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This Letter lays the foundation of a new type of distributed
feedback (DFB) laser whose optical feedback is due to
the evanescent coupling between an active positive-index
material (PIM) waveguide and a lossy negative-index meta-
material (NIM) waveguide. Active PIM–NIM coupled-
mode equations are presented and solved to characterize
the dispersion relation, resonant optical gain, and lasing.
The photonic bandgap of this grating-less DFB laser does
not depend on a Bragg wavenumber, but depends on the
difference between the wavenumbers of the PIM and
NIM waveguides; controlling this wavenumber difference
allows for single-mode lasing and, ultimately, single-mode
broadband lasing. © 2019 Optical Society of America

https://doi.org/10.1364/OL.44.004586

Distributed feedback (DFB) lasers are commonly found in
high-performance communication systems requiring thermal
stability, narrow linewidth, and moderately high optical power.
DFB in commercial lasers is accomplished by forming a first-
order diffraction grating in the real part of the refractive index.
This traditional kind of DFB produces two lowest-threshold
longitudinal lasing modes, one on either side of the photonic
bandgap [1]. To realize a single-mode laser, this degeneracy is
commonly broken by fabrication steps such as shifting the gra-
ting phase in the center of the structure by π∕2 (i.e., a λ∕4 shift)
[2], or by optimizing the reflectivity of each end facet [3].

A new method for achieving DFB has been recently pro-
posed and modeled based on the evanescent coupling of a
positive-index material (PIM) waveguide to a negative-index
metamaterial (NIM) waveguide [4–6]. Metamaterials offer
remarkable electrodynamic behavior stemming from a negative
refractive index [7]; despite having a negative refractive index, a
NIM sandwiched between PIM has been predicted to support
the propagation of a transverse optical mode [8–10]. Notably,
the Poynting vector of an optical field traveling through a NIM
waveguide can have the opposite direction as the associated
wave vector [6,8]. Such a NIM waveguide, when evanescently

coupled to a PIM waveguide, creates a distributed coupling re-
gion where power flows in either longitudinal direction [4].

Coupled-mode equations for the PIM–NIM structure were
first presented for passive, lossless waveguides and revealed a
reflectivity spectrum characteristic of DFB [4]. Coupled-mode
equations were then extended to the case of a nonlinear lossless
PIM–NIM structure and used to study optical bistability [5].
These studies were performed for passive structures.

In this Letter, we leverage PIM–NIM DFB to form a new
kind of DFB laser. Specifically, we consider an active PIM–
NIM structure in which the gain is provided by the PIM wave-
guide over the length of the coupling region L, as shown in
Fig. 1. To study this active structure, we extend the PIM–
NIM coupled-mode equations to include gain for the PIM
waveguide and loss for the NIM waveguide. This model
predicts the occurrence of lasing with unique dependencies
on waveguide parameters not found in traditional active
DFB structures.

The electric-field amplitudes in the PIM and NIM
waveguides are given by EA�z� � A�z�e−iΔβz and EB�z� �
B�z�eiΔβz , respectively, where A and B are the slowly varying
complex-field amplitudes of a relative rotating frame,

Fig. 1. Schematic of a PIM–NIM DFB laser, where the active
region of a PIM waveguide is evanescently coupled to a lossy NIM
waveguide over length L. The (white) cladding regions surrounding
the waveguides are PIM. The counter-directional nature of the
Poynting vectors in either waveguide results in distributed feedback,
resonant optical gain, and, ultimately, lasing.
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Δβ � �βA − βB�∕2 is the detuning parameter, and βA and βB
are the corresponding modal wavenumbers. The coupled-mode
equations for optical-field amplitudes A and B within the
PIM–NIM structure are posited as

dA
dz

�
�
iΔβ� g

2

�
A� iκnpB, (1a)

−
dB
dz

�
�
iΔβ −

α

2

�
B � iκpnA, (1b)

where g is the net gain coefficient of the PIM, α is the loss
coefficient of the NIM, and κpn and κnp are the coupling
coefficients for coupling into the NIM and PIM, respectively.
We have assumed that the anisotropy of each waveguide is
small, a common assumption for coupled-mode equations
and for previous modeling work in PIM–NIM couplers [4–6].

These coupled-mode equations are similar in form to those
of a traditional DFB laser, whose counter-propagating A and B
field amplitudes traverse a single waveguide and are coupled
via a diffraction grating [1,11]. One significant difference is
that for the traditional DFB laser, the detuning parameter
Δβ � β0 − βΛ, where β0 is the wavenumber of both optical
modes, βΛ � π∕Λ is the Bragg wavenumber, and Λ is the
period of the diffraction grating. Also, since the counter-
propagating modes traverse the same active waveguide, they
each experience the gain coefficient g [i.e., α → −g in
Eq. (1b)]. For the PIM–NIM structure, the exclusive appear-
ance of g or α in either equation results in important sum and
difference expressions that govern the resonant amplification
and lasing behavior.

The eigenvalues of the coupled-mode equations describe the
behavior of the PIM–NIM structure and are solved for as
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where

κ � ffiffiffiffiffiffiffiffiffiffiffiffi
κpnκnp

p
, σ � g − α, δ � g � α: (3)

The quantity σ is the round-trip gain coefficient for light that
propagates down the full length of the PIM waveguide followed
by a return trip down the full length of the NIM waveguide
(without evanescent coupling throughout). The quantity δ is
the disparity from transparency and equals zero only for passive,
lossless waveguides. Compared to the eigenvalues of a tradi-
tional DFB laser [11], σ∕2 takes the place of the traditional
DFB gain coefficient, while the δ term is entirely new.

The imaginary portion of either eigenvalue q directly reveals
the photonic bandgap nature of the active PIM–NIM struc-
ture, as illustrated in Fig. 2 for several values of the round-trip
gain σ normalized by κ. For σ � 0, a photonic bandgap occurs
between Δβ � �κ, wherein optical fields exponentially decay
in the direction of the Poynting vector. Increasing σ produces
oscillatory, decaying optical fields within the photonic bandgap,
as is the case for the traditional DFB laser [1]. For the

PIM–NIM structure, the dispersion relations are independent
of the disparity quantity δ.

The eigenvalues given by Eqs. (2a) and (2b) form the
following general solutions of the amplitudes A and B:

A�ζ� � A1eq�Lζ � A2eq−Lζ, (4a)

B�ζ� � B1eq�Lζ � B2eq−Lζ, (4b)

where ζ � z∕L is the normalized longitudinal spatial
coordinate, and A1, A2, B1, and B2 are constant coefficients.

Amplification of optical power between the ends of the
PIM waveguide is studied by disallowing an optical signal in
the NIM waveguide at z � L; i.e., B�ζ � 1� � 0. Applying
this boundary condition after substituting the eigenvalue
Eqs. (2a) and (2b) into the amplitude Eqs. (4a) and (4b) yields

A�ζ� � −
2B1e�δL∕4�ζ

e−ibLκpnL
�ψL sinh�ibL�ζ − 1��

� bL cosh�ibL�ζ − 1���, (5a)

B�ζ� � 2B1e�δL∕4�ζ

e−ibL
sinh�ibL�ζ − 1��, (5b)

where the following quantities do not depend on the
disparity δ:

b �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ψ2 − κ2

p
, ψ � Δβ − i

σ

4
: (6)

The field amplitudes at the ends of the PIM–NIM structure are
determined by a substitution of the appropriate value of ζ:

Fig. 2. Dispersion relations for the q� eigenvalue (upper half-plane)
and q− eigenvalue (lower half-plane) for σ∕κ � 0, 0.3, and 2.5/3.
A photonic bandgap is clearly seen for σ � 0, and the disparity quan-
tity δ does not impact the dispersion relations.
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A�ζ � 0� � 2B1

e−ibLκpnL
�ψL sinh�ibL� − bL cosh�ibL��, (7a)

A�ζ � 1� � −
2B1eδL∕4bL
e−ibLκpnL

, (7b)

B�ζ � 0� � −
2B1

e−ibL
sinh�ibL�: (7c)

The transmittivity T and reflectivity R expressions are found
from the ratio of field amplitudes as follows:

t � A�ζ � 1�
A�ζ � 0� �

−e�δL∕4�bL
ψL sinh�ibL� − bL cosh�ibL� , (8a)

r � B�ζ � 0�
A�ζ � 0� �

−κpnL sinh�ibL�
ψL sinh�ibL� − bL cosh�ibL� , (8b)

T � jtj2 � e�δL∕2�jbLj2
jψL sinh�ibL� − bL cosh�ibL�j2 , (9a)

R � jrj2 � jκpnLj2j sinh�ibL�j2
jψL sinh�ibL� − bL cosh�ibL�j2 : (9b)

The transmittivity T of an active PIM–NIM structure is shown
in Fig. 3(a) for κL � 3 and a NIM-waveguide loss L � 5 dB,
where L � exp�−αL�. Resonant amplification is exhibited on
either side of the photonic bandgap. The resonances increase in
strength as the value of the PIM-waveguide gain G � exp�gL�
is increased, and their peak transmittivity exceeds 30 dB for
G � 15 dB. For detuning ΔβL away from the photonic
bandgap, the dissimilarity in modal wavenumbers prevents
efficient coupling between waveguides; this inefficiency results
in a transmittivity T that is equivalent to the gain of the
uncoupled PIM waveguide G.

Lasing is achieved when the transmittivity peak Tp reaches
infinity, physically corresponding to obtaining an optical out-
put power without an optical input power [11]. The increase in
Tp as a function of the normalized PIM gain coefficient gL is
shown in Fig. 3(b) for κL � 3 and several values of NIM loss
L. Tp is seen to increase at a low rate for small gL and eventually
rises in an extreme manner as gL approaches the lasing-
threshold value g thL. The threshold g thL increases as the
NIM loss L increases.

The relation between lasing-threshold values across different
NIM-loss cases is seen clearly when the peak transmittivity Tp
is considered in terms of the round-trip gain σL. As shown in
Fig. 3(c), the value of σthL is the same regardless of the amount
of the NIM loss L. Since the disparity δ � σ � 2α [from
Eqs. (3)], each curve in Fig. 3(c) corresponds to a unique value
of δL, and therefore the lasing threshold σthL is independent
of δL.

The threshold and detuning of lasing modes for DFB res-
onators can be obtained by deeper consideration of the trans-
mittivity expression [1]. Equation (9a) for T becomes infinite
when its denominator becomes zero, which happens in the
non-trivial case when

ψ thL sinh�ibthL� � bthL cosh�ibthL�, (10)

where the subscripts explicitly indicate that the quantities ψ
and b are at their lasing-threshold values. Expanding the square
of Eq. (10), applying Eq. (6), and applying the identity
cosh2 x − sinh2 x � 1 yields, after some manipulation,

σthL
4

� iΔβthL � �iκL cosh�ibthL�: (11)

Substitution of Eq. (11) back into Eq. (10) ultimately generates
the following transcendental equation relating bthL to the
normalized coupling coefficient κL:

κL � � bthL
sinh�ibthL�

: (12)

The solution pairs {κL, bthL} are found from Eq. (12) by a
numerical solver. These solution pairs are then fed into the
right-hand side of Eq. (11), and the real and imaginary parts
are used to determine σthL and ΔβthL. This approach to

Fig. 3. Resonant optical-amplification route to lasing threshold.
(a) The transmittivity spectrum for a NIM loss of 5 dB reveals resonant
optical amplification at the edges of the photonic bandgap. Increasing
the PIM gain increases the strength of the resonances. Transmittivity
far from ΔβL � 0 is at the level of an uncoupled, active PIM. (b) Peak
transmittivity T P as a function of PIM gain coefficient gL for three
values of NIM loss L. Lasing threshold g thL occurs when TP � ∞ and
depends on the NIM loss. (c) TP as a function of normalized round-
trip gain σL; lasing threshold σthL is independent of the NIM loss L
and disparity δ. κL � 3 for all subfigures.
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studying lasing also shows that the lasing threshold σthL is
independent of the NIM loss L and disparity δ.

The threshold values σthL and ΔβthL of the three lowest
lasing-threshold modes are shown in Fig. 4(a), where only
the curves for positive ΔβthL are shown (a symmetric set occurs
for negative ΔβthL). Each point on a mode curve is associated
with a specific value of the normalized coupling coefficient κL,
and constant-coupling examples across the mode spectra are
indicated using dashed lines. The red solid marker in the figure
represents the lasing threshold that limits the amplification
behavior shown in Fig. 3(a). The impact of the NIM loss L
can be made explicit by applying g th � σth � α [from
Eqs. (3)] to the data in Fig. 4(a). Doing so yields the threshold
g thL and ΔβthL pairs shown in Fig. 4(b); each lasing mode is
now represented by multiple curves, one for each value of
NIM loss.

Although the lasing-threshold curves shown in Fig. 4 are
similar in form to those of the traditional DFB laser [1], a sig-
nificant difference in the behavior of either kind of DFB laser is
rooted in the definition of ΔβthL. For a traditional DFB laser,
Δβ � β − π

Λ, and so the center of the photonic bandgap
(ΔβL � 0) is achieved when the free-space wavelength λ
matches the Bragg wavelength λB � 2nΛ, where n is the modal
index. Since the photonic bandgap spans only up to a couple of
nanometers, the lowest lasing-threshold mode on either side of
the photonic bandgap experiences similar gain, leading to the
undesirable dual-lasing-mode nature of these devices [1–3].

For a PIM–NIM DFB laser, Δβ ∝ βA − βB , and so the
center of the photonic bandgap (ΔβL � 0) is achieved only
if the modal wavenumbers βA and βB are equal; equivalently,
since βA − βB � 2π

λ �nA − nB�, the center of the photonic
bandgap is achieved only if the modal indices nA and nB are
equal. Matching the wavenumbers to yield ΔβL � 0 is com-
monly achieved in traditional directional couplers (DCs) made
of two PIM waveguides [12]. For the PIM–NIM DFB laser, it
may be possible to design the waveguides so that the wavenum-
bers never match over the gain spectrum. Doing so would force
ΔβL to be solely positive or negative, thereby breaking the
lasing-threshold mode degeneracy and giving rise to a
single-mode laser.

Another intriguing prospect for the PIM–NIM DFB laser is
the possibility to design the wavenumbers to have a constant
difference ΔβL � C over a broad wavelength spectrum.
Traditional DCs (made of two PIM waveguides) use this ap-
proach to achieve broadband wavelength operation by design-
ing ΔβL � C � 0 [13]. In the case of a PIM–NIM DFB laser,
designing ΔβL � C � ΔβthL over a broad wavelength spec-
trum would allow for single-mode lasing over a broad wave-
length spectrum, i.e., a solution point for a lasing mode in
Fig. 4(a), such as the red solid dot, would span a broad range
of wavelengths. Additional investigation is required to study the
behavior of this broadband single-mode laser and how it
differs from the traditional broadband laser based on multiple
longitudinal modes.

This Letter presents a new type of DFB laser, one based on
the evanescent coupling between an active PIM waveguide and
a lossy NIM waveguide. Since the lasing behavior depends on
the difference between modal wavenumbers, its behavior is not
restricted by a grating-defined Bragg wavenumber; controlling
the wavenumber difference allows for single-mode lasing and,
ultimately, single-mode broadband lasing.
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