the square-shaped beam evolves over
two self-imaging periods for C = 0.1 by calculating this inte-
gral numerically. Similar to the case of a circular beam, a large
number of fringes appear because of diffraction as the beam
is compressed. The function f (z) is calculated by doing the
double integral in Eq. (12) numerically and using the relation
Aeff(0)= l2

0 .

D. Off-Centered Gaussian Beam

When an input beam is launched into a GRIN fiber such that
its center coincides with the fiber’s axis, only radially symmetric
modes of the GRIN fiber are excited in view of the circular
symmetry. All three beam shapes considered so far fall into this
category. When the beam center is shifted from the fiber’s axis,
the radial symmetry is broken and many more modes are often
excited. Indeed, an off-centered input beam has been launched
intentionally in some experiments [19]. Even when an on-center
launch is desirable, it may be difficult to realize it.

For the simplicity of the following discussion, we consider an
off-centered Gaussian beam and assume that its center is shifted
from the fiber’s axis by an amount x0 along the x axis. The input
beam field in this case is given by

E (x ′, y ′, 0)= A0 exp
(
−[(x ′ − x0)

2
+ y ′2]/(2w2

0)
)
. (28)

The propagated field is found by following the same procedure
used in the case of the centered Gaussian beam. Both integrals
in Eq. (5) can still be done analytically using the result given
in Eq. (15). The spatial distribution F (x , y , z) in Eq. (12) is
modified for the shifted beam and is given by

F (x , y , z)=
w0

w(z)
exp

(
−
[x − x0 cos(πz/z p)]

2
+ y 2

2w2(z)

)
,

(29)

where the beam width w(z) is the same as in Eq. (17).
Figure 1(b) shows how the off-centered Gaussian beam evolves
over two self-imaging periods using x0 =w0 and C = 0.2.
The new feature is that the beam shifts its center as its width is
reduced in such a way that after a distance of z p , it is centered
on the opposite side at x =−x0. After that, the beam moves
to the right side to recover its original position at a distance of
2z p . In essence, the beam propagates in a zigzag manner, as
seen in Fig. 1(b). This doubling of the self-imaging period is
a consequence of the broken circular symmetry of an off-axis
input beam, The self-imaging theory in Section 2 predicts this
behavior, where it is found that the self-imaging period is indeed
2z p for such beams.
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4. IMPACT ON THE NONLINEAR EFFECTS

As seen from the effective NLS equation in Eq. (11), the effect of
spatial changes in the beam shape appear through the periodic
oscillations of the nonlinear parameter along the length of a
GRIN fiber. Periodic compression of optical beams reduces the
effective beam area in the middle of each self-imaging period,
which enhances the nonlinear effects through a larger value
γ̄ (z). Equation (12) shows that this periodic enhancement is
governed by a dimensionless function f −1(z). This provides
a simple way to study the impact of input beam shape on the
nonlinear evolution of pulsed optical beams inside a GRIN
fiber.

Figure 2 shows how f −1(z) varies over one self-imaging
period for the three beam shapes considered in Section 3. The
dashed curve for the Gaussian beam for a specific value C = 0.2
is relatively smooth and peaks in the middle, where the beam is
compressed most, resulting in the smallest beam area. A similar
behavior occurs for the beams with constant intensity over cir-
cular and square regions with two main differences, both related
to the diffraction properties of such beams. First, the amplitude
of the central peak is reduced considerably. Second, an oscilla-
tory structure appears near the beginning and the end of each
period. The origin of these oscillations is related to the fringe-
like diffraction pattern seen in Figs. 1(c) and 1(d). In the case
of an off-axis Gaussian beam, the function f (z) is found to be
identical to that of the on-axis Gaussian beam, suggesting that
the periodic movement of the beam center around the fiber’s
axis does not affect any nonlinear effect. This appears somewhat
surprising but can be understood by noting that the effective
beam area and its variations along the z axis are not affected by
movement of the beam center, as long as the initial shift x0 of
the beam center is small enough that the entire Gaussian beam
remains confined within the fiber’s core.

The results in Fig. 2 indicate that the beam shape will affect
all nonlinear effects whose behavior is governed by the effective
NLS equation in Eq. (11). To study the shape-induced changes,
we need to solve Eq. (11) numerically. In order to compare the
nonlinear effects for different beam shapes, we must ensure that
the initial value of γ at the input end is the same for all beams,
i.e., all beams should have not only the same optical power

Fig. 2. Variation of the enhancement factor f −1 over one self-
imaging period for the three beams considered in Section 3. The
inset clearly reveals the oscillatory structure in the case of circular and
square-shaped beams.

but also the same initial effective area Aeff(0). This area can
be calculated analytically for the Gaussian beam and is given
by Aeff(0)= 2πw2

0 . Its value is πρ2
0 for the circular beam and

l2
0 for the square beam. The same value Aeff(0) is ensured by

choosing the aperture-size parameters such that ρ0 =
√

2w0

and l0 =
√

2πw0. We stress that physical beam area S is not the
same in this situation. It is easy to show that S = πw2

0 for the
Gaussian beam, but it equals 2πw2

0 for the circular and square
beams. As a result, the C parameter given in Eq. (18) is doubled
for the Gaussian beam, compared to that of the circular and
square beams.

A. Impact on Modulation Instability

We first explore how different input beam shapes affect the
phenomenon of modulation instability, also known as GPI
and studied since 2003 in the context of a Gaussian input beam
[4,5]. It was found that GPI can produce a large number of
sidebands on both sides of the pump frequency even when a
CW Gaussian beam is launched in the normal-GVD region of
a GRIN fiber. The physical origin of these sidebands lies in the
periodic nature of the nonlinear parameter. The CW solution to
Eq. (11) is perturbed using

A(z, t)= (
√

P 0 + a) exp(iγ P0

∫ z

0
f −1(z′)dz′, (30)

where P0 is the input power and a(z, t) represents a small per-
turbation. Linearizing Eq. (11) in terms of a(z, t), we obtain

∂a
∂z
+ i

β2

2

∂2a
∂t2
= iγ P0 f −1(z)(a + a∗). (31)

This equation can be solved in the frequency domain by
assuming a(z, t)= a1e i�t

+ a2e−i�t and expanding
the enhancement factor in a Fourier series as f −1(z)=∑

cm exp(im2πz/z p). Following the analysis given in Ref.
[27], one finds that the phase matching provided by the non-
linear Kerr grating (formed through self-imaging) leads to an
infinite number of sideband pairs at frequencies shifted fromω0

by

�m =±

(
2πm
β2z p

−
2c 0

β2L NL

)1/2

, (32)

where L NL = 1/(γ P0) is the nonlinear length, and the integer
m can take both positive and negative values. As the self-imaging
period (z p < 1 mm) is much shorter than L NL in practice, side-
bands form for positive values of m in the case of normal GVD
(β2 > 0). In contrast, when β2 < 0, sidebands form for m = 0
and for negative values of m. The amplitude of the m th-order
sidebands grows from noise as e gm z, where the gain g m depends
on the magnitude cm of the Fourier coefficient [27].

The important question is how the amplitudes and frequen-
cies of the GPI sidebands are affected when the beam shape
is not Gaussian. It should be clear that the Fourier coefficient
cm will change for different beam shapes because the func-
tion f (z) changes for them (see Fig. 2). Table 1 lists the value
of cm for m = 0 to 4 for the Gaussian, circular, and square
beam shapes considered in Section 3. As seen from Eq. (32),
the sideband frequencies depend only on the coefficient c 0.
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Table 1. Values of Several Fourier Coefficients
Associated with the Three Beams Discussed in
Section 3

|c0| |c1| |c2| |c3| |c4|

Gaussian 5.0000 3.3333 2.2222 1.4815 0.9877
Circular 4.0573 2.3321 1.1096 0.3502 0.0030
Square 3.7669 2.1457 1.0904 0.4181 0.0725

In the case of anomalous GVD, the frequencies of the m = 0
sidebands scale as

√
c 0, and, thus, they will be different for the

three beam shapes. This sideband pair does not form in the
case of normal GVD. As the first term in Eq. (32) dominates in
this situation, the sideband frequencies are not affected much
by the beam shape for m 6= 0. However, the amplitudes of all
sidebands depend on the beam shape through the magnitude of
the Fourier coefficients cm , irrespective of whether the GVD is
normal or anomalous at the pump wavelength.

To verify that the sideband amplitudes are indeed differ-
ent for different beam shapes, we consider the propagation of
a CW pump beam at 1064 nm with a peak power of 50 kW
inside a GRIN fiber with a core refractive index n1 = 1.47 and
a self-imaging period z p = 0.615 mm. The GVD parameter is
β2 = 20 ps2/km. For the Gaussian beam, we choose C = 0.2
and determine the corresponding spot size as w0 = 10.6 µm.
The circular and square beams with the same initial effec-
tive area have a radius of ρ0 = 15 µm and side length of
l0 = 26.6 µm, respectively. At z= 0, the nonlinear param-
eter γ̄ = 0.267 W−1/km is the same for all three beam shapes
considered. The nonlinear length for these parameters is only
7.5 cm. We solve Eq. (11) numerically with a fourth-order
Runge–Kutta method in the interaction picture [26]. Following
Ref. [24], to seed the sideband formation, we add a narrow tem-
poral spike (width 1 fs) with a peak power equal to one-tenth of
the CW pump power. The function f (z) calculated in Section 3
is used for three different beam shapes. Figure 3 compares the
output spectrum at a distance of 15 cm for the (a) Gaussian, (b)
circular, and (c) square-shaped beams.

Several things are noteworthy in Fig. 3. First, the frequencies
of the spectral sidebands are the same for all three beam shapes.

Fig. 3. Comparison of GPI sidebands after 15 cm of propagation
for (a) Gaussian, (b) circular, and (c) square-shaped beams. In each
case, the CW peak power is 50 kW, and the beam size is chosen such
that the effective beam area Aeff(0) is the same. The red lines show the
frequencies predicted by Eq. (32).

This is expected since the term containing the Fourier coeffi-
cient c 0 in Eq. (32) is negligible for m 6= 0. We have verified
that the frequency of the m = 0 sideband forming in the case of
β2 < 0 indeed is different for different beam shapes. Second, the
sideband amplitudes in Fig. 3 change considerably for different
beam shapes. This is understood by noting that the sidebands
grow from the initial seed as am(z)= am(0) exp(g mz), where
the gain coefficient g m depends on the Fourier coefficient cm as
g m = 2γ P0|cm | [27]. Since cm ’s are the largest for a Gaussian
beam in Table 1, the sideband amplitudes are the largest for this
beam. Indeed, the amplitude ratios in Fig. 3 agree quite well
with the ratio expected by comparing the cm coefficients for
different beam shapes. The main point to note is that although
there are quantitative differences in the amplitudes of the GPI
sidebands, the overall spectral features are remarkably similar for
all beam shapes.

B. Evolution of Higher-Order Solitons

When a short optical pulse propagates in the anomalous-GVD
region of a GRIN fiber, it forms a high-order soliton, whose
evolution is significantly affected by the nonlinear index grating
created by the spatial self-imaging [17–19]. In particular, this
grating creates multiple dispersive waves at specific frequencies
governed by a phase-matching condition [16]. Similar to the
case of GPI, one expects that the temporal and spectral evolu-
tion of a high-order soliton would be affected considerably by
the beam shape. To study this impact, we first extend Eq. (11)
to include the higher-order effects resulting from third-order
dispersion (TOD) and intrapulse Raman scattering [26]:

∂ A
∂z
+ i

β2

2

∂2 A
∂t2
+
β3

6

∂3 A
∂t3
= iγ f −1(z)

× A(z, t)
∫
∞

0
R(t ′)|A(z, t − t ′)|2dt ′, (33)

where R(t)= (1− f R)δ(t)+ f R h R(t), with f R = 0.18. Here,
β3 accounts for the TOD effects, and the Raman response func-
tion h R(t) includes intrapulse Raman scattering.

We solve this equation numerically assuming that a pulsed
beam at a wavelength of 1550 nm is launched into the same
GRIN fiber used for Fig. 3. At this wavelength, the GVD
and TOD parameters have values β2 =−22 ps2/km and
β3 = 1.32× 10−1 ps3/km. Once again, we set the C parameter
of the Gaussian beam as C = 0.2 and determine the spot size and
radius of the Gaussian and circular beams, respectively, such that
both beams have the same initial effective area. The top and bot-
tom rows in Fig. 4 compare the temporal and spectral features
for the Gaussian and circular beams, respectively, at a distance
of 10 cm. The initial amplitude of the input pulse is taken to be
A(0, t)=

√
P0sech(t/T0), with T0 = 30 fs, which corresponds

to a full width at half maximum of about 53 fs. The peak power
is chosen such that the soliton order, N = γ P0T2

0 /|β2|, has a
value of two [26].

Figure 4 shows most of the temporal and spectral features
expected for a second-order soliton even inside a single-mode
fiber. The soliton undergoes fission at a distance of about 1 cm,
forming first-order solitons whose spectra shift toward the red
side through intrapulse Raman scattering. Whereas a single
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Fig. 4. (a) Temporal and (b) spectral evolution patterns over a dis-
tance of 10 cm for a second-order soliton propagating inside a GRIN
fiber as a Gaussian beam. (c), (d) Comparison of the evolution patterns
for a circular beam. In all cases, intensity is color coded on a 50 dB scale.

dispersive wave is generated in the case of a single-mode fiber,
the nonlinear index grating resulting from spatial self-imaging
of the beam creates multiple dispersive waves in the case of a
GRIN fiber. The frequency of these waves is governed by a
phase-matching condition of the form [24]

β2

2
�2
+
β3

6
�3
− δβ1�=

2πm
z p
+

c 0γ P1

2
, (34)

where P1 is the peak power of the shortest soliton formed after
the fission process, and δβ1 accounts for changes in the group
velocity of the soliton from its inital value. The first term on
the right side results from the nonlinear index grating, and
it contains m that can take any integer value. The choice of
m = 0 corresponds to the single dispersive wave formed inside
a single-mode fiber. Solutions to Eq. (34) for m 6= 0 provide
frequencies of dispersive waves formed only in GRIN fiber and
whose formation depends to some extent on the spatial shape of
the beam.

A comparison of the top and bottom rows in Fig. 4 shows
again that although quantitative differences exist, most quali-
tative features are independent of a specific beam shape. We
estimated δβ1 from the slope of the tilted soliton in Fig. 4 and
used Eq. (34) to calculate the frequency of the dispersive waves
for m = 0. The calculated values were 112 THz and 109 THz
for the Gaussian and circular-shaped beams, respectively. These
values agree to within 0.5% with the corresponding spectral

peaks in Fig. 4. Another quantitative difference is that the dis-
persive waves formed for m 6= 0 in Eq. (34) are less intense in
the case of a circular beam compared to a Gaussian beam. The
frequencies of these waves are also slightly different because of
the presence of c 0 in Eq. (34). However, this difference is too
small to be noticeable in Fig. 4 because the first term on the right
side of Eq. (34) dominates in practice. Another difference is
that the Raman-induced spectral shift is larger in the case of the
pulsed Gaussian beam. We have not shown the case of a square-
shaped beam because its evolution is almost identical to that of a
circular beam. This is so because we have chosen beam sizes such
that the effective beam areas are the same for both beams.

We briefly discuss the impact of higher-order dis-
persion terms. We carried out numerical simulations
by including the fourth-order dispersion term using
β4 =−1.90× 10−4 ps4/km. As is well known from past work
[28], an additional dispersive wave can form in this situation
even in the absence of self-imaging. We observed such a wave but
its amplitude was relatively small. Although sideband frequen-
cies shift slightly when fourth-order dispersion is included, the
overall qualitative behavior is not affected significantly.

5. EFFECTS OF PHASE-FRONT CURVATURE

It has been assumed implicitly so far that the optical beam
has a plane phase front at the input end of the fiber located at
z= 0. This may not always be the case in practice. In fact, the
curvature of the phase front has been tailored in some exper-
iments to control and optimize a specific nonlinear process
[29,30]. As an example, we consider an input Gaussian beam
whose phase front is curved such that the spatial phase varies in
a parabolic fashion in the transverse plane. The input field for
such a Gaussian beam can be written as

E (x ′, y ′, 0)= A0 exp

(
−
(1+ i Sc )(x ′

2
+ y ′2)

2w2
0

)
, (35)

where Sc controls the phase-front curvature. Here, we refer to
Sc as the spatial chirp parameter, in analogy with the temporal
chirp of pulses having a parabolic phase profile.

We can study the spatial evolution of such a Gaussian wave
using the self-imaging theory in Section 2. This requires
performing integrations over x ′ and y ′ after substituting
E (x ′, y ′, 0) from Eq. (35) into Eq. (5). The process is similar to
that carried out in Section 3.A for a Gaussian beam with Sc = 0.
After considerable algebra, we find that the spatial distribution
F (x , y , z) has the same functional form as in Eq. (16) with the
beam width oscillating asw(z)=w0

√
f (z), but the functional

form of f (z) is modified as

f (z)= [cos(πz/z p)− Sc C sin(πz/z p)]
2
+C 2 sin2(πz/z p).

(36)

As expected, we recover the result given in Eq. (17) for Sc = 0
corresponding to a Gaussian beam with no phase-front
curvature.

The function f (z) given in Eq. (36) has several novel features
introduced by the spatial chirp Sc . Notice first that f (z)= 1
at z=mz p , where m is any integer, indicating that the perio-
dicity of spatial oscillations is not affected by the spatial chirp.
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Fig. 5. (a) Beam-width oscillations of spatially chirped Gaussian
beams over two self-imaging periods for Sc =−5, 0, 5 with C = 0.2.
(b) Corresponding nonlinear enhancement f −1(z) over the same
distance shown on a logarithmic scale.

However, the nature of beam-width oscillation changes consid-
erably with Sc . Figure 5(a) shows how the beam width oscillates
over two periods for Sc =±5; the case of Sc = 0 is also shown
for comparison. The major change induced by the spatial chirp
is that the minimum beam width no longer occurs in the middle
of each period. For a positive value of Sc , the minimum value
occurs before the midpoint and is smaller than the Sc = 0 case.
However, the beam expands after this minimum, and the beam
width becomes larger than the initial width over a considerable
part of the period. The exact opposite occurs for a negative value
of Sc . Now, the beam expands during the first half of the cycle,
and the beam width becomes larger than the initial width over a
considerable part of the cycle. The minimum value occurs after
the midpoint during the compression phase.

As one would expect, changes in the beam width trans-
late into changes in the effective beam area through
Aeff(z)= 2πw2(z)= Aeff(0) f −1(z), i.e., the inverse func-
tion f −1(z) controls the nonlinear enhancement. Figure 5(b)
shows the enhancement of the nonlinear parameter γ over
two self-imaging periods for Sc =±5; the case of Sc = 0 is also
shown for comparison. As expected, the enhancement factor is
larger compared to the unchirped case at the point of maximum
beam compression, but it also becomes less than one over a
considerable portion of the cycle as the beam expands.

It is not clear from these results to what extent the phase-front
curvature is helpful in enhancing the nonlinear effects. We use
numerical simulations to examine this issue further. We use the
same simulation parameters used for Fig. 4 but consider the
case of a pulsed Gaussian beam with a curved phase front by
varying the value of Sc . Figure 6 compares the output spectra at
a distance of 10 cm for values of Sc =−5, 0, and 5. The spectra
look quite similar, but a closer inspection reveals that the dis-
persive waves emitted on the red side of the input spectrum are
enhanced when the phase front of the Gaussian beam is curved.
This asymmetry has its origin in the asymmetric evolution of
the beam width within a self-imaging period seen in Fig. 5.
Mathematically speaking, the enhancement factor f −1(z) does
not remain an even function around the mid-point z p/2. It is
this symmetry breaking that leads to spectral asymmetry in both
the formation of GPI sidebands and generation of dispersive
waves.

Fig. 6. Comparison of optical spectra at a distance of 10 cm for
(a) Sc =−5, (b) Sc = 0, and (c) Sc = 5. A pulsed Gaussian beam with
a curved phase front is launched into the GRIN fiber when Sc 6= 0.

For a comprehensive treatment, we also consider a circular-
shaped input beam with phase-front curvature. The input field
then takes the form

E (ρ ′, φ′, 0)=

{
A0 exp

(
−

i Sc ρ
′2

ρ2
0

)
if ρ ′ ≤ ρ0

0 otherwise.
(37)

Note from the relationship ρ0 =
√

2w0 established earlier, the
phase-front curvature of the circular-shaped beam is equivalent
to that considered in the Gaussian case. Following the procedure
outlined in Section 3.B, we find that the spatial evolution of the
chirped circular beam is described by

E (r , φ, z)=
A0e iβz

iC sin(πz/z p)
exp

[
ir 2

2C
cot(πz/z p)

]

×

∫ 1

0
r ′ J0

(
r r ′

C sin(πz/z p)

)

× exp

[
ir ′2

(
cot(πz/z p)

2C
− Sc

)]
dr ′, (38)

which reverts back to Eq. (23) when Sc = 0. Figure 7 shows how
our choice of the spatial chirp parameter Sc =−5, 0, 5 impacts
the enhancement factor f −1(z) of the nonlinear parameter
γ over one self-imaging period. Qualitatively, we observe the
same behavior as in the case of the chirped Gaussian pulse.
Introduction of the spatial chirp breaks up the symmetry of
the enhancement factor f −1(z) over each self-imaging period.
In the case of Sc = 5, it peaks before the midpoint and then
remains below one over a significant part of the period. This
behavior is reversed in the case of negative Sc . We carried out
a numerical simulation to study the impact of the spatial chirp
on beam propagation. Once again we use the same simulation
parameters used for Fig. 4 and propagate over a distance of
10 cm. By comparing the output spectra for Sc =−5 and 5
against that of Sc = 0, we note that similar to the case of the
chirped Gaussian pulse, the dispersive waves generated on the
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Fig. 7. Nonlinear enhancement factor f −1(z) of spatially chirped
circular-shaped beams over one self-imaging period for Sc =−5, 0,
and 5 with C = 0.1. Results shown on a logarithmic scale.

red side of the input spectrum experience greater enhancement
when the phase front of the circular-shaped beam is curved. This
can be attributed to the asymmetric nature of the enhancement
factor over each self-imaging period. Given the observation of
similar spectral features as in Fig. 6, we have chosen not to show
the output spectra of the spatially chirped circular beams.

6. DISCUSSION AND CONCLUSION

In this paper, we have used the well-known periodic self-imaging
of optical beams inside a GRIN fiber to study the impact of spa-
tial shape and phase-front curvature on the temporal and
spectral evolutions of optical pulses inside the fiber. The main
assumption used in our work is that an effective NLS equation
[24], containing a periodically oscillating nonlinear parameter
γ (z), includes all spatial effects, but the spatial evolution is not
affected by temporal dynamics of the pulse. This clearly cannot
be valid under all conditions, but a domain of input parameters
exists where this assumption has been found to be a reasonable
one.

To ensure that our input parameter lies in the regime where
the simple NLS equation used in this work can be applied,
we solved numerically the four-dimensional (4D) equation
given in Eq. (10) for the case in which a circular beam (constant
intensity over a circular region) is launched into the GRIN fiber.
The power P (z, t) was calculated by integrating |E |2 over the
beam cross section. The results are shown in Fig. 8, where we
show the temporal and spectral evolutions of the pulsed beam.
This figure should be compared with Figs. 4(c) and 4(d) for
which the 2D NLS equation was used with the identical input
parameters (except that the evolution is shown over 10 cm). It is
hard to notice any visible differences because the simpler model
captures all temporal and spectral features reasonably accurately.

To reveal the quantitative differences, we compare in Fig. 9
the optical spectra at a distance of 5 cm for the 2D and 4D
numerical simulations in the case of a pulsed circular-shaped
beam with all identical input parameters. It is evident that
almost all qualitative features are produced by the simpler 2D
model, although some quantitative differences do remain. For
example, note that the amplitudes of the dispersive waves are

Fig. 8. (a) Temporal and (b) spectral evolution of a pulsed circular
beam over a distance of 5 cm inside a GRIN fiber using the 4D numeri-
cal model with input parameters identical to those used in Figs. 4(c)
and 4(d).

Fig. 9. Comparison of output spectra at a distance of 5 cm for the
2D and 4D numerical simulations in the case of a pulsed circular-
shaped beam with all identical input parameters. The thin blue line
represents the input spectral profile.

larger in the 4D simulation compared to those in the 2D case.
This could be a real effect but may also be related to the spatial
resolution used in the 4D simulations. Even though these sim-
ulations took more than 24 h on a modern laptop, the spatial
grid in the x and y directions had only 128 points. Nevertheless,
the results shown in Fig. 9 show that the 2D model is capable
of capturing most of the temporal and spectral features when
pulsed beams containing a train of femtosecond pulses evolve
inside GRIN fibers under the influence of Kerr and Raman
nonlinearities.

In conclusion, we have presented a general framework capa-
ble of describing the nonlinear propagation of pulsed optical
beams of arbitrary shapes and phase fronts inside a GRIN fiber.
The main assumption made is that the spatial self-imaging
features of the beam are not affected by the temporal evolu-
tion of optical pulses. A propagation kernel known from the
work done in the 1970s is used to obtain a distance-dependent
nonlinear coefficient that captures all spatial effects within an
effective 2D NLS equation. We have considered three beam
shapes (Gaussian, circular, and square) to study the impact
of the shape, position, and curvature of optical beams on the
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complex spatiotemporal dynamics specific to GRIN fibers.
In particular, we focused on the effects of input beam shape
on the creation of GPI sidebands and the generation multiple
dispersive waves when higher-order solitons form and propagate
inside a GRIN fiber. The results of our numerical analysis indi-
cate that for beam widths chosen to yield the same value of the
effective mode area at the input end of the fiber, the nonlinear
effects are pronounced considerably when a Gaussian beam is
launched into the fiber. We also found that even though the self-
imaging period is doubled when an off-centered Gaussian beam
is launched into a GRIN fiber, it does not affect the nonlinear
evolution because the effective beam area still maintains the
same periodicity, as long as the shift in the beam’s center is not so
large that it does not remain confined to the fiber’s core.

Funding. National Science Foundation (ECCS-1807735,
ECCS-1933328).
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