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Introduction
• Optical waveguides confine light inside them.

• Two types of waveguides exist:

? Metallic waveguides (coaxial cables,
useful for microwaves).

? Dielectric waveguides (optical fibers).

• This course focuses on dielectric waveguides
and optoelectronic devices made with them.

• Physical Mechanism: Total Internal Reflection.
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Total Internal Reflection
• Refraction of light at a dielectric interface is governed by

Snell’s law: n1 sinθi = n2 sinθt (around 1620).

• When n1 > n2, light bends away from the normal (θt > θi).

• At a critical angle θi = θc, θt becomes 90◦ (parallel to interface).

• Total internal reflection occurs for θi > θc.
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Historical Details

Daniel Colladon Experimental Setup John Tyndall

• TIR is attributed toJohn Tyndall (1854 experiment in London).

• Book City of Light (Jeff Hecht, 1999) traces history of TIR.

• First demonstration in Geneva in 1841 by Daniel Colladon

(Comptes Rendus, vol. 15, pp. 800-802, Oct. 24, 1842).

• Light remained confined to a falling stream of water.
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Historical Details
• Tyndall repeated the experiment in a 1854 lecture at the suggestion

of Faraday (but Faraday could not recall the original name).

• Tyndall’s name got attached to TIR because he described the ex-

periment in his popular book Light and Electricity (around 1860).

• Colladon published an article The Colladon Fountain in 1884 to

claim credit but it didn’t work (La Nature, Scientific American).

A fish tank and a laser pointer can be

used to demonstrate the phenomenon

of total internal reflection.
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Dielectric Waveguides

• A thin layer of high-index material is sandwiched between two layers.

• Light ray hits the interface at an angle φ = π/2−θr

such that n0 sinθi = n1 sinθr.

• Total internal reflection occurs if φ > φc = sin−1(n2/n1).

• Numerical aperture is related to maximum angle of incidence as

NA = n0 sinθ
max
i = n1 sin(π/2−φc) =

√
n2

1−n2
2.
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Geometrical-Optics Description
• Ray picture valid only within geometrical-optics approximation.

• Useful for a physical understanding of waveguiding mechanism.

• It can be used to show that light remains confined to a waveguide for

only a few specific incident angles angles if one takes into account

the Goos–Hänchen shift (extra phase shift at the interface).

• The angles corresponds to waveguide modes in wave optics.

• For thin waveguides, only a single mode exists.

• One must resort to wave-optics description for thin waveguides

(thickness d ∼ λ ).
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Maxwell’s Equations

∇×E =−∂B
∂ t

∇×H =
∂D
∂ t

∇ ·D = 0

∇ ·B = 0

Constitutive Relations

D = ε0E+P

B = µ0H+M

Linear Susceptibility

P(r, t) = ε0

∫
∞

−∞

χ(r, t− t ′)E(r, t ′)dt ′
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Nonmagnetic Dielectric Materials
• M = 0, and thus B = µ0H.

• Linear susceptibility in the Fourier domain: P̃(ω) = ε0χ(ω)Ẽ(ω).

• Constitutive Relation: D̃ = ε0[1+ χ(ω)]Ẽ≡ ε0ε(ω)Ẽ.

• Dielectric constant: ε(ω) = 1+ χ(ω).

• If we use the relation ε = (n+ iαc/2ω)2,

n = (1+Re χ)1/2, α = (ω/nc) Im χ.

• Frequency-Domain Maxwell Equations:

∇× Ẽ = iωµ0H̃, ∇ · (εẼ) = 0
∇× H̃ = −iωε0εẼ, ∇ · H̃ = 0
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Helmholtz Equation
• If losses are small, ε ≈ n2.

• Eliminate H from the two curl equations:

∇×∇× Ẽ = µ0ε0ω
2n2(ω)Ẽ =

ω2

c2 n2(ω)Ẽ = k2
0n2(ω)Ẽ.

• Now use the identity

∇×∇× Ẽ≡ ∇(∇ · Ẽ)−∇
2Ẽ =−∇

2Ẽ

• ∇ · Ẽ = 0 only if n is independent of r (homogeneous medium).

• We then obtain the Helmholtz equation:

∇
2Ẽ+n2(ω)k2

0Ẽ = 0.
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Planar Waveguides
x

y

z ns

nc

n1 Core

Substrate

Cover

• Core film sandwiched between two layers of lower refractive index.

• Bottom layer is often a substrate with n = ns.

• Top layer is called the cover layer (nc 6= ns).

• Air can also acts as a cover (nc = 1).

• nc = ns in symmetric waveguides.
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Modes of Planar Waveguides
• An optical mode is solution of Maxwell’s equations satisfying all

boundary conditions.

• Its spatial distribution does not change with propagation.

• Modes are obtained by solving the curl equations

∇×E = iωµ0H, ∇×H =−iωε0n2E

• These six equations solved in each layer of the waveguide.

• Boundary condition: Tangential component of E and H be

continuous across both interfaces.

• Waveguide modes are obtained by imposing

the boundary conditions.
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Modes of Planar Waveguides

∂Ez

∂y
− ∂Ey

∂ z
= iωµ0Hx,

∂Hz

∂y
− ∂Hy

∂ z
= iωε0n2Ex

∂Ex

∂ z
− ∂Ez

∂x
= iωµ0Hy,

∂Hx

∂ z
− ∂Hz

∂x
= iωε0n2Ey

∂Ey

∂x
− ∂Ex

∂y
= iωµ0Hz,

∂Hy

∂x
− ∂Hx

∂y
= iωε0n2Ez

• Assume waveguide is infinitely wide along the y axis.

• E and H are then y-independent.

• For any mode, all filed components vary with z as exp(iβ z). Thus,

∂E
∂y

= 0,
∂H
∂y

= 0,
∂E
∂ z

= iβE,
∂H
∂ z

= iβH.
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TE and TM Modes
• These equations have two distinct sets of linearly polarized solutions.

• For Transverse-Electric (TE) modes, Ez = 0 and Ex = 0.

• TE modes are obtained by solving

d2Ey

dx2 +(n2k2
0−β

2)Ey = 0, k0 = ω
√

ε0µ0 = ω/c.

• Magnetic field components are related to Ey as

Hx =− β

ωµ0
Ey, Hy = 0, Hz =− i

ωµ0

dEy

dx
.

• For transverse magnetic (TM) modes, Hz = 0 and Hx = 0.

• Electric filed components are now related to Hy as

Ex =
β

ωε0n2Hy, Ey = 0, Ez =
i

ωε0n2

dHy

dx
.



15/253

JJ
II
J
I

Back

Close

Solution for TE Modes

d2Ey

dx2 +(n2k2
0−β

2)Ey = 0.

• We solve this equation in each layer separately using

n = nc, n1, and ns.

Ey(x) =


Bc exp[−q1(x−d)]; x > d,

Acos(px−φ) ; |x| ≤ d
Bs exp[q2(x+d)] ; x <−d,

• Constants p, q1, and q2 are defined as

p2 = n2
1k2

0−β
2, q2

1 = β
2−n2

ck2
0, q2

2 = β
2−n2

s k2
0.

• Constants Bc, Bs, A, and φ are determined from the boundary

conditions at the two interfaces.
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Boundary Conditions
• Tangential components of E and H continuous across any interface

with index discontinuity.

• Mathematically, Ey and Hz should be continuous at x =±d.

• Ey is continuous at x =±d if

Bc = Acos(pd−φ); Bs = Acos(pd +φ).

• Since Hz ∝ dEy/dx, dEy/dx should also be continuous at x =±d:

pAsin(pd−φ) = q1Bc, pAsin(pd +φ) = q2Bs.

• Eliminating A,Bc,Bs from these equations, φ must satisfy

tan(pd−φ) = q1/p, tan(pd +φ) = q2/p
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TE Modes
• Boundary conditions are satisfied when

pd−φ = tan−1(q1/p)+m1π, pd +φ = tan−1(q2/p)+m2π

• Adding and subtracting these equations, we obtain

2φ = mπ− tan−1(q1/p)+ tan−1(q2/p)

2pd = mπ + tan−1(q1/p)+ tan−1(q2/p)

• The last equation is called the eigenvalue equation.

• Multiple solutions for m = 0,1,2, . . . are denoted by TEm.

• Effective index of each TE mode is n̄ = β/k0.
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TM Modes
• Same procedure is used to obtain TM modes.

• Solution for Hy has the same form in three layers.

• Continuity of Ez requires that n−2(dHy/dx) be continuous

at x =±d.

• Since n is different on the two sides of each interface,

eigenvalue equation is modified to become

2pd = mπ + tan−1
(

n2
1q1

n2
c p

)
+ tan−1

(
n2

1q2

n2
s p

)
.

• Multiple solutions for different values of m.

• These are labelled as TMm modes.
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TE Modes of Symmetric Waveguides
• For symmetric waveguides nc = ns.

• Using q1 = q2 ≡ q, TE modes satisfy

q = p tan(pd−mπ/2).

• Define a dimensionless parameter

V = d
√

p2 +q2 = k0d
√

n2
1−n2

s ,

• If we use u = pd, the eigenvalue equation can be written as√
V 2−u2 = u tan(u−mπ/2).

• For given values of V and m, this equation is solved to find p = u/d.



20/253

JJ
II
J
I

Back

Close

TE Modes of Symmetric Waveguides
• Effective index n̄ = β/k0 = (n2

1− p2/k2
0)

1/2.

• Using 2φ = mπ− tan−1(q1/p)+ tan−1(q2/p)
with q1 = q2, phase φ = mπ/2.

• Spatial distribution of modes is found to be

Ey(x) =
{

B± exp[−q(|x|−d)]; |x|> d,

Acos(px−mπ/2) ; |x| ≤ d,

where B± = Acos(pd∓mπ/2) and the lower sign is chosen for

x < 0.

• Modes with even values of m are symmetric around

x = 0 (even modes).

• Modes with odd values of m are antisymmetric around

x = 0 (odd modes).
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TM Modes of Symmetric Waveguides
• We can follow the same procedure for TM modes.

• Eigenvalue equation for TM modes:

(n1/ns)2q = p tan(pd−mπ/2).

• TM modes can also be divided into even and odd modes.
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Symmetric Waveguides
• TE0 and TM0 modes have no nodes within the core.

• They are called the fundamental modes of a planar waveguide.

• Number of modes supported by a waveguide depends on the V
parameter.

• A mode ceases to exist when q = 0 (no longer confined to the core).

• This occurs for both TE and TM modes when V = Vm = mπ/2.

• Number of modes = Largest value of m for which Vm > V .

• A waveguide with V = 10 supports 7 TE and 7 TM modes

(V6 = 9.42 but V7 exceeds 10).

• A waveguide supports a single TE and a single TM mode when

V < π/2 (single-mode condition).
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Modes of Asymmetric Waveguides
• We can follow the same procedure for nc 6= ns.

• Eigenvalue equation for TE modes:

2pd = mπ + tan−1(q1/p)+ tan−1(q2/p)

• Eigenvalue equation for TM modes:

2pd = mπ + tan−1
(

n2
1q1

n2
c p

)
+ tan−1

(
n2

1q2

n2
s p

)
• Constants p, q1, and q2 are defined as

p2 = n2
1k2

0−β
2, q2

1 = β
2−n2

ck2
0, q2

2 = β
2−n2

s k2
0.

• Each solution for β corresponds to a mode with effective index

n̄ = β/k0.

• If n1 > ns > nc, guided modes exist as long as n1 > n̄ > ns.
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Modes of Asymmetric Waveguides
• Useful to introduce two normalized parameters as

b =
n̄2−n2

s

n2
1−n2

s
, δ =

n2
s −n2

c

n2
1−n2

s
.

• b is a normalized propagation constant (0 < b < 1).

• Parameter δ provides a measure of waveguide asymmetry.

• Eigenvalue equation for TE modes in terms V,b,δ :

2V
√

1−b = mπ + tan−1

√
b

1−b
+ tan−1

√
b+δ

1−b
.

• Its solutions provide universal dispersion curves.
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Modes of Asymmetric Waveguides
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Mode-Cutoff Condition
• Cutoff condition corresponds to the value of V for which mode

ceases to decay exponentially in one of the cladding layers.

• It is obtained by setting b = 0 in eigenvalue equation:

Vm(TE) =
mπ

2
+

1
2

tan−1
√

δ .

• Eigenvalue equation for the TM modes:

2V
√

1−b = mπ + tan−1

(
n2

1

n2
s

√
b

1−b

)
+ tan−1

(
n2

1

n2
c

√
b+δ

1−b

)
.

• The cutoff condition found by setting b = 0:

Vm(TM) =
mπ

2
+

1
2

tan−1
(

n2
1

n2
c

√
δ

)
.
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Mode-Cutoff Condition
• For a symmetric waveguide (δ = 0), these two conditions reduce to

a single condition, Vm = mπ/2.

• TE and TM modes for a given value of m have the same cutoff.

• A single-mode waveguide is realized if V parameter of the waveguide

satisfies

V ≡ k0d
√

n2
1−n2

s <
π

2
• Fundamental mode always exists for a symmetric waveguide.

• An asymmetric waveguide with 2V < tan−1
√

δ does not support

any bounded mode.
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Spatial Distribution of Modes

Ey(x) =


Bc exp[−q1(x−d)]; x > d,

Acos(px−φ) ; |x| ≤ d
Bs exp[q2(x+d)] ; x <−d,

• Boundary conditions: Bc = Acos(pd−φ), Bs = Acos(pd +φ)

• A is related to total power P = 1
2

∫
∞

−∞
ẑ · (E×H)dx:

P =
β

2ωµ0

∫
∞

−∞

|Ey(x)|2 dx =
βA2

4ωµ0

(
2d +

1
q1

+
1
q2

)
.

• Fraction of power propagating inside the waveguide layer:

Γ =
∫ d
−d |Ey(x)|2dx∫
∞

−∞
|Ey(x)|2dx

=
2d + sin2(pd−φ)/q1 + sin2(pd +φ)/q2

2d +1/q1 +1/q2
.

• For fundamental mode Γ� 1 when V � π/2.
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Rectangular Waveguides
• Rectangular waveguide confines light in both x and y dimensions.

• The high-index region in the middle core layer has a finite width 2w
and is surrounded on all sides by lower-index materials.

• Refractive index can be different on all sides of a rectangular waveg-

uide.
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Modes of Rectangular Waveguides
• To simplify the analysis, all shaded cladding regions are assumed to

have the same refractive index nc.

• A numerical approach still necessary for an exact solution.

• Approximate analytic solution possible with two simplifications;

Marcatili, Bell Syst. Tech. J. 48, 2071 (1969).

? Ignore boundary conditions associated with hatched regions.

? Assume core-cladding index differences are small on all sides.

• Problem is then reduced to solving two planar-waveguide problems

in the x and y directions.
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Modes of Rectangular Waveguides
• One can find TE- and TM-like modes for which either Ez or Hz is

nearly negligible compared to other components.

• Modes denoted as Ex
mn and Ey

mn obtained by solving two coupled

eigenvalue equations.

2pxd = mπ + tan−1
(

n2
1q2

n2
2px

)
+ tan−1

(
n2

1q4

n2
4px

)
,

2pyw = nπ + tan−1
(

q3

py

)
+ tan−1

(
q5

py

)
,

p2
x = n2

1k2
0−β

2− p2
y, p2

y = n2
1k2

0−β
2− p2

x,

q2
2 = β

2 + p2
y−n2

2k2
0, q2

4 = β
2 + p2

y−n2
4k2

0,

q2
3 = β

2 + p2
x−n2

3k2
0, q2

5 = β
2 + p2

x−n2
5k2

0,
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Effective-Index Method
• Effective-index method appropriate when thickness of a rectangular

waveguide is much smaller than its width (d� w).

• Planar waveguide problem in the x direction is solved first to obtain

the effective mode index ne(y).

• ne is a function of y because of a finite waveguide width.

• In the y direction, we use a waveguide of width 2w such that ny = ne

if |y|< w but equals n3 or n5 outside of this region.

• Single-mode condition is found to be

Vx = k0d
√

n2
1−n2

4 < π/2, Vy = k0w
√

n2
e−n2

5 < π/2
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Design of Rectangular Waveguides

• In (g) core layer is covered with two metal stripes.

• Losses can be reduced by using a thin buffer layer (h).
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Materials for Waveguides
• Semiconductor Waveguides: GaAs, InP, etc.

• Electro-Optic Waveguides: mostly LiNbO3.

• Glass Waveguides: silica (SiO2), SiON.

? Silica-on-silicon technology

? Laser-written waveguides

• Silicon-on-Insulator Technology

• Polymers Waveguides: Several organic
polymers
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Semiconductor Waveguides
Useful for semiconductor lasers, modulators, and photodetectors.

• Semiconductors allow fabrication

of electrically active devices.

• Semiconductors belonging to III–

V Group often used.

• Two semiconductors with differ-

ent refractive indices needed.

• They must have different

bandgaps but same lattice

constant.

• Nature does not provide such

semiconductors.
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Ternary and Quaternary Compounds
• A fraction of the lattice sites in a binary semiconductor (GaAs, InP,

etc.) is replaced by other elements.

• Ternary compound AlxGa1−xAs is made by replacing a fraction x of

Ga atoms by Al atoms.

• Bandgap varies with x as

Eg(x) = 1.424+1.247x (0 < x < 0.45).

• Quaternary compound In1−xGaxAsyP1−y useful in the wavelength

range 1.1 to 1.6 µm.

• For matching lattice constant to InP substrate, x/y = 0.45.

• Bandgap varies with y as Eg(y) = 1.35−0.72y+0.12y2.
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Fabrication Techniques
Epitaxial growth of multiple layers on a base substrate (GaAs or InP).

Three primary techniques:

• Liquid-phase epitaxy (LPE)

• Vapor-phase epitaxy (VPE)

• Molecular-beam epitaxy (MBE)

VPE is also called chemical-vapor

deposition (CVD).

Metal-organic chemical-vapor deposition (MOCVD) is often used in

practice.
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Quantum-Well Technology
• Thickness of the core layer plays a central role.

• If it is small enough, electrons and holes act as if they are confined

to a quantum well.

• Confinement leads to quantization of energy bands into subbands.

• Joint density of states acquires a staircase-like structure.

• Useful for making modern quantum-well, quantum wire, and

quantum-dot lasers.

• in MQW lasers, multiple core layers (thickness 5–10 nm) are

separated by transparent barrier layers.

• Use of intentional but controlled strain improves performance

in strained quantum wells.
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Doped Semiconductor Waveguides
• To build a laser, one needs to inject current into the core layer.

• This is accomplished through a p–n junction formed by

making cladding layers p- and n-types.

• n-type material requires a dopant with an extra electron.

• p-type material requires a dopant with one less electron.

• Doping creates free electrons or holes within a semiconductor.

• Fermi level lies in the middle of bandgap for undoped

(intrinsic) semiconductors.

• In a heavily doped semiconductor, Fermi level lies inside

the conduction or valence band.
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p–n junctions

• Fermi level continuous across the

p–n junction in thermal equilib-

rium.

• A built-in electric field separates

electrons and holes.

• Forward biasing reduces the built-

in electric field.

• An electric current begins to flow:

I = Is[exp(qV/kBT )−1].

• Recombination of electrons and

holes generates light.

(b)

(a)
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Electro-Optic Waveguides
• Use Pockels effect to change refractive index of the core layer with

an external voltage.

• Common electro-optic materials: LiNbO3, LiTaO3, BaTiO3.

• LiNbO3 used commonly for making optical modulators.

• For any anisotropic material Di = ε0 ∑
3
j=1 εi jE j.

• Matrix εi j can be diagonalized by rotating the coordinate system

along the principal axes.

• Impermeability tensor ηi j = 1/εi j describes changes induced by an

external field as ηi j(Ea) = ηi j(0)+∑k ri jkEa
k.

• Tensor ri jk is responsible for the electro-optic effect.
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Lithium Niobate Waveguides
• LiNbO3 waveguides do not require an epitaxial growth.

• A popular technique employs diffusion of metals into a LiNbO3 sub-

strate, resulting in a low-loss waveguide.

• The most commonly used element: Titanium (Ti).

• Diffusion of Ti atoms within LiNbO3 crystal increases refractive

index and forms the core region.

• Out-diffusion of Li atoms from substrate should be avoided.

• Surface flatness critical to ensure a uniform waveguide.
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LiNbO3 Waveguides
• A proton-exchange technique is also used for LiNbO3 waveguides.

• A low-temperature process (∼ 200◦C) in which Li ions are replaced

with protons when the substrate is placed in an acid bath.

• Proton exchange increases the extraordinary part of refractive index

but leaves the ordinary part unchanged.

• Such a waveguide supports only TM modes and is useful for some

applications because of its polarization selectivity.

• High-temperature annealing used to stabilizes the index difference.

• Accelerated aging tests predict a lifetime of over 25 years at a tem-

perature as high as 95◦C.
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LiNbO3 Waveguides

• Electrodes fabricated directly on the surface of wafer (or on

an optically transparent buffer layer.

• An adhesion layer (typically Ti) first deposited to ensure that

metal sticks to LiNbO3.

• Photolithography used to define the electrode pattern.



45/253

JJ
II
J
I

Back

Close

Silica Glass Waveguides
• Silica layers deposited on top of a Si substrate.

• Employs the technology developed for integrated circuits.

• Fabricated using flame hydrolysis with reactive ion etching.

• Two silica layers are first deposited using flame hydrolysis.

• Top layer converted to core by doping it with germania.

• Both layers solidified by heating at 1300◦C (consolidation process).

• Photolithography used to etch patterns on the core layer.

• Entire structure covered with a cladding formed using flame hydrol-

ysis. A thermo-optic phase shifter often formed on top.
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Silica-on-Silicon Technique

Steps used to form silica waveguides on top of a Si Substrate
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Silica Waveguide properties
• Silica-on-silicon technology produces uniform waveguides.

• Losses depend on the core-cladding index difference

∆ = (n1−n2)/n1.

• Losses are low for small values of ∆ (about 0.017 dB/cm

for ∆ = 0.45%).

• Higher values of ∆ often used for reducing device length.

• Propagation losses ∼0.1 dB/cm for ∆ = 2%.

• Planar lightwave circuits: Multiple waveguides and optical

components integrated over the same silicon substrate.

• Useful for making compact WDM devices (∼ 5×5 cm2).

• Large insertion losses when a PLC is connected to optical fibers.
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Packaged PLCs

• Package design for minimizing insertion losses.

• Fibers inserted into V-shaped grooves formed on a glass substrate.

• Glass substrate connected to the PLC chip using an adhesive.

• A glass plate placed on top of V grooves is bonded to the PLC chip
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with the same adhesive.
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Silicon Oxynitride Waveguides
• Employ Si substrate but use SiON for the core layer.

• SiON alloy is made by combining SiO2 with Si3N4, two dielectrics

with refractive indices of 1.45 and 2.01.

• Refractive index of SiON layer can vary from 1.45–2.01.

• SiON film deposited using plasma-enhanced chemical vapor

deposition (SiH4 combined with N2O and NH3).

• Low-pressure chemical vapor deposition also used

(SiH2Cl2 combined with O2 and NH3).

• Photolithography pattern formed on a 200-nm-thick chromium layer.

• Propagation losses typically <0.2 dB/cm.



51/253

JJ
II
J
I

Back

Close

Laser-Written Waveguides
• CW or pulsed light from a laser used for “writing” waveguides in

silica and other glasses.

• Photosensitivity of germanium-doped silica exploited to enhance

refractive index in the region exposed to a UV laser.

• Absorption of 244-nm light from a KrF laser changes refractive index

by ∼10−4 only in the region exposed to UV light.

• Index changes >10−3 can be realized with a 193-nm ArF laser.

• A planar waveguide formed first through CVD, but core layer is

doped with germania.

• An UV beam focused to ∼1 µm scanned slowly to enhance n se-

lectively. UV-written sample then annealed at 80◦C.
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Laser-Written Waveguides

• Femtosecond pulses from a Ti:sapphire laser can be used to write

waveguides in bulk glasses.

• Intense pulses modify the structure of silica through

multiphoton absorption.

• Refractive-index changes ∼10−2 are possible.
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Silicon-on-Insulator Technology

• Core waveguide layer is made of Si (n1 = 3.45).

• A silica layer under the core layer is used for lower cladding.

• Air on top acts as the top cladding layer.

• Tightly confined waveguide mode because of large index difference.

• Silica layer formed by implanting oxygen, followed with annealing.
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Polymer Waveguides

• Polymers such as halogenated acrylate, fluorinated polyimide, and

deuterated polymethylmethacrylate (PMMA) have been used.

• Polymer films can be fabricated on top of Si, glass, quartz,

or plastic through spin coating.

• Photoresist layer on top used for reactive ion etching of the core

layer through a photomask.
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Optical Fibers

• Contain a central core surrounded by a lower-index cladding

• Two-dimensional waveguides with cylindrical symmetry

• Graded-index fibers: Refractive index varies inside the core
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Total internal reflection
• Refraction at the air–glass interface: n0 sinθi = n1 sinθr

• Total internal reflection at the core-cladding interface

if φ > φc = sin−1(n2/n1).

Numerical Aperture: Maximum angle of incidence

n0 sinθ
max
i = n1 sin(π/2−φc) = n1 cosφc =

√
n2

1−n2
2
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Modal Dispersion
• Multimode fibers suffer from modal dispersion.

• Shortest path length Lmin = L (along the fiber axis).

• Longest path length for the ray close to the critical angle

Lmax = L/sinφc = L(n1/n2).

• Pulse broadening: ∆T = (Lmax−Lmin)(n1/c).

• Modal dispersion: ∆T/L = n2
1∆/(n2c).

• Limitation on the bit rate

∆T < TB = 1/B; B∆T < 1; BL <
n2c
n2

1∆
.

• Single-mode fibers essential for high performance.
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Graded-Index Fibers

• Refractive index n(ρ) =
{

n1[1−∆(ρ/a)α ]; ρ < a,

n1(1−∆) = n2 ; ρ ≥ a.

• Ray path obtained by solving d2ρ

dz2 = 1
n

dn
dρ

.

• For α = 2, ρ = ρ0 cos(pz)+(ρ ′0/p)sin(pz).

• All rays arrive simultaneously at periodic intervals.

• Limitation on the Bit Rate: BL < 8c
n1∆2 .
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Fiber Design

• Core doped with GeO2; cladding with fluorine.

• Index profile rectangular for standard fibers.

• Triangular index profile for dispersion-shifted fibers.

• Raised or depressed cladding for dispersion control.
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Silica Fibers
Two-Stage Fabrication

• Preform: Length 1 m, diameter 2 cm; correct index profile.

• Preform is drawn into fiber using a draw tower.

Preform Fabrication Techniques

• Modified chemical vapor deposition (MCVD).

• Outside vapor deposition (OVD).

• Vapor Axial deposition (VAD).
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Fiber Draw Tower
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Plastic Fibers
• Multimode fibers (core diameter as large as 1 mm).

• Large NA results in high coupling efficiency.

• Use of plastics reduces cost but loss exceeds 50 dB/km.

• Useful for data transmission over short distances (<1 km).

• 10-Gb/s signal transmitted over 0.5 km (1996 demo).

• Ideal solution for transferring data between computers.

• Commonly used polymers:

? polymethyl methacrylate (PMMA), polystyrene

? polycarbonate, poly(perfluoro-butenylvinyl) ether
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Plastic Fibers
• Preform made with the interfacial gel polymerization method.

• A cladding cylinder is filled with a mixture of monomer (same

used for cladding polymer), index-increasing dopant, a chemical for

initiating polymerization, and a chain-transfer agent.

• Cylinder heated to a 95◦C and rotated on its axis for a period of

up to 24 hours.

• Core polymerization begins near cylinder wall.

• Dopant concentration increases toward core center.

• This technique automatically creates a gradient in the core index.
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Microstructure Fibers

• New types of fibers with air holes in cladding region.

• Air holes reduce the index of the cladding region.

• Narrow core (2 µm or so) results in tighter mode confinement.

• Air-core fibers guide light through the photonic-crystal effect.

• Preform made by stacking silica tubes in a hexagonal pattern.
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Fiber Modes
• Maxwell’s equations in the Fourier domain lead to

∇
2Ẽ+n2(ω)k2

0Ẽ = 0.

• n = n1 inside the core but changes to n2 in the cladding.

• Useful to work in cylindrical coordinates ρ,φ ,z.

• Common to choose Ez and Hz as independent components.

• Equation for Ez in cylindrical coordinates:

∂ 2Ez

∂ρ2 +
1
ρ

∂Ez

∂ρ
+

1
ρ2

∂ 2Ez

∂φ 2 +
∂ 2Ez

∂ z2 +n2k2
0Ez = 0.

• Hz satisfies the same equation.
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Fiber Modes (cont.)
• Use the method of separation of variables:

Ez(ρ,φ ,z) = F(ρ)Φ(φ)Z(z).

• We then obtain three ODEs:

d2Z/dz2 +β
2Z = 0,

d2
Φ/dφ

2 +m2
Φ = 0,

d2F
dρ2 +

1
ρ

dF
dρ

+
(

n2k2
0−β

2−m2

ρ2

)
F = 0.

• β and m are two constants (m must be an integer).

• First two equations can be solved easily to obtain

Z(z) = exp(iβ z), Φ(φ) = exp(imφ).

• F(ρ) satisfies the Bessel equation.
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Fiber Modes (cont.)
• General solution for Ez and Hz:

Ez =
{

AJm(pρ)exp(imφ)exp(iβ z) ; ρ ≤ a,

CKm(qρ)exp(imφ)exp(iβ z); ρ > a.

Hz =
{

BJm(pρ)exp(imφ)exp(iβ z) ; ρ ≤ a,

DKm(qρ)exp(imφ)exp(iβ z); ρ > a.

p2 = n2
1k2

0−β 2, q2 = β 2−n2
2k2

0.

• Other components can be written in terms of Ez and Hz:

Eρ =
i

p2

(
β

∂Ez

∂ρ
+ µ0

ω

ρ

∂Hz

∂φ

)
, Eφ =

i
p2

(
β

ρ

∂Ez

∂φ
−µ0ω

∂Hz

∂ρ

)
,

Hρ =
i

p2

(
β

∂Hz

∂ρ
− ε0n2ω

ρ

∂Ez

∂φ

)
, Hφ =

i
p2

(
β

ρ

∂Hz

∂φ
+ ε0n2

ω
∂Ez

∂ρ

)
.
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Eigenvalue Equation
• Boundary conditions: Ez, Hz, Eφ , and Hφ should be continuous

across the core–cladding interface.

• Continuity of Ez and Hz at ρ = a leads to

AJm(pa) = CKm(qa), BJm(pa) = DKm(qa).

• Continuity of Eφ and Hφ provides two more equations.

• Four equations lead to the eigenvalue equation[
J′m(pa)
pJm(pa)

+
K′m(qa)

qKm(qa)

][
J′m(pa)
pJm(pa)

+
n2

2

n2
1

K′m(qa)
qKm(qa)

]
=

m2

a2

(
1
p2 +

1
q2

)(
1
p2 +

n2
2

n2
1

1
q2

)
p2 = n2

1k2
0−β 2, q2 = β 2−n2

2k2
0.
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Eigenvalue Equation
• Eigenvalue equation involves Bessel functions and their derivatives.

It needs to be solved numerically.

• Noting that p2 +q2 = (n2
1−n2

2)k
2
0, we introduce the dimensionless

V parameter as

V = k0a
√

n2
1−n2

2.

• Multiple solutions for β for a given value of V .

• Each solution represents an optical mode.

• Number of modes increases rapidly with V parameter.

• Effective mode index n̄ = β/k0 lies between n1 and n2 for all bound

modes.
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Effective Mode Index

• Useful to introduce a normalized quantity

b = (n̄−n2)/(n1−n2), (0 < b < 1).

• Modes quantified through β (ω) or b(V ).
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Classification of Fiber Modes
• In general, both Ez and Hz are nonzero (hybrid modes).

• Multiple solutions occur for each value of m.

• Modes denoted by HEmn or EHmn (n = 1,2, . . .) depending on whether

Hz or Ez dominates.

• TE and TM modes exist for m = 0 (called TE0n and TM0n).

• Setting m = 0 in the eigenvalue equation, we obtain two equations[
J′m(pa)
pJm(pa)

+
K′m(qa)

qKm(qa)

]
= 0,

[
J′m(pa)
pJm(pa)

+
n2

2

n2
1

K′m(qa)
qKm(qa)

]
= 0

• These equations govern TE0n and TM0n modes of fiber.
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Linearly Polarized Modes
• Eigenvalue equation simplified considerably for weakly guiding fibers

(n1−n2� 1):[
J′m(pa)
pJm(pa)

+
K′m(qa)

qKm(qa)

]2

=
m2

a2

(
1
p2 +

1
q2

)2

.

• Using properties of Bessel functions, the eigenvalue equation can

be written in the following compact form:

p
Jl−1(pa)
Jl(pa)

=−q
Kl−1(qa)
Kl(qa)

,

where l = 1 for TE and TM modes, l = m−1 for HE modes, and

l = m+1 for EH modes.

• TE0,n and TM0,n modes are degenerate. Also, HEm+1,n and EHm−1,n

are degenerate in this approximation.
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Linearly Polarized Modes
• Degenerate modes travel at the same velocity through fiber.

• Any linear combination of degenerate modes will travel without

change in shape.

• Certain linearly polarized combinations produce LPmn modes.

? LP0n is composed of of HE1n.

? LP1n is composed of TE0n + TM0n + HE2n.

? LPmn is composed of HEm+1,n + EHm−1,n.

• Historically, LP modes were obtained first using a simplified analysis

of fiber modes.
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Fundamental Fiber Mode
• A mode ceases to exist when q = 0 (no decay in the cladding).

• TE01 and TM01 reach cutoff when J0(V ) = 0.

• This follows from their eigenvalue equation

p
J0(pa)
J1(pa)

=−q
K0(qa)
K1(qa)

after setting q = 0 and pa = V .

• Single-mode fibers require V < 2.405 (first zero of J0).

• They transport light through the fundamental HE11 mode.

• This mode is almost linearly polarized (|Ez|2� |Ex|2)

Ex(ρ,φ ,z) =
{

A[J0(pρ)/J0(pa)]eiβ z ; ρ ≤ a,

A[K0(qρ)/K0(qa)]eiβ z; ρ > a.
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Fundamental Fiber Mode
• Use of Bessel functions is not always practical.

• It is possible to approximate spatial distribution of HE11 mode

with a Gaussian for V in the range 1 to 2.5.

• Ex(ρ,φ ,z)≈ Aexp(−ρ2/w2)eiβ z.

• Spot size w depends on V parameter.
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Single-Mode Properties
• Spot size: w/a≈ 0.65+1.619V−3/2 +2.879V−6.

• Mode index:

n̄ = n2 +b(n1−n2)≈ n2(1+b∆),

b(V )≈ (1.1428−0.9960/V )2.

• Confinement factor:

Γ =
Pcore

Ptotal
=
∫ a

0 |Ex|2ρ dρ∫
∞

0 |Ex|2ρ dρ
= 1− exp

(
−2a2

w2

)
.

• Γ≈ 0.8 for V = 2 but drops to 0.2 for V = 1.

• Mode properties completely specified if V parameter is known.
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Fiber Birefringence
• Real fibers exhibit some birefringence (n̄x 6= n̄y).

• Modal birefringence quite small (Bm = |n̄x− n̄y| ∼ 10−6).

• Beat length: LB = λ/Bm.

• State of polarization evolves periodically.

• Birefringence varies randomly along fiber length (PMD) because of

stress and core-size variations.
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Fiber Losses

Definition: Pout = Pin exp(−αL), α (dB/km) = 4.343α .

• Material absorption (silica, impurities, dopants)

• Rayleigh scattering (varies as λ−4)
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Losses of Plastic Fibers

• Large absorption losses of plastics result from vibrational modes of

molecular bonds (C—C, C—O, C—H, and O—H).

• Transition-metal impurities (Fe, Co, Ni, Mn, and Cr) absorb strongly

in the range 0.6–1.6 µm.

• Residual water vapors produce strong peak near 1390 nm.
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Fiber Dispersion
• Origin: Frequency dependence of the mode index n(ω):

β (ω) = n̄(ω)ω/c = β0 +β1(ω−ω0)+β2(ω−ω0)2 + · · · ,

where ω0 is the carrier frequency of optical pulse.

• Transit time for a fiber of length L : T = L/vg = β1L.

• Different frequency components travel at different speeds and arrive

at different times at output end (pulse broadening).
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Fiber Dispersion (continued)
• Pulse broadening governed by group-velocity dispersion:

∆T =
dT
dω

∆ω =
d

dω

L
vg

∆ω = L
dβ1

dω
∆ω = Lβ2∆ω,

where ∆ω is pulse bandwidth and L is fiber length.

• GVD parameter: β2 =
(

d2β

dω2

)
ω=ω0

.

• Alternate definition: D = d
dλ

(
1
vg

)
=−2πc

λ 2 β2.

• Limitation on the bit rate: ∆T < TB = 1/B, or

B(∆T ) = BLβ2∆ω ≡ BLD∆λ < 1.
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Material Dispersion
• Refractive index of of any material is frequency dependent.

• Material dispersion governed by the Sellmeier equation

n2(ω) = 1+
M

∑
j=1

B jω
2
j

ω2
j −ω2 .
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Waveguide Dispersion
• Mode index n̄(ω) = n1(ω)−δnW(ω).

• Material dispersion DM results from n1(ω) (index of silica).

• Waveguide dispersion DW results from δnW(ω) and depends on

core size and dopant distribution.

• Total dispersion D = DM +DW can be controlled.
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Dispersion in Microstructure Fibers

• Air holes in cladding and a small core diameter help to shift ZDWL

in the region near 800 nm.

• Waveguide dispersion DW is very large in such fibers.

• Useful for supercontinuum generation using mode-locking pulses

from a Ti:sapphire laser.
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Higher-Order Dispersion
• Dispersive effects do not disappear at λ = λZD.

• D cannot be made zero at all frequencies within the pulse spectrum.

• Higher-order dispersive effects are governed by

the dispersion slope S = dD/dλ .

• S can be related to third-order dispersion β3 as

S = (2πc/λ
2)2

β3 +(4πc/λ
3)β2.

• At λ = λZD, β2 = 0, and S is proportional to β3.
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Commercial Fibers

Fiber Type and Aeff λZD D (C band) Slope S
Trade Name (µm2) (nm) ps/(km-nm) ps/(km-nm2)

Corning SMF-28 80 1302–1322 16 to 19 0.090

Lucent AllWave 80 1300–1322 17 to 20 0.088

Alcatel ColorLock 80 1300–1320 16 to 19 0.090

Corning Vascade 101 1300–1310 18 to 20 0.060

TrueWave-RS 50 1470–1490 2.6 to 6 0.050

Corning LEAF 72 1490–1500 2 to 6 0.060

TrueWave-XL 72 1570–1580 −1.4 to −4.6 0.112

Alcatel TeraLight 65 1440–1450 5.5 to 10 0.058
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Polarization-Mode Dispersion
• Real fibers exhibit some birefringence (n̄x 6= n̄y).

• Orthogonally polarized components of a pulse travel at different

speeds. The relative delay is given by

∆T =
∣∣∣∣ L
vgx
− L

vgy

∣∣∣∣= L|β1x−β1y|= L(∆β1).

• Birefringence varies randomly along fiber length (PMD) because of

stress and core-size variations.

• RMS Pulse broadening:

σT ≈ (∆β1)
√

2lcL≡ Dp
√

L.

• PMD parameter Dp ∼ 0.01–10 ps/
√

km

• PMD can degrade the system performance considerably (especially

for old fibers).
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Pulse Propagation Equation
• Optical Field at frequency ω at z = 0:

Ẽ(r,ω) = x̂F(x,y)B̃(0,ω)exp(iβ z).

• Optical field at a distance z:

B̃(z,ω) = B̃(0,ω)exp(iβ z).

• Expand β (ω) is a Taylor series around ω0:

β (ω) = n̄(ω)
ω

c
≈ β0 +β1(∆ω)+

β2

2
(∆ω)2 +

β3

6
(∆ω)3.

• Introduce Pulse envelope:

B(z, t) = A(z, t)exp[i(β0z−ω0t)].
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Pulse Propagation Equation
• Pulse envelope is obtained using

A(z, t) =
1

2π

∫
∞

−∞

d(∆ω)Ã(0,∆ω)exp
[

iβ1z∆ω +
i
2

β2z(∆ω)2 +
i
6

β3z(∆ω)3− i(∆ω)t
]
.

• Calculate ∂A/∂ z and convert to time domain by replacing

∆ω with i(∂A/∂ t).

• Final equation:

∂A
∂ z

+β1
∂A
∂ t

+
iβ2

2
∂ 2A
∂ t2 −

β3

6
∂ 3A
∂ t3 = 0.

• With the transformation t ′ = t−β1z and z′ = z, it reduces to

∂A
∂ z′

+
iβ2

2
∂ 2A
∂ t ′2
− β3

6
∂ 3A
∂ t ′3

= 0.
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Pulse Propagation Equation
• If we neglect third-order dispersion, pulse evolution is governed by

∂A
∂ z

+
iβ2

2
∂ 2A
∂ t2 = 0.

• Compare with the paraxial equation governing diffraction:

2ik
∂A
∂ z

+
∂ 2A
∂x2 = 0.

• Slit-diffraction problem identical to pulse propagation problem.

• The only difference is that β2 can be positive or negative.

• Many results from diffraction theory can be used for pulses.

• A Gaussian pulse should spread but remain Gaussian in shape.
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Major Nonlinear Effects
• Self-Phase Modulation (SPM)

• Cross-Phase Modulation (XPM)

• Four-Wave Mixing (FWM)

• Stimulated Brillouin Scattering (SBS)

• Stimulated Raman Scattering (SRS)

Origin of Nonlinear Effects in Optical Fibers

• Third-order nonlinear susceptibility χ (3).

• Real part leads to SPM, XPM, and FWM.

• Imaginary part leads to SBS and SRS.



92/253

JJ
II
J
I

Back

Close

Self-Phase Modulation (SPM)
• Refractive index depends on intensity as

n′j = n j + n̄2I(t).

• n̄2 = 2.6×10−20 m2/W for silica fibers.

• Propagation constant: β ′ = β + k0n̄2P/Aeff ≡ β + γP.

• Nonlinear parameter: γ = 2π n̄2/(Aeffλ ).

• Nonlinear Phase shift:

φNL =
∫ L

0
(β ′−β )dz =

∫ L

0
γP(z)dz = γPinLeff.

• Optical field modifies its own phase (SPM).

• Phase shift varies with time for pulses (chirping).
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SPM-Induced Chirp

• SPM-induced chirp depends on the pulse shape.

• Gaussian pulses (m = 1): Nearly linear chirp across the pulse.

• Super-Gaussian pulses (m = 1): Chirping only near pulse edges.

• SPM broadens spectrum of unchirped pulses; spectral narrowing

possible in the case of chirped pulses.
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Nonlinear Schrödinger Equation
• Nonlinear effects can be included by adding a nonlinear term to the

equation used earlier for dispersive effects.

• This equation is known as the Nonlinear Schrödinger Equation:

∂A
∂ z

+
iβ2

2
∂ 2A
∂ t2 = iγ|A|2A.

• Nonlinear parameter: γ = 2π n̄2/(Aeffλ ).

• Fibers with large Aeff help through reduced γ .

• Known as large effective-area fiber or LEAF.

• Nonlinear effects leads to formation of optical solitons.
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Cross-Phase Modulation (XPM)
• Refractive index seen by one wave depends on the intensity of other

copropagating channels.

E(r, t) = Aa(z, t)Fa(x,y)exp(iβ0az− iωat)

+Ab(z, t)Fb(x,y)exp(iβ0bz− iωbt)],

• Propagation constants are found to be modified as

β
′
a = βa + γa(|Aa|2 +2|Ab|2), β

′
b = βb + γb(|Ab|2 +2|Aa|2).

• Nonlinear phase shifts produced become

φ
NL
a = γaLeff(Pa +2Pb), φ

NL
b = γbLeff(Pb +2Pa).

• The second term is due to XPM.
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Impact of XPM
• In the case of a WDM system, total nonlinear phase shift is

φ
NL
j = γLeff

(
Pj +2 ∑

m6= j
Pm

)
.

• Phase shift varies from bit to bit depending on the bit pattern in

neighboring channels.

• It leads to interchannel crosstalk and affects system performance

considerably.

• XPM is also beneficial for applications such as optical switching,

wavelength conversion, etc.

• Mathematically, XPM effects are governed by two coupled NLS

equations.
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Four-Wave Mixing
• FWM converts two photons from one or two pump beams into two

new frequency-shifted photons.

• Energy conservation: ω1 +ω2 = ω3 +ω4.

• Degenerate FWM: 2ω1 = ω3 +ω4.

• Momentum conservation or phase matching is required.

• FWM efficiency governed by phase mismatch:

∆ = β (ω3)+β (ω4)−β (ω1)−β (ω2).

• In the degenerate case (ω1 = ω2), ω3 = ω1 +Ω, and ω4 = ω1−Ω.

• Expanding β in a Taylor series, ∆ = β2Ω2.

• FWM becomes important for WDM systems designed with low-

dispersion fibers.
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FWM: Good or Bad?
• FWM leads to interchannel crosstalk in WDM systems.

• It can be avoided through dispersion management.

On the other hand . . .

FWM can be used beneficially for

• Parametric amplification

• Optical phase conjugation

• Demultiplexing of OTDM channels

• Wavelength conversion of WDM channels

• Supercontinuum generation
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Brillouin Scattering
• Scattering of light from acoustic waves (electrostriction).

• Energy and momentum conservation laws require

ΩB = ωp−ωs and kA = kp−ks.

• Brillouin shift: ΩB = |kA|vA = 2vA|kp|sin(θ/2).

• Only possibility: θ = π for single-mode fibers

(backward propagating Stokes wave).

• Using kp = 2π n̄/λp, νB = ΩB/2π = 2n̄vA/λp.

• With vA = 5.96 km/s and n̄ = 1.45, νB ≈ 11 GHz near 1.55 µm.

• Stokes wave grows from noise.

• Not a very efficient process at low pump powers.
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Stimulated Brillouin Scattering
• Becomes a stimulated process at high input power levels.

• Governed by two coupled equations:

dIp

dz
=−gBIpIs−αpIp, −

dIs

dz
= +gBIpIs−αsIs.

• Brillouin gain has a narrow Lorentzian spectrum (∆ν ∼ 20 MHz).
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SBS Threshold
• Threshold condition: gBPthLeff/Aeff ≈ 21.

• Effective fiber length: Leff = [1− exp(−αL)]/α .

• Effective core area: Aeff ≈ 50–80 µm2.

• Peak Brillouin gain: gB ≈ 5×10−11 m/W.

• Low threshold power for long fibers (∼5 mW).

• Most of the power reflected backward after the SBS threshold.

Threshold can be increased using

• Phase modulation at frequencies >0.1 GHz.

• Sinusoidal strain along the fiber.

• Nonuniform core radius or dopant density.
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Stimulated Raman Scattering
• Scattering of light from vibrating molecules.

• Scattered light shifted in frequency.

• Raman gain spectrum extends over 40 THz.

• Raman shift at Gain peak: ΩR = ωp−ωs ∼ 13 THz).

(a)

(b)
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SRS Threshold
• SRS governed by two coupled equations:

dIp

dz
=−gRIpIs−αpIp

dIs

dz
= gRIpIs−αsIs.

• Threshold condition: gRPthLeff/Aeff ≈ 16.

• Peak Raman gain: gR ≈ 6×10−14 m/W near 1.5 µm.

• Threshold power relatively large (∼ 0.6 W).

• SRS is not of concern for single-channel systems.

• Leads to interchannel crosstalk in WDM systems.
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Fiber Components
• Fibers can be used to make many optical components.

• Passive components

? Directional Couplers

? Fiber Gratings

? Fiber Interferometers

? Isolators and Circulators

• Active components

? Doped-Fiber Amplifiers

? Raman and Parametric Amplifiers

? CW and mode-locked Fiber Lasers
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Directional Couplers
Port 1

Port 2

Port 1

Port 2

Core 1

Core 2

Coupling region

• Four-port devices (two input and two output ports).

• Output can be split in two different directions;

hence the name directional couplers.

• Can be fabricated using fibers or planar waveguides.

• Two waveguides are identical in symmetric couplers.

• Evanescent coupling of modes in two closely spaced waveguides.

• Overlapping of modes in the central region leads to power transfer.
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Theory of Directional Couplers
• Coupled-mode theory commonly used for couplers.

• Begin with the Helmholtz equation ∇2Ẽ+ ñ2k2
0Ẽ = 0.

• ñ(x,y) = n0 everywhere except in the region occupied by two cores.

• Approximate solution:

Ẽ(r,ω)≈ ê[Ã1(z,ω)F1(x,y)+ Ã2(z,ω)F2(x,y)]eiβ z.

• Fm(x,y) corresponds to the mode supported by the each waveguide:

∂ 2Fm

∂x2 +
∂ 2Fm

∂y2 +[n2
m(x,y)k2

0− β̄
2
m]Fm = 0.

• A1 and A2 vary with z because of the mode overlap.
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Coupled-Mode Equations
• Coupled-mode theory deals with amplitudes A1 and A2.

• We substitute assumed solution in Helmholtz equation, multiply by

F∗1 or F∗2 , and integrate over x–y plane to obtain

dÃ1

dz
= i(β̄1−β )Ã1 + iκ12Ã2,

dÃ2

dz
= i(β̄2−β )Ã2 + iκ21Ã1,

• Coupling coefficient is defined as

κmp =
k2

0

2β

∫ ∫
∞

−∞

(ñ2−n2
p)F

∗
mFp dxdy,

• Modes are normalized such that
∫∫

∞

−∞
|Fm(x,y)|2 dx dy = 1.
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Time-Domain Coupled-Mode Equations
• Expand β̄m(ω) in a Taylor series around the carrier frequency ω0 as

β̄m(ω) = β0m +(ω−ω0)β1m + 1
2(ω−ω0)2β2m + · · · ,

• Replace ω−ω0 by i(∂/∂ t) while taking inverse Fourier transform

∂A1

∂ z
+

1
vg1

∂A1

∂ t
+

iβ21

2
∂ 2A1

∂ t2 = iκ12A2 + iδaA1,

∂A2

∂ z
+

1
vg2

∂A2

∂ t
+

iβ22

2
∂ 2A2

∂ t2 = iκ21A1− iδaA2,

where vgm ≡ 1/β1m and

δa = 1
2(β01−β02), β = 1

2(β01 +β02).

• For a symmetric coupler, δa = 0 and κ12 = κ21 ≡ κ .
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Power-Transfer Characteristics
• Consider first the simplest case of a CW beam incident on one of

the input ports of a coupler.

• Setting time-dependent terms to zero we obtain

dA1

dz
= iκ12A2 + iδaA1,

dA2

dz
= iκ21A1− iδaA2.

• Eliminating dA2/dz, we obtain a simple equation for A1:

d2A1

dz2 +κ
2
e A1 = 0, κe =

√
κ2 +δ 2

a (κ =
√

κ12κ21).

• General solution when A1(0) = A0 and A2(0) = 0:

A1(z) = A0[cos(κez)+ i(δa/κe)sin(κez)],
A2(z) = A0(iκ21/κe)sin(κez).
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Power-Transfer Characteristics
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• Even though A2 = 0 at z = 0, some power is transferred to the

second core as light propagates inside a coupler.

• Power transfer follows a periodic pattern.

• Maximum power transfer occurs for κez = mπ/2.

• Coupling length is defined as Lc = π/(2κe).
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Symmetric Coupler
• Maximum power transfer occurs for a symmetric coupler (δa = 0)

• General solution for a symmetric coupler of length L:

A1(L) = A1(0)cos(κL)+ iA2(0)sin(κL)
A2(L) = iA1(0)sin(κL)+A2(0)cos(κL)

• This solution can be written in a matrix form as(
A1(L)
A2(L)

)
=
(

cos(κL) isin(κL)
isin(κL) cos(κL)

)(
A1(0)
A2(0)

)
.

• When A2(0) = 0 (only one beam injected), output fields become

A1(L) = A1(0)cos(κL), A2(L) = iA2(0)sin(κL)

• A coupler acts as a beam splitter; notice 90◦ phase shift for the

cross port.
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Transfer Matrix of a Coupler
• Concept of a transfer matrix useful for couplers because a single

matrix governs all its properties.

• Introduce ρ = P1(L)/P0 = cos2(κL) as a fraction of input power

P0 remaining in the same port of coupler.

• Transfer matrix can then be written as

Tc =

( √
ρ i

√
1−ρ

i
√

1−ρ
√

ρ

)
.

• This matrix is symmetric to ensure that the coupler behaves the

same way if direction of light propagation is reversed.

• The 90◦ phase shift important for many applications.
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Applications of Directional Couplers
• Simplest application of a fiber coupler is as an optical tap.

• If ρ is close to 1, a small fraction of input power is transferred to

the other core.

• Another application consists of dividing input power equally between

the two output ports (ρ = 1
2).

• Coupler length L is chosen such that κL = π/4 or L = Lc/2.

Such couplers are referred to as 3-dB couplers.

• Couplers with L = Lc transfer all input power to the cross port.

• By choosing coupler length appropriately, power can be divided be-

tween two output ports in an arbitrary manner.
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Coupling Coefficient
• Length of a coupler required depends on κ .

• Value of κ depends on the spacing d between two cores.

• For a symmetric coupler, κ can be approximated as

κ =
πV

2k0n1a2 exp[−(c0 + c1d̄ + c2d̄2)] (d̄ = d/a).

• Constants c0, c1, and c2 depend only on V .

• Accurate to within 1% for values of V and d̄ in the range 1.5 ≤
V ≤ 2.5 and 2≤ d̄ ≤ 4.5.

• As an example, κ ∼ 1 cm−1 for d̄ = 3 but it reduces to 0.01 cm−1

when d̄ exceeds 5.
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Supermodes of a Coupler
• Are there launch conditions for which no power transfer occurs?

• Under what conditions Ã1 and Ã2 become z-independent?

dÃ1

dz
= i(β̄1−β )Ã1 + iκ12Ã2,

dÃ2

dz
= i(β̄2−β )Ã2 + iκ21Ã1,

• This can occur when the ratio f = Ã2(0)/Ã1(0) satisfies

f =
β − β̄1

κ12
=

κ21

β − β̄2
.

• This equation determines β for supermodes

β± = 1
2(β̄1 + β̄2)±

√
δ 2

a +κ2.
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Supermodes of a Coupler
• Spatial distribution corresponding to two eigenvalues is given by

F±(x,y) = (1+ f 2
±)
−1/2[F1(x,y)+ f±F2(x,y)].

• These two specific linear combinations of F1 and F2 constitute the

supermodes of a fiber coupler.

• In the case of a symmetric coupler, f± =±1, and supermodes

become even and odd combinations of F1 and F2.

• When input conditions are such that a supermode is excited, no

power transfer occurs between two cores of a coupler.

• When light is incident on one core, both supermodes are excited.

• Two supermodes travel at different speeds and develop a relative

phase shift that is responsible for periodic power transfer between

two cores.
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Effects of Fiber Dispersion
• Coupled-mode equations for a symmetric coupler:

∂A1

∂ z
+

iβ2

2
∂ 2A1

∂T 2 = iκA2

∂A2

∂ z
+

iβ2

2
∂ 2A2

∂T 2 = iκA1 (1)

• GVD effects negligible if coupler length L� LD = T 2
0 /|β2|.

• GVD has no effect on couplers for which LD� Lc.

• LD exceeds 1 km for T0 > 1 ps but typically Lc < 10 m.

• GVD effects important only for ultrashort pulses (T0 < 0.1 ps).

• Picosecond pulses behave in the same way as CW beams.

• Pulse energy transferred to neighboring core periodically.
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Dispersion of Coupling Coefficient
• Frequency dependence of κ cannot be ignored in all cases:

κ(ω)≈ κ0 +(ω−ω0)κ1 + 1
2(ω−ω0)2κ2,

• Modified coupled-mode equations become

∂A1

∂ z
+κ1

∂A2

∂T
+

iβ2

2
∂ 2A1

∂T 2 +
iκ2

2
∂ 2A2

∂T 2 = iκ0A2,

∂A2

∂ z
+κ1

∂A1

∂T
+

iβ2

2
∂ 2A2

∂T 2 +
iκ2

2
∂ 2A1

∂T 2 = iκ0A1.

• Approximate solution when β2 = 0 and κ2 = 0:

A1(z,T ) = 1
2

[
A0(T −κ1z)eiκ0z +A0(T +κ1z)e−iκ0z

]
,

A2(z,T ) = 1
2

[
A0(T −κ1z)eiκ0z−A0(T +κ1z)e−iκ0z

]
,

• Pulse splits into two subpulses after a few coupling lengths.
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Fiber Gratings
• Silica fibers exhibit a photosensitive effect.

• Refractive index can be changed permanently when fiber is exposed

to UV radiation.

• Photosensitivity was discovered in 1978 by chance.

• Used routinely to make fiber Bragg gratings in which mode index

varies in a periodic fashion along fiber length.

• Fiber gratings can be designed to operate over a wide range of

wavelengths.

• Most useful in the wavelength region 1.55 µm because of its

relevance to fiber-optic communication systems.

• Fiber gratings act as a narrowband optical filter.



120/253

JJ
II
J
I

Back

Close

Bragg Diffraction

• Bragg diffraction must satisfy the phase-matching condition

ki−kd = mkg, kg = 2π/Λ.

• In single-mode fibers, all three vectors lie along fiber axis.

• Since kd =−ki, diffracted light propagates backward.

• A fiber grating acts as a reflector for a specific wavelength for which

kg = 2ki, or λ = 2n̄Λ.

• This condition is known as the Bragg condition.
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First Fiber Grating
• In a 1978 experiment, Hill et al. launched blue light from an argon-

ion laser into a 1-m-long fiber.

• Reflected power increased with time and became nearly 100%.

• Mechanism behind grating formation was understood much later.

• The 4% reflection occurring at the fiber ends creates a standing-

wave pattern.

• Two-photon absorption changes glass structure changes and alters

refractive index in a periodic fashion.

• Grating becomes stronger with time because it enhances the visi-

bility of fringe pattern.

• By 1989, a holographic technique was used to form the fringe pat-

tern directly using a 244-nm UV laser.
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Photosensitivity of Fibers
• Main Mechanism: Formation of defects in the core of a Ge-doped

silica fiber.

• Ge atoms in fiber core leads to formation of oxygen-deficient bonds

(Si–Ge, Si–Si, and Ge–Ge bonds).

• Absorption of 244-nm radiation breaks defect bonds.

• Modifications in glass structure change absorption spectrum.

• Refractive index also changes through Kramers–Kronig relation

∆n(ω ′) =
c
π

∫
∞

0

∆α(ω)dω

ω2−ω ′2
.

• Typically, ∆n is ∼ 10−4 near 1.5 µm, but it can exceed 0.001 in

fibers with high Ge concentration.
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Photosensitivity of Fibers
• Standard telecommunication fibers not suitable for forming Bragg

gratings (<3% of Ge atoms results in small index changes.

• Photosensitivity can be enhanced using dopants such as phosphorus,

boron, and aluminum.

• ∆n > 0.01 possible by soaking fiber in hydrogen gas at high pres-

sures (200 atm).

• Density of Ge–Si oxygen-deficient bonds increases in hydrogen-soaked

fibers.

• Once hydrogenated, fiber needs to be stored at low temperature to

maintain its photosensitivity.

• Gratings remain intact over long periods of time.
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Fabrication Techniques

• A dual-beam holographic technique is used commonly.

• Cylindrical lens is used to expand UV beam along fiber length.

• Fringe pattern formed on fiber surface creates an index grating.

• Grating period Λ related to λuv as Λ = λuv/(2sinθ).

• Λ can be varied over a wide range by changing θ .

• Wavelength reflected by grating is set by λ = 2n̄Λ.
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Fabrication Techniques
• Several variations of the basic technique have been developed.

• Holographic technique requires a UV laser with excellent temporal

and spatial coherence.

• Excimer lasers used commonly have relatively poor beam quality.

• It is difficult to maintain fringe pattern over fiber core over a dura-

tion of several minutes.

• Fiber gratings can be written using excimer laser pulses.

• Pulse energies required are close to 40 mJ for 20-ns pulses.

• Exposure time reduced considerably, relaxing coherence

requirements.
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Phase-Mask Technique
• Commercial production makes use of a phase-mask technique.

• Phase mask acts as a master grating that is transferred to the fiber

using a suitable method.

• A patterned layer of chromium is deposited on a quartz substrate

using electron-beam lithography and reactive ion etching.

• Demands on the temporal and spatial coherence of UV beam are

much less stringent when a phase mask is used.

• Even a non-laser source such as a UV lamp can be used.

• Quality of fiber grating depends completely on the master phase

mask.



127/253

JJ
II
J
I

Back

Close

Phase-Mask Interferometer
• Phase mask can also be used to form an interferometer.

• UV laser beam falls normally on the phase mask and is diffracted

into several beams through Raman–Nath scattering.

• The zeroth-order is blocked or cancelled with a suitable technique.

• Two first-order diffracted beams interfere on fiber surface and form

a fringe pattern.

• Grating period equals one-half of phase mask period.

• This method is tolerant of any beam-pointing instability.

• Relatively long gratings can be made with this technique.

• Use of a single silica block that reflects two beams internally forms

a compact interferometer.
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Point-by-Point Fabrication
• Grating is fabricated onto a fiber period by period.

• This technique bypasses the need of a master phase mask.

• Short sections (w < |Λ) of fiber exposed to a single high-energy UV

pulse.

• Spot size of UV beam focused tightly to a width w.

• Fiber moved by a distance Λ−w before next pulse arrives.

• A periodic index pattern can be created in this manner.

• Only short fiber gratings (<1 cm) can be produced because of time-

consuming nature of this method.

• Most suitable for long-period gratings.
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Grating Theory
• Refractive index of fiber mode varies periodically as

ñ(ω,z) = n̄(ω)+δng(z) =
∞

∑
m=−∞

δnm exp[2πim(z/Λ)].

• Total field Ẽ in the Helmholtz equation has the form

Ẽ(r,ω) = F(x,y)[Ã f (z,ω)exp(iβBz)+ Ãb(z,ω)exp(−iβBz)],

where βB = π/Λ is the Bragg wave number.

• If we assume Ã f and Ãb vary slowly with z and keep only nearly

phase-matched terms, we obtain coupled-mode equations

∂ Ã f

∂ z
= iδ (ω)Ã f + iκÃb,

−∂ Ãb

∂ z
= iδ (ω)Ãb + iκÃ f ,
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Coupled-Mode Equations
• Coupled-mode equations look similar to those obtained for couplers

with one difference: Second equations has a negative derivative

• This is expected because of backward propagation of Ab.

• Parameter δ (ω) = β (ω)−βB measures detuning from the Bragg

wavelength.

• Coupling coefficient κ is defined as

κ =
k0
∫∫

∞

−∞
δn1|F(x,y)|2 dxdy∫∫

∞

−∞
|F(x,y)|2 dxdy

.

• For a sinusoidal grating, δng = na cos(2πz/Λ), δn1 = na/2 and

κ = πna/λ .
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Time-Domain Coupled-Mode Equations
• Coupled-mode equations can be converted to time domain by

expanding β (ω) as

β (ω) = β0 +(ω−ω0)β1 + 1
2(ω−ω0)2β2 + 1

6(ω−ω0)3β3 + · · · ,

• Replacing ω−ω0 with i(∂/∂ t), we obtain

∂A f

∂ z
+

1
vg

∂A f

∂ t
+

iβ2

2
∂ 2A f

∂ t2 = iδ0A f + iκAb,

−∂Ab

∂ z
+

1
vg

∂Ab

∂ t
+

iβ2

2
∂ 2Ab

∂ t2 = iδ0Ab + iκA f ,

• δ0 = (ω0−ωB)/vg and vg = 1/β1 is the group velocity.

• When compared to couplers, The only difference is the − sign ap-

pearing in the second equation.
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Photonic Bandgap
• In the case of a CW beam, the general solution is

Ã f (z) = A1 exp(iqz)+A2 exp(−iqz),
Ãb(z) = B1 exp(iqz)+B2 exp(−iqz),

• Constants A1, A2, B1, and B2 satisfy

(q−δ )A1 = κB1, (q+δ )B1 =−κA1,

(q−δ )B2 = κA2, (q+δ )A2 =−κB2.

• These relations are satisfied if q obeys

q =±
√

δ 2−κ2.

• This dispersion relation is of paramount importance for gratings.
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Dispersion Relation of Gratings

-6 -2 2 6

-6

-2

2

6

q/κ

δ/κ

• If frequency of incident light is such that −κ < δ < κ ,

q becomes purely imaginary.

• Most of the incident field is reflected under such conditions.

• The range |δ | ≤ κ is called the photonic bandgap or stop band.

• Outside this band, propagation constant of light is modified by the

grating to become βe = βB±q.
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Grating Dispersion
• Since q depends on ω , grating exhibits dispersive effects.

• Grating-induced dispersion adds to the material and waveguide dis-

persions associated with a waveguide.

• To find its magnitude, we expand βe in a Taylor series:

βe(ω) = β
g
0 +(ω−ω0)β

g
1 + 1

2(ω−ω0)2β
g
2 + 1

6(ω−ω0)3β
g
3 + · · · ,

where β g
m = dmq

dωm ≈
(

1
vg

)m
dmq
dδ m .

• Group velocity VG = 1/β
g
1 =±vg

√
1−κ2/δ 2.

• For |δ | � κ , optical pulse is unaffected by grating.

• As |δ | approaches κ , group velocity decreases and becomes zero at

the edges of a stop band.



135/253

JJ
II
J
I

Back

Close

Grating Dispersion
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• Second- and third-order dispersive properties are governed by

β
g
2 =−

sgn(δ )κ2/v2
g

(δ 2−κ2)3/2 , β
g
3 =

3|δ |κ2/v3
g

(δ 2−κ2)5/2 .

• GVD anomalous for δ > 0 and normal for δ < 0.
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Grating as an Optical Filter
• What happens to optical pulses incident on a fiber grating?

• If pulse spectrum falls entirely within the stop band,

pulse is reflected by the grating.

• If a part of pulse spectrum is outside the stop band, that part

is transmitted by the grating.

• Clearly, shape of reflected and transmitted pulses will be quite

different depending on detuning from Bragg wavelength.

• We can calculate reflection and transmission coefficients for each

spectral component and then integrate over frequency.

• In the linear regime, a fiber grating acts as an optical filter.
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Grating Reflectivity
• Reflection coefficient can be calculated from the solution

Ã f (z) = A1 exp(iqz)+ r(q)B2 exp(−iqz)
Ãb(z) = B2 exp(−iqz)+ r(q)A1 exp(iqz)

r(q) =
q−δ

κ
=− κ

q+δ
.

• Reflection coefficient rg = Ãb(0)
Ã f (0) = B2+r(q)A1

A1+r(q)B2
.

• Using boundary condition Ãb(L) = 0, B2 =−r(q)A1 exp(2iqL).

• Using this value of B2, we obtain

rg(δ ) =
iκ sin(qL)

qcos(qL)− iδ sin(qL)
.
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Grating Reflectivity
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• κL = 2 (dashed line); κL = 3 (solid line).

• Reflectivity approaches 100% for κL = 3 or larger.

• κ = 2πδn1/λ can be used to estimate grating length.

• For δn1 ≈ 10−4, λ = 1.55 µm, L > 5 5 mm to yield κL > 2.
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Grating Apodization

(a) (b)

• Reflectivity sidebands originate from a Fabry–Perot cavity formed

by weak reflections occurring at the grating ends.

• An apodization technique is used to remove these sidebands.

• Intensity of the UV beam across the grating is varied such that it

drops to zero gradually near the two grating ends.

• κ increases from zero to its maximum value in the center.
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Grating Properties

(a) (p)

• 80-ps pulses transmitted through an apodized grating.

• Pulses were delayed considerably close to a stop-band edge.

• Pulse width changed because of grating-induced GVD effects.

• Slight compression near δ = 1200 m−1 is due to SPM.
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Nonuniform Gratings
• Grating parameters κ and δ become z-dependent in a nonuniform

grating.

• Examples of nonuniform gratings include chirped gratings, phase-

shifted gratings, and superstructure gratings.

• In a chirped grating, optical period n̄Λ changes along grating length.

• Since λB = 2n̄Λ sets the Bragg wavelength, stop band shifts along

the grating length.

• Mathematically, δ becomes z-dependent.

• Chirped gratings have a much wider stop band because it is formed

by a superposition of multiple stop bands.
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Chirped Fiber Gratings
• Linearly chirped gratings are commonly used in practice.

• Bragg wavelength λB changes linearly along grating length.

• They can be fabricated either by varying physical period Λ or by

changing n̄ along z.

• To change Λ, fringe spacing is made nonuniform by interfering

beams with different curvatures.

• A cylindrical lens is often used in one arm of interferometer.

• Chirped fiber gratings can also be fabricated by tilting or stretching

the fiber, using strain or temperature gradients, or stitching multiple

uniform sections.
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Chirped Fiber Gratings

• Useful for dispersion compensation in lightwave systems.

• Different spectral components reflected by different parts of grating.

• Reflected pulse experiences a large amount of GVD.

• Nature of GVD (normal vs. anomalous) is controllable.
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Superstructure Gratings
• Gratings have a single-peak transfer function.

• Some applications require optical filters with multiple peaks.

• Superstructure gratings have multiple equally spaced peaks.

• Grating designed such that κ varies periodically along its length.

Such doubly periodic devices are also called sampled gratings.

• Such a structure contain multiple grating sections with constant

spacing among them.

• It can be made by blocking small regions during fabrication such

that κ = 0 in the blocked regions.

• It can also be made by etching away parts of a grating.
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Fiber Interferometers
• Two passive components—couplers and gratings—can be combined

to form a variety of fiber-based optical devices.

• Four common ones among them are

? Ring and Fabry–Perot resonators

? Sagnac-Loop interferometers

? Mach–Zehnder interferometers

? Michelson interferometers

• Useful for optical switching and other WDM applications.
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Fiber-Ring Resonators

Fiber couplerInput Output

• Made by connecting input and output ports of one core of a direc-

tional coupler to form a ring.

• Transmission characteristics obtained using matrix relation(
A f

Ai

)
=

( √
ρ i

√
1−ρ

i
√

1−ρ
√

ρ

)(
Ac

At

)
.

• After one round trip, A f /Ac = exp[−αL/2 + iβ (ω)L] ≡
√

aeiφ

where a = exp(−αL)≤ 1 and φ(ω) = β (ω)L.
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Transmission Spectrum

• The transmission coefficient is found to be

tr(ω)≡
√

Treiφt =
At

Ai
=
√

a−√ρe−iφ

1−√aρeiφ ei(π+φ).

• Spectrum shown for a = 0.95 and ρ = 0.9.

• If a = 1 (no loss), Tr = 1 (all-pass resonator) but phase varies as

φt(ω) = π +φ +2tan−1
√

ρ sinφ

1−√ρ cosφ
.
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All-Pass Resonators
• Frequency dependence of transmitted phase for all-pass resonators

can be used for many applications.

• Different frequency components of a pulse are delayed by different

amounts near a cavity resonance.

• A ring resonator exhibits GVD (similar to a fiber grating).

• Since group delay τd = dφt/dω , GVD parameter is given by

β2 = 1
L

d2φt
dω2 .

• A fiber-ring resonator can be used for dispersion compensation.

• If a single ring does not provide enough dispersion, several rings can

be cascaded in series.

• Such a device can compensate dispersion of multiple channels.
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Fabry–Perot Resonators

Grating GratingFiber

(a)

(b)

Fiber Fiber

Mirror

(c)

Coupler

Coupler

• Use of couplers and gratings provides an all-fiber design.

• Transmissivity can be calculated by adding contributions of succes-

sive round trips to transmitted field.
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Transmission Spectrum
• Transmitted field:

At = Aieiπ(1−R1)1/2(1−R2)1/2 [1+
√

R1R2eiφR +R1R2e2iφR + · · ·
]
,

• Phase shift during a single round trip: φR = 2β (ω)L.

• When Rm = R1 = R2, At = (1−Rm)Aieiπ

1−Rm exp(2iφR).

• Transmissivity is given by the Airy formula

TR =
∣∣∣∣At

Ai

∣∣∣∣2 =
(1−Rm)2

(1−Rm)2 +4Rm sin2(φR/2)
.

• Round-trip phase shift φR = (ω−ω0)τr, where τr is the

round-trip time.
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Free Spectral Range and Finesse
• Sharpness of resonance peaks quantified through the finesse

FR =
Peak bandwidth

Free spectral range
=

π
√

Rm

1−Rm
,

• Free spectral range ∆νL is obtained from phase-matching condition

2[β (ω +2π∆νL)−β (ω)]L = 2π.

• ∆νL = 1/τr, where τr = 2L/vg is the round-trip time.

• FP resonators are useful as an optical filter with periodic passbands.

• Center frequencies of passbands can be tuned by changing physical

mirror spacing or by modifying the refractive index.
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Sagnac Interferometers

• Made by connecting two output ports of a fiber coupler to form

a fiber loop.

• No feedback mechanism; all light entering exits after a round trip.

• Two counterpropagating parts share the same optical path and

interfere at the coupler coherently.

• Their phase difference determines whether input beam is

reflected or transmitted.
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Fiber-Loop Mirrors
• When a 3-dB fiber coupler is used, any input is totally reflected.

• Such a device is called the fiber-loop mirror.

• Fiber-loop mirror can be used for all-optical switching by exploiting

nonlinear effects such as SPM and XPM.

• Such a nonlinear optical loop mirror transmits a high-power signal

while reflecting it at low power levels.

• Useful for many applications such as mode locking, wavelength con-

version, and channel demultiplexing.
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Nonlinear Fiber-Loop Mirrors
• Input field splits into two parts: A f =

√
ρA0, Ab = i

√
1−ρ A0.

• After one round trip, A′f = A f exp[iφ0 + iγ(|A f |2 +2|Ab|2)L],
A′b = Ab exp(iφ0 + iγ(|Ab|2 +2|A f |2)L].

• Reflected and transmitted fields after fiber coupler:(
At

Ar

)
=

( √
ρ i

√
1−ρ

i
√

1−ρ
√

ρ

)(
A′f
A′b

)
.

• Transmissivity TS ≡ |At|2/|A0|2 of the Sagnac loop:

TS = 1−2ρ(1−ρ){1+ cos[(1−2ρ)γP0L]},

• If ρ 6= 1/2, fiber-loop mirror can act as an optical switch.
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Nonlinear Transmission Characteristics

• At low powers, little light is transmitted if ρ is close to 0.5.

• At high powers, SPM-induced phase shift leads to 100% transmis-

sion whenever |1−2ρ|γP0L = (2m−1)π .

• Switching power for m = 1 is 31 W for a 100-m-long fiber loop

when ρ = 0.45 and γ = 10 W−1/km.

• It can be reduced by increasing loop length or γ .
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Nonlinear Switching
• Most experiments use short optical pulses with high peak powers.

• In a 1989 experiment, 180-ps pulses were injected into a 25-m

Sagnac loop.

• Transmission increased from a few percent to 60% as peak power

was increased beyond 30 W.

• Only the central part of the pulse was switched.

• Shape deformation can be avoided by using solitons.

• Switching threshold can be reduced by incorporating a fiber ampli-

fier within the loop.
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Nonlinear Amplifying-Loop Mirror
• If amplifier is located close to the fiber coupler, it introduces an

asymmetry beneficial to optical switching.

• Even a 50:50 coupler (ρ = 0.5) can be used for switching.

• In one direction pulse is amplified as it enters the loop.

• Counterpropagating pulse is amplified just before it exits the loop.

• Since powers in two directions differ by a large amount, differential

phase shift can be quite large.

• Transmissivity of loop mirror is given by

TS = 1−2ρ(1−ρ){1+ cos[(1−ρ−Gρ)γP0L]}.

• Switching power P0 = 2π/[(G−1)γL].
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Nonlinear Amplifying-Loop Mirror
• Since G∼ 30 dB, switching power is reduced considerably.

• Such a device can switch at peak power levels below 1 mW.

• In a 1990 experiment, 4.5 m of Nd-doped fiber was spliced within

a 306-m fiber loop formed with a 3-dB coupler.

• Switching was observed using 10-ns pulses.

• Switching power was about 0.9 W even when amplifier provided

only 6-dB gain.

• A semiconductor optical amplifier inside a 17-m fiber loop produced

switching at 250 µW with 10-ns pulses.
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Dispersion-Unbalanced Sagnac Loops
• Sagnac interferometer can also be unbalanced by using a fiber whose

GVD varies along the loop length.

• A dispersion-decreasing fiber or several fibers with different disper-

sive properties can be used.

• In the simplest case Sagnac loop is made with two types of fibers.

• Sagnac interferometer is unbalanced as counterpropagating waves

experience different GVD during a round trip.

• Such Sagnac loops remain balanced for CW beams.

• As a result, optical pulses can be switched to output port while any

CW background noise is reflected.

• Such a device can improve the SNR of a noisy signal.
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XPM-Induced Switching
• XPM can also be used for all-optical switching.

• A control signal is injected into the Sagnac loop such that it prop-

agates in only one direction.

• It induces a nonlinear phase shift through XPM in that direction.

• In essence, control signal unbalances the Sagnac loop.

• As a result, a low-power CW signal is reflected in the absence of a

control pulse but is transmitted in its presence.

• As early as 1989, a 632-nm CW signal was switched using intense

532-nm picosecond pump pulses with 25-W peak power.

• Walk-off effects induced by group-velocity mismatch affect the de-

vice. It is better to us orthogonally polarized control at the same

wavelength.
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Mach–Zehnder Interferometers

• A Mach–Zehnder (MZ) interferometer is made by connecting two

fiber couplers in series.

• Such a device has the advantage that nothing is reflected back

toward the input port.

• MZ interferometer can be unbalanced by using different path lengths

in its two arms.

• This feature also makes it susceptible to environmental fluctuations.
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Transmission Characteristics
• Taking into account both the linear and nonlinear phase shifts,

optical fields at the second coupler are given by

A1 =
√

ρ1A0 exp(iβ1L1 + iρ1γ|A0|2L1),
A2 = i

√
1−ρ1A0 exp[iβ2L2 + i(1−ρ1)γ|A0|2L2],

• Transmitted fields from two ports:(
A3

A4

)
=
( √

ρ2 i
√

1−ρ2

i
√

1−ρ2
√

ρ2

)(
A1

A2

)
.

• Transmissivity of the bar port is given by

Tb = ρ1ρ2+(1−ρ1)(1−ρ2)−2[ρ1ρ2(1−ρ1)(1−ρ2)]1/2 cos(φL+φNL),

• φL = β1L1−β2L2 and φNL = γP0[ρ1L1− (1−ρ1)L2].
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Transmission Characteristics

• Nonlinear switching for two values of φL.

• A dual-core fiber was used to make the interferometer (L1 = L2).

• This configuration avoids temporal fluctuations occurring invariably

when two separate fiber pieces are used.
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XPM-Induced Switching

• Switching is also possible through XPM-induced phase shift.

• Control beam propagates in one arm of the MZ interferometer.

• MZ interferometer is balanced in the absence of control,

and signal appears at port 4.

• When control induces a π phase shift through XPM, signal is di-

rected toward port 3.

• Switching power can be lowered by reducing effective core area

Aeff of fiber.
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Michelson Interferometers
• Can be made by splicing Bragg gratings at the output ports of

a fiber coupler.

• It functions like a MZ interferometer.

• Light propagating in its two arms interferes at the same coupler

where it was split.

• Acts as a nonlinear mirror, similar to a Sagnac interferometer.

• Reflectivity RM = ρ2 +(1−ρ)2−2ρ(1−ρ)cos(φL +φNL).

• Nonlinear characteristics similar to those of a Sagnac loop.

• Often used for passive mode locking of lasers (additive-pulse

mode locking).
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Isolators and Circulators
• Isolators and circulators fall into the category of nonreciprocal

devices.

• Such a device breaks the time-reversal symmetry inherent in optics.

• It requires that device behave differently when the direction of light

propagation is reversed.

• A static magnetic field must be applied to break time-reversal sym-

metry.

• Device operation is based on the Faraday effect.

• Faraday effect: Changes in the state of polarization of an optical

beam in a magneto-optic medium in the presence of a magnetic

field.
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Faraday Effect
• Refractive indices of some materials become different for RCP and

LCP components in the presence of a magnetic field.

• On a more fundamental level, Faraday effect has its origin in the

motion of electrons in the presence of a magnetic field.

• It manifests as a change in the state of polarization as the beam

propagates through the medium.

• Polarization changes depend on the direction of magnetic field but

not on the direction in which light is traveling.

• Mathematically, two circularly polarized components propagate with

β± = n±(ω/c).

• Circular birefringence depends on magnetic field as

δn = n+−n− = KFHdc.
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Faraday Rotator
• Relative phase shift between RCP and LCP components is

δφ = (ω/c)KFHdclM = VcHdclM,

where Vc = (ω/c)KF is the Verdet constant.

• Plane of polarization of light is rotated by an angle

θF = 1
2δφ .

• Most commonly used material: terbium gallium garnet with Verdet

constant of ∼0.1 rad/(Oe-cm).

• Useful for making a device known as the Faraday rotator.

• Magnetic field and medium length are chosen to induce 45◦ change

in direction of linearly polarized light.
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Optical Isolators

GRIN

Lens

GRIN

Lens

Faraday

Isolator

Polarizer Analyzer

Fiber Fiber

Direction of

Magnertic

Field

• Optical analog of a rectifying diode.

• Uses a Faraday rotator sandwiched between two polarizers.

• Second polarizer tilted at 45◦ from first polarizer.

• Polarization-independent isolators process orthogonally polarized com-

ponents separately and combine them at the output end.

• Commercial isolators provide better than 30-dB isolation in a com-

pact package (4 cm×5 mm wide).
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Optical Circulators

• A circulator directs backward propagating light does to another port

rather than discarding it, resulting in a three-port device.

• More ports can be added if necessary.

• Such devices are called circulators because they direct light to dif-

ferent ports in a circular fashion.

• Design of optical circulators becomes increasingly complex as the

number of ports increases.
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Active Fiber Components
• No electrical pumping possible as silica is an insulator.

• Active components can be made but require optical pumping.

• Fiber core is often doped with a rare-earth element to realize optical

gain through optical pumping.

• Active Fiber components

? Doped-Fiber Amplifiers

? Raman Amplifiers (SRS)

? Parametric Amplifiers (FWM)

? CW and mode-locked Fiber Lasers
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Doped-Fiber Amplifiers
• Core doped with a rare-earth element during manufacturing.

• Many different elements such as erbium, neodymium, and ytter-

bium, can be used to make fiber amplifiers (and lasers).

• Amplifier properties such as operating wavelength and gain band-

width are set by the dopant.

• Silica fiber plays the passive role of a host.

• Erbium-doped fiber amplifiers (EDFAs) operate near 1.55 µm and

are used commonly for lightwave systems.

• Yb-doped fiber are useful for high-power applications.

• Yb-doped fiber lasers can emit > 1 kW of power.
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Optical Pumping

• Optical gain realized when a doped fiber is pumped optically.

• In the case of EDFAs, semiconductor lasers operating near 0.98-

and 1.48-µm wavelengths are used.

• 30-dB gain can be realized with only 10–15 mW of pump power.

• Efficiencies as high as 11 dB/mW are possible.
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Amplifier Gain
• Gain coefficient can be written as

g(ω) =
g0(Pp)

1+(ω−ω0)2T 2
2 +P/Ps

.

• T2 is the dipole relaxation time (typically <1 ps).

• Fluorescence time T1 can vary from 1 µs–10 ms depending on the

rare-earth element used (10 ms for EDFAs).

• Amplification of a CW signal is governed by dP/dz = g(ω)P.

• When P/Ps� 1, solution is P(z) = P(0)exp(gz).

• Amplifier gain G is defined as

G(ω) = Pout/Pin = P(L)/P(0) = exp[g(ω)L].
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Gain Spectrum
• For P� Ps, small-signal gain is of the form

g(ω) =
g0

1+(ω−ω0)2T 2
2
.

• Lorentzian Gain spectrum with a FWHM ∆νg = 1
πT2

.

• Amplifier gain G(ω) has a peak value G0 = exp(g0L).

• Its FWHM is given by ∆νA = ∆νg

[
ln2

ln(G0/2)

]1/2
.

• Amplifier bandwidth is smaller than gain bandwidth.

• Gain spectrum of EDFAs has a double-peak structure with a

bandwidth >35 nm.

• EDFAs can provide amplification over a wide spectral region

(1520–1610 nm).
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Amplifier Noise
• All amplifiers degrade SNR of the amplified signal because of

spontaneous emission.

• SNR degradation quantified through the noise figure Fn defined as

Fn = (SNR)in/(SNR)out.

• In general, Fn depends on several detector parameters related to

thermal noise.

• For an ideal detector (no thermal noise)

Fn = 2nsp(1−1/G)+1/G≈ 2nsp.

• Spontaneous emission factor nsp = N2/(N2−N1).

• For a fully inverted amplifier (N2� N1), nsp = 1.

• 51-dB gain realized with Fn = 3.1 dB at 48 mW pump power.
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Amplifier Design

• EDFAs are designed to provide uniform gain over the entire

C band (1530–1570 nm).

• An optical filter is used for gain flattening.

• It often contains several long-period fiber gratings.

• Two-stage design helps to reduce the noise level as it permits to

place optical filter in the middle.

• Noise figure is set by the first stage.
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Amplifier Design

• A two-stage design is used for L-band amplifiers operating

in the range 1570–1610 nm.

• First stage pumped at 980 nm and acts as a traditional EDFA.

• Second stage has a long doped fiber (200 m or so) and is pumped

bidirectionally using 1480-nm lasers.

• An optical isolator blocks the backward-propagating ASE.

• Such cascaded amplifiers provide flat gain with relatively low noise

level levels.
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Raman Amplifiers
• A Raman amplifier uses stimulated Raman scattering (SRS) for

signal amplification.

• SRS is normally harmful for WDM systems.

• The same process useful for making Raman amplifiers.

• Raman amplifiers can provide large gain over a wide bandwidth in

any spectral region using a suitable pump.

• Require long fiber lengths (>1 km) compared with EDFAs.

• Fiber used for data transmission can itself be employed as a

Raman-gain medium.

• This scheme is referred to as distributed Raman amplification.
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Raman Amplifiers

• Similar to EDFAs, Raman amplifiers must be pumped optically.

• Pump and signal injected into the fiber through a fiber coupler.

• Pump power is transferred to the signal through SRS.

• Pump and signal counterpropagate in the backward-pumping con-

figuration often used in practice.

• Signal amplified exponentially as egL with

g(ω) = gR(ω)(Pp/Aeff).
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Raman Gain and Bandwidth

(b)(a)

• Raman gain spectrum gR(Ω) has a broad peak located near 13 THz.

• The ratio gR/Aeff is a measure of Raman-gain efficiency and depends

on fiber design.

• A dispersion-compensating fiber (DCF) can be 8 times more effi-

cient than a standard silica fiber.

• Gain bandwidth ∆νg is about 6 THz.

• Multiple pumps can be used make gain spectrum wider and flatter.
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Single-Pump Raman Amplification
• Governed by a set of two coupled nonlinear equations:

dPs

dz
=

gR

Aeff
PpPs−αsPs, η

dPp

dz
=−ωp

ωs

gR

Aeff
PpPs−αpPp,

• η =±1 depending on the pumping configuration.

• In practice, Pp� Ps, and pump depletion can be ignored.

• Pp(z) = P0 exp(−αpz) in the forward-pumping case.

• Signal equation is then easily integrated to obtain

Ps(L) = Ps(0)exp(gRP0Leff/Aeff−αsL)≡ G(L)Ps(0),

where Leff = [1− exp(−αpL)]/αp.
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Bidirectional Pumping
• In the case of backward-pumping, boundary condition becomes

Pp(L) = P0.

• Solution of pump equation becomes Pp(z) = P0 exp[−αp(L− z)].

• Same amplification factor as for forward pumping.

• In the case of bidirectional pumping, the solution is

Ps(z)≡ G(z)Ps(0) = Ps(0)exp
(

gR

Aeff

∫ z

0
Pp(z)dz−αsL

)
,

where Pp(z) = P0{ fp exp(−αpz)+(1− fp)exp[−αp(L− z)]}.

• P0 is total power and fp is its fraction in forward direction.

• Amplifier properties depend on fp.
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Bidirectional Pumping

• Change in signal power along a 100-km-long Raman amplifier as fp

is varied in the range 0 to 1.

• In all cases, gR/Aeff = 0.7 W−1/km, αs = 0.2 dB/km, αp = 0.25
dB/km, and G(L) = 1.

• Which pumping configuration is better from a system standpoint?
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Forward or Backward Pumping?
• Forward pumping superior from the noise viewpoint.

• Backward pumping better in practice as it reduces nonlinear effects

(signal power small throughout fiber link).

• Accumulated nonlinear phase shift induced by SPM is given by

φNL = γ

∫ L

0
Ps(z)dz = γPs(0)

∫ L

0
G(z)dz.

• Increase in φNL because of Raman amplification is quantified by

the ratio

RNL =
φNL(pump on)

φNL(pump off)
= L−1

eff

∫ L

0
G(z)dz.

• This ratio is smallest for backward pumping.
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Multiple-Pump Raman Amplification
• Raman amplifiers need high pump powers.

• Gain spectrum is 20–25 nm wide but relatively nonuniform.

• Both problems can be solved using multiple pump lasers at

suitably optimized wavelengths.

• Even though Raman gain spectrum of each pump is not very flat,

it can be broadened and flattened using multiple pumps.

• Each pump creates its own nonuniform gain profile over a

specific spectral range.

• Superposition of several such spectra can create relatively flat gain

over a wide spectral region.
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Example of Raman Gain Spectrum

(b)(a)

• Five pump lasers operating at 1,420, 1,435, 1,450, 1,465, and

1,495 nm are used.

• Individual pump powers chosen to provide uniform gain over a

80-nm bandwidth (top trace).

• Raman gain is polarization-sensitive. Polarization problem is solved

using two orthogonally polarized pump lasers at each wavelength.

• It can also be solved by depolarizing output of each pump laser.
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Example of Raman Gain Spectrum

• Measured Raman gain for a Raman amplifier pumped with 12 lasers.

• Pump powers used (shown on the right) were below 100 mW for

each pump laser.

• Pump powers and wavelengths are design parameters obtained by

solving a complex set of equations.
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Noise in Raman Amplifiers
• Spontaneous Raman scattering adds noise to the amplified signal.

• Noise is temperature dependent as it depends on phonon

population in the vibrational state.

• Evolution of signal is governed by

dAs

dz
=

gR

2Aeff
Pp(z)As−

αs

2
As + fn(z, t),

• fn(z, t) is modeled as a Gaussian stochastic process with

〈 fn(z, t) fn(z′, t ′)〉= nsphν0gRPp(z)δ (z− z′)δ (t− t ′),

• nsp(Ω) = [1− exp(−h̄Ω/kBT )]−1, Ω = ωp−ωs.
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Noise in Raman Amplifiers
• Integrating over amplifier length, As(L) =

√
G(L)As(0)+Asp:

Asp =
√

G(L)
∫ L

0

fn(z, t)√
G(z)

dz, G(z)= exp
(∫ z

0
[gRPp(z′)−αs]dz′

)
.

• Spontaneous power added to the signal is given by

Psp = nsphν0gRBoptG(L)
∫ L

0

Pp(z)
G(z)

dz,

• Bopt is the bandwidth of the Raman amplifier (or optical filter).

• Total noise power higher by factor of 2 when both polarization

components are considered.
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Noise in Raman Amplifiers
• Noise figure of a Raman amplifier is given by

Fn =
Psp

Ghν0∆ f
= nspgR

Bopt

∆ f

∫ L

0

Pp(z)
G(z)

dz.

• Common to introduce the concept of an effective noise figure

as Feff = Fn exp(−αsL).

• Feff can be less than 1 (negative on the decibel scale).

• Physically speaking, distributed gain counteracts fiber losses and

results in better SNR compared with lumped amplifiers.

• Forward pumping results in less noise because Raman gain is con-

centrated toward the input end.
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Parametric Amplifiers
• Make use of four-wave mixing (FWM) in optical fibers.

• Two pumps (at ω1 and ω2) launched with the signal at ω3.

• The idler field generated internally at a frequency

ω4 = ω1 +ω2−ω3.

• Signal and idler both amplified through FWM.

• Such a device can amplify signal by 30–40 dB if a phase-matching

condition is satisfied.

• It can also act as a wavelength converter.

• Idler phase is reverse of the signal (phase conjugation).
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Simple Theory
• FWM is described by a set of 4 coupled nonlinear equations.

• These equations must be solved numerically in general.

• If we assume intense pumps (negligible depletion), and treat pump

powers as constant, signal and idler fields satisfy

dA3

dz
= 2iγ[(P1 +P2)A3 +

√
P1P2e−iθ A∗4],

dA∗4
dz

= −2iγ[(P1 +P2)A∗4 +
√

P1P2eiθ A3],

• P1 = |A1|2 and P2 = |A2|2 are pump powers.

• θ = [∆β −3γ(P1 +P2)]z represents total phase mismatch.

• Linear part ∆β = β3 +β4−β1−β2, where β j = ñ jω j/c.
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Signal and Idler Equations
• Two coupled equations can be solved analytically as they are linear

first-order ODEs.

• Notice that A3 couples to A∗4 (phase conjugation).

• Introducing B j = A j exp[−2iγ(P1 + P2)z], we obtain the following

set of two equations:

dB3

dz
= 2iγ

√
P1P2e−iκzB∗4,

dB∗4
dz

= −2iγ
√

P1P2eiκzB3,

• Phase mismatch: κ = ∆β + γ(P1 +P2).

• κ = 0 is possible if pump wavelength lies close to ZDWL but in the

anomalous-dispersion regime of the fiber.
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Parametric Gain
• General solution for signal and idler fields:

B3(z) = (a3egz +b3e−gz)exp(−iκz/2),
B∗4(z) = (a4egz +b4e−gz)exp(iκz/2),

• a3, b3, a4, and b4 are determined from boundary conditions.

• Parametric gain g depends on pump powers as

g =
√

(γP0r)2− (κ/2)2, r = 2
√

P1P2/P0, P0 = P1 +P2.

• In the degenerate case, single pump provides both photons

for creating a pair of signal and idler photons.

• In this case P1 = P2 = P0 and r = 1.

• Maximum gain gmax = γP0 occurs when κ = 0.
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Single-Pump Parametric Amplifiers
• A single pump is used to pump a parametric amplifier.

• Assuming P4(0) = 0 (no input at idler frequency), signal and idler

powers at z = L are

P3(L) = P3(0)[1+(1+κ
2/4g2)sinh2(gL)],

P4(L) = P3(0)(1+κ
2/4g2)sinh2(gL),

• Parametric gain g =
√

(γP0)2− (κ/2)2.

• Amplification factor Gp = P3(L)
P3(0) = 1+(γP0/g)2 sinh2(γP0L).

• When phase matching is perfect (κ = 0) and gL� 1

Gp = 1+ sinh2(γP0L)≈ 1
4

exp(2γP0L).
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Single-Pump Parametric Amplifiers
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• Gp as a function of pump-signal detuning ωs−ωp.

• Pump wavelength close to the zero-dispersion wavelength.

• 500-m-long fiber with γ = 10 W−1/km and β2 =−0.5 ps2/km.

• Peak gain is close to 38 dB at a 1-W pump level and occurs when

signal is detuned by 1 THz from pump wavelength.
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Single-Pump Parametric Amplifiers

• Experimental results agree with simple FWM theory.

• 500-m-long fiber with γ = 11 W−1/km.

• Output of a DFB laser was boosted to 2 W using two EDFAs.

• It was necessary to broaden pump spectrum from 10 MHz to >1 GHz

to suppress SBS.
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Dual-Pump Parametric Amplifiers

1 21 - 2 -1 + 2 +

0

1- 1+ 2- 2+

1 21 - 2 -1 + 2 +

0

1- 1+ 2- 2+

• Pumps positioned on opposite sides of ZDWL.

• Multiple FWM processes general several idler bands.

• Degenerate FWM : ω1 +ω1→ ω1+ +ω1−.

• Nondegenerate FWM: ω1 +ω2→ ω1+ +ω2−.

• Additional gain through combinations

ω1 +ω1+→ ω2 +ω2−, ω2 +ω1+→ ω1 +ω2+.
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Dual-Pump Parametric Amplifiers
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• Examples of gain spectra at three pump-power levels.

• A 500-m-long fiber used with γ = 10 W−1/km, ZDWL = 1570 nm,

β3 = 0.038 ps3/km, and β4 = 1×10−4 ps3/km.

• Two pumps at 1525 and 1618 nm (almost symmetric

around ZDWL) with 500 mW of power.
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Dual-Pump Parametric Amplifiers

Wavelength (nm)

G
ai

n
 (d

B
)

• Measured gain (symbols) for pump powers of 600 and 200 mW at

1,559 and 1,610 nm, respectively.

• Unequal input pump powers were used because of SRS.

• SBS was avoided by modulating pump phases at 10 GHz.

• Theoretical fit required inclusion of Raman-induced transfer

of powers between the pumps, signal, and idlers.
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Polarization effects
• Parametric gain is negligible when pump and signal are orthogonally

polarized (and maximum when they are copolarized).

• Parametric gain can vary widely depending on SOP of input signal.

• This problem can be solved by using two orthogonally polarized

pumps with equal powers.

• Linearly polarized pumps in most experiments.

• Amplifier gain is reduced drastically compared with

the copolarized case.

• Much higher values of gain are possible if two pumps

are chosen to be circularly polarized.
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Polarization effects

• Two pumps at 1,535 and 1,628 nm launched with 0.5 W powers.

• Gain reduced to 8.5 dB for linearly polarized pumps but increases

to 23 dB when pumps are circularly polarized.

• Reason: Angular momentum should be conserved.
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Fiber Lasers
• Any amplifier can be converted into a laser by placing it inside a

cavity designed to provide optical feedback.

• Fiber lasers can use a Fabry–Perot cavity if mirrors are butt-coupled

to its two ends.

• Alignment of such a cavity is not easy.

• Better approach: deposit dielectric mirrors onto the polished ends

of a doped fiber.

• Since pump light passes through the same mirrors, dielectric

coatings can be easily damaged.

• A WDM fiber coupler can solve this problem.

• Another solution is to use fiber gratings as mirrors.
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Ring-Cavity Design

• A ring cavity is often used for fiber lasers.

• It can be made without using any mirrors.

• Two ports of a WDM coupler connected to form a ring cavity.

• An isolator is inserted for unidirectional operation.

• A polarization controller is needed for conventional fibers that do

not preserve polarization.
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Figure-8 Cavity

• Ring cavity on right acts as a nonlinear amplifying-loop mirror.

• Nonlinear effects play important role in such lasers.

• At low powers, loop transmissivity is small, resulting in large cavity

losses for CW operation.

• Sagnac loop becomes transmissive for pulses whose peak power

exceeds a critical value.

• A figure-8 cavity permits passive mode locking without any active

elements.
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CW Fiber Lasers
• EDFLs exhibit low threshold

(<10 mW pump power) and

a narrow line width (<10 kHz).

• Tunable over a wide wavelength

range (>50 nm).

• A rotating grating can be used

(Wyatt, Electon. Lett.,1989).

• Many other tuning techniques

have been used.

(a)

(b)
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Multiwavelength Fiber Lasers
• EDFLs can be designed to emit light at several wavelengths

simultaneously.

• Such lasers are useful for WDM applications.

• A dual-frequency fiber laser was demonstrated in 1993 using a

coupled-cavity configuration.

• A comb filter (e.g., a Fabry–Perot filter) is often used for this pur-

pose.

• In a recent experiment, a fiber-ring laser provided output at 52

channels, designed to be 50 GHz apart.
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Mode-Locked Fiber Lasers

• Saturable absorbers commonly used for passive mode locking.

• A saturable Bragg reflector often used for this purpose.

• Dispersion and SPM inside fibers play an important role and should

be included.

• 15 cm of doped fiber is spliced to a 30-cm section of standard fiber

for dispersion control.

• Pulse widths below 0.5 ps formed over a wide range of average GVD

(β2 =−2 to −14 ps2/km).

• Harmonic mode locking was found to occur for short cavity lengths.
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Nonlinear Fiber-Loop Mirrors

• Nonlinear amplifying-loop mirror (NALM) provides mode locking

with an all-fiber ring cavity.

• NALM behaves like a saturable absorber but responds at femtosec-

ond timescales.

• First used in 1991 and produced 290 fs pulses.

• Pulses as short as 30 fs can be obtained by compressing pulses in a

dispersion-shifted fiber.
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Nonlinear Polarization Rotation

• Mode locking through intensity-dependent changes in the SOP in-

duced by SPM and XPM.

• Mode-locking mechanism similar to that used for figure-8 lasers:

orthogonally polarized components of same pulse are used.

• In a 1993 experiment, 76-fs pulses with 90-pJ energy and 1 kW of

peak power generated.
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Planar Waveguides
• Passive components

? Y and X Junctions

? Grating-assisted Directional Couplers

? Mach–Zehnder Filters

? Multimode Interference Couplers

? Star Couplers

? Arrayed-waveguide Gratings

• Active components

? Semiconductor lasers and amplifiers

? Optical Modulators

? Photodetectors
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Y Junctions

• A three-port device that acts as a power divider.

• Made by splitting a planar waveguide into two branches bifurcating

at some angle θ .

• Similar to a fiber coupler except it has only three ports.

• Conceptually, it differs considerably from a fiber coupler.

• No coupling region exists in which modes of different waveguides

overlap.
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Y Junctions
• Functioning of Y junction can be understood as follows.

• In the junction region, waveguide is thicker and supports higher-

order modes.

• Geometrical symmetry forbids excitation of asymmetric modes.

• If thickness is changed gradually in an adiabatic manner, even

higher-order symmetric modes are not excited.

• As a result, power is divided into two branches.

• Sudden opening of the gap violates adiabatic condition, resulting in

some insertion losses for any Y junction.

• Losses depend on branching angle θ and increase with it.

• θ should be below 1◦ to keep insertion losses below 1 dB.
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Four-Port Couplers

(a) (b)

(c) (d)

• Spacing between waveguides reduced to zero in coupled Y junctions.

• Waveguides cross in the central region in a X coupler.

• In asymmetric X couplers, two input waveguides are identical

but output waveguides have different sizes.

• Power splitting depends on relative phase between two inputs.

• If inputs are equal and in phase, power is transferred to wider core;

when inputs are out of phase, power is transferred to narrow core.
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Grating-Assisted Directional Couplers

• An asymmetric directional coupler with a built-in grating.

• Little power will be transferred in the absence of grating.

• Grating helps to match propagation constants and induces power

transfer for specific input wavelengths.

• Grating period Λ = 2π/|β1−β2|.

• Typically, Λ∼ 10 µm (a long-period grating).

• A short-period grating used if light is launched in opposite direc-

tions.
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Mach–Zehnder Switches

• Two arm lengths equal in a symmetric MZ interferometer.

• Such a device transfers its input power to the cross port.

• Output can be switched to bar port by inducing a π phase shift in

one arm.

• Phase shift can be induced electrically using a thin-film heater (a

thin layer of chromium).

• Thermo-optic effect is relatively slow.

• Much faster switching using electro-optic effect in LiNbO3.
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Mach–Zehnder Filters
• An asymmetric MZI acts as an optical filter.

• Its output depends on the frequency ω of incident light.

• Transfer function H(ω) = sin(ωτ).

• τ is the additional delay in one arm of MZI.

• Such a filter is not sharp enough for applications.

• A cascaded chain of MZI provides narrowband optical filters.

• In a chain of N cascaded MZIs, one has the freedom of adjusting

N delays and N +1 splitting ratios.

• This freedom can be used to synthesize optical filters with arbitrary

amplitude and phase responses.
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Cascaded Mach–Zehnder Filters
• Transmission through a chain of N MZIs can be calculated with the

transfer-matrix approach. In matrix form

Fout(ω) = TN+1DNTN · · ·D2T2D1T1Fin,

• Tm is the transfer matrix and Dm is a diagonal matrix

Tm =
(

cm ism

ism cm

)
Dm =

(
eiφm 0
0 e−iφm

)
.

• cm = cos(κmlm) and sm = sin(κmlm) and 2φm = ωτm.

• Simple rule: sum over all possible optical paths. A chain of two

cascaded MZI has four possible paths:

tb(ω) = ic1c2s3ei(φ1+φ2) + ic1s2s3ei(φ1−φ2)+

i3s1c2s3ei(−φ1+φ2) + is1s2s3e−i(φ1+φ2)
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Multimode Interference Couplers

• MMI couplers are based on the Talbot effect: Self-imaging of ob-

jects in a medium exhibiting periodicity.

• Same phenomenon occurs when an input waveguides is connected

to a thick central region supporting multiple modes.

• Length of central coupling region is chosen such that optical field is

self-imaged and forms an array of identical images at the location

of output waveguides.

• Such a device functions as an 1×N power splitter.
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Multimode Interference Couplers
• Expand input field into mode φm(x) as A(x,z) = ∑Cmφm(x).

• Field at a distance z: A(x,z) = ∑Cmφm(x)exp(iβmz).

• Propagation constant βm for a slab of width We:

β 2
m = n2

s k2
0− p2

m, where pm = (m+1)π/We.

• Since pm� k0, we can approximate βm as

βm ≈ nsk0−
(m+1)2π2

2nsk0W 2
e

= β0−
m(m+2)π

3Lb
,

• Beat length Lb = π

β0−β1
≈ 4nsW 2

e
3λ

.

• Input field is reproduced at z = 3Lb.

• Multiple images of input can form for L < 3Lb.



222/253

JJ
II
J
I

Back

Close

Star Couplers

• Some applications make use of N ×N couplers designed with N
input and N output ports.

• Such couplers are known as star couplers.

• They can be made by combining multiple 3-dB couplers.

• A 8×8 star coupler requires twelve 3-dB couplers.

• Device design becomes too cumbersome for larger ports.
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Star Couplers

• Compact star couplers can be been made using planar waveguides.

• Input and output waveguides connected to a central region.

• Optical field diffracts freely inside central region.

• Waveguides are arranged to have a constant angular separation.

• Input and output boundaries of central slab form arcs that are cen-

tered at two focal points with a radius equal to focal distance.

• Dummy waveguides added near edges to ensure a large periodic

array.
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Theory Behind Star Couplers
• An infinite array of coupled waveguides supports supermodes in the

form of Bloch functions.

• Optical field associated with a supermode:

ψ(x,kx) = ∑
m

F(x−ma)eimkxa.

• F(x) is the mode profile and a is the period of array.

• kx is restricted to the first Brillouin zone: −π/a < kx < π/a.

• Light launched into one waveguide excites all supermodes within

the first Brillouin zone.
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Theory Behind Star Couplers
• As waveguides approach central slab, ψ(x,kx) evolves into a freely

propagating wave with a curved wavefront.

• θ ≈ kx/βs, where βs is the propagation constant in the slab.

• Maximum value of this angle:

θBZ ≈ kmax
x /βs = π/(βsa).

• Star coupler is designed such that all N waveguides are within

illuminated region: Na/R = 2θBZ, where R is focal distance.

• With this arrangement, optical power entering from any input

waveguide is divided equally among N output waveguides.

• Silica-on-silicon technology is often used for star couplers.
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Arrayed-Waveguide Gratings

• AWG combines two N ×M star couplers through an array of M
curved waveguides.

• Length difference between neighboring waveguides is constant.

• Constant phase difference between neighboring waveguides pro-

duces grating-like behavior.
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Theory Behind AWGs
• Consider a WDM signal launched into an input waveguides.

• First star coupler splits power into many parts and directs them into

the waveguides forming the grating.

• At the output end, wavefront is tilted because of linearly varying

phase shifts.

• Tilt is wavelength-dependent and it forces each channel to focus

onto a different output waveguide.

• Bragg condition for an AWG:

k0nw(δ l)+ k0npag(θin +θout) = 2πm,

• ag = garting pitch, θin = pai/R, and θout = qao/R.



228/253

JJ
II
J
I

Back

Close

Fabrication of AWGs

• AWGs are fabricated with silica-on-silicon technology.

• Half-wave plate helps to correct for birefringence effects.

• By 2001, 400-channel AWGs were fabricated .

• Such a device requiring fabrication of hundreds of waveguides on

the same substrate.
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Semiconductor Lasers and Amplifiers
• Semiconductor waveguides useful for making lasers operating

in the wavelength range 400–1600 nm.

• Semiconductor lasers offer many advantages.

? Compact size, high efficiency, good reliability.

? Emissive area compatible with fibers.

? Electrical pumping at modest current levels.

? Output can be modulated at high frequencies.

• First demonstration of semiconductor lasers in 1962.

• Room-temperature operation first realized in 1970.

• Used in laser printers, CD and DVD players, and telecommunication

systems.
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Operating Principle

• Forward biasing of a p–n junction produces free electrons and holes.

• Electron-hole recombination in a direct-bandgap semiconductor

produces light through spontaneous or stimulated emission.
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Basic Structure

• Active layer sandwiched between p-type and n-type cladding layers.

• Their bandgap difference confines carriers to active layer.

• Active layer’s larger refractive index creates a planar waveguide.

• Single-mode operation require layer thickness below 0.2 µm.

• Cladding layers are transparent to emitted light.

• Whole laser chip is typically under 1 mm in each dimension.
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Advanced Laser Structures

• A waveguide is also formed in the lateral direction.

• In a ridge-waveguide laser, ridge is formed by etching top cladding

layer close to the active layer.

• SiO2 ensures that current enters through the ridge.

• Effective mode index is higher under the ridge because of low re-

fractive index of silica.
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Buried Heterotructure Laser
• Active region buried on all sides by cladding layers of lower index.

• Several different structures have beeb developed.

• Known under names such as etched-mesa BH, planar BH, double-

channel planar BH, and channelled substrate BH lasers.

• All of them allow a relatively large index step (∆n > 0.1) in lateral

direction.

• Single-mode condition requires width to be below 2 µm.

• Laser spot size elliptical (2×1 µm2).

• Output beam diffracts considerably as it leaves the laser.

• A spot-size converter is sometimes used to improve coupling

efficiency into a fiber.
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Control of Longitudinal Modes

L

• Single-mode operation requires lowering of cavity loss for a specific

longitudinal mode.

• Longitudinal mode with the smallest cavity loss reaches threshold

first and becomes the dominant mode.

• Power carried by side modes is a small fraction of total power.
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Distributed Feedback Lasers

• Feedback is distributed throughout cavity length in DFB lasers.

• This is achieved through an internal built-in grating

• Bragg condition satisfied for λ = 2n̄Λ.
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Distributed Bragg reflector Lasers
• End regions of a DBR laser act as mirrors whose reflectivity is

maximum for a wavelength λ = 2n̄Λ.

• Cavity losses are reduced for this longitudinal mode compared with

other longitudinal modes.

• Mode-suppression ratio is determined by gain margin.

• Gain Margin: excess gain required by dominant side mode to reach

threshold.

• Gain margin of 3–5 cm−1 is enough for CW DFB lasers.

• Larger gain margin (>10 cm−1) needed for pulsed DFB lasers.

• Coupling between DBR and active sections introduces losses

in practice.
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Fabrication of DFB Lasers
• Requires advanced technology with multiple epitaxial growths.

• Grating is often etched onto bottom cladding layer.

• A fringe pattern is formed first holographically on a photoresist

deposited on the wafer surface.

• Chemical etching used to change cladding thickness in a periodic

fashion.

• A thin layer with refractive index ns < n < na is deposited on the

etched cladding layer, followed with active layer.

• Thickness variations translate into periodic variations of mode index

n̄ along the cavity length.

• A second epitaxial regrowth is needed to make a BH device.
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Coupled-Cavity Structures
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Tunable Semiconductor Lasers
• Multisection DFB and DBR lasers developed during the 1990s to

meet conflicting requirements of stability and tunability.

• In a 3-section device, a phase-control section is inserted between

the active and DBR sections.

• Each section can be biased independently.

• Current in the Bragg section changes Bragg wavelength through

carrier-induced changes in mode index.

• Current injected into phase-control section affects phase of feedback

from the DBR.

• Laser wavelength can be tuned over 10–15 nm by controlling these

two currents.
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Tuning with a Chirped Grating
• Several other designs of tunable DFB lasers have been developed.

• In one scheme, grating is chirped along cavity length.

• Bragg wavelength itself then changes along cavity length.

• Laser wavelength is determined by Bragg condition.

• Such a laser can be tuned over a wavelength range set by the grating

chirp.

• In a simple implementation, grating period remains uniform but

waveguide is bent to change n̄.

• Such lasers can be tuned over 5–6 nm.



242/253

JJ
II
J
I

Back

Close

Tuning with a superstructure Grating
• Much wider tuning range possible using a superstructure grating.

• Reflectivity of such gratings peaks at several wavelengths.

• Laser can be tuned near each peak by controlling current in phase-

control section.

• A quasi-continuous tuning range of 40 nm realized in 1995.

• Tuning range can be extended further using a 4-section device in

which two DBR sections are used.

• Each DBR section supports its own comb of wavelengths but spac-

ing in each comb is not the same.

• Coinciding wavelength in the two combs becomes the output wave-

length that can be tuned widely (Vernier effect).
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Tuning with a Directional Coupler

• A fourth section is added between the gain and phase sections.

• It consist of a directional coupler with a superstructure grating.

• Coupler section has two vertically separated waveguides of different

thickness (asymmetric directional coupler).

• Grating selectively transfers a single wavelength to passive

waveguide in the coupler section.

• A tuning range of 114 nm was produced in 1995.
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Vertical-Cavity Surface-Emitting Lasers

• VCSELs operate in a single longitudinal mode simply because mode

spacing exceeds the gain bandwidth.

• VCSELs emit light normal to active-layer plane.

• Emitted light is in the form of a circular beam.
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VCSEL Fabrication
• Fabrication of VCSELs requires growth of hundreds of layers.

• Active region in the form of one or more quantum wells.

• It is surrounded by two high-reflectivity (>99.5%) mirrors.

• Each DBR mirror is made by growing many pairs of alternating

GaAs and AlAs layers, each λ /4 thick.

• A wafer-bonding technique is sometimes used for VCSELs operating

in the 1.55-µm wavelength.

• Chemical etching used to form individual circular disks.

• Entire two-dimensional array of VCSELs can be tested without sep-

arating individual lasers (low cost).

• Only disadvantage is that VCSELs emit relatively low powers.
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Semiconductor Optical Amplifiers

• Reflection feedback from end facets must be suppressed.

• Residual reflectivity must be <0.1% for SOAs.

• Active-region stripe tilted to realize such low feedback.

• A transparent region between active layer and facet also helps.
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Gain Spectrum of SOAs

• Measured gain spectrum exhibits ripples.

• Ripples have origin in residual facet reflectivity.

• Ripples become negligible when G
√

R1R2 ≈ 0.04.

• Amplifier bandwidth can then exceed 50 nm.
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Polarization Sensitivity of SOAs

• Amplifier gain different for TE and TM modes.

• Several schemes have been devised to reduce polarization sensitivity.
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SOA as a Nonlinear Device
• Nonlinear effects in SOAs can be used for switching, wavelength

conversion, logic operations, and four-wave mixing.

• SOAs allow monolithic integration, fan-out and cascadability, re-

quirements for large-scale photonic circuits.

• SOAs exhibit carrier-induced nonlinearity with n2 ∼ 10−9 cm2/W.

Seven orders of magnitude larger than that of silica fibers.

• Nonlinearity slower than that of silica but fast enough to make

devices operating at 40 Gb/s.

• Origin of nonlinearity: Gain saturation.

• Changes in carrier density modify refractive index.
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Gain Saturation in SOAs
• Propagation of an optical pulse inside SOA is governed by

∂A
∂ z

+
1
vg

∂A
∂ t

=
1
2
(1− iβc)g(t)A,

• Carrier-induced index changes included through βc.

• Time dependence of g(t) is governed by

∂g
∂ t

=
g0−g

τc
− g|A|2

Esat
,

• For pulses shorter than τc, first term can be neglected.

• Saturation energy Esat = hν(σm/σg)∼ 1 pJ.
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Theory of Gain Saturation
• In terms of τ = t− z/vg, A =

√
Pexp(iφ), we obtain

∂P
∂ z

= g(z,τ)P(z,τ),
∂φ

∂ z
=−1

2βcg(z,τ),

∂g
∂τ

= −g(z,τ)P(z,τ)/Esat.

• Solution: Pout(τ) = Pin(τ)exp[h(τ)] with h(τ) =
∫ L

0 g(z,τ)dz.

dh
dτ

=− 1
Esat

[Pout(τ)−Pin(τ)] =−Pin(τ)
Esat

(eh−1).

• Amplification factor G = exp(h) is given by

G(τ) =
G0

G0− (G0−1)exp[−E0(τ)/Esat]
,

• G0 = unsaturated amplifier gain and E0(τ) =
∫

τ

−∞
Pin(τ)dτ .
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Chirping Induced by SOAs
• Amplifier gain is different for different parts of the pulse.

• Leading edge experiences full gain G0 because amplifier is not yet

saturated.

• Trailing edge experiences less gain because of saturation.

• Gain saturation leads to a time-dependent phase shift

φ(τ) =−1
2βc
∫ L

0 g(z,τ)dz =−1
2βch(τ) =−1

2βc ln[G(τ)].

• Saturation-induced frequency chirp

∆νc =− 1
2π

dφ

dτ
=

βc

4π

dh
dτ

=−βcPin(τ)
4πEsat

[G(τ)−1],

• Spectrum of amplified pulse broadens and develops multiple peaks.
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Pulse Shape and Spectrum

(a) (b)

• A Gaussian pulse amplified by 30 dB. Initially Ein/Esat = 0.1.

• Dominant spectral peak is shifted toward red side.

• It is accompanied by several satellite peaks.

• Temporal and spectral changes depend on amplifier gain.

• Amplified pulse can be compressed in a fiber with

anomalous dispersion.
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