Optical Waveguides (OPT568)

Govind P. Agrawal

Institute of Optics
University of Rochester
Rochester, NY 14627
(C) 2008 G. P. Agrawal

4
-
,
-
Back
Close

Optical Modulators

- Semiconductor waveguides useful for making amplitude and phase modulators.
- Several kinds of modulators exist:
* Acousto-optic modulators
* Electro-optic modulators
* Electro-absorption modulators
* Polymer-based modulators
- Electro-optic and electro-absorption modulators can be operated at speeds of up to 40 GHz .
- Both kinds are used routinely for fiber-optic communication systems.

OPTICS

Modulations Schemes

- Electromagnetic carrier: $\mathbf{E}(t)=\hat{\mathbf{e}} A \cos \left(\omega_{0} t+\phi\right)$.
- Modulation of A, ω_{0}, or ϕ leads to AM, FM and PM, respectively.
- In the digital case, they are referred to as ASK, FSK, and PSK. ASK is also called on-off keying.
- Role of a modulator is to convert a CW input into an optical signal that mimics applied electrical signal.
- A good modulator must exhibit high extinction ratio, large bandwidth, low chirp, and a low bias voltage.

Photo-Elastic Effect

- Refractive index changes because of elastic strain induced by an acoustic wave.
- Index changes $\sim 10^{-4}$ feasible for LiNbO_{3}.
- Moving index grating creates a frequency shift $\sim 100 \mathrm{MHz}$ for the diffracted beam.
- LiNbO_{3} waveguides can be used for making acousto-optic modulators but bandwidth is limited to below 0.5 GHz .

Electro-Absorption Effect

- Absorption coefficient changes with applied voltage.
- Franz-Keldysh effect: Bandgap of a semiconductor decreases when a dc electric field is applied across it.
- Mathematically, wavefunction takes the form of an Airy function.
- Exponentially decaying tails, in effect, reduce the bandgap.
- Sharp absorption edge becomes more gradual.

Electro-Absorption in Waveguides

- For thin waveguides, quantum-well effects become important.
- Excitonic effects dominate in the spectral region below the bandgap.
- Quantum-confined Stark effect: Change in the absorption spectrum with applied field.
- Modulator uses a semiconductor whose bandgap is slightly larger than photon energy.

Electro-Refraction Effect

- Refractive index changes with applied voltage.
- Physical phenomenon: Pockels effect (electro-optic effect).
- Described in terms of impermeability tensor $\eta_{i j}=1 / \varepsilon_{i j}$.
- Impermeability tensor changes with dc electric field as

$$
\eta_{i j}(\mathbf{E})=\eta_{i j}^{(0)}+\sum_{k} r_{i j k} E_{k}+\sum_{k l} s_{i j k l} E_{k} E_{l},
$$

- Pockels effect is governed by the tensor $r_{i j k}$.
- As $r_{i j k}$ is symmetric in i and j, a 6×3 matrix $r_{h k}$ is used.
- $h=1,2,3$ for $i=j$ (diagonal elements) and $h=4,5,6$ for offdiagonal elements $\eta_{23} \eta_{31}$, and η_{12}.

Electro-optic Coefficients

- Changes in refractive index n with applied dc field governed by

$$
\Delta\left(\frac{1}{\varepsilon_{h}}\right) \equiv \Delta\left(\frac{1}{n_{h}^{2}}\right)=\sum_{k=1}^{3} r_{h k} E_{k} .
$$

- 18 elements of the matrix $r_{h k}$ describe electro-optic properties of a crystal.
- Only a few of them are nonzero depending on symmetry group.
- For crystals with $\overline{4} 3 m$ symmetry (GaAs and InP), a single parameter r_{41} describes all electro-optic properties.
- For crystals with $3 m$ symmetry $\left(\mathrm{LiNbO}_{3}\right)$, three parameters are needed.

OpTICS

Electro-Optic Coefficients

- Full form of matrix $r_{h k}$ for LiNbO_{3} and GaAs:

$$
r_{h k}(3 m)=\left(\begin{array}{ccc}
0 & -r_{22} & r_{13} \\
0 & r_{22} & r_{13} \\
0 & 0 & r_{33} \\
0 & r_{42} & 0 \\
r_{42} & 0 & 0 \\
r_{22} & 0 & 0
\end{array}\right) ; \quad r_{h k}(\overline{4} 3 m)=\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
r_{41} & 0 & 0 \\
0 & r_{41} & 0 \\
0 & 0 & r_{41}
\end{array}\right) .
$$

- Numerical values of nonzero elements depend on wavelength.
- $r_{41}=1.1 \mathrm{pm} / \mathrm{V}$ for GaAs at $0.9 \mu \mathrm{~m}$, but this value increases to $1.43 \mathrm{pm} / \mathrm{V}$ near $1.3 \mu \mathrm{~m}$.
- For $\mathrm{InP}, r_{41}=1.45 \mathrm{pm} / \mathrm{V}$ at $1.06 \mu \mathrm{~m}$, but this value decreases to $1.3 \mathrm{pm} / \mathrm{V}$ near $1.3 \mu \mathrm{~m}$.

Induced Birefringence

- Consider a GaAs waveguide with light propagation along the crystallographic axis [001].
- Index ellipsoid takes the form:

$$
\frac{x^{2}}{n^{2}}+\frac{y^{2}}{n^{2}}+\frac{z^{2}}{n^{2}}+2 r_{41} E x y=0 .
$$

- After rotation by 45°, we obtain $\frac{x^{\prime 2}}{n_{x}^{2}}+\frac{y^{\prime 2}}{n_{y}^{2}}+\frac{z^{2}}{n^{2}}=0$.
- Modified refractive indices n_{x} and n_{y} are given by

$$
n_{x} \approx n+\frac{1}{2} n^{3} r_{41} E, \quad n_{y} \approx n-\frac{1}{2} n^{3} r_{41} E .
$$

- GaAs becomes birefringent with applied dc field.

Electro-Optic Modulator

- Index changes induced by dc electric field produce phase shifts that are different for TE and TM modes.
- State of polarization at the output changes, and the change can be controlled by the applied field.
- Polarization changes can be translated into amplitude modulation by placing waveguide between two polarizers.
- Bulk electro-optic modulators use this technique with a KDP crystal.

Electro-Optic Waveguide Modulators

- LiNbO_{3} waveguides are commonly used for making modulators.
- Electro-optic response of LiNbO_{3} is governed by four parameters.
- Near $1.5 \mu \mathrm{~m} r_{13}=8.6, r_{22}=3.4, r_{33}=30.9, r_{42}=28 \mathrm{pm} / \mathrm{V}$.
- Electric field applied along the crystallographic z axis to select r_{33}.
- Refractive index along this axis is modified by $\Delta n=-\frac{1}{2} n^{3} r_{33} E$.
- Using $n \approx 2.2$ and $r_{33}=30.9 \mathrm{pm} / \mathrm{V}, \Delta n / E \sim 10^{-4} \mu \mathrm{~m} / \mathrm{V}$.
- Optical phase of changes by $\Delta \phi=(2 \pi / \lambda) \Delta n L$ for a modulator of length L.
- PM can be converted into AM using a Mach-Zehnder configuration.

Lithium Niobate Modulators

(a)

(b)

- Phase modulator: A single waveguide of suitable length.
- Amplitude modulator: two waveguides in MZ configuration.
- Important design parameter V_{π} : Voltage applied across electrodes to produce a π phase shift.
- Index change $\Delta n=-\frac{1}{2} \Gamma n^{3} r_{33}\left(V / d_{e}\right)$ for electrodes separated by d_{e}.
- Γ accounts for partial overlap between the optical and electric fields (typically $\Gamma=0.5$).

Temporal Response of Amplitude Modulators

- For 3-dB couplers with $\rho_{1}=\rho_{2}=\frac{1}{2}$, transmitted power

$$
P(t)=P_{\max } \sin ^{2} \frac{1}{2}\left[\phi_{b}+\kappa V(t)\right] .
$$

- Bias phase shift ϕ_{b} introduced by applying a constant dc voltage.
- Constant κ governs modulation efficiency.
- If $\phi_{b}=\pi / 2$, a nearly linear response is possible:

$$
P(t)=\frac{1}{2} P_{\max }\{1-\sin [\kappa V(t)]\} \approx \frac{1}{2} P_{\max }[1-\kappa V(t)] .
$$

- Insertion loss and extinction ratio are defined as

$$
\alpha_{\mathrm{ins}}=-10 \log _{10}\left(P_{\max } / P_{\mathrm{in}}\right), \quad r_{\mathrm{ex}}=-10 \log _{10}\left(P_{\min } / P_{\max }\right) .
$$

- Modern LiNbO_{3} modulators can provide 20 dB extinction ratio with insertion loss $<5 \mathrm{~dB}$.

Modulator-Induced Chirp

- AM Modulators can also impose frequency chirp (PM).
- For a balanced MZ interferometer field transmitted is given by

$$
A_{3}(t)=A_{0}\left\{\sqrt{\rho_{1} \rho_{2}} \exp \left[i \phi_{1}(t)\right]-\sqrt{\left(1-\rho_{1}\right)\left(1-\rho_{2}\right)} \exp \left[i \phi_{2}(t)\right]\right\}
$$

- $\phi_{1}(t)$ and $\phi_{2}(t)$ are voltage-induced phase shifts in two arms.
- $A_{3}(t)=i A_{0} \exp \left[\frac{1}{2} i\left(\phi_{1}+\phi_{2}\right)\right] \sin \left[\frac{1}{2}\left(\phi_{1}-\phi_{2}\right)\right]$ when $\rho_{1}=\rho_{2}=\frac{1}{2}$.
- If $\phi_{1}=0$ or $\phi_{2}=0$, modulator output is chirped.
- When $\phi_{2}=-\phi_{1}$, chirp-free modulation occurs.
- At the same time, a π phase shift occurs at half the voltage.
- Such modulators are referred to as push-pull modulators. Modulator Design

- Configurations for x-cut and z-cut LiNbO_{3} modulators.
- In x-cut design, side electrodes are grounded.
- If index increases in one arm, it decreases in the other.

Modulator Design

- In the case of z-cut LiNbO_{3}, electric field is oriented along z axis by placing hot electrodes directly over two waveguides.
- With this configuration, electric field points perpendicular to the substrate surface.
- Overlap between optical and electric fields enhanced, resulting in reduced V_{π} voltage.
- Buffer layer between electrodes and waveguides is essential to ensure that mode does not penetrate into metallic layer.
- Piezoelectric and pyroelectric effects lead to accumulation of electric charges at the substrate surfaces.
- A charge-bleed layer is used at the bottom of the substrate to solve this problem.

Omplics

Modulator Design

- LiNbO_{3} modulators operating at $10 \mathrm{~Gb} / \mathrm{s}$ or more employ a RF transmission line in the form of a coplanar waveguide.
- Such modulators are referred to as traveling-wave modulators.
- Input and output ends MZ interferometer are connected to two fiber pigtails to form an all-fiber device.

Modulator Design

- Design of modulators requires optimization of several parameters.
- Refractive index of LiNbO_{3} is 2.2 at optical frequencies but increases to 6 at microwave frequencies.
- A silica buffer layer is used to reduce velocity mismatch ($n=1.9$ at microwave frequencies).
- Commercial modulators are compact (width 1.5 cm , length 12 cm) and require $<5 \mathrm{~V}$ at $10 \mathrm{~Gb} / \mathrm{s}$.
- Modulators operating at bit rates of $40 \mathrm{~Gb} / \mathrm{s}$ available since 2000 but require $>10 \mathrm{~V}$.

Polymer-Based Modulators

- Modulators making use of polymer waveguides offer a number of advantages over LiNbO_{3}.
- These include low dielectric constant at microwave frequencies, high electro-optic coefficient, low operating voltage, and low cost.
- Unfortunately, polymers do not exhibit Pockels effect.
- A nonlinear chromophore is incorporated into polymer matrix.
- Situation similar to erbium-doped fibers as chromophore molecules are not attached to the polymer backbone.
- Three most commonly used chromophores are known as FTC, CLD1 , and CLD-72.

Omptics

Structure of Chromophores

- A poling field used to aligns chromophore molecules and to produce a permanent dipole moment.
- r_{33} larger compared with LiNbO_{3}.

Device Fabrication

- Core layer is sandwiched between two cladding layers made using another polymer with a lower refractive index.
- Chromophores doped into the core polymer host (PMMA).
- Bottom cladding layer is made with a UV-curable epoxy (UV15).
- Upper cladding layer requires a different polymer because it should not contain small molecules that affect core layer.
- A polymer known as UFC170 has been found suitable for this purpose. It can be cured with a small dosage of UV light.
- Refractive indices are $1.504,1.612$, and 1.488 starting from bottom cladding layer.

Fabrication Steps

OPTICS

Fabrication Steps

- Final step requires construction of an RF strip line.
- Photolithography used to first etch the electrode pattern into a photoresist.
- Electrode formed using a gold layer (3-4 $\mu \mathrm{m}$ thick).
- Strip line should propagate microwaves without much loss.
- Microwave losses along the strip line set the bandwidth of polymer modulators.

Modulator Performance

- Polymer modulators exhibit high insertion losses.
- For a $3-\mu \mathrm{m}$-wide and 3 -cm-long core, losses exceed 9 dB .
- Can be reduced to $<5 \mathrm{~dB}$ by optimizing waveguide dimensions.
- $V_{\pi} L$ below 4 V -cm; $V_{\pi}<2 \mathrm{~V}$ possible.
- Modulator bandwidth limited only by electronics.

OPTICS

Electroabsorption Modulators

- Basic design is similar to that of a semiconductor laser.
- Bandgap of quantum wells larger than photon energy.
- light completely transmitted in the absence of bias.
- Input signal is absorbed when bias is applied.
- Extinction ratio $>15 \mathrm{~dB}$ possible with a reverse bias of $2-3 \mathrm{~V}$ at bit rates of up to $40 \mathrm{~Gb} / \mathrm{s}$.

Temporal Response

- Transmissivity as a function of V at three different wavelengths.
- Output power $P(V)=P_{0} \exp \left[-\alpha(V) L_{m}\right]$.
- An EAM can respond fast if carriers generated during absorption can be removed from the active region quickly.
- EAMs can be operated at bit rates of $40 \mathrm{~Gb} / \mathrm{s}$.
- α limits the operating wavelength range to 20 nm or so.

Digital Modulation

- $V(t)$ changed between two values to produce 0 and 1 bit.
- On-state power $P_{1}<P_{\text {in }}$ because of insertion losses.
- Insertion loss is defined as

$$
\alpha_{\mathrm{ins}}=-10 \log _{10}\left(P_{1} / P_{\mathrm{in}}\right) .
$$

- Minimum power P_{0} may not be zero for a digital modulator.
- Extinction ratio or on-off ratio is defined as

$$
r_{\mathrm{ex}}=-10 \log _{10}\left(P_{0} / P_{1}\right) \approx 4.343 L_{m}\left[\alpha\left(V_{0}\right)-\alpha\left(V_{1}\right)\right] .
$$

- Modern EAM can provide on-off ratio $>20 \mathrm{~dB}$ with insertion losses below 5 dB .

Modulation-Induced Chirp

- In practice, AM is accompanied with PM.
- Changes in absorption produce changes in refractive index through the Kramers-Kronig relation

$$
\Delta n(\omega)=\frac{c}{\pi} \int_{0}^{\infty} \frac{\Delta \alpha\left(\omega^{\prime}\right)}{\omega^{\prime 2}-\omega^{2}} d \omega^{\prime}
$$

- Since Δn changes with time, optical phase ϕ also changes across the pulse.
- Fortunately, chirp is not very large for EAMs.
- It can be controlled by using strained quantum wells.

Modulator Design

- A MQW EAM integrated with passive waveguides at the input and output ends.
- MQW region consists of ten 8 -nm-thick $\operatorname{In}_{0.48} \mathrm{Ga}_{0.52}$ As quantum-well layers separated by $5-\mathrm{nm}$ barrier layers.
- Quantum wells under tensile strain because of 0.35% lattice mismatch; it helps to reduce applied voltage.

Modulator Performance

- Both the extinction ratio and bandwidth depend on length of modulation section.
- Extinction ratio is reduced for shorter lengths.
- However, modulation bandwidth increases from 20 GHz to 33 GHz .
- Such modulators can operate at $40 \mathrm{~Gb} / \mathrm{s}$ but with a reduced extinction ratio.

OPTICS

Traveling-Wave EAMs

- Microwaves propagated using a coplanar-waveguide (CPW) line.
- Bandwidths larger than 50 GHz have been realized while keeping driving voltage below 2 V .

Integration of EAM with Laser

- EAM and laser can easily be integrated on the same chip to reduce insertion losses.
- An SOA can be integrated on the same chip to compensate for residual losses.
- By 1999, 10-Gb/s transmitters with integrated EAM became available commercially.
- By 2001, such integrated modulators exhibited a bandwidth of more than 50 GHz .

Electrical Crosstalk

- Performance of modulator-integrated DFB lasers limited by optical and electrical crosstalk.
- Typically, separation between electrical contacts is $<0.2 \mathrm{~mm}$.
- Any leakage from modulator contact to laser contact can change dc bias of the laser in a periodic manner.
- Such unwanted changes shift laser wavelength and produce chirp (laser frequency changes with time).
- Middle section should provide an isolation impedance of 800Ω or more.
- Such values are difficult to achieve at microwave frequencies approaching 40 GHz .

Optical Crosstalk

- Optical crosstalk results from the residual reflectivity of output facet (AR-coated in practice).
- This residual reflectivity is seen by the laser only when modulator lets light pass through it.
- As a result, laser gain and wavelength are slightly different during each on-off cycle.
- This creates an additional source of frequency chirping.
- It can be eliminated if the front facet has a residual reflectivity of less than 0.01%.
- Difficult to realize in practice.

Photodetectors

- A photodetector converts optical signal into electrical domain.
- Physical mechanism: photoelectric effect.
- A photodetector should have high sensitivity, fast response, low noise, low cost, and high reliability.
- These requirements are best met by photodetectors made using semiconductor waveguides.
- In contrast with lasers, indirect-bandgap semiconductors can be used to make photodetectors.
- Commonly used materials: $\mathrm{Si}, \mathrm{Ge}, \mathrm{GaAs}, \mathrm{InP}$.

Photoelectric effect

- A semiconductor layer absorbs incident light if $h v>E_{g}$.
- Electron-hole pairs collected by applying voltage.
- Photocurrent $I=R_{d} P_{i n}$ (R_{d} measures responsivity).
- Quantum Efficiency: $\eta=\frac{I / q}{P_{i n} / h v}=\frac{h v}{q} R$.

$$
\eta=\frac{P_{a b s}}{P_{i n}}=\frac{P_{i n}-P_{t r}}{P_{i n}}=1-\exp (-\alpha W) .
$$

Absorption in Semiconductors

- Absorption occurs for $\lambda<h c / E_{g}$.
- Large absorption coefficient for most semiconductors.
- Layer thickness $<5 \mu \mathrm{~m}$ sufficient in practice.

Rise Time and Bandwidth

- All detectors have a finite bandwidth.
- Rise Time: Time over which the current builds up from 10 to 90% of its final value when optical power is changed abruptly.
- Limited by the transit time and $R C$ time constant:

$$
V_{\text {out }}(t)=V_{0}[1-\exp (-t / R C)] .
$$

- RC circuit rise time: $T_{r}=(\ln 9) R C \approx 2.2 \tau_{R C}$.
- Photodetector rise time: $T_{r}=(\ln 9)\left(\tau_{\mathrm{tr}}+\tau_{R C}\right)$.
- Photodetector bandwidth: $\Delta f=\left[2 \pi\left(\tau_{\mathrm{tr}}+\tau_{R C}\right)\right]^{-1}$.
- For $\tau_{\mathrm{tr}}=\tau_{R C}=100 \mathrm{ps}$, the bandwidth is below 1 GHz .

Photodiodes

- A reverse-biased $\mathrm{p}-\mathrm{n}$ junction is used.
- Electron-hole pairs in the depletion region swept by the large electric field across it (drift current).
- Electron-hole pairs outside the depletion region produce diffusion current.

Response Time of Photodiodes

- Drift current is produced quickly (transit time $<100 \mathrm{ps}$).
- Diffusion is a relatively slow process ($\sim 1 \mathrm{~ns}$).
- This mismatch leads to distortion.
- Problem can be solved using p-i-n photodiodes.

p-i-n Photodiodes

- Insert an intrinsic or i layer between the $\mathrm{p}-\mathrm{n}$ junction.
- Reduce the thickness of p - and n -type layers.
- Use a higher-bandgap material for p - and n -type layers.
- No absorption in these layers if $E_{g}>h \nu$.

Common p-i-n Photodiodes

Parameter	Symbol	Unit	Si	Ge	InGaAs
Wavelength	λ	$\mu \mathrm{m}$	$0.4-1.1$	$0.8-1.8$	$1.0-1.7$
Responsivity	R	$\mathrm{~A} / \mathrm{W}$	$0.4-0.6$	$0.5-0.7$	$0.6-0.9$
Quantum efficiency	η	$\%$	$75-90$	$50-55$	$60-70$
Dark current	I_{d}	nA	$1-10$	$50-500$	$1-20$
Rise time	T_{r}	ns	$0.5-1$	$0.1-0.5$	$0.02-0.5$
Bandwidth	Δf	GHz	$0.3-0.6$	$0.5-3$	$1-10$
Bias voltage	V_{b}	V	$50-100$	$6-10$	$5-6$

- InGaAs photodiodes used in most lightwave systems.
- Transit time <10 ps for $W<5 \mu \mathrm{~m}$.
- Bandwidth $>50 \mathrm{GHz}$ possible with a suitable design.

Waveguide Photodiodes

(a)

(b)

- Optical signal edge-coupled into a waveguide.
- Structure similar to that of a semiconductor laser.
- Coupling efficiency improved using a multimode waveguide.
- Bandwidth can be increased using a mushroom-mesa structure.
- $\tau_{R C} \sim 1 \mathrm{ps}$ realized by reducing parasitic capacitance and internal series resistance.

Avalanche Photodiodes

－APDs increase responsivity through internal gain．
－A single photon produces many electron－hole pairs．
－High electric field exists across the gain layer．
－Accelerating electrons and holes generate new electron－hole pairs though impact ionization．

Impact Ionization

- Kinetic energy of the electron used to create new e-h pairs.
- Impact-ionization coefficients α_{e} and α_{h} play important role.
- APD gain calculated using the two simple rate equations:

$$
\frac{d i_{e}}{d x}=\alpha_{e} i_{e}+\alpha_{h} i_{h}, \quad-\frac{d i_{h}}{d x}=\alpha_{e} i_{e}+\alpha_{h} i_{h}
$$

- Total current $I=i_{e}(x)+i_{h}(x)$ throughout the gain layer.
- Eliminating $i_{h}: d i_{e} / d x=\left(\alpha_{e}-\alpha_{h}\right) i_{e}+\alpha_{h} I$.
- Solve with boundary condition $i_{e}(d)=I$

$$
M=\frac{1-k_{A}}{\exp \left[-\left(1-k_{A}\right) \alpha_{e} d\right]-k_{A}} .
$$

- APD gain is quite sensitive to the ratio $k_{A}=\alpha_{h} / \alpha_{e}$.
- $M=\exp \left(\alpha_{e} d\right)$ for $k_{A}=0$ but $M=\left(1-\alpha_{e} d\right)^{-1}$ for $k_{A}=1$.

Avalanche breakdown occurs for $\alpha_{e} d=1$.

Common APDs

Parameter	Symbol	Unit	Si	Ge	InGaAs
Wavelength	λ	$\mu \mathrm{m}$	$0.4-1.1$	$0.8-1.8$	$1.0-1.7$
Responsivity	$R_{\text {APD }}$	A / W	$80-130$	$3-30$	$5-20$
APD gain	M	-	$100-500$	$50-200$	$10-40$
k-factor	k_{A}	-	$0.02-0.05$	$0.7-1.0$	$0.5-0.7$
Dark current	I_{d}	nA	$0.1-1$	$50-500$	$1-5$
Rise time	T_{r}	ns	$0.1-2$	$0.5-0.8$	$0.1-0.5$
Bandwidth	Δf	GHz	$0.2-1$	$0.4-0.7$	$1-10$
Bias voltage	V_{b}	V	$200-250$	$20-40$	$20-30$

- Higher responsivity but more noisy. Require large bias.
- Smaller bandwidth: generation and collection of secondary e-h pairs take additional time: $M(\omega)=M_{0}\left[1+\left(\omega \tau_{e} M_{0}\right)^{2}\right]^{-1 / 2}$.

Advanced APDs

- SAM APDs: Separate absorption and multiplication regions. Gain layer is made of a non-absorbing semiconductor.
- SAGM: Separate absorp., grading and multiplication regions. Insert another layer between the absorption and multiplication regions with bandgap intermediate to those of lnP and lnGaAs layers.
- SAGCM: Absorp., grading, charge and multiplication regions. Insert a charge layer between the grading and multiplication regions.

Superlattice APDs

(b)

- InGaAs APDs: Comparable values of α_{e} and α_{h}.
- A superlattice design reduces the ratio α_{h} / α_{e}.
- Absorption and multiplication regions alternate and consist of thin layers ($\sim 10 \mathrm{~nm}$) of semiconductor materials with different bandgaps.
- Staircase APDs: InGaAsP layer compositionally graded to form a sawtooth structure that looks like a staircase under reverse bias.

Resonant-Cavity APDs

- A Fabry-Perot cavity formed to enhance absorption within a thin layer through multiple round trips.
- Entire structure is placed between two distributed Bragg reflectors formed with multilayer stacks.
- Such a $1.55-\mu \mathrm{m}$ APD exhibited 70% quantum efficiency.

Resonant-Cavity APDs

- Propagation inside a waveguide provides long absorption lengths.
- waveguide width $4-20 \mu \mathrm{~m}$, length $10-100 \mu \mathrm{~m}$.
- Required voltage across the thin waveguide smaller ($\sim 10 \mathrm{~V}$).
- Bandwidth enhanced because of lower transit time ($\sim 1 \mathrm{ps}$).
- 3-dB bandwidth for a $10-\mu \mathrm{m}$-wide waveguide was 28 GHz .
- Gain-bandwidth product was as large as 320 GHz .

MSM Photodetectors

- A semiconductor layer sandwiched between two metal electrodes.
- A Schottky barrier formed at each metal-semiconductor interface.
- It prevents flow of electrons from metal to the semiconductor.
- In practice, two metal contacts are formed on the same side of absorbing layer using interdigited electrodes (finger spacing $1 \mu \mathrm{~m}$).
- Such a structure exhibits low parasitic capacitance and allows highspeed operation (up to 300 GHz).

Optoelectronic Integration

- Relatively easy for GaAs receivers using GaAs-based ICs.
- A hybrid approach, called flip-chip technology, used for lnP.
- Electronic components integrated on a GaAs chip.
- Photodiode made on top of an InP substrate.
- Two chips connected by flipping the lnP chip on top of GaAs IC chip.

Optoelectronic Integration

- A receiver made by integrating a waveguide photodetector with an high-electron-mobility transistor on the same lnP chip.
- By 2000, such receivers exhibited bandwidths of 45 GHz .
- All epitaxial layers grown on a semi-insulating lnP substrate using the MOCVD technique.
- Ridge waveguide formed using reactive ion etching.
- Entire receiver chip 2.5 mm long and 1.2 mm wide.

WDM Components

- Wavelength-division multiplexing (WDM) extends the capacity of lightwave systems to $>1 \mathrm{~Tb} / \mathrm{s}$.
- Multiple optical carriers spaced $50-100 \mathrm{GHz}$ apart transmit data simultaneously over the same fiber.
- Many waveguide-based passive and active components developed for WDM systems.
* Tunable optical filters for channel selection
* Multiplexers and demultiplexers combining channels
* Add-drop multiplexers for adding or dropping a channel
* WDM transmitters and receivers

Tunable Optical Filters

- Desirable properties: wide tuning range, negligible crosstalk, fast tuning speed, small insertion loss, insensitivity to signal polarization, low cost, stability against environmental changes.
- An optical filter is characterized by its transfer function $H_{f}(\omega)$:

$$
A_{\text {out }}(t)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} H_{f}(\omega) \tilde{A}_{\text {in }}(\omega) \exp (-i \omega t) d \omega
$$

- We can write $H_{f}(\omega)$ as

$$
H_{f}(\omega)=\left|H_{f}(\omega)\right| e^{i \phi(\omega)} \approx\left|H_{f}(\omega)\right| \exp \left[i\left(\phi_{0}+\phi_{1} \omega+\frac{1}{2} \phi_{2} \omega^{2}+\cdots\right)\right] .
$$

- Constant ϕ_{0} can be ignored; ϕ_{1} introduces a time delay; ϕ_{2} governs dispersive properties of an optical filter.

The Institute of

Designs of Optical Filters
－Fabry－Perot filter
－Mach－Zehnder filter
－Michelson filter
－Acousto－optic filter

Fabry-Perot Filters

- Consist of a cavity formed with two high-reflectivity mirrors.
- In a common design, two fiber ends are coated to form mirrors, and air gap between fibers acts as a cavity.
- Filter tuned by changing the width of air gap electronically using a piezoelectric transducer.
- Transfer function of an FP filter with mirror reflectivity R_{m} :

$$
H_{f}(\omega)=\frac{\left(1-R_{m}\right) e^{i \pi}}{1-R_{m} \exp \left(i \omega \tau_{r}\right)}
$$

- $\tau_{r}=2 L_{f} / v_{g}=$ round-trip cavity time.
- Condition $\omega \tau_{r}=2 \pi m$ determines longitudinal modes of FP filter.

Transfer Function of FP Filters

- Transmissivity becomes maximum when frequency v coincides with a longitudinal mode of the resonator $\left(v=v_{m}=m / \tau_{r}\right)$.
- Spacing between peaks governed by free spectral range related to
round-trip time τ_{r} as $\Delta v_{L}=1 / \tau_{r}=v_{g} /\left(2 L_{f}\right)$.
- Length L_{f} is controlled electronically to tune the filter.

WDM Channel Selection

- Combined bandwidth of the WDM signal, $\Delta v_{\mathrm{sig}}=N \Delta \nu_{\mathrm{ch}}=N B / \eta_{s}$, must be less than Δv_{L}.
- $\Delta v_{\mathrm{ch}}=$ channel spacing, $\eta_{s}=B / \Delta v_{\mathrm{ch}}=$ spectral efficiency.
- Filter bandwidth Δv_{FP} should be large enough to pass the entire channel $\left(\Delta v_{\mathrm{FP}}=B\right)$.
- These two conditions limit N to $N<\eta_{s}\left(\Delta v_{L} / \Delta v_{\mathrm{FP}}\right)=\eta_{s} F_{R}$, where $F_{R}=\Delta v_{L} / \Delta v_{\mathrm{FP}}$ is the finesse.

Liquid-Crystal FP Filters

- Rather then changing the physical length, refractive index is changed electronically to tune the filter.
- Such FP filters can provide high finesse $\left(F_{R} \sim 300\right)$ with a narrow bandwidth (about 0.2 nm).
- Tunable over 50 nm ; Time $\sim 1 \mathrm{~ms}$ for nematic liquid crystals.
- Switching time can be reduced to 10μ s with smectic liquid crystals.
- Liquid-crystal filters suffer from polarization sensitivity.
- Problem solved in practice using a polarization-diversity technique.
- Input field separated into two orthogonally polarized branches and
recombined at the output end.

Liquid-Crystal FP Filters

- In a simpler approach, nanometer-size droplets of a liquid crystal (diameter $<100 \mathrm{~nm}$) were used.
- Mirrors made by coating two quartz plates with a thin film of indium-tin oxide; same film acts as a transparent electrode.
- Droplets formed by exposing liquid-crystal film containing a UV-curable polymer to intense UV light.
- Polarization insensitivity results from random orientation of droplets.

Droplets formed by exposing liquid-crystal film containing a
 Interference Filters

$$
\text { Air } \lambda / 4
$$

$$
\operatorname{InP} 9 \lambda / 4
$$

$$
\text { Air } \lambda / 4
$$

$$
\ln \mathrm{P} 7 \lambda / 4
$$

Additional air
InP substrate
(a)

Interference Filters

- Two thin-film mirrors are separated by a spacer layer (can be air) to form an FP cavity.
- In one design, a $\lambda / 2$ air gap is surrounded by two distributed Bragg reflectors (DBRs).
- Normally, one needs more than 40 alternating layers for forming a high-reflectivity DBR.
- The number of layers reduced to just a few when InP layers were alternated with $\lambda / 4$-thick air gaps.
- A 5-layer DBR shown can provide 99.6% reflectivity over a $230-\mathrm{nm}$ bandwidth.

Interference Filters

- Such a FP filter exhibited a tuning range of 62 nm with $0.6-\mathrm{nm}$ bandwidth and 14 V applied voltage.
- In another design, top Bragg mirror was suspended on four cantilever beams.
- Bragg mirror could be moved by 50 nm through electrostatic attraction.
- By 2003, such micromachined FP filters provided a tuning range of 140 nm with a voltage of only 3.2 V .

Mach-Zehnder Filters

- A MZ filter can be made with two directional couplers.
- First coupler splits input signal into two parts, which acquire different phase shifts before they interfere at the second coupler.
- Since relative phase shift in two arms is wavelength-dependent, transmission depends on the signal wavelength.
- Transfer function for the bar and cross ports:

$$
\begin{aligned}
& H_{b}(\omega)=\sqrt{\rho_{1} \rho_{2}} \exp (i \omega \tau)+i^{2} \sqrt{\left(1-\rho_{1}\right)\left(1-\rho_{2}\right)} \\
& H_{c}(\omega)=i \sqrt{\rho_{1}\left(1-\rho_{2}\right)} \exp (i \omega \tau)+i \sqrt{\rho_{2}\left(1-\rho_{1}\right)}
\end{aligned}
$$

- Extra delay in one arm of MZ filter $\tau=n_{f} \Delta L / c$ plays an important role.

Mach-Zehnder Filters

- For MZ filters made with two $3-\mathrm{dB}$ couplers $\left(\rho_{1}=\rho_{2}=\frac{1}{2}\right)$:

$$
\left|H_{b}(\omega)\right|^{2}=\sin ^{2}(\omega \tau / 2), \quad\left|H_{c}(\omega)\right|^{2}=\cos ^{2}(\omega \tau / 2)
$$

- When Y-junction couplers are used, MZ filter has single input and output ports.
- In this case, transfer function is given by $\left|H_{f}(\omega)\right|^{2}=\cos ^{2}(\omega \tau / 2)$.
- Such a filter is not sharp enough for WDM systems.
- Better spectral response realized by cascading several MZ interferometers in series.
- When only $3-\mathrm{dB}$ couplers are used, $\left|H_{f}(\omega)\right|^{2}=\prod_{m=1}^{M} \cos ^{2}\left(\omega \tau_{m} / 2\right)$.
- Extra delay τ_{m} in each MZI used to control filter characteristics.

Cascaded Mach-Zehnder Interferometers

- Transfer function for $M=3$ with the choice $\tau_{1}=\tau, \tau_{2}=2 \tau$, and $\tau_{3}=4 \tau$.
- When $\tau_{m}=\left(2^{m} \Delta v_{\mathrm{ch}}\right)^{-1}$, each MZ blocks alternate channels.

Cascaded Mach-Zehnder Interferometers

$$
\backslash \text { Si substrate }(52 \mathrm{~mm} \times 71 \mathrm{~mm})
$$

- Planar lightwave circuits made with silica-on-silicon technology.
- Filter characteristics can be controlled by changing the arm lengths and the number of MZ interferometers.
- A chromium heater deposited on one arm of MZ interferometers to provide thermo-optic control of optical phase.
- Switching time is $\sim 1 \mathrm{~ms}$ because of a thermal tuning mechanism.

Other Designs for MZ Filters

- Faster tuning possible with LiNbO_{3} or GaAs waveguides.
- Refractive index in one arm changed electronically.
- Semiconductor waveguides grown on GaAs or lnP substrates are often employed.
- A GaAs-based notch filter with a microring in one arm.
- MZ arms separated by $10 \mu \mathrm{~m}$ and $<0.1 \mathrm{~mm}$ long.
- Transmission drops to zero periodically at cetain frequencies.

Bragg-Grating Filters

- A fiber grating acts as a narrowband reflection filter.
- Central wavelength determined by the Bragg wavelength $\lambda_{B}=2 \bar{n} \Lambda$, where \bar{n} is mode index.
- Several schemes use fiber gratings to make transmission filters.
- Two Fiber gratings can be used as mirrors of a FP filter.
- Bragg gratings in each arm of a MZ interferometer also separate reflected channel from the input signal.
- Such a device acts as a Michelson interferometer built with two wavelength-selective mirrors.

Phase-Shifted Bragg-Grating Filters

- A $\pi / 2$ phase shift in the middle of grating opens a narrow transmission peak within the stop band of the grating.
- It is possible to open multiple transmission peaks by creating multiple phase shift regions along the length of a grating.
- Three transmission peaks occur when $\pi / 2$ phase shift regions are spaced apart by $L_{g} / 4$ along the grating length.

Sampled-Grating Filters

- A Bragg filter does not have a periodic transfer function.
- This property can be changed by employing a sampled grating.
- Coupling coefficient κ modulated in a periodic fashion.
- Such devices are made by placing an amplitude mask before UV light creates interference pattern.
- κ alternates between 0 and a finite value along grating length.
- Refractive index varies as $n(z)=\bar{n}+\operatorname{Re}\left[\delta n_{1}(z) \exp (2 \pi i z / \Lambda)\right]$.
- Since $\delta n_{1}(z)$ is periodic, we expand it in a Fourier series:

$$
n(z)=\bar{n}+\operatorname{Re}\left(\sum_{m} F_{m} \exp \left[2 i\left(\beta_{B}+m \beta_{s}\right) z\right]\right)
$$

- $\beta_{B}=\pi / \Lambda$ and $\beta_{s}=\pi / \Lambda_{s}$.

Sampled-Grating Filters

- Sampling period Λ_{s} determines periodicity of reflection peaks.
- Frequency spacing $\Delta v=c /\left(2 \bar{n} \Lambda_{s}\right)=100 \mathrm{GHz}$ for $\Lambda_{s} \approx 1 \mathrm{~cm}$.
- Sampled gratings have evolved considerably in recent years.
- Basic idea: Choose $\delta n_{1}(z)$ to tailor transmission characteristics of a sampled grating.
- A "sinc" function for $\delta n_{1}(z)$ produces rectangular passbands.
- Phase-sampled gratings provide even better performance.

Tuning of Grating Response

- Spectral response tuned by stretching or compressing the grating.
- Grating mounted on a hybrid substrate.
- Tuning range of 90 nm realized.
- Thermo-optic effect can also be used for tuning.
- Bragg wavelength shifts at a rate of $10 \mathrm{pm} /{ }^{\circ} \mathrm{C}$.

$328 / 455$

OPTICS

Acousto-Optic Filters

- Grating formed using a high-frequency acoustic wave.
- Acoustic wave creates a refractive-index grating through the photoelastic effect.
- Grating diffracts incident optical beam when the Bragg condition is satisfied.
- Such filters can be made by using bulk components as well as planar waveguides.
- In both cases, a piezoelectric transducer is used to generate the acoustic wave.
- Use of LiNbO_{3} waveguides provides compact filters.

Waveguide Acousto-Optic Filters

- TE and TM components are processed separately.
- All components can be integrated on the same LiNbO_{3} substrate.
- TE-TM mode conversion by acoustic wave when Bragg condition $\beta_{\mathrm{TM}}-\beta_{\mathrm{TE}}=2 \pi / \Lambda_{a}$ is satisfied.
- Using $\Lambda_{a}=\lambda /(\Delta n)$ with $\Delta n \approx 0.07, \Lambda_{a}=22 \mu \mathrm{~m}$ and $v_{a}=170 \mathrm{MHz}$ for $\lambda=1.55 \mu \mathrm{~m}$.
,
$\lambda /(\Delta n)$ with $\Delta n \approx 0.07, \lambda_{a}=22 \mu$ and $v_{a}=170 \mathrm{MHz}$

OPTICS

Transfer function

- Transfer function of an acousto-optic filter exhibits side lobes.
- 3-dB Filter bandwidth is typically $<0.5 \mathrm{~nm}$.
- Passband can be flattened through suitable design modifications.
- Tuning range 40 nm ; insertion losses $\sim 4 \mathrm{~dB}$.

Fiber-Based Acousto-Optic Filters

- Coupling losses can be avoided with an all-fiber approach.
- Basic idea: Couple two modes of the fiber through acoustically induced index grating.
- A piezoelectric transducer produces acoustic vibrations that are amplified and transmitted to the optical fiber using a horn.
- A specific wavelength is selectively transferred to the higher-order mode.
- A mode-selective coupler used to separate filtered channel.

Fiber-Based Acousto-Optic Filters

- Two schemes baed on (a) tapered fiber; (b) two-mode fiber.

Grating-Based Demultiplexers

- Demultiplexers contain a wavelength-selective element to separate individual channels of a WDM signal.
- Grating-based demultiplexers use diffraction from an optical grating.
- Focusing lens can be replaced with a graded-index lens.
(b)
(b)

-

Grating-Based Demultiplexers

- A concave grating etched directly onto a silica waveguide.
- Input and output waveguides integrated on the same substrate.
- Entire chip was 1 cm wide and 3.4 cm long.

Unefta (i) UNIVRSITY of

Filter-Based Demultiplexers

- Use MZ interferometers to multiplex WDM channels.
- Path-length difference is chosen such that incoming power from two ports appears at the same output port.
- Same device works as a demultiplexer when a WDM signal is launched from the right end.
- Whole structure can be fabricated on a silicon substrate using SiO_{2} waveguides (a planar lightwave circuit).

The Institut of

Fiber-Based Demultiplexers

- A $1 \times N$ fiber coupler converted into a demultiplexer with a phase-shifted grating at the end of each output port.
- Amount of phase shift varied to select the channel.

Waveguide-Grating Demultiplexers

- A phased array of optical waveguides acts as a grating.
- Two star couplers at two ends act as lenses.
- Different channels focus to different output waveguides.
- Integrated version of two lenses and a bulk grating.
- Such devices are fabricated with silica-on-silicon technology.

Waveguide-Grating Demultiplexers

- Transmission spectra of an AWG demultiplexer designed for separating 256 channels with $25-\mathrm{GHz}$ spacing.
- AWG contaied 712 waveguides whose length increased by $27.7 \mu \mathrm{~m}$.
- Chip size was only $7.5 \times 5.5 \mathrm{~cm}^{2}$.
- Insertion losses ranged from 2.7 to 4.7 dB .

Optical Add-Drop Multiplexers

- OADMs are needed for all-optical networks in which WDM channels are maintained in the optical domain at intermediate nodes.
- A specific channel at a certain wavelength is dropped or added, while preserving the integrity of all other channels.
- Such a component differs from optical filters.
- OADMs need four ports, in contrast with optical filters that have only two ports.

鹵 UNIVERSITY of

Directional Couplers with Gratings

- Bragg grating fabricated in one or both cores of a coupler.
- Grating is designed to assist or frustrate coupling between two cores for a specific channel.
- In a grating-frustrated coupler, two cores are identical and light is transferred to neighboring core in the absence of grating.
- Grating frustrates the transfer of a channel whose wavelength falls within its stop band.
- This channel remains in the same core and appears at the bar port of the coupler (dropped channel).
- A channel at the same wavelength can be added by injecting it from the unused input port.

Grating-Assisted Directional Couplers

- In a grating-assisted coupler, two cores are made dissimilar.
- No power transfer between two core occurs without grating.
- Grating occupies the second core and helps to transfer a specific channel to the other core.
- If a long-period grating is used, dropped channel appears at the cross port.
- A short-period Bragg grating not only couples light into second core but also reflects it.
- Dropped channel appears then appears at the 2nd port on
the input side.

Grating-Assisted ADM

- In another scheme, two cores are made identical.
- Bragg Grating is fabricated in the central coupling region.
- All channels cross over to the second core.
- Channel whose wavelength falls within the stop band of the grating is reflected by the grating and travels in the backward direction.
- This channel appears at the second input port.

Mach-Zehnder Interferometer with Gratings

- Bragg grating is design to reflect a specific channel.
- This channel appears at port 2; remaining channels go to port 4.
- Channel to be added is injected from port 3.
- Grating should be 100% reflecting to minimize crosstalk.
- MZ interferometer should be perfectly balanced for such OADMs.
- UV trimming is used in practice to ensure equal phase shifts in two arms of the MZ interferometer.

Cascaded Mach-Zehnder OADMs

- For WDM applications, a crosstalk level of -20 dB is not sufficient.
- It can be reduced to below -40 dB by cascading two OADMs in series.
- First OADM drops off channel at λ_{B}.
- Any power leaked through the first OADM is reflected by the middle fiber grating before WDM signal enters second OADM.
- Two gratings in this section further reduce the power at λ_{B} before the new signal is added.

Optical Circulator with Gratings

- OADMs can be made using two 3-port optical circulators.
- To reduce insertion losses, use of a single optical circulator is better.
- OADM designs with a single circulator and fiber gratings.
- In design (a), dropped channel appears at port 3. Channel to be added enters from port 4.
- Crosstalk can be reduced by employing two gratings as shown in design (b).

OTICS

Bidirectional OADM

- Constructed by combining two circulators with multiple Bragg gratings.
- One can even insert an optical amplifier to amplify channels before adding and dropping.
- Gratings marked $\mathrm{FBG}_{\text {EAST }}$ and $\mathrm{FBG}_{\text {west }}$ reflect WDM signals traveling in the east and west directions.
- Gratings marked FBG_{1} and FBG_{3} reflect channels that need to be dropped (or added) in the east and west directions.

OPTICS

Microring Resonators

- Channel whose wavelength coincides with a longitudinal mode of the microring is transferred to the upper waveguide (and dropped).
- Remaining channels stay in the first waveguide.
- Such an OADM can be fabricated with silica or polycrystalline silicon waveguides.

Microring Resonators

- Two schemes for coupling a microring to linear waveguides vertically.
- Two waveguides do not have to be parallel.
- Three-ring design provides larger free spectral range and higher finesse; it is used to tailor shape of resonance peak.
- Resonance bandwidth of $<0.5 \mathrm{~nm}$, a free spectral range of $>10 \mathrm{~nm}$, and a finesse of $>1,000$ possible.

Tunable Add-Drop Multiplexers

- First AWG separates WDM channels and directs them to different ports.
- Amplifier gains adjusted to amplify only the channel to be dropped.
- Second AWG multiplexes all channels so that the dropped channel appears at a specific port (other channels lost because of loses).
- Channels can be added using Y-junction couplers at the input end of amplifiers.

LiNbO_{3}-Based Tunable OADM

- A rapidly tunable OADM can be made using two LiNbO_{3} waveguides processing the TE and TM components separately.
- Index grating created by applying strain along the waveguide length in a periodic fashion.
- $\mathrm{A}_{\mathrm{SiO}_{2}}$ film deposited on top of waveguides and metal contacts placed with a fixed spatial period.

Tunable OADMs

- Strain results from thermal-expansion mismatch between the substrate and film.
- Tuning is realized by changing the Δn in the Bragg condition $\lambda_{d}=\Lambda|\Delta n|$.
- Silica-on-silicon technology also permits tuning of an OADM but it relies on the relatively slow thermo-optic effect.
- Device consists of cascading several asymmetric MZ interferometers with a built-in chromium heater in one arm of each MZ.
- Relative phase shift between the two arms can be altered by changing the refractive index in one of the arms thermally.
- This change allows one to tune the wavelength of the channel that should be dropped or added by the device.

WDM Transmitters and Receivers

- WDM systems require one DFB laser for each channel.
- Laser wavelengths for two neighboring channels should differ by a precise amount to produce channel spacing ($50-100 \mathrm{GHz}$).
- Laser wavelengths must fall on the ITU grid.
- Use of individual transmitters for each channel becomes impractical when the number of channels becomes large.
- Use of tunable semiconductor lasers reduces inventory and maintenance problems.
- Multiwavelength transmitters provide an alternative solution to this problem.

Optoelectronic Integrated Circuits

- Transmitter made by integrating multiple DFB lasers, electroabsorption modulators, and back-facet detectors.
- Output of all lasers combined and amplified on the same chip.
- Up to 16 DFB have been integrated with this technique.

WDM Transmitters with an AWG

- WDM transmitter made by integrating an AWG inside laser cavity.
- Spontaneous emission of left amplifier is demultiplexed into multiple spectral bands through spectral slicing.
- Amplifier array on the right amplifies this set of wavelengths.
- By 1999, WDM transmitter with up to 40 wavelengths were made.

Hybrid Integration

- Multiple lasers fabricated on an lnP substrate.
- Laser outputs combined using a photonic lightwave circuit made with silica-on-silicon technology.
- Channels can be multiplexed using an MMI coupler.
- A similar scheme can be used for WDM receivers; micromirrors used to reflect signal toward a photodiode array.

OPTICS

Fiber-Laser Transmitters

- Twelve 3-dB couplers combined such that each laser pumps all DFB fiber lasers.
- Such a pumping scheme provides redundancy against pump failure.
- Outputs of 8 lasers combined using an all-fiber multiplexer.
- Measured intensity noise low because of power averaging.

Fiber-Lasers Transmitters

- Ring fiber lasers can emit light at multiple wavelengths.
- Cavity contains a frequency shifter and an optical filter with multiple peaks (FP filter or a sampled grating).
- Frequency shifter (an acousto-optic modulator) shifts frequency by 100 MHz or so and forces laser to perate over a wide bandwidth.
- Filter selects a comb of frequencies chosen to coincide with ITU grid.

Fiber-Laser Transmitters

- Filter can be designed using several different techniques.
- In design (a), a FP filter is combined with a chirped fiber grating.
- Grating limits the spectral band over which the FP filter provides transmission.
- In design (b), a sampled fiber grating is used in combination with an optical circulator.
- An AWG can also be used for this purpose.
- WDM transmitters emitting light at 16 distinct wavelengths have been made with this technique.
- Semiconductor optical amplifier can be used in place of EDFA.
- A fiber-ring laser containing two SOAs and a fiber FP filter provided output at 52 channels with $50-\mathrm{GHz}$ spacing.

Spectrally Sliced WDM Transmitters

- Output of a wide-bandwidth source is sliced spectrally.
- Picosecond pulses broadened spectrally to 200 nm through supercontinuum generation.
- Mod-locked laser (EML) generates 21-ps pulses at 10 GHz .
- Pulses amplified, chirped through SPM in a DSF, and compressed to 2.7 ps using a SMF.
- Pulses launched into 4-km-long DSF to produce supercontinuum.

Spectrally Sliced WDM Transmitters

- 1,000-channel source realized with $2.5-\mathrm{GHz}$ channel spacing.
- 4.3-ps pulses amplified by an EDFA and then broadened spectrally in a polarization-maintaining fiber.
- Supercontinuum not required if femtosecond pulses are used.
- Spectral slicing of chirped-pulse spectrum provides WDM channels.

鹵 UNIVERSITY of

Optical Switching

- All-optical networks require switching of information optically, rather than electronically.
- Several kinds of optical switches have been developed.
- Some function in space domain such that entire channel is routed to the same output port (circuit switching).
- Others operate in time domain and can route individual bits or packets to different destinations (packet switching).
- This chapter focuses on space-domain switching schemes. Topics covered include wavelength routers, wavelength converters, and optical cross-connects.
- Space-domain switching requires devices that can direct their input to different output ports depending on an electric signal.

OMPTICS

Y-Junction Switch

- Simplest switch: a Y junction with one input and two output ports.
- Normally, Y junctions simply split input into two parts.
- If a mechanism is incorporated that allows input signal to exit from a specific port in a controlled fashion, a Y junction is converted into an optical switch.
- Simple solution: Insert a semiconductor optical amplifier (SOA) in the two output branches of a Y junction.
- SOA acts as an absorber without electrical current, but amplifies the signal when current is injected into it.
- Switches that work through selective absorption or amplification of input are referred to as gate switches.

Electro-Optic Switches

- Make use of electro-optic effect (electro-refraction).
- Provide relatively fast switching on a time scale of $\sim 1 \mathrm{~ns}$.
- Can be made using Y junctions, directional couplers, or MachZehnder interferometers.
- LiNbO_{3} technology often used in practice to realize polarizationindependent switching.

The Institute of

Directional-coupler Switch

- An 8×8 switching module designed with 12 interconnected directional couplers.
- By 1995, such switching exhibited low crosstalk and excellent uniformity among all connecting ports.
- Such devices have been used for test-bed demonstrations.

Y-Junction Digital Switch

- Switching characteristics of a Y-junction electro-optic switch.
- Referred to as a digital switch because of its binary response.
- External voltage applied to change mode index.
- When opposite voltages are applied to two waveguides, index changes direct the output toward a selected port.
- Voltage-induced asymmetry converts a Y junction into a digital optical switch.

Theory Behind Digital Switch

- Coupling between two waveguides decreases exponentially as they separate from each other.
- Since spacing between waveguides increases linearly with z, coupling coefficient has the form $\kappa=\kappa_{0} \exp (-\gamma z)$.
- γ is proportional to the branching angle θ.
- Coupled-mode theory predicts that power changes with V as

$$
P_{1}(V)=\frac{P_{\mathrm{in}} e^{-a V}}{1+e^{-a V}} .
$$

- Constant a depends on θ and other design parameters.
- Power drops to nearly zero as V is increased above a threshold value $V_{\text {th }}$ (typically $V_{\text {th }}<10 \mathrm{~V}$).

Semiconductor-Waveguide Switches

(a)

(b)

- Examples of optical switches based on semiconductor waveguides.
- GaAs or $\ln \mathrm{P}$ waveguides used in combination with SOAs. In (a) SOAs compensate insertion losses; In (b) SOAs act as a gate switch.
- One can employ direction couplers, MZ interferometers, or Y junctions as building blocks.
- InP technology used commonly near $1.55 \mu \mathrm{~m}$.
- All components can be integrated on the same lnP substrate.

Thermo-Optic Switches

- Make use of MZ configurations and silica-on-silicon technology.
- Refractive index changed in one MZ arm thermally with a thin film of chromium deposited on top of silica waveguide.
- Before heating, input signal comes out of cross port; it is switched to bar port thermally.
- A thermo-optic switch with high extinction ratio is made by combining two MZ interferometers.
- Switching time is $\sim 1 \mathrm{~ms}$ for such devices.

Thermo-Optic Switches

- Circuit layout of a 16×16 switching fabric.
- Uses 256 thermo-optic switches, each containing two MZ interferometers.
- Built in 16 stages.
- Average insertion loss about 6.6 dB .
- Average extinction ratio about 63 dB .

路

Micro-Mechanical Switches

- A mirror acts as a switch if the direction of signal can be changed by tilting the mirror.
- Use of "bulk" mirrors is impractical as a large number of switches are needed for making even 16×16 switching fabric.
- Micro-electro-mechanical system (MEMS) technology is employed in practice.
- It can be used to fabricate microscopic mirrors (micromirrors) that can be rotated by applying an electric signal.
- MEMS devices operate in 2-D and 3-D configurations depending on how mirrors are rotated.

2-D MEMS Switches

- 2-D MEMS switch and details of micromirror design.
- Entire matrix of micromirrors can be integrated monolithically on a single silicon chip.
- Input from one fiber can be forced to couple into any output fiber by flipping the micromirror lying at intersection.
- For 1 -mm spacing between micromirrors, chip size is $2 \times 2 \mathrm{~cm}^{2}$ for a 16×16 switch.

OPTICS

3-D MEMS Switches

- 2-D geometry requires N^{2} micromirrors for $N \times N$ MEMS switch.
- 3-D configuration requires two arrays of N micromirrors.
- Each micromirror is a two-axis gimbal mirror and it steer input beam in any direction.
- Angle of mirror can be adjusted electronically to make interconnections.
- Fourier lens helps to reduce the crosstalk.
- 3-D MEMS switches with $N=1100$ made by 2003.

Liquid-Crystal Switches

- Liquid crystals are used for making computer displays and spatial light modulators.
- When a thin layer of nematic liquid crystal is surrounded by polarizers, incident light can be transmitted or blocked, depending on an external voltage.
- Physical process: electrically controlled birefringence.
- State of polarization of incident light changes with applied voltage.
- Device is designed such that no light passes through in the absence of applied voltage (OFF state).
- With a suitable voltage, birefringence is changed such that incident light passes through (ON state).

Design of Liquid-Crystal Switches

- Polarization-sensitivity problem is solved by splitting input signal into orthogonally polarized components.
- Polarization beam splitters are used in combination with beam routers.
- If both switches are in OFF state, signal entering from port 1 is routed to output port 2.
- When both switches are in ON state, input from port 1 appears at
output port 1.
- A 32×32 switch was made as early as 1998 .

Bubble Switches

- Bubble technology makes use of total internal reflection.
- Two planar waveguides intersect in a groove filled with a liquid whose refractive index nearly matches that of waveguide mode.
- When a thermally generated bubble is at the intersection, reflected beam is coupled into the other waveguide.
- Switching accomplished using microheaters (switching time close to 10 ms).

Design of Bubble Switches

- To fabricate a bubble-based switch, a two-dimensional array of waveguides is formed such that they intersect inside liquid-filled channels.
- Waveguide array is made in the form of a planar lightwave circuit with silica-on-silicon technology.
- Liquid-filled channels are etched chemically (typically $15-\mu \mathrm{m}$-wide).
- Air bubble is generated with the inkjet technology used for printers.
- A 32×32 switch was made by 2000 with bubble technology.
- A bubble switch is similar to MEMS switch in the sense that both employ reflection for switching.
- MEMS use real mirrors, while total internal reflection is employed for a bubble switch.

Wavelength-Domain Routers

- Switch individual channels to different ports in a passive manner.
- Switching performed by a built-in grating on the basis of channel wavelengths.
- A WDM router is also called a static router since routing topology is not dynamically reconfigurable.
- Each WDM signal is demultiplexed and directed toward different output ports of the router.
- Channels are distributed in a cyclic form.
- In a common design, an arrayed waveguide grating is employed.

OTMTICS

Waveguide-Grating Routers

(a)

(b)

Waveguide-Grating Routers

- A waveguide-grating router (WGR) consists of an arrayed waveguide grating between two star couplers.
- A single input is divided into M parts, which acquire different phase shifts and interfere at the second star coupler (a kind of multi-arm MZ interferometer).
- Phase difference for a signal traveling from p th input port to q th output port through the m th waveguide can be written as

$$
\phi_{p q m}=(2 \pi m / \lambda)\left(n_{1} \delta_{p}+n_{2} \Delta L+n_{1} \delta_{q}^{\prime}\right) .
$$

- $n_{2}=$ mode index in waveguide; $n_{1}=$ index of star couplers; δ_{p} and δ_{q}^{\prime} depend on the location of input and output ports.
- When $n_{1}\left(\delta_{p}+\delta_{q}^{\prime}\right)+n_{2} \Delta L=Q \lambda$, all fields coming out of the M waveguide interfere constructively at the q th port.

Physics Behind WGR

- Multiple wavelengths entering from the p th port are directed to different output ports.
- Phase condition can be satisfied for many integer values of Q.
- If Q is changed to $Q+1$, a different wavelength is directed toward the same port.
- Frequency difference between these two wavelengths corresponds to free spectral range of the router:

$$
\mathrm{FSR}=\frac{c}{n_{1}\left(\delta_{p}+\delta_{q}^{\prime}\right)+n_{2} \Delta L} .
$$

- If δ_{p} and δ_{q}^{\prime} are small compared with ΔL, FSR becomes nearly constant for all ports.

Design of WGRs

- Optimization of a WGR requires precise control of many design parameters.
- Main design goals: low crosstalk and high routing efficiency.
- Despite complexity of design, WGRs are routinely fabricated in the form of a compact commercial device (size $\sim 1 \mathrm{~cm}$).
- Silica-on-silicon technology is used in practice.
- WGRs with 128 input and output ports were available by 1996 in the form of a planar lightwave circuit.
- Such devices can work with a channel spacing as small as 0.2 nm while maintaining crosstalk below 20 dB and insertion losses around 6 dB for all channels.
Main

Back

Wavelength Converters

- Optical networks not transparent in the wavelength domain.
- Channel blocking occurs if two channels at the same wavelength are destined for the same location.
- This problem can be solved using wavelength converters.
- A wavelength converter transfers the channel to a new wavelength without modifying its data content.
- Many schemes were developed during 1990s for realizing wavelength converters.
- A simple scheme employs a receiver-transmitter pair.
- Its main disadvantage is conversion to electric domain.
- All-optical wavelength converters are preferred in practice.

Many

Schemes for Wavelength Conversion

- Optoelectronic regeneration (receiver-transmitter pair).
- Cross-gain saturation in a semiconductor laser amplifier (SOA).
- Cross-phase modulation in SOA using a MZ interferometer.
- Four-wave mixing inside a SOA.

(a)

(b)

(c)

(d)

Cross-Gain Saturation in SOAs

- Signal at λ_{1} is launched into SOA together with low-power CW beam at λ_{2} (desired wavelength).
- During 0 bits, CW beam amplified considerably (no saturation.
- CW beam is amplified by a much smaller amount during 1 bits.
- Bit pattern is transferred to the λ_{2} with reverse polarity (1 and 0 bits are interchanged).
- This technique can work at bit rates as high as $40 \mathrm{~Gb} / \mathrm{s}$.
- Its main disadvantages are relatively low on-off contrast, degradation due to spontaneous emission, and phase distortion because of frequency chirping.
- The use of an absorbing medium in place of the SOA solves polarity reversal problem.

Cross-Phase Modulation in SOAs

- Contrast problem can be solved using Cross-phase modulation.
- An SOA is inserted in one arm of a MZ interferometer.
- In the absence of λ_{1} beam, MZ is balanced, and CW beam at λ_{2} exits from the cross port.
- Signal at λ_{1} injected such that its power passes through the arm containing SOA.
- It modifies the phase of λ_{2} beam by π only during 1 bits and directs then toward the bar port.
- An optical filter blocks the original λ_{1} signal.
- Other types of interferometers can also be used.

XPM-Based Wavelength Converters

- Two SOAs and several MMI couplers are monolithically integrated on a single InP chip in the MZ configuration.
- Two control signals $P_{c 1}$ and $P_{c 2}$ are coupled into two MZ arms using an especially designed MMI coupler.
- This coupler converts control signals into first-order modes, while signal remains in the fundamental mode.
- Control signals converted back into fundamental mode for re-use.

Four-Wave Mixing in SOAs

- Another scheme employs SOA as a nonlinear medium for FWM.
- FWM requires an intense CW pump beam that is launched into SOA together with the signal channel.
- If v_{1} and v_{2} are frequencies of input and converted signal, pump frequency $v_{p}=\left(v_{1}+v_{2}\right) / 2$.
- At the SOA output, a replica of the input signal appears at v_{2}.
- A filter blocks the original channel at v_{1}.
- This technique works at bit rates of up to $100 \mathrm{~Gb} / \mathrm{s}$.
- Its main disadvantage is that it requires a tunable high-power laser
acting as a pump.

LiNbO_{3}-Based Wavelength Converter

- Wavelength converters can also be made with LiNbO_{3} technology.
- $\chi^{(2)}$ is used for difference-frequency generation.
- Periodic poling used for realizing quasi-phase matching; sign of $\chi^{(2)}$ inverted periodically along waveguide length.
- Such devices require a pump laser operating near 780 nm with 50100 mW of power.
- An alternative scheme makes use of two cascaded second-order nonlinear processes in a PPLN waveguide.
- It works with a pump laser operating near $1.55 \mu \mathrm{~m}$.
- Pump at ω_{p} is first up-converted to $2 \omega_{p}$, which then generates wavelength-shifted output through difference-frequency generation.

LiNbO_{3}-Based Wavelength Converters

(a)

(b)

- Simultaneous wavelength conversion of four channels in a PPLN waveguide pumped at 1562 nm with $110-\mathrm{mW}$ power.
- Conversion efficiency about 5% for all channels.
- Bandwidth of flat region over which conversion efficiency is nearly constant is more than 60 nm .
- Wavelength conversion at $160 \mathrm{~Gb} / \mathrm{s}$ demonstrated in 2000.

Fiber－Based Wavelength Converters

－Both XPM and FWM inside fibers can be used for wavelength conversion．
－In the XPM case，signal is launched with a CW seed at the desired wavelength．
－Signal imposes XPM－induced phase shift during time slots of 1 bits．
－This phase shift is converted into amplitude modulation a MZ or Sagnac interferometer．
－By 2000，a nonlinear optical loop mirror provided wavelength con－ verters capable of operating at $40 \mathrm{~Gb} / \mathrm{s}$ ．
－Device reflected all 0 bits but 1 bits were transmitted because of XPM－induced phase shift．

Fiber-Based Wavelength Converters

(a)

(b)

- On-off ratio of the converted signal should be large.
- It was measured to be 25 dB in an experiment employing 3-km-long Sagnac loop.
- Optical eye diagrams for the original and wavelength-converted signals show little degradation.
- It is not essential to use an optical interferometer.
- One can pass phase-modulated output through an optical filter.

XPM-Based Wavelength Converters

- XPM creates sidebands on each side of carrier (FM sidebands).
- Optical filter blocks the carrier but lets one of the sidebands pass.
- Filtered output is a replica of the original bit stream at a shifted wavelength.
- Wavelength of a $80-\mathrm{Gb} / \mathrm{s}$ signal could be shifted by several nanometers with this technique.
- Fiber length was reduced to 1 km using a narrow-core fiber.

FWM-Based Wavelength Converters

- Use of FWM for wavelength conversion requires fiber-optic parametric amplifiers.
- Such amplifiers need one or two high-power pump lasers.
- SBS problem is solved by modulating phase of each pump at high frequencies ($>1 \mathrm{GHz}$).
- Such phase modulation can lead to considerable spectral broadening of wavelength-converted signal.
- Idler field is generated such that $A_{i} \propto A_{p 1} A_{p 2} A_{s}^{*}$.
- If pump phases are modulated in reverse $\left(\phi_{2}=-\phi_{1}\right)$, the product $A_{p 1} A_{p 2}$ does not exhibit any phase modulation.
- Idler spectrum is then a mirror image of signal spectrum.

FWM-Based Wavelength Converters

- Two dominant peaks correspond to two orthogonally polarized pumps at 1585 and 1546 nm with 118 and 148 mW powers, respectively.
- Power was higher at the shorter wavelength to offset Raman-induced power transfer.
- FWM occurred in a 1-km-long highly nonlinear fiber ($\gamma=18 \mathrm{~W}^{-1} / \mathrm{km}$).
- Idler power was comparable to that of the signal, indicating nearly 100% efficiency for the wavelength converter.

Optical Cross-Connects

- OXCs perform the function of electronic cross-connects but keep the WDM signals in the optical domain.
- They make use of optical switches in place of electronic switches.
- Use of WDM technology makes the design of OXCs complex.
- Individual channels must be demultiplexed before any switching can occur.
- OXCs can be divided into two groups:
* Wavelength-Selective Cross-Connect
* Wavelength-Interchanging Cross-Connect
- Many OXC designs have been developed for future all-optical networks. works.

Wavelength-Selective Cross-Connects

- Individual wavelengths sent to a separate switching unit.
- An OXC with N input and M output ports needs N switching units if each port receives N WDM channels.
- Such an OXC needs M multiplexers, M demultiplexers, and N switching units with M input and M output ports.
- Such devices are relatively easy to fabricate using silica or $\ln P$ waveguides.
- Required switching time for OXCs is 5 ms or less.

Coupler-Based Cross-Connects

- Schematic of 8×8 switching unit designed using MMI couplers.
- Device fabricated with silica-on-silicon technology.
- Employs 81×2 couplers, followed by $161 \times 4 \mathrm{MMI}$ couplers.
- On the output side, signals are recombined using sixteen 4×1 and eight $2 \times 1 \mathrm{MMI}$ couplers.
- Switching performed by multiple MZ interferometers.
- Total insertion loss $<6 \mathrm{~dB}$ and crosstalk level $<-34 \mathrm{~dB}$.

AWG-Based Cross-Connects

- Schematic of an InP-based OXC in which switching is performed using phase shifters placed in between two AWGs.
- By controlling the amount of phase shift, it is possible to connect any input channel to any output channel.
- InP devices are sensitive to the state of polarization of input signal.
- Polarization-independent OXC were built as early as 1998 using electro-optic MZ switches.

MZ-Based Cross-Connects

- Crosstalk is a major issue for all OXCs.
- Crosstalk can be reduced using double-gate switches.
- Each wavelength from input fibers is handled by a switch composed of four MZ interferometers.
- Phase shifts in MZ arms induced with the electro-optic effect.
- High insertion losses prevent lnP devices from being competitive with OXCs based on silica waveguides.

OPTICS

Circulator-Based Cross-Connects

- Each WDM signal entering is first split into two parts by a 3-dB coupler.
- Each part is sent to a wavelength blocker surrounded by two optical circulators.
- Left blocker controls bar state; right one controls cross state.
- If a WDM channel needs to be maintained in the bar state, it is passed by the left blocker but blocked by the right one.
- Wavelength blockers work though phase shifts introduced in one arm of MZ switches.

Merits of Wavelength-Selective OXCs

- Main advantage: all-optical design.
- Such OXCs do not require opto-electronic regenerators.
- They are transparent to the format and bit rate of WDM channels.
- These advantages are overshadowed by wavelength-blocking nature of wavelength-selective OXCs.
- Blocking occurs when two channels entering from different input ports at the same wavelength are destined for the same output port.
- Blocking problem can be solved with a proper assignment of transmitter wavelength.
- Coordination of wavelengths throughout the entire is not an easy task in practice.

Wavelength-Interchanging Cross-Connects

- Solve wavelength-blocking problem using wavelength converters.
- In contrast with a wavelength-selective OXC, channels at a given wavelength are not grouped together.
- Require a larger $N M \times N M$ switch to interconnect $N M$ channels.
- This switch can even be electrical; receivers convert all channels
into electrical domain at the input end, while optical transmitters are used to regenerate channels.

MEMS-Based Cross-Connects

- Any switching technology can be employed for making OXCs.
- Use of 3-D MEMS switches has attracted most attention.
- Such OXCs employ micromirrors that rotate to make interconnection among input and output fibers.
- By 2003, such OXcs could interconnect more than 1000 input and output ports.

OPTICS

DCSW-Based Cross-Connects

- OXC architecture based on delivery and coupling switches (DCSW).
- It makes use of N switches with M input and N output ports.
- Such switches are made with silica-on-silicon technology.
- Insertion losses fall in the range of $12-14 \mathrm{~dB}$.

Fiber-Grating-Based Cross-Connects

Tunable fiber Bragg gratings used in combination with optical circulators to make 2×2 switching units; six of them combined to make a routing block, which in turn used to form the OXC.

Fiber-Grating-Based Cross-Connects

- FBGs reflect or transmit a channel depending on whetner channel wavelength falls within the stop band or outside of it.
- In a 2×2 switching unit, FBGs are tuned such that each channel can be switched to either output port.
- Six such 2×2 switches can be combined to produce a 4×4 routing block.
- Several such routing blocks are then combined to design the entire OXC.
- This architecture does not require demultiplexing and subsequent multiplexing of the WDM signals.
- Its modular nature permits upgrading the number of wavelengths as needed.

国国 UNIVERSITY of

Time-Domain Switching

- In the case of space-domain switching, entire WDM channel is switched to another port without affecting its information content.
- In time-domain switching, individual bits, or packets of bits, belonging to a specific channel are switched to different ports.
- Main difference between two kinds of switching is switching speed.
- Whole-channel switching to a different port is acceptable on a time scale $\sim 1 \mathrm{~ms}$.
- Time-domain switching must occur on the time scale of individual bits or packets (1 ns or shorter).
- In the case of time-division multiplexing, such switches must operate on a time scale <10 ps when bit rate is $100 \mathrm{~Gb} / \mathrm{s}$.

Nonlinear Switching Schemes

- Time-domain switching requires an optical switch capable of responding at a time scale $\sim 1 \mathrm{ps}$.
- Such switches are referred to as an optical gate that can be opened for a short time using an external control.
- Nonlinear effects such as optical bistability, XPM, and FWM are exploited for time-domain switching.
- Switching speed depends on the nonlinear medium employed.
- Optical fibers allow ultrafast switching (time scale $<0.1 \mathrm{ps}$), but require high optical powers and long fiber lengths.
- Semiconductor optical amplifiers (SOAs) exhibit stronger nonlinear-
ities but respond on a nanosecond time scale.

Optical Bistability

- Under certain conditions, output can have two discrete stable values for the same input.
- If output can be switched between these two values through an external time-dependent control, device acts as a time-domain switch.
- A Fabry-Perot or a ring resonator containing a nonlinear medium ($n=n_{l}+n_{2} I$) exhibits bistability.
- For high-finesse resonators, transmitted power satisfies

$$
P_{t}\left\{1+\frac{4 R_{m}}{\left(1-R_{m}\right)^{2}} \sin ^{2}\left[\frac{\phi_{0}}{2}+\frac{\gamma P_{t} L_{R}}{2\left(1-R_{m}\right)}\right]\right\}=P_{i} .
$$

- Multiple values of P_{t} are possible for the same incident power P_{i} because of nonlinear phase shift $\gamma P L_{R}$.

Bistable Response

- Bistable response of a fiber resonator with $R_{m}=0.5$ for three values of detuning $\delta=\left(\omega-\omega_{0}\right) \tau_{r}$.
- Cavity Round-trip time $\tau_{r}=L_{R} / v_{g}$.
- S-shaped curve is a signature of optical bistability.
[im UNIVERSITY of

Physics Behind Bistable Response

- Low output when linear phase shift ϕ_{0} does not correspond to a FP resonance ("off" state).
- Nonlinear phase shift affects the cavity resonances.
- Ar a critical power level, it brings the signal onto a resonance, resulting in higher transmission ("on" state).
- Over a certain range of δ, three solutions produce the S-shaped curve associated with optical bistability.
- Middle branch with a negative slope is always unstable.
- Transmitted power jumps up and down at specific values of P_{i} in
such a way that it exhibits hysteresis.
- Hysteresis allows the device to act as an optical switch.

Materials for Optical Bistability

- A Bistable device can be switched on and off by changing input power, input wavelength, or other controls that change detuning δ.
- Optical bistability has been observed in atomic vapors, semiconductor waveguides, and optical fibers.
- As early as 1978 , a LiNbO_{3} waveguide modulator was used for this purpose by coating its two ends with silver to form an FP cavity.
- Waveguides formed using multiple quantum wells were used during the 1980s to observe bistability.
- In the case of optical fibers, SBS hampers the observation of optical bistability when CW beams are used.
- Bistability in a fiber-ring resonator was first seen in a 1983 experiment in which SBS was avoided using picosecond pulses.

The Institut \in of

Experimental Results

- A 1998 experiment employed fiber-ring resonator (length 7.4 m).
- Mode-locked pulses (width $\sim 1 \mathrm{ps}$) from a Ti:sapphire laser were used to observe bistability.
- Figure shows Hysteresis cycle four values of detuning δ.

Bistability with Distributed Feedback

- FP cavity is not essential for bistability as long as there is a built-in mechanism for optical feedback.
- DFB from a Bragg grating formed inside a nonlinear medium can lead to optical bistability.
- DFB semiconductor lasers and amplifiers are a natural candidate for such devices.
- Physical mechanism: Dependence of refractive index on carrier density.
- As carrier density decreases in response to gain saturation, refractive index increases, leading to a shift of stop band.
- This nonlinear shift of the stop band brings the device into resonance to produce bistability.

Bistability in DFB Amplifiers

- Gain as a function of detuning (from Bragg wavelength) in a DFB amplifier (a laser biased below threshold).
- Stop band shifts as more current is injected because of a change in carrier density.
- Four curves correspond to a peak gain of $0,10,20$, and 30 dB .

Cross-Phase Modulation

- XPM can be used for switching without requiring a resonator.
- Its use requires a Mach-Zehnder (or Sagnac) interferometer for converting XPM-induced phase shift into amplitude changes.
- Signal is directed toward cross port in the absence of control.
- A control pulse is used in one MZ arm to induce a π phase shift.
- A temporal slice of input signal then appears at the bar port.
- Minimum duration of temporal slice $<1 \mathrm{ps}$ in optical fibers.

Switching with Sagnac Loops

- It is hard to maintain identical path lengths in two MZ arms ($>1 \mathrm{~km}$ because of weak nonlinearity of silica fibers).
- A Sagnac loop solves the stability problem.
- To make a time-domain switch, control signal is injected in only one direction to produce a π phase shift.
- Only a temporal slice of input overlapping with control is reflected.
- Each slice can be quite short because of fast fiber response.

Walk-Off Effects

- Even though fiber responds at femtosecond time scales, several other factors limit switching speed to >1 ps.
- Wavelengths of the control and signal pulses are different in practice.
- Because of dispersion, two pulses travel at different speeds.
- Even if pulses overlap initially, they walk away from each other after some distance (walk-off effect).
- Such a walk off reduces the effectiveness of XPM.
- Phase difference $\Delta \phi$ between counterpropagating fields is given by

$$
\Delta \phi(t)=\phi_{a}^{\mathrm{NL}}-\phi_{b}^{\mathrm{NL}}=2 \gamma \int_{0}^{L}\left[P_{c}(t-\delta z)-P_{c}\left(t-\delta^{\prime} z\right)\right] d z .
$$

- Group-velocity mismatch: $\delta=\frac{1}{v_{s}}-\frac{1}{v_{c}}, \quad \delta^{\prime}=\frac{1}{v_{s}}+\frac{1}{v_{c}}$.

Transmissivity of Sagnac Loop

- For a Gaussian control pulse, $P_{c}(t)=P_{0} \exp \left(-t^{2} / T_{0}^{2}\right)$.
- Integrals can be performed analytically in this case.
- In the counterpropagating direction, relative speed is so large that XPM-induced phase shift is negligible, and

$$
\Delta \phi(t)=\frac{\gamma L E_{c}}{T_{W}}\left[\operatorname{erf}\left(\frac{T_{W}-t}{T_{0}}\right)-\operatorname{erf}\left(\frac{-t}{T_{0}}\right)\right] .
$$

- $E_{c}=\sqrt{\pi} P_{0} T_{0}$ is control-pulse energy and $T_{W}=\delta L$ is the total walk off in a loop of length L.
- Loop transmissivity is given by $T(t)=1-2 \rho(1-\rho)[1+\cos (\Delta \phi)]$.
- For $\rho=\frac{1}{2}$ (3-dB coupler), $\left.T(t)=\sin ^{2}[\Delta \phi(t) / 2)\right]$.

Switching Window

- Switching window of a Sagnac-loop switch for (a) $T_{0}=30 \mathrm{ps}$ with $T_{W}=10 \mathrm{ps}$ and (b) $T_{0}=10 \mathrm{ps}$ with $T_{W}=30 \mathrm{ps}$.
- When $T_{W}<T_{0}$, window is governed by control pulse.
- When $T_{W}>T_{0}$, window is governed by walk-off effects.
- $T_{W}=\delta L$ sets the minimum duration of switching window.
- It can be reduced by reducing loop length L or $\delta=\frac{1}{v_{s}}-\frac{1}{v_{c}}$.
- Wavelength difference between control and signal should be small.

Reduction of Walk-Off Effects

- Walk off problem can be solved by using a fiber whose zero-dispersion wavelength lies in the middle of control and signal wavelengths.
- It can also be solved using orthogonally polarized control pulses at the same wavelength in a polarization-maintaining fiber.
- Some velocity mismatch may still occur because of PMD.
- It can be avoided by constructing a Sagnac loop in which slow and fast axes are interchanged in a periodic fashion.
- δ then changes from positive to negative periodically.
- Control and signal pulses nearly overlap throughout the fiber, resulting in large XPM-induced phase shift.

OPTICS

Four-Wave Mixing

- FWM scheme is similar to that used for wavelength conversion.
- Signal is launched together with the control in the form of a periodic pulse train (an optical clock).
- Clock plays the role of pump for the FWM process.
- In time slots in which clock pulse overlaps with a signal pulse, FWM produces a pulse at the idler wavelength.
- Pulse train at idler wavelength is an exact replica of the channel that needs to be demultiplexed.

Four-Wave Mixing

- FWM in optical fibers first used in 1991 for time-domain switching.
- In later experiments, signal bit rate approached 1 THz , confirming that optical fibers switch pulses shorter than 1 ps .
- FWM-based switches can provide gain while switching signal.
- Fiber length should be 5 km or more for the device to function at practical power levels.
- Required fiber length can be reduced by by using highly nonlinear fibers (small mode size produces large γ).
- Alternatively, a different nonlinear medium (SOA) can be used.
- Switching time limited for SOAs. Several schemes allow use of SOAs at speeds as high as 250 GHz .

Optical Flip-Flops

- Functionality similar to electrical flip-flops.
- SOAs often used for making flip-flops (compact size and potential for monolithic integration).
- External control can be electrical or optical.
- Optical control is used in all-optical flip-flops.
- Device switched to on state by sending a set pulse.
- A reset pulse turns the flip-flop off.
- Output remains on between the set and reset pulses. In this sense, a flip-flop acts an optical memory element.

Semiconductor-Based Optical Flip-Flops

- Semiconductor laser or SOAs used for making flip-flops (compact size, low-power consumption, potential for monolithic integration).
- An InGaAsP laser was used in 1987 as an FP amplifier by biasing it slightly below threshold.
- Device could be switched on and off but switching time was relatively long ($>1 \mu \mathrm{~s}$).
- In a 2000 experiment, a DFB laser was biased below threshold.
- Set and reset pulses (15 -ns-wide) were obtained from two InGaAsP lasers operating at 1,567 and $1,306 \mathrm{~nm}$.
- Set pulse had a peak power of only $22 \mu \mathrm{~W}$ (0.33-pJ energy).
- Peak power of reset pulses was close to 2.5 mW (36-pJ energy).

DFB-Amplifier Flip-Flops

- Characteristics of an optical flip-flop built using a DFB laser biased slightly below threshold.
- Left: Timing sequence of set (small peaks) and reset pulses.
- Right: output power of flip-flop as a function of time.
- Switching limited by carrier lifetime ($\sim 1 \mathrm{~ns}$).
- Physical mechanism: Shift of stop band as refractive index changes in response to changes in carrier density.

DFB－Amplifier Flip－Flops

－Set pulse saturates SOA gain，reduces carrier density，and increases mode index \bar{n} ．
－Bragg wavelength shifts to longer wavelengths $\left(\lambda_{B}=2 \bar{n} \Lambda\right)$ ．
－Reset pulse is absorbed by SOA；resulting increase in the carrier density decreases \bar{n} ．
－Bragg wavelength shifts toward shorter wavelengths．
－Set－pulse wavelength must be within the SOA gain bandwidth．
－Exact wavelength of reset pulse is not important as long as it falls outside the gain bandwidth and is absorbed．
－Polarization of reset pulse does not play any role．
－Control signals can propagate in either direction．

Synchronized Semiconductor Lasers

- Two lasers, each built using an SOA and two fiber Bragg gratings acting as mirrors, operate at wavelengths λ_{1} and λ_{2}.
- One of the lasers is selectively turned off by injecting light at a wavelength different than its own (gain quenching).
- Output wavelength can be switched between λ_{1} and λ_{2} using optical controls.
- An optical flop-flop in which two coupled lasers are integrated on the same chip has been fabricated.

OTTICS

VCSEL-Based Flip-Flop

- A VCSEL is integrated with an in-plane laser (IPL) containing a short unbiased section acting as saturable absorber.
- Two lasers share the same active region and are mutually coupled.
- Edge-emitting laser biased such that its output is low (off state).
- Set pulse saturates absorber and turns laser on (on state).
- Device is turned off by injecting a reset pulse through VCSEL.

Polarization Switching

- SOAs made with strained quantum wells to enhance TE-TM gain difference.
- Gain difference changes with control power injected into each SOA.
- Two CW lasers act as holding beams.
- Set and reset pulses act as controls and are used to saturate the SOA gain.

Passive Semiconductor Waveguides

- Passive waveguides can be used for making flip-flops.
- Such devices operate below the bandgap and employ Kerr effect to change refractive index.
- Grating etched on the top InP cladding layer provides DFB needed for bistable operation.
- Device is biased at input power level such that it is close to but below the switching threshold.
- It is switched on and off by increasing or decreasing the input power.

Flip-Flop Performance

(a)

(b)

- Time-dependent input (a) and output (b) traces show performance of optical flip-flop.
- Required power levels are relatively large because of weaker nonlinearity compared with devices based on gain saturation.
- Kerr coefficient $n_{2}=-4.5 \times 10^{-12} \mathrm{~cm}^{2} / W$ near $1,560 \mathrm{~nm}$.
- For a 3-mm-long grating, set required 27 mW ; reset occurred at $10-\mathrm{mW}$ power levels

Polarization-Independent Flip-Flop

- Polarization-independent flip-flop realized using a passive waveguide integrated with a vertically etched Bragg reflector.
- Stop band of Bragg grating changed little when polarization of incident light was changed from the TE to TM mode.
[im UNIVERSITY of

Ultrafast Interferometric Switches

- Switches with a response time of 10 ps or so are needed for switching individual bits.
- Many devices make use of the nonlinear phenomenon of XPM.
- They convert phase modulation into amplitude modulation using a Sagnac interferometer (nonlinear optical loop mirror)
- A Mach-Zehnder interferometer made using directional couplers can also be used.
- Fiber-based devices often suffer from dispersive and environmental stability problems.
- These problems can be solved using a semiconductor optical amplifier as a nonlinear medium.

Sagnac-Loop with an SOA

- Speed limitation of SOA is overcome by a clever trick.
- The SOA's location is shifted from the center of the loop by a small but precise distance.
- This shift governs temporal window over which switching occurs
rather than the carrier lifetime.
- Such a device is referred to as SLALOM or TOAD.

Physics Behind TOAD

- Control pulse propagates in the CW direction and is intense enough to saturate the SOA.
- Control pulse is timed such that it arrives at SOA after CCW pulse but before the CW pulse.
- If this differential phase shift equals π, signal pulse is transmitted, rather than being reflected.
- Switching time is governed by the speed with which control pulse can saturate the SOA and change its refractive index.
- Switching process can be repeated as long as control pulses are separated by gain-recovery time.
- Control pulses must be injected at a relatively low rate (10 GHz or less).

Simple Model for TOAD

- Phase shift imposed by the control pulse equals $\phi(t)=-\frac{1}{2} \beta_{c} h(t)$, where $h(\tau)=\int_{0}^{L} g(z, \tau) d z$ (Section 5.5.4).
- Relative phase shift produced by the amplifier is given by $\Delta \phi(t)=\frac{1}{2} \beta_{c}\left[h(t)-h\left(t+t_{d}\right)\right]$, where $t_{d}=2 \Delta x_{\text {soa }} / v_{g}$.
- Transmissivity: $T(t)=\frac{1}{4}\left[G_{1}(t)+G_{2}(t)-2 \sqrt{G_{1}(t) G_{2}(t)} \cos [\Delta \phi(t)]\right.$.
- G_{1} and G_{2} represent SOA gains for the CW and CCW directions, respectively.

Mach-Zehnder Switches

- (a) colliding-pulse MZ switch; (b) symmetric MZ switch
- Use of SOA as the nonlinear medium reduces arm lengths.
- Such device can be integrated on a single chip.
- In the case of symmetric MZ switch, asymmetry is introduced by the relative delay between two control pulses.

Asymmetric Mach-Zehnder Switch

(a)

(b)

- Switch fabricated in a monolithic form using lnP waveguides.
- MZ interferometer built using two 3-dB MMI couplers.
- Two 1.5-mm-long SOAs are offset by 1.5 mm ; this distance sets the switching window to about 20 ps.
- Measured gain variations in the two SOAs and the resulting switching window.

Symmetric Mach-Zehnder Switch

- Layout of a monolithically integrated symmetric MZ switch fabricated on an lnP substrate.
- Signal and control pulses show how such a device can be used as an OTDM demultiplexer.
- Two control pulses are delayed by a time interval Δt that sets duration of the switching window.
- Main advantage: Delay time can be adjusted externally.

Polarization-Discriminating Switches

- Stability of a MZ interferometer is ensured by adopting a single-arm MZ design.
- Same physical path shared by two orthogonally polarized components of signal pulse.
- Relative delay between orthogonally polarized pulses is produced by a polarization-maintaining fiber.
- Such a switch is referred to as an ultrafast nonlinear interferometric (UNI) switch.
- The nonlinear element can be a passive waveguide but SOAs are also used in practice.

Ultrafast Nonlinear Interferometer

- Orthogonally polarized components of signal pulse delayed using a PMF by $\Delta t=\left|n_{x}-n_{y}\right| L / c$.
- Timing of control pulse adjusted such that it overlaps with one component but not the other.
- Two components synchronized by a second PMF whose fast and slow axes are reversed.
- A polarizer set at 45° forces interference between the two polarization components.

UNI with SOA in a Loop

- The same PMF used to split and recombine signal pulses.
- XPM-induced phase shift produced inside an SOA.
- Relative phase shift between two polarization components is used to switch signal pulse to the output port 4.
- SOA operates in the gain-transparent regime (signal wavelength below the bandgap).

Lithium-Niobate Switches

- Sum-frequency generation in a PPLN is used for switching.
- PPLN placed in one arm of the MZ interferometer.
- A thin-film heater incorporated into the other arm.
- The whole device can be integrated on a single chip (1 cm long).
- Quasi-phase matching period was $18 \mu \mathrm{~m}$ over a 5 -mm-long section.
- Dispersive effects limit switching time to a few picoseconds.

Optical Time-Domain Demultiplexing

- An OTDM signal consists of a high-speed bit stream composed of several channels.
- If 10 channels at $10 \mathrm{~Gb} / \mathrm{s}$ are multiplexed, every 10th bit of the $100-\mathrm{Gb} / \mathrm{s}$ bit stream belongs to the same channel.
- Demultiplexing requires optical switches that direct all bits belonging to a specific channel to a different port.
- Such switches require control pulses at channel bit rate.
- This control pulse train is referred to as an optical clock.
- Switch must respond on a time scale of a few picosecond to select individual bits from the composite bit stream.

Optical-Clock Recovery

- Demultiplexing of an OTDM signal requires an optical clock.
- This clock should be generated from the OTDM signal itself.
- In self-clocked networks, clock pulses are sent with the signal.
- One needs to separate clock pulses from the data and direct them to a different port.
- If clock pulses are at a different wavelength, an optical filter can be used to recover the clock.
- This method suffers from clock skew induced by group-velocity mismatch.
- Better approach: Clock pulses have the same wavelength but are made much more intense than data pulses.

Optical－Clock Recovery

（a）Self－clocking scheme for OTDM networks
（b）Sagnac－loop switch used to separate the clock．

－Coupler designed with $\alpha \approx 0.2$ so that clockwise pulse closer to the SOA is much less intense．
－The CCW clock pulse enters the SOA later，and SPM－induced phase
shift sends clock pulses to a different port．
－Data pulses arrive at the SOA after switching window has closed．

OPTics

Packet-Switched Networks

- Packet-switched networks route data using packets consisting of hundreds of bits.
- Each packet begins with a header that contains destination information.
- A router reads the header and sends it toward its destination.
- At bit rates of $10 \mathrm{~Gb} / \mathrm{s}$ or more, packets must be switched optically.
- Design of an all-optical packet-switched cross-connect.

OPTICS

Packet-Switching Unit

- Design of an 1×2 packet switch; output is produced at two different wavelengths depending on header address.
- One branch processes header, while other delivers the payload.
- Header-processing unit employs a Sagnac loop for switching.
- Flip-flop memory is implemented using two coupled lasers that switch output between two wavelengths.
- A wavelength converter used to produce output at different wavelengths depending on the header information.

Packet－Switching with Sagnac Loops

－Design of an 1×2 packet switch based on two TOAD devices．
－It switches packets to different output ports depending on a single header bit．
－Clock bits are sent with data using orthogonal polarization and are separated with the help of a polarization splitter．
－This clock is used in the first TOAD（with a narrow switching win－ dow）to demultiplex a single header bit．

OPTics

Packet-Switching with Sagnac Loops

- The header bit acts as control pulse for the second TOAD whose switching window remains open for the duration of the entire packet.
- When header bit corresponds to 1 , the packet is transmitted (output port 1).
- If header bit is 0 , packet is reflected and appears at output port 2 after passing through a circulator.
- Time delay τ in the first TOAD corresponds to the duration of a single bit within the packet.
- For the second TOAD, time delay $T=N \tau$, where N is the number of bits within the packet.

Multiwavelength Packets

- Packets at different wavelengths transmitted simultaneously.
- Serial Packets at different wavelengths are combined to produce a multiwavelength packet using fiber gratings and delay lines.
- The same device can be used to demultiplex composite packets.
- Packets can be added or dropped at intermediate nodes using 2×2 switches.

