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Periodic self-imaging of optical beams inside graded-Index (GRIN) fibers has been known for more than 45 years. 
It has been found in recent years that spatial self-imaging also affects the nonlinear temporal evolution of optical 
pulses inside such fibers. In a 1974 paper that I coauthored with Prof Ghatak [1], it was shown that, in the absence 
of the nonlinear effects, the optical field at any point inside the GRIN fiber can be written in an analytic form 
without any explicit reference to its modes. The result was in the form of a propagation kernel that reproduced 
the input field precisely in a periodic fashion along the length of the GRIN fiber (self-imaging property).We apply 
this kernel first to a Gaussian beam and discuss how self-imaging affects the nonlinear effects such as modulation 
instability and supercontinuum generation. We then consider the impact of the spatial shape and position of the input 
beam (at the input facet of the fiber) on the nonlinear effects by considering off-center launch of a Gaussian beam 
and a circular beam with uniform intensity. The results show that the results obtained in our 1974 paper are still 
useful for studying nonlinear optical phenomena in modern GRIN fibers © Anita Publications. All rights reserved.
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1 Introduction

 I was a graduate student from 1969 to 1974 at the Indian Institute of Technology Delhi (IITD), where 
I had the pleasure of having Prof Ajoy Ghatak first as a teacher and then as a mentor. Even though he was 
not my thesis adviser, I coauthored a paper with him that was published in November 1974 (close to his 35th 
birthday). This paper studied propagation of partially coherent light through a graded-index (GRIN) fiber [1]. 
Such fibers were studied during the 1970s, motivated mostly by their applications in optical communication 
systems [2-5]. The interest in GRIN fibers declined during the 1980s as the use of single-mode fibers became 
dominant for such systems. It was only after 2010 that multimode fibers attracted renewed attention for 
enhancing the capacity of optical communication systems through space-division multiplexing [6-8]. This 
revival led to a resurgence of interest in GRIN fibers, especially in their nonlinear properties [9-14]. Among 
the nonlinear phenomena that have attracted attention are soliton formation inside GRIN fibers [10, 15], 
geometric parametric instability [11], and spatial-beam cleanup [12]. Our 1974 paper has not been referenced 
in the recent literature. I discovered in 2018 that this paper is quite relevant for nonlinear propagation in 
GRIN fibers and have pointed this out in my recent review on GRIN fibers [16]. At the occasion of the 80th 
birthday on Nov 9, 2019 of Prof Ghatak, I discuss here how our collaboration is making an impact even after 
45 years.
 The paper is organized as follows. In Section 2, I discuss theory behind self-imaging using a modal-
expansion approach and show that the output field at any point inside the fiber can be obtained, without any 

Corresponding author :
e-mail: govind.agrawal@rochester.edu (Govind P Agrawal)



488 Govind P Agrawal

reference to the fiber modes, using a result first obtained in our 1974 paper. I apply this kernel in Section 3 to 
study the propagation of a Gaussian beam inside a GRIN fiber and recover a known result for its periodically 
varying beam width. The nonlinear effects are discussed in Section 4, where I present an effective nonlinear 
Schrödinger equation that includes the effects of periodic self-imaging. I show in Section 5 how the self-
imaging theory of Section 2 can be sued to study the impact of input beam’s position and shape on the 
nonlinear phenomenon such as modulation instability. Finally, the main results are summarized in Section 5.

2 Self-imaging in GRIN fibers

 The modes of GRIN fibers are obtained by solving the Helmholtz equation
 ∇2E + n2(x, y) k2

0E = 0. (1)
where k0 = ω/c at the optical frequency ω. The refractive index of most GRIN fibers decreases radially inside 
the core of radius a from its value n1 at the center to the cladding index nc as [17]
 n2(x, y) = n2

1 [1 − 2∆ (x2 + y2)/a2], (2)
where the parameter ∆ = (n1 – nc)/n1 plays an important role and is defined in the same way as for step-index 
fibers [18]. Although a numerical approach is necessary in general, Eq (1) can be solved analytically if we 
assume that the index profile in Eq (2) applies for all values of x and y. Assuming that the electric field varies 
as E(x, y, z) = x̂F(x, y)eiβz, the fiber modes are obtained by solving

 ∂2F
∂x2  + ∂

2F
∂y2  + [n2(x, y) k2

0 – β2]F = 0.  (3)

where β is the propagation constant. The GRIN problem is closely related to finding the quantized energy 
states of a two-dimensional harmonic oscillator. In both cases, the solution for F(x, y) are related to the 
Hermite–Gaussian functions.
 In the case of a GRIN fiber, the modes are denoted as LPmn, where m and n are two integers used 
for labeling different modes. Their modal distribution Fmn(x, y) and propagation constants βmn are known. 
We refer to Ref. [17] for the expressions of mode profiles Fmn(x, y) and write here the modal propagation 
constants given by

 βmn = n1k0 1 – 2(m+n–1)
n1k0a

2∆ 

1/2

.
 

(4)

For most GRIN fibers, k0a	≤	1 and ∆ ≤ 0.01. As a result, as long as m + n is not too large, we can expand βmn 

in a binomial series and approximate it as
	 βmn ≈ n1k0 – (m + n – 1) 2∆/a. (5)
 This equation reveals the most important feature of the modes of a GRIN fiber. It shows that the 
propagation constants modes form a ladder-like structure with equal spacing between any two neighboring 
modes. This feature is analogous to the energy levels of a harmonic oscillator and is the physical mechanism 
behind the self-imaging phenomenon in GRIN fibers.
 An optical beam with the input field E(x, y, 0), in general, excites multiple fiber modes such that
 E(x, y, 0) = ∑

m
 ∑
n

 cmn Fmn(x, y), (6)

where the sum extends over the whole range of the two integers (m, n = 0 to ∞) and we assume that all modes 
have been normalized such that

 ∫∫
∞

–∞
Fmn (x, y) F *

m'n'(x, y)dx dy = δmm' δnn' . (7)

 The expansion coefficients cmn are found by multiplying Eq (6) with F *
m'n'(x, y) and integrating over 

the whole transverse plane. The result is given by
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 cmn = ∫∫∞–∞ F *
m'n'(x, y) E(x, y,0) dx dy (8)

 The optical field E(x, y, z) at any point inside the GRIN fiber is obtained by multiplying each mode 
with a phase factor such that
 E(x, y, 0) = ∑

m
 ∑
n

 cmn Fmn(x, y) exp(iβmn z). (9)

Substituting cmn from Eq (8), we can write the result in the form

 E(x, y, 0) = ∫∫∞–∞  K(x, x' ; y, y') E (x, y', 0) dx' dy'  (10)
where the propagation kernel is given by

 K(x, x'; y, y') = ∑
m

 ∑
n

 Fmn(x, y) F *
mn(x', y') eiβmnz. (11)

 The form of Eq (10) is similar to that used for diffraction of optical beams inside a homogeneous 
medium of constant refractive index. If the double sum in Eq (11) can be evaluated in a closed form, the 
resulting kernel will include all of the excited modes of a GRIN fiber, without any explicit reference to them. 
It was shown [1] in 1974 that the double sum can be carried out analytically for GRIN fibers because of the 
ladder-like structure of the modal propagation constants [1]. The final result is given by

 K(x, x'; y, y') = 
β

2πi 
beiψ

sin(bz)  exp 
iβb

2sin(bz) [cos(bz)(x' 2 + y' 2) –2(xx' + yy')]
 (12)

where β = n1k0, b	= √2∆/a, and the phase ψ depends only on the location of the point r = (x, y, z) as

 ψ(r) = βz	+ 12  βb	cot(bz)(x2 + y2).  (13)

Noting that sin(bz)/b	= z in the limit b	→ 0, it is easy to see that the kernel in Eq (14) reduces to

 K(x, x'; y, y') = 
beiβz
2πiz exp 

iβ
2z

[(x – x')2 + (y – y')2]

 (14)

which is the form expected for a homogeneous medium of constant refractive index.
 It is well known that a GRIN fiber reproduces its input field periodically along its length. This self-
imaging property follows from the observation that the kernel in Eq (12) is reduced to the form
 K(x, x'; y, y') = δ(x − x' ) δ(y − y' )eiβz (15)
at distances that are integer multiples of the fundamental period 2π/b. This can be seen by noting that cos(bz) 
can be replaced with 1 at such distances and K in Eq (12) can be written as K = f (x – x') f (y – y')eikz, where 
the function f (x) is defined as

 f (x) = p
p e–px2,   p = 

βb
2isin(bz)

. (16)

 It is easy to see that ∫∞–∞  f (x) dx = 1. At distances z = 2mπ/b, where m is an integer, p becomes 
infinitely large, and f (x) is reduced to the delta function δ(x). It follows from Eqs (10) and (15) that the field 
E(r) becomes identical to the input field at all such distances, resulting in self-imaging.
 Self-imaging also occurs at a shorter distance zp = π/b	with one major difference. In this case, the 
delta functions in Eq (15) are replaced with δ	(x + x') and δ	(y + y'). As a result, E(x, y, zp) = E( x, y, 0), i.e., 
the image is flipped in both transverse directions. If the input field is radially symmetric, the sign changes 
have no impact, and the input field is reproduced (self-imaging) for the first time at the distance zp and then 
periodically at distances that are multiples of zp. It is important to stress that self-imaging at the distance 2zp 
occurs for any arbitrary input field, without any restriction on its functional form. This is the reason why 
GRIN rods can be used as a lens. We refer to a 1976 paper for further details on the imaging characteristics of 
a GRIN medium [3]. In particular, it can be shown that the ratio f = cot(bz)/b	plays the role of the focal length 
of such GRIN lenses. Self-imaging can occur even when the input beam is only partially coherent [19].
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3 Self-imaging of a CW Gaussian beam

 A Gaussian-shape input beam is often launched into a GRIN fiber. It is thus useful to apply Eq (10) 
to an input beam for which

 E(x, y, 0) = A0 exp – x2+y2

2w2
0

,
 (17)

where A0 is the peak amplitude and w0 is the spot size(1/ewidth )of the Gaussian beam. We can find the 
electric field at any point r = (x, y, z) inside the fiber by using Eq (17) in Eq (10) together with the kernel in 
Eq (14).The two integrations can be performed by using the known integral

 ∫∞–∞  exp (–px2 + qx)dx = π/p  exp(q2/4p).  (18)
The final result can be written as
 E(r) = A0F(r) exp[iφ (r)],  (19)
where the beam shape is governed by

 F(r) = 
w0

w(z)  exp – (x2 + y2)
2w2(z) ,

 (20)

and the phase φ(r) is given by

 φ(r) = 
β

2w
dw
dz (x2 + y2) + βz + tan–1(C tanbz). (21)

Clearly, the shape of the beam remains Gaussian but its spatial width evolves with z in a periodic fashion as

 w(z) = w0 cos2(πz/zp) + C2 sin2(πz/zp) .  (22)
Here, the spatial period zp and parameter C are defined as

 zp = πa
2Δ

, C = 
zp/β
πw2

0
, (23)

Fig 1. Evolution of a Gaussian beam inside a GRIN fiber over two self-imaging periods for C = 0.5. 
Cross-section along the y = 0 plane is shown with a color-coded intensity distribution.

 These results show that the amplitude and width (also phase) of a Gaussian beam change in a 
periodic fashion such that the beam recovers all of its input features periodically at distances z = mzp (m 
is any positive integer) because of the self-imaging phenomenon. At distances z = (m +1/2)zp, the beam’s 
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width takes its minimum value w0C, i.e., C governs the extent of beam compression during each cycle. As an 
example, Figure 1 shows the evolution of a Gaussian beam over two periods along the fiber’s length using C 
= 0.5. For this value of C, the beam width is reduced by a factor of two at the point of maximum compression 
and its peak intensity is enhanced by a factor of 4. Compression by a factor of 10 and intensity enhancement 
by a factor of 100 can be realized by making C = 0.1. 
 Let us estimate the values of two parameters defined in Eq (23) for typical GRIN fibers. Using ∆ = 
0.01 and a = 25 µm (typical values for commercial GRIN fibers), we find zp = 0.55 mm, a remarkably short 
distance at which self-imaging first occurs inside such a GRIN fiber. Assuming w0 = 8 µm and using β	= 
2πn1/λ with n1 = 1.45 and λ = 1.06 µm, we find C ≈ 0.3, indicating that the beam width is reduced to 30% of 
its initial value at zp /2, before it recovers its input value at a distance of zp. Even smaller values of C can be 
realized in practice by increasing the initial spot size w0 of the Gaussian beam. Figure 2 shows how the ratio 
w/w0 varies over one self-imaging period for several values of the parameter C.
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Figure 2: Beam-width ratio w/w0 plotted over one self-imaging period for several values of the C parameter.

self-imaging first occurs inside such a GRIN fiber. Assuming w0 = 8 µm and using β = 2πn1/λ with n1 = 1.45 and
λ = 1.06 µm, we find C ≈ 0.3, indicating that the beam width is reduced to 30% of its initial value at zp/2, before
it recovers its input value at a distance of zp. Even smaller values of C can be realized in practice by increasing the
initial spot size w0 of the Gaussian beam. Figure 2 shows how the ratio w/w0 varies over one self-imaging period for
several values of the parameter C.

We should ask what happens to the self-imaging property of GRIN fibers when input power becomes large enough
that the Kerr nonlinearity of the silica material cannot be ignored. It is known that the Kerr contribution to the refractive
index can lead to self-focusing of an optical beam with intensity I even inside a homogeneous medium of constant
refractive index. As a GRIN medium also reduces the beam size, the two effects may act together in such a way
that catastrophic self-focusing occurs even at a shorter distance. Clearly, self-focusing can destroy the self-imaging
property when input power is close to Pcr. The important question is whether self-imaging can occur when input
power is well below Pcr but the nonlinear effects cannot be ignored. This question was answered in 1992 by solving
the Gaussian-beam propagation problem with the variational technique [21], after adding the nonlinear contribution
n2I to the refractive index n(x,y) in Eq. (2). It was found that the beam width oscillates as indicated in Eq. (22) with
the same period zp but the parameter C in Eq. (23) is modified as

C =
√

1− (P/Pcr)

(
zp/β
πw2

0

)
. (24)

Even though the Kerr nonlinearity reduces the value of C parameter, it does not affect the period of self-imaging. In
physical terms, the Kerr nonlinearity only enhances the extent of beam compression during each self-imaging cycle.
As long as the input power of a CW beam remains below the critical level of self-focusing, periodic self-imaging
occurs just as it would in the absence of the nonlinear effects.

4 Nonlinear Pulse Propagation
We consider next the propagation of a pulsed Gaussian beam inside a nonlinear GRIN fiber. The full problem is quite
complicated because because of its four-dimensional nature involving x,y,z, and t. A modal approach, often used
in practice [22], requires solving many coupled equations with a large number of nonlinear terms and is limited in
practice to fibers supporting a relatively small number of modes. It was found in 2017 that a simpler approach is
possible for multimode GRIN fibers [13]. Its main assumption is that the bandwidth of the pulse is narrow enough
that the spatial profile F(r) of the beam does not vary much over this bandwidth. It is important to keep in mind that
F(r) is not the spatial profile of a specific mode but results from a superposition of all the modes excited by the input
beam. After eliminating the transverse coordinates through a spatial integration and going back to the time domain,
the amplitude A(z, t) is found to satisfy [13]

∂A
∂ z

+
iβ2

2
∂ 2A
∂T 2 = iγ(z)|A|2A, (25)

5

Fig 2. Beam-width ratio w/w0 plotted over one self-imaging period for several values of the C parameter.

 We should ask:what happens to the self-imaging property of GRIN fibers when input power becomes 
large enough that the Kerr nonlinearity of the silica material cannot be ignored ? It is known that the Kerr 
contribution to the refractive index can lead to self-focusing of an optical beam with intensity I even inside 
a homogeneous medium of constant refractive index. As a GRIN medium also reduces the beam size, the 
two effects may act together in such a way that catastrophic self-focusing occurs even at a shorter distance. 
Clearly, self-focusing can destroy the self-imaging property when input power is close to Pcr. The important 
question is whether self-imaging can occur when input power is well below Pcr , but the nonlinear effects 
cannot be ignored. This question was answered in 1992 by solving the Gaussian-beam propagation problem 
with the variational technique [21], after adding the nonlinear contribution n2I to the refractive index n(x, y) 
in Eq (2). It was found that the beam width oscillates as indicated in Eq (22) with the same period zp but the 
parameter C in Eq (23) is modified as

 C = 1 – (P/Pcr) 
zp/β
πw2

0 
, (24)

Even though the Kerr nonlinearity reduces the value of C parameter, it does not affect the period of self-
imaging. In physical terms, the Kerr nonlinearity only enhances the extent of beam compression during 
each self-imaging cycle. As long as the input power of a CW beam remains below the critical level of self-
focusing, periodic self-imaging occurs just as it would in the absence of the nonlinear effects.

4 Nonlinear Pulse Propagation

 We consider next the propagation of a pulsed Gaussian beam inside a nonlinear GRIN fiber. The 
full problem is quite complicated because of its four-dimensional nature involving x, y, z, and t. A modal 
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approach, often used in practice [22], requires solving many coupled equations with a large number of 
nonlinear terms and is limited in practice to fibers supporting a relatively small number of modes. It was 
found in 2017 that a simpler approach is possible for multimode GRIN fibers [13]. Its main assumption is that 
the bandwidth of the pulse is narrow enough that the spatial profile F(r) of the beam does not vary much over 
this bandwidth. It is important to keep in mind that F(r) is not the spatial profile of a specific mode but results 
from a superposition of all the modes excited by the input beam. After eliminating the transverse coordinates 
through a spatial integration and going back to the time domain, the amplitude A(z, t) is found to satisfy [13]

 
∂A
∂z  + 

iβ2
2  

∂2A
∂T 2  = i γ–(z)|A|2A  (25)

where T = t – z/vg , vg is the group velocity, and β2 governs group-velocity dispersion (GVD) of the fiber. The 
nonlinear parameter is defined as

 γ–(z) = 
ω0n2

cAeff (z)
,  Aeff (z) = ∫∫|F(r)|4dxdy

 –1. (26)

We call Aeff(z) the effective	beam	area	to distinguish it from the effective mode area, whose value remains 
constant with z in single-mode fibers [18]. Equation (25) with a constant value of γ is known as the nonlinear 
Schrödinger (NLS) equation.
 Equation (25) is remarkable. It shows that temporal evolution inside a GRIN fiber can be studied 
by solving a single NLS equation, even though multiple spatial modes may be propagating simultaneously 
inside the fiber. The oscillating spatial width resulting from the self-imaging property produces a nonlinear 
parameter γ–(z) that is periodic in z. One can also interpret the same effect as a periodically varying effective 
beam area. The spatial integrals in Eq (26) can be performed analytically using the functional form of F(r) in 
Eq (20) to obtain γ–(z) = γ/f (z), where γ is defined using the initial value of Aeff  at z = 0. Thus, Eq (25) becomes

 
∂A
∂z  + 

iβ2
2  

∂2A
∂T 2  = i γf –1(z)|A|2A (27)

where the function f (z) is found from Eq (22) and has the form
 f (z) = 1 − (1 − C2) sin2(πz/zp). (28)
It is easy to see that f (z) represents the factor by which the effective are Aeff(z) of the beam is reduced because 
of periodic self-imaging inside a GRIN fiber.
 As a simple application, we can use Eq (27) to study the phenomenon of modulation instability. 
In the context of single-mode optical fibers [18], it occurs only in the anomalous-GVD region and converts 
a CW beam into a train of optical solitons. The stability of a CW Gaussian beam inside a GRIN fiber was 
studied [23] in 2003 using the analytic solution given in Eq (19). A more general analysis was carried out in 
2019 in terms of a Hill’s equation [24]. In both cases, the analysis is quite complicated. The modified NLS 
equation (27) provides a simpler approach for studying modulation instability in GRIN fibers [13]. The 
results show that a CW Gaussian beam can become unstable even when it propagates in the normal-GVD 
region of the fiber. The gain spectrum of modulation instability exhibits a rich structure with an infinite 
number of sideband pairs at frequencies that are not equally spaced. The peak gain of each sideband depends 
on the spatial pattern of the oscillating Gaussian beam through f (z). Since spatial variations play a crucial 
role, this instability is also known as a geometric parametric instability [11]. The frequency shift of the mth 
sideband from the CW-beam frequency is given by [25]

 Ωm = ±
2πm
β2zp  

–
 

2
β2LNLC  (29)

where m is an integer and LNL = (γP0)−1 is the nonlinear length. The m = 0 sideband exists only if β2 < 0 at the 
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pump wavelength. The sideband frequencies predicted by Eq (29) were seen in a 2016 experiment in which 
relatively long (900 ps) pulses at 1064 nm were launched into a 6-m-long GRIN fiber to mimic a quasi-CW 
situation [11].
 The formation of solitons inside multimode fibers attracted attention during the 1980s [26, 27]. 
Theoretical work carried out during the 1990s indicated that the formation of temporal solitons was indeed 
feasible inside a GRIN medium [28-30]. It eventually led in 2013 to the observation of a multimode soliton 
[10]. In this experiment, the spatial width of the beam was so small that only three lowest-order modes of the 
fiber were excited. We used Eq (27) in 2018 to show that GRIN fibers support propagation of pulsed Gaussian 
beams that preserve their temporal shape and behave like a soliton, even though their spatial width oscillates 
along the fiber length [15]. We referred to such pulses as GRIN solitons to emphasize that a parabolic index 
profile is essential for their existence.
 Equation (27) can also be used to study the fission of higher-order solitons that leads to the emission 
of multiple dispersive waves and broaden the pulse spectrum drastically to form a supercontinuum [18]. 
An important question is how this process is affected by the spatial oscillations of a pulsed Gaussian beam 
related to self-imaging. For this purpose, we modify Eq (27) to include the effects of third-order dispersion 
(TOD) and intrapulse Raman scattering:

 i∂U
∂ξ  + 

1
2

∂2U
∂τ2  – iδ3

∂3U
∂τ3  + 

N2

f (ξ ) U(ξ ,τ) ∫∞0 R(s)|U(ξ ,τ–s)|2ds = 0  (30)

where δ3 is the normalized TOD parameter and the nonlinear response function R(t) = (1 – fR)δ(t) + fRhR(t) 
includes both the Kerr and Raman contributions with fR = 0.18. An equation with a periodic nonlinear term 
similar to Eq (30) was first solved in Ref [32]; it was found to produce multiple dispersive waves at different 
frequencies that agreed well with the experimental results.
 Figure 3 shows the temporal and spectral evolution of a third-order soliton (N = 3) inside a GRIN 
fiber over one dispersion length using δ3 = 0.02. The input pulse is taken to be 100-fs wide (FWHM). We 
used C = 0.5 for which the beam width is reduced by a factor of two during each self-imaging period. As 
expected, soliton fission occurs and a dispersive wave is produced at a blue-shifted frequency near (ν – ν0)T0 
= 5.5. However, multiple additional dispersive waves are generated at both the red and the blue sides of the 
original spectrum. Also, intrapulse Raman scattering leads to a red-shift of the shortest soliton that is much 
larger in the case of a GRIN fiber compared to single-mode step-index fiber [33].

Figure 3: Temporal and spectral evolution of a third-order soliton (N = 3) inside a GRIN fiber over one dispersion
length using δ3 = 0.02, q = 100 and C = 0.5.

where δ3 is the normalized TOD parameter and the nonlinear response function R(t) = (1− fR)δ (t)+ fRhR(t) includes
both the Kerr and Raman contributions with fR = 0.18. An equation with a periodic nonlinear term similar to Eq. (30)
was first solved in Ref. [32]; it was found to produce multiple dispersive waves at different frequencies that agreed
well with the experimental results.

Figure 3 shows the temporal and spectral evolution of a third-order soliton (N = 3) inside a GRIN fiber over one
dispersion length using, and δ3 = 0.02. The input pulse is taken to be 100-fs wide (FWHM). We used C = 0.5 for which
the beam width is reduced by a factor of two during each self-imaging period. As expected, soliton fission occurs and a
dispersive wave is produced at a blue-shifted frequency near (ν−ν0)T0 = 5.5. However, multiple additional dispersive
waves are generated at both the red and the blue sides of the original spectrum. Also, intrapulse Raman scattering leads
to a red-shift of the shortest soliton that is much larger in the case of a GRIN fiber compared to single-mode step-index
fiber [33].

The periodic self-imaging of the Gaussian beam affects the temporal evolution in Fig. 3 in two ways. First, the
effective value of the soliton order N is enhanced to 4.24 compared to its initial value of N = 3. As a result, the
evolution in Fig. 3 is closer to that occurring for a fourth-order soliton. This is the reason why the Raman-induced
frequency shift is enhanced. Second, periodic self-imaging creates a nonlinear index grating through the Kerr effect
because the refractive index is larger in the regions where the beam width is reduced and the intensity is enhanced
locally. This grating creates the multiple dispersive waves seen in Fig. 6. The frequencies of all dispersive waves can
be calculated using the phase-matching condition, and the numerical results agree with the predicted values.

5 Impact of input beam’s position and shape
The propagation kernel that was found in my 1974 paper (coauthored with Prof. Ghatak) allows one to consider the
impact of input beam’s position and shape on the nonlinear effects inside GRIN fibers. As a simple example, consider
first a Gaussian beam whose intensity peak does not coincide with the core center of the GRIN fiber. If its peak is
shifted by a distance s along the x axis, the input field in Eq. (17) is replaced with

E(x,y,0) = A0 exp
(
−[(x− s)2 + y2]/2w2

0
)
. (31)

The optical field at any point r = (x,y,z) inside the fiber is found using Eq. (31) in Eq. (10) together with the kernel in
Eq. (14). All integrals can be performed using the result in Eq. (18). The final result can be written as in Eq. (19), but
the beam evolution is now governed by

F(r) =
w0

w(z)
exp

(
− [x− scos(bz)]2 + y2

2w2(z)

)
, (32)

where w(z) varies with z in a periodic fashion as given in Eq. (22) with the parameters zp and C as defined in Eq.
(23. Figure 4 shows how the Gaussian beam evolves along the fiber length by plotting |F(x,0,z)|2 in the xz plane with
the intensity color-coded on a logarithmic scale. Similar to the on-axis launch, the beam’s width still oscillates with
z, compressing and recovering its input value periodically. The new feature is that the beam’s center also oscillates

7

Fig 3. Temporal and spectral evolution of a third-order soliton (N = 3) inside a GRIN fiber over one 
dispersion length using δ3 = 0.02, q = 100 and C = 0.5.

 The periodic self-imaging of the Gaussian beam affects the temporal evolution in Fig 3 in two ways. 
First, the effective value of the soliton order N is enhanced to 4.24 compared to its initial value of N = 3. As 
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a result, the evolution in Fig 3 is closer to that occurring for a fourth-order soliton. This is the reason why the 
Raman-induced frequency shift is enhanced. Second, periodic self-imaging creates a nonlinear index grating 
through the Kerr effect because the refractive index is larger in the regions where the beam width is reduced 
and the intensity is enhanced locally. This grating creates the multiple dispersive waves seen in Fig 3. The 
frequencies of all dispersive waves can be calculated using the phase-matching condition ,and the numerical 
results agree with the predicted values. 

5 Impact of input beam’s position and shape

 The propagation kernel that was found in my 1974 paper (coauthored with Prof. Ghatak) allows one 
to consider the impact of input beam’s position and shape on the nonlinear effects inside GRIN fibers. As a 
simple example, consider first a Gaussian beam whose intensity peak does not coincide with the core center 
of the GRIN fiber. If its peak is shifted by a distance s along the x axis, the input field in Eq (17) is replaced 
with

 E(x, y, 0) = A0 exp (−[(x − s)2 + y2]/2w2
0).  (31)

The optical field at any point r = (x, y, z) inside the fiber is found using Eq (31) in Eq (10) together with the 
kernel in Eq (14). All integrals can be performed using the result in Eq (18).The final result can be written as 
in Eq (19), but the beam evolution is now governed by

 F(r) = 
w0

w(z)  exp 
[x – s cos(bz)]2 + y2

2w2(z)  (32)

where w(z) varies with z in a periodic fashion as given in Eq (22) with the parameters zp and C as defined in 
Eq (23). Figure 4 shows how the Gaussian beam evolves along the fiber length by plotting |F(x,0,z)|2 in the 
xz plane with the intensity color-coded on alogarithmic scale. Similar to the on-axis launch, the beam’s width 
still oscillates with z, compressing and recovering its input value periodically. The new feature is that the 
beam’s center also oscillates in a periodic fashion around x = 0. As a result, even though the Gaussian beam 
recovers its initial width w0 at the distance z = zp, its self-imaging does not occur at that point because the 
beam is centered at x = –s , when bz = π. The self-imaging period for the shifted Gaussian beam doubles to 
2zp because bz equals 2π only at that distance.

Figure 4: Evolution of an off-axis Gaussian beam (centered at x = w0) inside a GRIN fiber over one self-imaging
period for C = 0.5. Cross-section along the y = 0 plane is shown with a color-coded intensity distribution.

in a periodic fashion around x = 0. As a result, even though the Gaussian beam recovers its initial width w0 at the
distance z = zp, its self-imaging does not occur at that point because the beam is centered at x =−s when bz = π . The
self-imaging period for the shifted Gaussian beam doubles to 2zp because bz equals 2π only at that distance.

How does this doubling of the self-imaging period affect the nonlinear phenomena inside GRIN fibers? We can
answer this equation by using F(r) from Eq. (32) in the definition of γ̄(z) in Eq. (26). The answer depends on how
much the beam center is shifted initially compared to the fiber’s core size. If the shift s is a small fraction of the core
radius a, the effective nonlinear parameter γ̄(z) can still be be approximated as γ/ f (z) with f (z) given in Eq. (28).
Since the effective NLS equation (27) does not change for such small shifts, they do not have a significant effect on the
nonlinear properties of a GRIN fiber. In contrast, when the shift s becomes comparable to a/2, we cannot approximate
γ̄(z) with γ/ f (z) and the doubling of the self-imaging period would impact the nonlinear phenomenon considerably.
As an example, the side-band frequencies given in Eq. (29) are reduced by a factor of nearly

√
2 for m �= 0 when we

replace zp with 2zp.
As a second example, we consider a beam whose intensity is constant within a circle of radius r0. For simplicity,

we assume that the center of circle coincides the core center. In this on-axis excitation case, the beam maintains its
cylindrical symmetry as its propagates down the fiber. Writing Eq. (10) is the cylindrical coordinates (ρ, φ , z) and
using E(ρ ′,φ ′,0) = A0 for ρ ≤ r0 and zero for ρ > r0, we obtain

E(ρ,φ , ,z) =
∫ r0

0

∫ 2π

0
A0K(ρ,ρ ′;φ ,φ ′)ρ ′dρ ′ dφ ′. (33)

where the kernel in Eq. (14) takes the form

K(ρ,ρ ′;φ ,φ ′) =
β

2πi

(
beiβ z

sin(bz)

)
exp

[
i
2

βbcot(bz)(ρ2 +ρ ′2)− iβbρρ ′

sin(bz)
cos(φ −φ ′)

]
. (34)

The integration over φ ′ can be carried out using the known result

∫ 2π

0
exp[−ipcos(φ −φ ′)]dφ ′ = 2πJ0(p). (35)

As this result does not depend on φ , initial radial symmetry of the input beam is maintained during its propagation
inside the GRIN fiber. In the modal picture, only the radially symmetric modes are excited by such an input beam.
Using Eq. (35), the beam profile at a distance z is obtained using

E(ρ,z) =
A0βbeiβ z

isin(bz)

∫ r0

0
J0

( βbρρ ′

sin(bz)

)
exp

[ i
2

βbcot(bz)(ρ2 +ρ ′2)
]
ρ ′dρ ′. (36)
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Fig 4. Evolution of an off-axis Gaussian beam (centered at x = w0) inside a GRIN fiber over one self-
imaging period for C = 0.5. Cross-section along the y = 0 plane is shown with a color-coded intensity 
distribution.
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 How does this doubling of the self-imaging period affect the nonlinear phenomena inside GRIN 
fibers? We can answer this question by using F(r) from Eq (32) in the definition of γ–(z) in Eq (26). The 
answer depends on how much the beam center is shifted initially compared to the fiber’s core size. If the shift 
s is a small fraction of the core radius a, the effective nonlinear parameter γ–(z) can still be approximated as 
γ = f (z) with f (z) given by Eq (28). Since the effective NLS Eq (27) does not change for such small shifts, 
they do not have a significant effect on the nonlinear properties of a GRIN fiber. In contrast, when the shift 
s becomes comparable to a/2,we cannot approximate γ–(z) with γ = f (z) and the doubling of the self-imaging 
period would impact the nonlinear phenomenon considerably. As an example, the side-band frequencies 
given in Eq (29) are reduced by a factor of nearly 2 for m ≠ 0, when we replace zp with 2zp.
 As a second example,we consider a beam whose intensity is constant within a circle of radius r0. For 
simplicity, we assume that the center of circle coincides the corecenter. In this on-axis excitation case, the 
beam maintains its cylindrical symmetry as its propagates down the fiber. Writing Eq (10) in the cylindrical 
coordinates (ρ, φ, z) and using E(ρ', φ', 0) = A0 for ρ	≤ r0 and zero for ρ	>	r0, we obtain

 E(ρ, φ, ,z) = ∫
r0

0 ∫
2π
0  A0 K (ρ,	ρ'; φ, φ')ρ'dρ' dφ' .  (33)

where the kernel in Eq (14) takes the form

 K(ρ,	ρ'; φ, φ') = 
β

2πi  
beiβz

sin(bz)  exp 
i
2 βbcot(bz)(ρ2 + ρ'2) – 

iβbρρ'
sin(bz)  cos(φ – φ') (34)

The integration over φ'  can be carried out using the known result

 ∫2π
0  exp[–ipcos(φ – φ')dφ'  =2πJ0(p). (35)

 As this result does not depend on φ , initial radial symmetry of the input beam is maintained during 
its propagation inside the GRIN fiber. In the modal picture, only the radially symmetric modes are excited by 
such an input beam. Using Eq (35), the beam profile at a distance z is obtained using 

 E(ρ, z) = 
A0βbeiβz

isin(bz)  ∫
r0

0
	J0 

βbρρ'
sin(bz)  exp 

i
2  βbcot(bz)(ρ2 + ρ'2) ρ'dρ'.  (36)

Figure 5: Variation of area reduction factor f (z) over one self-imaging period for three beam shapes.

This integral must be evaluated numerically. The results show that, similar to a Gaussian beam, a circular beam also
evolves periodically with a period zp. During each period, it undergoes a compression phase and acquires a minimum
spot size at a distance zp/2.

We can use the preceding results to calculate the effective beam area as defined in Eq. (26) and to introduce the
function f (z) appearing in Eq. (27). Figure 5 compares f (z) function for three different beam shapes for a specific
value C = 0.1. In the case of a Gaussian beam, we used the analytic result given in Eq. (28). The curves for the circular
and square apertures were calculated numerically. The circular aperture had an area of πr2

0, where as the area of square
aperture was 4r2

0. Two feature are noteworthy. First, the minimum value of f (z) occurring at the same distance zp/2
is much smaller for a Gaussian beam (by a factor of about 10 for C = 0.1). Second, f (z) exhibits oscillations for
the circular and square beams that do not occur for a Gaussian beam. Both of these features are related to beam’s
diffraction inside a GRIN fiber, and they affect considerably the nonlinear effects inside such fibers. Our results
show that the shape of input beam affects the nonlinear phenomena such as modulation instability, supercontinuum
generation, and Raman-induced spectral shift of ultrashort pulses [34].

6 Concluding Remarks
In this paper written to celebrate the 80th birthday of Prof. Ajoy Ghatak, I have discussed how a paper that I coauthored
with him in 1974 is still relevant to those studying the nonlinear effects inside GRIN fibers. We found in the 1974 paper
that, even though an input beam incident on a GRIN fiber may excite hundreds of modes, the optical field at any point
inside the fiber can be written, without any reference to the fiber modes, as a two-dimensional integral over the input
field using a propagation kernel that is similar to that found in diffraction theory. This kernel has a specific property
that reproduces the input field precisely in a periodic fashion along the length of a GRIN fiber (self-imaging). The
physical origin of self-imaging lies in a ladder-like structure of the modal propagation constants with equal spacing
between any two neighboring modes of the fiber.

It has been found in recent years that the periodic self-imaging also affects the nonlinear propagation of optical
pulses inside multimode GRIN fibers. In this paper I first applied the general theory of self-imaging to the propa-
gation of a CW Gaussian beam and discussed how self-imaging is modified by self-focusing produced by the Kerr
nonlinearity. The case of a pulsed Gaussian beam was studied by following the approach of Ref. [13]. It resulted in
a modified NLS equation that includes the effects of periodic spatial beam-width oscillations through a periodically
varying effective beam area. I also showed that the formalism developed in 1974 can be used to study the impact of
beam shape on the nonlinear effects inside GRIN fibers. In particular, I considered the circular and square apertures
of uniform intensity.
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Fig 5. Variation of area reduction factor f (z) over one self-imaging period for three beam shapes.
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 This integral must be evaluated numerically. The results show that, similar to a Gaussian beam, a 
circular beam also evolves periodically with a period zp. During each period, it undergoes a compression 
phase and acquires a minimum spot size at a distance zp / 2.
 We can use the preceding results to calculate the effective beam area as defined in Eq (26) and to 
introduce the function f (z) appearing in Eq (27). Figure 5 compares f (z) function for three different beam 
shapes for a specific value of C = 0.1. In the case of a Gaussian beam, we used the analytic result given in 
Eq (28). The curves for the circular and square apertures were calculated numerically.The circular aperture 
had an area of πr 2

0 , whereas the area of square aperture was 4r 2
0 . Two features are note worthy. First, the 

minimum value of f (z) occurring at the same distance zp/2 is much smaller for a Gaussian beam (by a factor 
of about 10 for C = 0.1). Second, f (z) exhibits oscillations for the circular and square beams that do not occur 
for a Gaussian beam. Both of these features are related to beam’s diffraction inside a GRIN fiber, and they 
affect considerably the nonlinear effects inside such fibers. Our results show that the shape of input beam 
affects the nonlinear phenomena such as modulation instability, supercontinuum generation, and Raman-
induced spectral shift of ultra short pulses [34]. 

6 Concluding Remarks

 In this paper, which is written to celebrate the 80th birthday of Prof. Ajoy Ghatak, I have discussed 
how a paper that I coauthored with him in 1974 is still relevant to those studying the nonlinear effects inside 
GRIN fibers. We found in the 1974 paper that, even though an input beam incident on a GRIN fiber may 
excite hundreds of modes, the optical field at any point inside the fiber can be written, without any reference 
to the fiber modes, as a two-dimensional integral over the input field using a propagation kernel that is similar 
to that found in diffraction theory. This kernel has a specific property that reproduces the input field precisely 
in a periodic fashion along the length of a GRIN fiber (self-imaging).The physical origin of self-imaging lies 
in a ladder-like structure of the modal propagation constants with equal spacing between any two neighboring 
modes of the fiber.
 It has been found in recent years that the periodic self-imaging also affects the nonlinear propagation 
of optical pulses inside multimode GRIN fibers. In this paper I first applied the general theory of self-imaging 
to the propagation of a CW Gaussian beam and discussed how self-imaging is modified by self-focusing 
produced by the Kerr nonlinearity. The case of a pulsed Gaussian beam was studied by following the approach 
of Ref.[13]. It resulted in a modified NLS equation that includes the effects of periodic spatial beam-width 
oscillations through a periodically varying effective beam area. I also showed that the formalism developed 
in 1974 can be used to study the impact of beam shape on the nonlinear effects inside GRIN fibers. In 
particular, I considered the circular and square apertures of uniform intensity.
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