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Chapter 7:
Dispersion Management
• Dispersion Problem and Its Solution

• Dispersion-Compensating Fibers

• Dispersion-Equalizing Filters

• Fiber Bragg Gratings

• Optical Phase Conjugation

• Other Techniques

• High-Speed Lightwave Systems
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Dispersion Problem and Its Solution
• Systems built during 1980s used standard fibers with their

zero-dispersion wavelength near 1.3 µm.

• Standard fibers have large dispersion near 1.55 µm.

• Operation near zero-dispersion wavelength not realistic

for WDM systems.

• Even with DFB lasers, transmission distance is limited to

L <
1

16|β2|B2 =
πc

8λ 2|D|B2 .

• L < 35 km at B =10 Gb/s if we use |β2| ≈ 21 ps2/km.

• Dispersion must be compensated or managed using a suitable

technique before old systems can be upgraded to 10 Gb/s.
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Basic Idea
• Pulse propagation in the linear case is governed by

∂A
∂ z

+
iβ2

2
∂ 2A
∂ t2 −

β3

6
∂ 3A
∂ t3 = 0.

• Using the Fourier-transform method, the solution is

A(z, t) =
1

2π

∫
∞

−∞

Ã(0,ω)exp
(

i
2

β2ω
2z+

i
6

β3ω
3z− iωt

)
dω.

• Fiber acts as an optical filter with the transfer function

H f (z,ω) = exp(iβ2ω
2z/2+ iβ3ω

3z/6).

• All dispersion-management schemes implement a dispersion com-

pensating “filter” that cancels this phase factor.

• If H(ω) = H∗f (L,ω), the output signal can be restored.
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Dispersion-Compensating Filters

Fiber Link

ReceiverTransmitter

Dispersion
Compensation

• Optical field after the filter is given by

A(L, t) =
1

2π

∫
∞

−∞

Ã(0,ω)H(ω)exp
(

i
2

β2ω
2L+

i
6

β3ω
3L− iωt

)
dω.

• Expanding the phase of H(ω) in a Taylor series:

H(ω)≈ |H(ω)|exp[i(φ0 +φ1ω + 1
2φ2ω2 + 1

6φ3ω3)].

• Constant phase φ0 and time delay φ1 can be ignored.

• Dispersion compensated when φ2 =−β2L and φ3 =−β3L.

• Signal is restored perfectly only if |H(ω)| = 1 and higher-order

terms in the expansion are negligible.
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Dispersion-Compensating Fibers
• Optical filters with H(ω) = H∗f (L,ω) are not easy to design.

• Simplest solution: Use a fiber as an optical filter because it

automatically has the desired form of the transfer function.

• This solution was suggested as early as 1980.

• It provides an all-optical, fiber-based solution to the

dispersion problem.

• Special dispersion-compensating fibers (DCFs) developed.

• Such fibers are routinely used for upgrading old fiber links.

• Such a scheme works well even when the nonlinear effects are not

negligible as long as the average optical power launched into the

fiber link is optimized properly.
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Conditions for Dispersion Compensation
• After two fibers of lengths L1 and L2, optical field is given by

A(L1 +L2, t) =
1

2π

∫
∞

−∞

Ã(0,ω)H f 1(L1,ω)H f 2(L2,ω)exp(−iωt)dω.

• If second fiber (DCF) is designed such that H f 1(L1,ω)H f 2(L2,ω)
= 1, the pulse will fully recover its original shape.

• Conditions for perfect dispersion compensation are

β21L1 +β22L2 = 0, β31L1 +β32L2 = 0.

• In terms of dispersion parameter D and dispersion slope S

D1L1 +D2L2 = 0, S1L1 +S2L2 = 0.

• First condition sufficient if TOD does not affect a bit stream.
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Requirements for DCFs
• Consider the upgrade problem for fiber links made with standard

telecommunication fibers.

• Such fibers have D1 ≈ 16 ps/(km-nm) near 1.55-µm.

• The DCF must exhibit normal GVD (D2 < 0).

• For practical reasons, L2 should be as small as possible.

• This is possible only if the DCF has a large negative value of D2.

• As an example, if we assume L1 = 50 km, we need a 10-km-long

DCF when D2 =−80 ps/(km-nm).

• This length can be reduced to 6.7 km if the DCF is designed to

have D2 =−120 ps/(km-nm).

• DCFs with larger values of |D2| are preferred to minimize extra

losses incurred inside a DCF.
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DCFs for WDM Systems
• For a WDM system, the same DCF must compensate dispersion

over for all channels.

• The slope condition, S1L1 +S2L2 = 0 must be satisfied.

• Reason: both D1 and D2 are wavelength-dependent.

• The condition D1L1 +D2L2 = 0 is replaced with

D1(λn)L1 +D2(λn)L2 = 0 (n = 1, . . . ,N),

• Near the ZDWL of a fiber, D j(λn) = Dc
j +S j(λn−λc).

• Dispersion slop of the DCF should satisfy

S2 =−S1(L1/L2) = S1(D2/D1).

• Ratio S/D, called relative dispersion slope should be the same for

both fibers.
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Negative-Slope DCFs
• Using D≈ 16 ps/(km-nm) and S ≈ 0.05 ps/(km-nm2), ratio S/D

is positive and about 0.003 nm−1 for standard fibers.

• Since D is negative for a DCF, S should also be negative such that

S2/S1 = D2/D1.

• For a DCF with D≈−100 ps/(km-nm), dispersion slope S should

be −0.3 ps/(km-nm2).

• The use of negative-slope DCFs offers the simplest solution for

WDM systems with a large number of channels.

• Such DCFs were developed and commercialized during the 1990s.

• In 2001, broadband DCFs were used to transmit 101 channels, each

operating at 10 Gb/s, over 9,000 km.
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Dispersion Maps
• A fiber link may contain multiple types of fibers with different dis-

persion characteristics.

• Solution for an arbitrary form of β2(z) is given by

A(z, t) =
1

2π

∫
∞

−∞

Ã(0,ω)exp
(

i
2

da(z)ω2− iωt
)

dω.

• Total accumulated dispersion da(z) =
∫ z

0 β2(z′)dz′.

• Dispersion management requires da(L) = 0 at the end of a fiber

link so that A(L, t) = A(0, t).

• Three schemes used in practice: (a) precompensation, (b) post-

compensation, and (c) periodic compensation.
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Dispersion Maps
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Dispersion Maps
• Precompensation: Dispersion accumulated over the entire link is

compensated at the transmitter end.

• Postcompensation: A DCF of appropriate length is placed at the

receiver end.

• Periodic compensation: Dispersion is compensated in a periodic

fashion all along the link.

• For a truly linear system (no nonlinear effects), all three schemes

are identical.

• Three configurations behave differently when nonlinear effects are

included.

• System performance improved by optimizing dispersion map.
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Single-Mode DCF Design
• In a single-mode design, V parameter is made close to 1.

• Accomplished in practice by reducing the core size

(diameter 4–5 µm).

• A large fraction of the mode propagates outside the core.

• Waveguiding contribution to dispersion is enhanced, resulting in

large negative values of D.

• Values of D <−100 ps/(km-nm) can be realized.

• Such DCFs suffer from two problems, both resulting from their

relatively narrow core diameter.

• Relatively high losses (α = 0.4–0.6 dB/km).

• Nonlinear parameter γ is larger by about a factor of 4.
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Improved DCF Design

• DCF is designed with two concentric cores, separated by a ring-

shaped cladding region.

• Size parameters a, b, and c and refractive indices n1, n2, and n3

optimized to realized desired dispersion characteristics.

• D can be as large as −5,000 ps/(km-nm) when a = 1 µm, b =
15.2 µm, and c = 22 µm.
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Two-Mode DCF
• Best Solution: Employ a two-mode DCF with V ≈ 2.5.

• Second mode exhibits large negative values of D.

• A 1-km length can compensate dispersion accumulated over 50 km,

while adding little extra loss or nonlinear degradation.

• The use of a two-mode DCF requires a mode-conversion device.

• Mode converter should be polarization-insensitive and operate over

a broad bandwidth.

• A long-period grating is used for this purpose.

• Grating period Λ∼ 100 µm is chosen to match the index difference

δ n̄ between two modes (Λ = λ/δ n̄).
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Two-Mode DCF Design

(a) (b)

• First grating transfers power to higher-order mode.

• Seconds grating transfers power back into fundamental mode.

• Measured dispersion characteristics of such a 2-km-long DCF show

D =−420 ps/(km-nm) near 1,550 nm.

• Such DCFs are polarization-insensitive, exhibit low insertion loss,

and offer dispersion compensation over the entire C band.
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Photonic-Crystal Design

• Photonic-crystal fibers contain a two-dimensional array of air holes

that modify dispersion characteristics.

• D for a PCF is also depends on the core diameter.

• Values as large as −2,000 ps/(km-nm) are possible with a suitable

design.

• Broadband dispersion compensation can be realized by tailoring size

and spacing of air holes.
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Reverse-Dispersion Fibers
• Such fibers are designed such that the signs of both D and S are

reversed compared to standard fibers.

• Dispersion is compensated using fiber sections of same lengths.

• Lengths of fiber sections are reduced below 10 km so that the map

period Lm becomes a small fraction of amplifier spacing LA.

• This technique is referred to as short-period or dense dispersion

management.

• Length of fiber drawn from a single perform is close to 5 km.

• Fiber cable is made by combining two types of fibers, resulting in a

dispersion-free cable.
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Dispersion-Equalizing Filters

• A shortcoming of DCFs is that a relatively long length (>5 km) is

required.

• Losses encountered within each DCF add considerably to total link

loss.

• Most dispersion-equalizing filters are relatively compact.

• Such a filter can be combined with the amplifier to compensate

fiber losses and dispersion simultaneously in a periodic fashion.



325/549

JJ
II
J
I

Back

Close

Fabry–Perot Filters
• Any interferometer acts as an optical filter because its

transmission (or reflection) is frequency dependent.

• A simple example is provided by the Fabry–Perot interferometer.

• The only problem is that its transfer function affects both the

amplitude and phase.

• A good dispersion-equalizing filter should affect only the phase of

light propagating through it.

• This problem can be solved by using a Gires–Tournois

interferometer.

• It is just a FP interferometer whose back mirror is made

100% reflective.
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Gires–Tournois Filters
• Transfer function of a GT filter:

HGT(ω) = H0

[
−r + exp(iωTr)

1− r exp(−iωTr)

]
.

• Constant H0 takes into account all losses, |r|2 is front-mirror

reflectivity, and Tr is round-trip time within the cavity.

• If losses are constant over the signal bandwidth, only spectral phase

is modified by such a filter.

• Phase φ(ω) of HGT(ω) is far from ideal.

• It is a periodic function, peaking at frequencies that correspond to

longitudinal modes of the cavity.

• Near each peak, phase variations are nearly quadratic in ω .
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Dispersion of Gires–Tournois Filters
• Group delay τg = dφ(ω)/dω , is also a periodic function.

• φ2 = dτg/dω is related to the slope of the group delay as

φ2 = 2T 2
r r(1− r)/(1+ r)3.

• For a 2-cm-thick GT filter designed with r = 0.8, φ2 ≈ 2,200 ps2.

• Such a filter can compensate dispersion acquired over 110 km of

standard fiber.

• A GT filter can compensate dispersion for multiple channels

simultaneously as it exhibits a periodic response.

• Periodic nature also indicates that φ2 is same for all channels.

• A GT filter cannot compensate for the dispersion slope of

transmission fiber without suitable design modifications.
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Dispersion Slope Compensation

Input Output

GT1 GT2

Wavelength

G
ro

u
p

 D
el

ay

(a) (b)

• In one approach, two GT filters are cascaded in series.

• Two filters have different cavity lengths and reflectivities, resulting

in slightly shifted peaks and different amplitudes.

• Figure shows group delay for individual filters and the total group

delay (gray curve). Dark lines show the slope.

• Different slopes indicate different dispersion near each peak.



329/549

JJ
II
J
I

Back

Close

Mach–Zehnder Interferometer

• A MZ interferometer constructed by connecting two

3-dB directional couplers in series.

• First coupler splits input signal into two equal parts.

• Different phase shifts acquired in the MZ arms.

• Two fields interfere at the second coupler.

• Transfer function for the bar port

HMZ(ω) = 1
2[1+ exp(iωτ)].
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Mach–Zehnder Chain

• A cascaded chain of several MZ interferometers used in practice.

• Fabricated in the form of a planar lightwave circuit using

silica-on-silicon technology.

• A chromium heater provides thermo-optic control of phase shift.
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Mach–Zehnder Chain
• Functioning of the MZ chain can be understood as follows.

• Higher-frequency components of a pulse propagate in the longer

arm of the MZ interferometers.

• Lower-frequency components take the shorter route.

• Relative delay is just the opposite of that introduced by a standard

fiber exhibiting anomalous dispersion.

• In a 1994 implementation, a MZ chain with only five MZ interfer-

ometers provided a relative delay of 836 ps/nm.

• Such a 5-cm device can compensate dispersion acquired over 50 km.

• Main limitations: Relatively narrow bandwidth (∼10 GHz) and sen-

sitivity to input polarization.
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Dispersion-Slope Compensation

• A planar lightwave circuit capable of compensating both dispersion

and dispersion slope is used.

• A separate MZ chain is employed for each WDM channel.

• WDM signal demultiplexed and then multiplexed back using arrayed

waveguide gratings (AWGs).

• All components can be integrated on a single chip using silica-on-

silicon technology.
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All-Pass Filters

(a) (b) (c)

• (a) A simple ring resonator with a built-in phase shifter; cascading

of multiple rings increases the amount of dispersion.

• An asymmetric or symmetric MZ configuration also acts as an all-

pass filter.

• Phase shifters are incorporated using thin-film chromium heaters.

• Such devices can compensate even the dispersion slope of a fiber.

• One device exhibited dispersion that varied from −378 to

−3026 ps/nm depending on the channel wavelength.
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All-Pass Filters

• (a) A transmissive filter with controllable dispersion for each channel

through optical delay lines and phase shifters.

• (b) A reflective filter with a fixed mirror.

• (c) A reflective filter with moving mirrors acting as delay lines.

• Such designs, although complicated, provide the most flexibility.
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Fiber Bragg Gratings
• Bragg gratings act as optical filters because of a stop band.

• Light reflected back if its wavelengths falls within stop band.

• Stop band centered at the Bragg wavelength: λB = 2n̄Λ.

• Grating period Λ≈ 0.5 µm near 1.55 µm.

• A holographic technique is used for making Bragg gratings.

• Use of gratings for dispersion compensation proposed in the 1980s.

• Their use became practical after 1990.

• Fiber gratings are available commercially and used routinely

for a variety of applications.
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Coupled-Mode Equations
• Refractive index varies along the length periodically as

n(z) = n̄+ng cos(2πz/Λ).

• Index modulation depth ng ∼ 10−4.

• Bragg gratings analyzed using coupled-mode equations

dA f /dz = +iδA f + iκAb,

dAb/dz =−iδAb− iκA f .

• Detuning δ = 2π

λ0
− 2π

λB
and coupling coefficient κ = πngΓ

λB
.

• Transfer function is found to be

H(ω) = r(ω) =
Ab(0)
A f (0)

=
iκ sin(qLg)

qcos(qLg)− iδ sin(qLg)
.

• Dispersion relation q2 = δ 2−κ2 (Lg = grating length).
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Grating-Induced Dispersion
• Dispersion of the grating is related to the frequency dependence of

the phase of H(ω).

• Grating-induced dispersion exists mostly outside the stop band.

• In this region (|δ |> κ), dispersion parameters are

β
g
2 =−

sgn(δ )κ2/v2
g

(δ 2−κ2)3/2 , β
g
3 =

3|δ |κ2/v3
g

(δ 2−κ2)5/2 .

• Grating dispersion normal (β g
2 > 0) on the “red” side of the stop

band (used for dispersion compensation).

• A single 2-cm-long grating can compensate dispersion

accumulated over 100 km of fiber.
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Apodized Gratings

(a) (b)

• An apodization technique is used to improve grating response.

• Index change ng nonuniform, resulting in a z-dependent κ .

• Reflectivity spectrum of an apodized 7.5-cm-long grating.

• In some gratings κ is varied linearly over length.
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Chirped Fiber Gratings

• Period n̄Λ of a chirped grating nonuniform over its length.

• Bragg wavelength λB = 2n̄Λ also varies along grating length.

• Equivalent to multiple cascaded gratings with different λB.

• Resulting stop band can become quite wide (>1 nm).
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Dispersion of Chirped Gratings
• Origin of Dispersion: Different spectral components of an optical

pulse are reflected at different points within the grating where the

Bragg condition is satisfied locally.

• Low-frequency components of a pulse are delayed more if optical

period increases along the grating.

• This situation corresponds to anomalous GVD.

• The same grating can provide normal GVD if it is flipped.

• Optical period n̄Λ of the grating should decrease for it to provide

normal GVD.

• Dispersion magnitude determined by the rate at which

n̄Λ decreases.
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Dispersion Parameter
• Dispersion parameter Dg of a chirped grating of length Lg is

determined from the relation TR = DgLg∆λ .

• Here TR is the round-trip time and ∆λ is the difference in the Bragg

wavelengths at the two ends of the grating.

• Since TR = 2n̄Lg/c, grating dispersion is given by Dg = 2n̄/(c∆λ ).

• As an example, Dg ≈ 5×107 ps/(km-nm) for a grating bandwidth

∆λ = 0.2 nm.

• Because of such large values of Dg, a 10-cm-long chirped grating

can compensate dispersion acquired over 300 km.

• This is remarkable for an optical filter that is only 10 cm long.
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Apodized Chirped Fiber Gratings

• Fraction F of the grating length over which a chirped grating is

apodized plays an important role.

• (a) Reflectivity and (b) group delay for chirped gratings with 50%

(solid) or 95% (dashed) reflectivity for different values of F .

• Group delay should vary with wavelength linearly to produce a con-

stant GVD across the signal spectrum.

• It should be as ripple-free as possible.
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Mesured Reflectivity Spectrum
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• Measured reflectivity and group delay for a linearly chirped fiber

grating with a bandwidth of 0.12 nm.

• In a 1996 experiment, two chirped gratings were cascaded in

series to compensate fiber dispersion over 537 km.

• Chirped gratings work as a reflection filter. An optical circulator is

used in practice to reduce insertion losses.
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Chirped Gratings for WDM SystemsRIANT et al.: CHIRPED FBG’S FOR WDM CHROMATIC DISPERSION COMPENSATION 1317

Fig. 12. Experimental setup for system characterization of CDC’s.

Fig. 13. Eye diagrams at the input, after 80 km without compensation and
with compensation.

ensure operation in the linear regime. The receiver consists of
a preamplifier, two 0.4- and 1.2-nm bandwidth filters, and a
10-Gb/s electrical receiver.

The system characterization starts by launching each wave-
length individually through the whole transmission line (5 80
km) and by using the DCG’s independently. The best BER
measurements are recorded by fine tuning the input wavelength
to overcome the problems due to variations in the time delay.
The wavelength must be positioned with an accuracy of 0.01
nm. Fig. 13 shows the eye diagrams for the transmitted data,
at the output of 80 km of NDS fiber without and with a DCG
centred at 1549 nm, respectively.

Good reshaping of the signal is obtained with dispersion
compensation. The transmission quality is analyzed by BER
measurements and Fig. 14 shows the typical BER curves
obtained in function of the received power and for different
distances through the link. It can be seen that for this wave-
length, BER floors at 10 appears at 320 km. This was
predictable since the DCG’s were not exactly centred at the
same wavelength.

Table I gives the penalty obtained for a BER at 10 for
each wavelength.

For reasons previously described, these DCG’s are then
fused together in the following order: 1552, 1555, 1549, and
1559 nm. The WDM operation is carried out by fine tuning the
wavelengths as already mentioned. Fig. 15 shows the input and
output spectra after 400 km. It can be seen that the channels at
1549 and 1559 nm, placed at the end of the chain, experience
extra losses compared to the central ones. This results in poor

Fig. 14. BER curves for channel at 1549 nm.

TABLE I

TABLE II

transmission for those channels. The extra losses are due to
the accumulation of unoptimized high loss splices between the
standard-type fiber used by BTL and the high-NA fiber used
by Alcatel. Table II gives the penalty at 10 for the four
wavelengths of the multiplex through the link. It can be

• A chirped grating can have a stop band as wide as 10 nm if it is

made long enough.

• When WDM bandwidth is larger than that, several gratings are

cascaded in series.

• By 2000, this approach was applied to a 32-channel WDM system

with 18-nm bandwidth.
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Sampled Gratings
Subgratings

Λs

Sampling period

• A sampled or superstructure grating consists of multiple subgratings

separated from each other by a section of uniform index.

• Each subgrating is a sample, hence the name “sampled” grating.

• Made by blocking certain regions during fabrication such that κ = 0
in the blocked regions.

• It can also be made by etching away parts of an existing grating.

• New feature: κ(z) varies periodically along z.

• This periodicity modifies the stop band.
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Amplitude-Sampled Gratings
• Coupled-mode equations show that a sampled grating exhibits mul-

tiple periodic stop bands.

• Spacing ∆νp among reflectivity peaks is set by sample period Λs as

∆νp = c/(2ngΛs).

• If subgratings are chirped, dispersion of each reflectivity peak is

governed by the local chirp.

• Sampling period Λs shoud be about 1 mm to ensure that ∆νp is

close to 100 GHz.

• In the simplest kind of grating, sampling function is a “rect”

function such that S(z) = 1 over each subgrating.
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Design of Sampled Gratings
• Shape of the reflectivity spectrum is governed by the Fourier trans-

form of S(z).

• For a“rect” function S(z), reflectivity follows a “sinc” function.

• A constant reflectivity for all peaks can be realized using

S(z) = sin(az)/az.

• Dispersion slope can be compensated by introducing a chirp in the

sampling period Λs, in addition to the grating period.

• Figure shows the reflection and dispersion characteristics of a 10-

cm-long grating designed for 8 channels with 100-GHz spacing.
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Dispersion of Sampled Gratings
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Phase-Sampled Gratings
• Amplitude smapling impractical as the number of WDM channels

increases.

• In phase-sampled gratings S(z) modifies phase of κ , rather than its

amplitude.

• In contrast with the case of amplitude sampling, refractive index is

modulated over the entire grating length.

• Mathematically, index variations are of the form

n(z) = n̄+ng Re{exp[2iπ(z/Λ0)+ iφs(z)]}.

• Reflectivity, group delay, and dispersion of a phase-sampled

grating designed for 16 WDM channels are shown in the

following figure.
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Phase-Sampled Gratings
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Optical Phase Conjugation

• Four-wave mixing used to generate phase-conjugated idler field

in the middle of fiber link.

• β2 reversed for the phase-conjugated field:

∂A
∂ z

+
iβ2

2
∂ 2A
∂ t2 = 0 → ∂A∗

∂ z
− iβ2

2
∂ 2A∗

∂ t2 = 0.

• Pulse shape restored at the fiber end.

• Basic idea patented in 1979.

• First experimental demonstration in 1993.



352/549

JJ
II
J
I

Back

Close

Thory Behind Phase Conjugation
• Pulse spectrum just before the phase conjugator:

Ã(L/2,ω) = Ã(0,ω)exp(iω2β2L/4).

• Pulse spectrum just after phase conjugation:

Ã∗(L/2,ω) = Ã∗(0,−ω)exp(−iω2
β2L/4).

• Spectrum inverted because ωc = 2ωp−ω .

• Optical field at the end of fiber link:

A∗(L, t) =
1

2π

∫
∞

−∞

Ã∗
(

L
2
,ω

)
exp
(

i
4

β2Lω
2− iωt

)
dω.

• It is easy to see that A(L, t) = A∗(0, t).

• Pulse shape restored to its input form irrespective of

how much pulse broadened in the first section.
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SPM Compensation
• Using A(z, t) = B(z, t)p(z), pulse propagation is governed by

∂B
∂ z

+
iβ2

2
∂ 2B
∂ t2 = iγ p(z)|B|2B.

• Signs of both β2 and γ change when B→ B∗.

• Both SPM and GVD can be compensated by OPC when p(z) = 1.

• Fiber losses destroy this important property of midspan OPC.

• Physical reason: SPM-induced phase shift is power dependent.

• Much larger phase shifts are induced in the first-half of the link than

the second half.

• Use of an optical amplifier at z = L/2 does not help.
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SPM Compensation

Fiber LinkFiber Link

ReceiverTransmitter

Phase
Conjugator

Distance

Po
w

er

(a)

(b)

• Dashed line shows p(z) required for SPM compensation (p(z) =
p(L− z)).

• Distributed amplification helps to some extent.
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Dispersion-Decreasing Fibers
• Perfect compensation of both GVD and SPM can be realized by

employing dispersion-decreasing fibers.

• In such fibers |β2| decreases along fiber length.

• With the transformation ξ =
∫ z

0 p(z)dz,

∂B
∂ξ

+
i
2

b(ξ )
∂ 2B
∂ t2 = iγ|B|2B.

• Effective dispersion parameter b(z) = β2(z)/p(z).

• If β2(z) decreases in exactly the same way as p(z), b(z) becomes

independent of z as the ratio remains constant.

• Thus, GVD should decrease as e−αz.

• Such fibers can be made by tailoring core radius of the fiber.
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Experimental Results

• A long fiber used for OPC in a 1993 experiment.

• Pump wavelength coincided with zero-dispersion wavelength.

• Practical issues: Wavelength shift of OPC signal, polarization sen-

sitivity, insertion losses, higher-order dispersion, etc.
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WDM Systems

-

-

.

.

• A Periodically poled lithium niobate (PPLN) can also act as a phase

conjugator.

• It was used in 2004 to demonstrate transmission of 16 channels (at

40 Gb/s) over 800 km of standard fiber.

• A single pump phase-conjugated all 16 WDM channels as it inverted

the signal spectrum around the pump wavelength.
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Prechirp Technique
• Modifies input pulses before they are launched into fiber link.

• Prechirping of input pulse modifies a Gaussian pulse as

A(0, t) = A0 exp

[
−1+ iC

2

(
t
T0

)2
]

.

• Suitably chirped pulses can propagate over longer distances

before they broaden outside its bit slot.

• Assuming broadening by
√

2 is tolerable,

L =
C +
√

1+2C2

1+C2 LD.

• Maximize L with respect to the chirp parameter C.

• L =
√

2LD for C = 1/
√

2 (41% increase).
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Prechirp Technique (continued)

• Frequency of DFB laser modulated (FM) through

direct current modulation.

• An external modulator modulates envelope (AM).

• Simultaneous AM and FM produces chirped pulses.
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Prechirp Technique (continued)
• FM optical signal can be written as

E(0, t) = A0 exp(−t2/T 2
0 )exp[−iω0(1+δ sinωmt)t],

• Near pulse center, sin(ωmt)≈ ωmt, and

E(0, t)≈ A0 exp

[
−1+ iC

2

(
t
T0

)2
]

exp(−iω0t).

• Effective Chirp parameter C = 2δωmω0T 2
0 .

• Both the sign and magnitude of C can be controlled by changing

FM parameters δ and ωm.

• Phase modulation can also be used:

E(0, t) = A0 exp(−t2/T 2
0 )exp[−iω0t + iδ cos(ωmt)].
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FSK Format

• FSK: 1 and 0 bits transmitted with different carrier wavelengths.

• Two wavelengths travel at slightly different speeds.

• Wavelength shift ∆λ delays 0 bits by ∆T = DL∆λ .

• ∆λ chosen such that ∆T = TB = 1/B.

• This scheme is called dispersion-supported transmission.
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Duobinary Coding
• Duobinary coding reduces signal bandwidth by 50%.

• Dispersive effects reduced for a smaller-bandwidth signal.

• Two successive bits in the digital bit stream summed

to form a three-level duobinary code at half the bit rate.

1+1 = 2, 0+0 = 0, 0+1 = 1, 1+0 = 1.

• Receiver design quite complicated because of the ambiguity between

0 + 1 and 1 + 0 combinations.

• Phase information is used to distinguish the two.
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Nonlinear Prehirping

• Amplify transmitter output using an SOA.

• Gain saturation leads to time-dependent variations in the carrier

density, and thus in the refractive index.

• SOA not only amplifies the pulse but also chirps it.

• Input pulse compressed when β2 < 0.

• 16-Gb/s signal transmitted over 70 km of standard fiber.
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SPM-Induced Prehirping
• Uses self-phase modulation (SPM) for chirping the pulse.

• Transmitter output passed through a fiber of suitable length:

A(0, t) =
√

P(t)exp[iγLmP(t)].

• In the case of Gaussian pulses

A(0, t)≈
√

P0 exp

[
−1+ iC

2

(
t
T0

)2
]

exp(−iγLmP0).

• Effective SPM-induced hirp parameter: C = 2γLmP0.

• Transmission fiber itself can be used for chirping the pulse.

• This is the basic idea behind solitons.
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Postcompensation Techniques
• Employs an electronic technique at the receiver.

• Relatively easy to implement if a heterodyne receiver is used.

• Heterodyne receivers first convert data into microwave format.

• A microwave bandpass filter cancel the effects of GVD.

• Much harder to solve the GVD problem for direct detection since

all phase information is lost.

• Several nonlinear equalization techniques permit signal recovery.

• They require electronic logic circuits operating at the bit rate.

• Electronic equalization limited to low bit rates and to distances of

only a few dispersion lengths.
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Tunable Dispersion Compensation
• Not all WDM channels can be compensated perfectly

by a single DCF.

• Residual dispersion for each channel needs compensation at the

receiver (called postcompensation).

• Precise amount of residual dispersion not known in practice

(dispersion variations along fiber length).

• Dynamic variations can occur because of temperature

fluctuations.

• Solution: Tunable dispersion compensation
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Stretched Fiber Gratings

• Dispersion tuned by stretching a nonlinearly chirped grating.

• Grating is placed on a mechanical stretcher and a piezoelectric

transducer is used to stretch it.
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Role of Nonlinear Chirp
• In a chirped grating, group delay τg = 2

c

∫ Lg
0 n̄(z)dz.

• Stress-induced changes in mode index n̄ change the local Bragg

wavelength as λB(z) = 2n̄(z)Λ(z).

• Slope of group delay at a given wavelength does not change when

n̄ is a linear function of z.

• Grating dispersion is given by

Dg(λ ) =
dτg

dλ
=

2
c

d
dλ

(∫ Lg

0
n̄(z)dz

)
.

• Value of Dg at any wavelength can be altered by changing mode

index n̄ (through heating or stretching).
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Stretched Fiber Gratings

• Group delay as a function of wavelength at several applied

voltages for a 5-cm-long nonlinearly chirped fiber grating.

• For a fixed channel wavelength, dispersion can be changed

from −300 to −1,000 ps/nm by changing voltage.

• Tunable compensation for multiple channels possible by using

a sampled grating with nonlinear chirp.
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Temperature Tuning

(a) (b)

• Grating is made with a linear chirp, and a temperature gradient is

used to produce tunable dispersion.

• Distributed heating requires a thin-film heater deposited on the

outer surface of the fiber grating.

• (a) Reflection spectrum and (b) total GVD as a function of voltage

for a fiber grating with temperature gradient.
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Temperature Tuning

-

-

-

• A segmented thin-film heater provides better temperature control.

• 32 chromium heating elements formed on a silica substrate.

• Only a few volts required to change dispersion slope from +100 to

−300 ps/nm2.
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Experimental Results

• Solid and dashed curves show power penalties with (filled circles)

and without (empty circles) the dispersion equalizer.

• Recorded eye diagrams are shown at two data points (arrows).

• Tolerable dispersion range can be more than doubled.
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Virtually Imaged Phased Array

• A virtually imaged phased array can provide tunable dispersion.

• Signal is focused onto a tilted glass plate with 100% and 98% re-

flecting layers on its front and back surfaces.

• This arrangement creates multiple beams that appear to diverge

from an array of virtual images.

• Interference among these beams produces output at an angle that

varies with wavelength.
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Virtually Imaged Phased Array

• Light is focused on a mirror that provides controllable wavelength-

dependent group delay by moving the mirror along one axis.

• Dispersion can be varied from −800 to +800 ps/nm.
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Higher-Order Dispersion Management

• Third-order dispersion requires β31L1 +β32L2 = 0.

• Necessary when short pulses are used at high bit rates.

• Cascaded MZ filters can be used for this purpose.

• Pulse distorted when a 2.1-ps pulse was transmitted over 100 km.

• Equalizing filter eliminated oscillatory tail and reduces pulse width

to 2.8 ps.

• Residual increase in the pulse width is due to PMD.
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Cascaded Chirped Fiber Gratings

• A nonlinearly chirped fiber grating can compensate TOD.

• Cascading of two chirped gratings ccomensates β3 without

affecting β2.

• One of the chirped grating is flipped so that the combination

provides no net GVD.

• Their TOD contributions add up to produce a nearly parabolic shape

for the relative group delay.
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Cascaded Chirped Fiber Gratings

• A linearly strain-chirped fiber Bragg grating (LSCFBG) is

cascaded with another that is nonlinearly chirped (NSCFBG).

• Both gratings are mounted on a substrate that could be bent by

moving a block.

• It was possible to change only dispersion slope from

0 to −58 ps/nm2 over a bandwidth of 1.7 nm.
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PMD Problem

• A PMD-limited system is quantified through outage probability.

• Outage probability depends on data format; performance

better for RZ format with shorter pulses.

• Outage probability < 10−5 (5 min/year) is required.

• Average DGD should satisfy σT < 0.1/B.
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Need for PMD Compensation
• Average pulse broadening governed by the PMD parameter:

σT = Dp
√

L.

• If we use BσT = 0.1, B2L < (10Dp)−2.

• In the case of “old” fiber links, B2L < 104 (Gb/s)2-km, if we use

Dp = 1 ps/
√

km as a representative value.

• Such fibers require PMD compensation at B = 10 Gb/s when link

length exceeds even 100 km.

• For modern fibers Dp < 0.1 ps/
√

km. As a result, B2L exceeds

106 (Gb/s)2-km.

• PMD compensation is not necessary at 10 Gb/s but may be

required at 40 Gb/s if the link length exceeds 600 km.
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PMD Compensation Techniques

• Schematic illustration of (a) optical and (b) electrical PMD

compensators.

• Electrical PMD equalizer corrects for the PMD effects within the

receiver using a transversal filter.

• This filter splits electrical signal x(t) into a number of branches

using multiple delay lines to form y(t) = ∑
N−1
m=0 cm x(t−mτ).

• Error signal for control electronics is based on closing of the

“eye” at the receiver.
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Optical PMD Compensation
• PMD-distorted signal is separated into two components along PSPs,

which are delayed by different amounts before being combined.

• Delay is adjustable in one branch through a variable delay line.

• A feedback loop is used to adjust polarization controller in

response to changes in the fiber PSPs.

• The success of this technique depends on L/LPMD, where

LPMD = (T0/Dp)2.

• Considerable improvement expected for L < 4LPMD.

• LPMD ∼ 10,000 km for Dp ≈ 0.1 ps/
√

km and T0 = 10 ps.

• Optical PMD compensators can work over transoceanic distances

for 10-Gb/s systems.
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Tunable PMD Compensation

(a) (b)

• A birefringent chirped fiber grating can be used.

• Because of birefringence, two components have different Bragg

wavelengths and slightly shifted stop bands.

• Resulting DGD that can compensate for the PMD-induced DGD.

• This DGD is wavelength-dependent for a chirped grating.

• It can be tuned over 5 nm by stretching the grating.
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Chapter 8:
Nonlinearity Management
• Role of Fiber Nonlinearity

• Solitons in Optical Fibers

• Dispersion-Managed Solitons

• Pseudo-linear Lightwave Systems

• Intrachannel Nonlinear Effects

• High-Speed Lightwave Systems
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Role of Fiber Nonlinearity
• In the absence of nonlinear effects, system performance is only lim-

ited by the SNR degradation induced by amplifier noise.

• Since SNR can be improved by increasing input optical power, link

length can be made arbitrarily long.

• However, nonlinear effects are not negligible for long-haul

systems when power levels exceed a few milliwats.

• Degradation induced by the nonlinear effects depends on the

dispersion map employed.

• Different dispersion maps can lead to different Q factors.

• An optimum power level exists at which BER is the lowest

and the system performs best.
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Nonlinear Schrödinger Equation
• Propagation of an optical bit stream inside a dispersion-managed

system is governed by the NLS equation:

i
∂A
∂ z
− β2

2
∂ 2A
∂ t2 + γ|A|2A =

i
2
(g0−α)A.

• With the transformation A(z, t) =
√

P0p(z)U(z, t), this equation

becomes

i
∂U
∂ z
− β2

2
∂ 2U
∂ t2 + γP0p(z)|U |2U = 0.

• P0 = input peak power; p(z) = exp(
∫ z

0 [g0(z)−α(z)]dz).

• p(zm) = 1, where zm = mLA is amplifier location.

• In the case of lumped amplifiers, p(z) = exp[−
∫ z

0 α(z)dz].
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System Design Issues
• Two major design issues exist for a dispersion-managed system:

? What is the optimum dispersion map?

? Which modulation format provides the best performance?

• Both of them studied by solving the NLS equation numerically.

• Dispersion map: 50 km of standard fiber [D = 16 ps/(km-nm),

α = 0.2 dB/km, and γ = 1.31 W−1/km] followed by 10 km of DCF

[D =−80 ps/(km-nm), α = 0.5 dB/km, and γ = 5.24 W−1/km].

• Optical amplifiers with 6-dB noise figure placed 60 km apart.

• Maximum transmission distance L calculated at which eye opening

is reduced by 1 dB for a 40-Gb/s system.
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NRZ versus RZ Format
D

is
ta

n
ce

 (k
m

)

Average Input Power (dBm) Average Input Power (dBm)
(a) (b)

• Results for (a) NRZ and (b) RZ formats.

• Without amplifier noise, distance can be increased by decreasing

launched power (empty symbols).

• When noise is included, an optimum power level exists for which

link length is maximum.

• This distance is <400 km for the NRZ format.
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Nonlinear Effects Within DCF
• Reason: RZ-format pulses spread quickly and their peak power is

reduced considerably.

• This reduction in the peak power lowers the impact of SPM.

• Buildup of nonlinear effects within DCFs also affects system

performance.

• Even for RZ format, maximum distance is <900 km at a power of

−4 dBm because of DCF-induced nonlinear degradation.

• Not only DCFs have a larger nonlinear parameter, pulses are also

compressed inside them, resulting in much higher peak powers.

• If the nonlinear effects can be suppressed within DCF, maximum

distance can be increased close to 1,500 km.
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Recirculating Fiber Loop

• Recirculating fiber loop used to demonstrate transmission of

a 10-Gb/s signal over 2,040 km of standard fiber.

• Two 102-km sections of standard fiber and two 20-km DCFs used.

• A filter with a 1-nm bandwidth used to reduce ASE noise.

• Two acousto-optic switches control the the loop.
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System Design
• Perfect compensation of GVD in each map period is not the best

solution in the presence of nonlinear effects.

• A numerical approach is used to optimize the design of dispersion-

managed lightwave systems.

• In a 1998 experiment, a 40-Gb/s signal was transmitted over

2,000 km of standard fiber using a novel dispersion map.

• Distance could be increased to 16,500 km at 10 Gb/s by placing

amplifier right after the DCF.

• NRZ format can be used at 10 Gb/s but the RZ format is superior

for lightwave systems operating at 40 Gb/s or more.
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Semianalytic Approach
• Considerable insight possible by adopting a semianalytic approach

based on a single Gaussian pulse (an isolated 1 bit).

• Using the moment or variational method, NLS equation is reduced

to two coupled equations:

dT
dz

=
β2(z)C

T
,

dC
dz

= (1+C2)
β2(z)

T 2 +
γ(z)p(z)E0√

2π T
.

• Details of loss and dispersion managements appear through z de-

pendence of β2, γ , and p.

• For given values of three input pulse parameters (T0, C0, and E0)

these equations can be solved numerically.

• Pulse energy E0 is related to average power as

Pav = 1
2BE0 = (

√
π/2)P0(T0/Tb).
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Solution in the Linear Case
• Consider first the linear case by setting γ(z) = 0.

• E0 plays no role because pulse propagation is independent of input

pulse energy.

• Moment equations can be solved analytically:

T 2(z) = T 2
0 +2

∫ z

0
β2(z)C(z)dz, C(z) = C0 +

1+C2
0

T 2
0

∫ z

0
β2(z)dz.

• For a two-section dispersion map values of T and C at the end of

the map period z = Lmap are given by

T1 = T0[(1+C0d)2 +d2]1/2, C1 = C0 +(1+C2
0)d.

• Parameter d is defined as d = 1
T 2

0

∫ Lmap
0 β2(z)dz = β̄2Lmap

T 2
0

.
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Solution in the Nonlinear Case
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• Nonlinear effects modify both width and chirp but changes are not

large even for a 10-mW launched power.
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Buildup of Nonlinear Effects
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• Even for Pav = 5 mW, pulse width becomes larger than the bit slot

after a distance of 1,000 km.
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Soliton and Pseudo-linear Regimes
• Management of nonlinear effects is important.

• Parameters associated with dispersion map can be controlled to

manage the nonlinearity problem.

• Two main techniques have evolved: Systems employing them are

said to operate in the pseudo-linear and soliton regimes.

• It was noted in several experiments that a nonlinear system

performs best when GVD compensation is only 90 to 95% .

• Solitons can form when residual dispersion is anomalous.

• Performance improved if input pulse is initially chirped such that

β̄2C < 0.

• This observation led to the adoption of the chirped RZ (CRZ)

format used for pseudo-linear systems.
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Normalized NLS equation
• Consider a lightwave system in which dispersion is compensated

only at the transmitter and receiver ends.

• Introduce two length scales LD = T 2
0 /|β2| and LNL = (γP0)−1.

• Using τ as τ = t/T0, NLS equation becomes

iLD
∂U
∂ z
− s

2
∂ 2U
∂τ2 +

LD

LNL
p(z)|U |2U = 0.

• s = sign(β2) =±1 depending on the sign of β2.

• For γ = 2 W−1/km, LNL ∼ 100 km for P0 of 2 to 4 mW.

• Dispersion length LD can vary over a wide range (from∼1 to 10,000

km) depending on the bit rate of the system and type of fibers used.



397/549

JJ
II
J
I

Back

Close

Soliton Regime
• If LD� LNL and L < LD, dispersive effects play a minor role.

• This is the situation at a bit rate of 2.5 Gb/s or less.

• LD exceeds 1,000 km at B = 2.5 Gb/s even for standard fibers and

can exceed 10,000 km for dispersion-shifted fibers.

• If LD and LNL are comparable, dispersive and nonlinear terms are

equally important in the NLS equation.

• This is the situation for 10-Gb/s systems. The use of solitons is

most beneficial in the regime.

• A soliton-based system confines each pulse tightly to its bit slot

through by a careful balance of GVD and SPM effects.

• Since GVD is used to offset the impact of nonlinear effects,

dispersion is never fully compensated in soliton-based systems.
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Pseudo-linear Regime
• If LD� LNL, dispersive effects dominate locally, and nonlinear

effects can be treated in a perturbative manner.

• This situation is encountered at a bit rate of 40 Gb/s or more.

• If T0 is <10 ps, LD is reduced to below 5 km.

• Input pulses spread quickly over several neighboring bits.

• Extreme broadening reduces their peak power by a large factor.

• Nonlinear effects are reduced considerably because of averaging that

produces a nearly constant total power in all bit slots.

• Overlapping of neighboring pulses enhances intrachannel

nonlinear effects.
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Soliton in Optical Fibers
• Solitons maintain their shape by balancing the dispersive and

nonlinear effects.

• GVD broadens optical pulses except when the pulse is initially chirped

such that β2C < 0.

• SPM imposes a chirp on the optical pulse such that C > 0.

• Soliton formation possible only when β2 < 0.

• SPM and GVD can cooperate when input power is adjusted such

that SPM-induced chirp just cancels GVD-induced broadening.

• Nonlinear Schrödinger Equation

i
∂A
∂ z
− β2

2
∂ 2A
∂ t2 + γ|A|2A = 0.
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Properties of Solitons
• Introducing ξ = z/Ld, τ = t/T0, and U = A/

√
P0:

i
∂U
∂ξ
± 1

2
∂ 2U
∂τ2 +N2|U |2U = 0.

• Its solution depends on a single parameter N defined as

N2 = LD = LD/LNL = γP0T 2
0 /|β2|.

• Dispersive and nonlinear lengths: LD = T 2
0
|β2|

, LNL = 1
γP0

.

• The two are balanced when LNL = LD or N = 1.

• Input pulses of the form u(0,τ) = N sech(τ) evolve in a periodic

fashion (inverse scattering method).
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Soliton Evolution

• Pulses shape invariant for N = 1 (Fundamental soliton).

• Periodic evolution for N > 1 with period z0 = π

2 LD = π

2
T 2

0
|β2|

.
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Fundamental Soliton Solution
• For fundamental solitons, NLS equation becomes

i
∂u
∂ξ

+
1
2

∂ 2u
∂τ2 + |u|2u = 0.

• If u(ξ ,τ) = V (τ)exp[iφ(ξ )], V satisfies d2V
dτ2 = 2V (K−V 2).

• Multiplying by 2(dV/dτ) and integrating over τ ,

(dV/dτ)2 = 2KV 2−V 4 +C.

• C = 0 from the boundary condition V → 0 as |τ| → ∞.

• Constant K = 1
2 using V = 1 and dV/dτ = 0 at τ = 0.

• Final Solution: u(ξ ,τ) = sech(τ)exp(iξ/2).
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Stability of Fundamental Solitons

• Evolution of a Gaussian pulse with N = 1.

• Very stable; can be excited using any pulse shape.

• Nonlinear index ∆n = n2I(t) larger near the pulse center.

• Solitons is a temporal mode of a SPM-induced waveguide.
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Loss-Managed Solitons
• Fiber losses destroy the balance needed for solitons.

• Soliton energy and peak power decrease along the fiber.

• Nonlinear effects become weaker and cannot balance dispersion

completely.

• Pulse width begins to increase.

• Solution: Compensate losses periodically using amplifiers.

• Solitons sustained through periodic amplification are called

loss-managed solitons.

• They must be launched with a higher energy.
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Path-Averaged Solitons
• The NLS equation with losses included through p(z):

i
∂u
∂ξ

+
1
2

∂ 2u
∂τ2 + p(z)|u|2u = 0.

• Rapid variations in p(z) can destroy a soliton if its width changes

rapidly.

• Solitons evolve little over a distance short compared with LD.

• If LA� LD, width of a soliton remains virtually unchanged even if

its peak power varies between two amplifiers.

• In effect, replace p(z) by its average value p̄ = L−1
A
∫ LA

0 e−αzdz.

• Fundamental soliton can be excited if input peak power Ps is larger

by a factor of 1/ p̄.
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Energy Enhancement Factor
• Energy enhancement factor for loss-managed solitons is given by

fLM =
Ps

P0
=

1
p̄

=
αLA

1− exp(−αLA)
=

G lnG
G−1

.

• Launched peak power must be larger by a factor fLM for solitons to

survive in lossy fibers.

• As an example, G = 10 and fLM ≈ 2.56 when LA = 50 km and

α = 0.2 dB/km.

• Condition LA� LD must be satisfied for such soliton systems.

• The moment method can be used to study how fiber losses affect

evolution of solitons.
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Soliton Evolution in Lossy Fibers
• Assume U(z, t) = asech(t/T )exp(−iCt2/T 2 + iφ).

• Using the moment method, we obtain:

dT
dz

=
β2C
T

dC
dz

=
(

4
π2 +C2

)
β2

T 2 +
2γ p(z)E0

π2T
.

• Losses included through p(z) = exp(−αz).

• If α = 0, both derivatives vanish at z = 0 if

β2 < 0, C = 0 and E0 = 2|β2|/(γT0).

• Using E0 = 2P0T0, this occurs for N = LD/LNL = 1.
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Soliton Evolution in Lossy Fibers
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• Evolution of pulse with and chirp for when LD = 100 km.

• For LA = 25 km, width and chirp remain close to input values.

• Width can change by more than 10% when LA = 75 km.

• If LA/LD > 1, pulse width starts to increase exponentially.
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Numerical Evolution over Long Fiber Links

(a) (b)

• Evolution of a loss-managed soliton over 10,000 km.

• Amplifier spacing is fixed at LA = 50 km.

• Dispersion length LD is varied by changing T0.

• When LD = 200 km, soliton is preserved even after 10,000 km.

• If dispersion length is reduced to 25 km, soliton is unable to

sustain itself.
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Design of Soliton Systems
• Condition LA < LD with LD = T 2

0 /|β2| leads to T0 >
√
|β2|LA.

• T0 must be a small fraction of Tb = 1/B to ensure that neighboring

solitons are well separated.

• This requirement can be used to relate T0 to the bit rate B using

Tb = 2q0T0.

• Typically, q0 exceeds 4 to ensure pulse tails do not overlap.

• Using T0 = (2q0B)−1, we obtain B2LA < (4q2
0|β2|)−1.

• For β2 =−2 ps2/km, LA = 50 km, and q0 = 5, we obtain T0 > 10 ps

and B < 10 Gb/s.

• To operate at 10 Gb/s, one must reduce LA if β2 is kept fixed.
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Design of Soliton Systems
• Condition LA� LD can be relaxed considerably by employing

distributed amplification.

• A distributed-amplification scheme provides a nearly lossless fiber

by compensating losses locally at every point along fiber link.

• Distributed Raman amplification was used by 1985.

• A 1988 experiment transmitted solitons over 4000 km using

periodic Raman amplification.

• This experiment was the first to demonstrate that solitons can be

transmitted over transoceanic distances.

• Main drawback is that Raman amplification requires pump lasers

emitting more than 500 mW of power near 1.46 µm.
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Dispersion-Managed solitons
• Dispersion management is employed commonly for modern

WDM systems.

• Solitons can form even when β2 varies along the link but their prop-

erties

are quite different.

• A scheme proposed in 1987 relaxes the restriction LA � LD by

employing a new kind of fiber in which GVD varies along its length.

• Such fibers are called dispersion-decreasing fibers (DDFs).

• They are designed such that the decreasing GVD counteracts the

reduced SPM experienced by solitons weakened from fiber losses.
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Dispersion-Decreasing Fibers
• In the NLS equation β2 is a function of z.

• Introducing ξ = T−2
0
∫ z

0 β2(z)dz and τ = t/T0,

i
∂U
∂ξ

+
1
2

∂ 2U
∂τ2 +N2(z)|U |2U = 0.

• Here, N2(z) = γP0T 2
0 p(z)/|β2(z)|.

• If |β2(z)|= |β2(0)|p(z), N becomes a constant.

• Fiber losses then have no effect on a soliton.

• LA can exceed LD if GVD decreases between two amplifiers as

|β2(z)|= |β2(0)|exp(−αz).

• Under such conditions, a fundamental soliton maintains its shape

and width even in a lossy fiber.
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Dispersion-Decreasing Fibers
• Fibers with a nearly exponential GVD profile have been

fabricated.

• A practical technique for making DDFs consists of reducing core

diameter along fiber length during fiber-drawing process.

• Variations in fiber diameter reduce |β2|.

• GVD can be varied by a factor of 10 over a length of 20 to 40 km

with an accuracy better than 0.1 ps2/km.

• Propagation of solitons in DDFs has been observed in several

experiments.

• Exponential GVD profile can be approximated with a staircase by

splicing together several constant-dispersion fibers.

• Benefits of DDFs can be realized using just four fiber segments.



415/549

JJ
II
J
I

Back

Close

Periodic Dispersion Maps
• Use of dispersion management forces each soliton to propagate in

the normal-dispersion regime of a fiber.

• At first sight, such a scheme should not even work because the

normal-GVD fibers do not support solitons.

• It turns out that new kinds of solitons (called dispersion-managed

solitons) can still form.

• Pulses then evolve in a linear fashion over a single map period.

• On a longer length scale, solitons form if SPM effects are

balanced by the average dispersion.

• Not only the peak power but also the width and shape of such

solitons oscillate in a periodic fashion.
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Input Pulse Parameters
• Moment Equations can be used to study dispersion-managed

solitons.

• Width and chirp equations should be solved with the periodic

boundary conditions to ensure that a DM soliton recovers its

initial state after each amplifier.

• Periodic boundary conditions fix the initial width T0 and chirp C0

of input pulses at z = 0.

• A new feature of DM solitons is that the input pulse width depends

on the dispersion map and cannot be chosen arbitrarily.

• In general, input pulses must be chirped appropriately.

• Pulse parameters depends on the dispersion map used and should

be determined numerically.
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Input Pulse Parameters
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• (a) Changes in T0 and Tm for α = 0 (solid lines) and 0.25 dB/km

(dashed lines). Inset shows input chirp C0.

• (b) Evolution of DM soliton over one map period for E0 = 0.1 pJ.

Dispersion Map: Two 5-km fiber sections with β2 =∓4 ps2/km.

• Minimum pulse width Tm occurs in the anomalous-GVD section.
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Periodic Width and Chirp Variations
• Both T0 and Tm decrease rapidly as pulse energy is increased.

• T0 attains its minimum value at a certain pulse energy Ec.

• T0 and Tm differ by a large factor for E0� Ec.

• Pulse width changes considerably in each fiber section when this

regime is approached. (a) E0 = 0.1 pJ; (b) E0 close to Ec.
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Soliton System Design
• Many different DM solitons coexist for the same map with

different values of E0, T0, and C0.

• How should one choose among these multiple solutions?

• Pulse energies much smaller than Ec should be avoided because a

low average power would lead to SNR degradation.

• When E0� Ec, large variations in pulse width induce XPM-induced

interaction between neighboring solitons.

• Region near E0 = Ec is most suited for designing DM soliton

systems.

• Numerical solutions of the NLS equation confirm this conclusion.
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Optimum Pulse Width
• Optimum values of T0 can be found from the moment equations:

T0 = Tmap

√
1+C2

0

|C0|
, Tmap =

(
|β2nβ2alnla|

β2nln−β2ala

)1/2

.

• Tmap is a parameter with dimensions of time involving only the map

parameters.

• It provides a time scale associated with an arbitrary

dispersion map.

• Minimum value of T0 occurs for |C0|= 1 and is given by

T min
0 =

√
2Tmap.

• Minimum pulse width Tm = Tmap under such conditions.
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Map Strength
• It is useful to look for other combinations of map parameters that

play an important role in designing a DM soliton system.

• Two useful parameters are defined as

β̄2 =
β2nln +β2ala

ln + la
, Smap =

β2nln−β2ala
T 2

FWHM
.

• TFWHM ≈ 1.665Tm is the minimum FWHM.

• β̄2 represents average GVD of the entire link.

• Map strength Smap is a measure of how much GVD changes

abruptly between two fibers in each map period.

• DM solitons can exist even when average GVD is normal

provided map strength exceeds a critical value Scr.
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Map Strength

• Peak power of DM solitons as a function of β̄2/β2a.

• Map strength is zero for the rightmost curve, increases in step of 2

until 20, and becomes 25 for the leftmost curve.

• Periodic solutions in the normal-GVD regime exist if Smap

exceeds 4.8.
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Experiments with DM Solitons
• In a 1996 experiment, a periodic dispersion map enabled

transmission of 20-Gb/s soliton bit stream over 5520 km.

• In another 20-Gb/s experiment, solitons were transmitted

over 9,000 km.

• In a 1997 experiment, a 10-Gb/s signal was transmitted over

28,000 km using a fiber loop consisting of 100 km of normal-GVD

fiber and 8 km of anomalous-GVD fiber.

• By 1999, 10-Gb/s DM solitons could be transmitted over 16,000 km

of standard fiber.

• Solitons system work quite well at 10 Gb/s but their performance

is less satisfactory at 40 Gb/s.
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Timing Jitter
• Timing jitter problem severe for soliton-based systems.

• In the case of DM solitons, the moment method provides the fol-

lowing expression for it:

σ
2
t =

SASET 2
m

E0
[NA(1+C2

0)+NA(NA−1)C0d + 1
6NA(NA−1)(2NA−1)d2]

• NA = Number of amplifiers; d = 1
T 2

m

∫ LA
0 β2(z)dz = β̄2

T 2
m

LA = LA
LD

.

• For NA� 1, jitter is approximately given by

σ 2
t

T 2
m
≈ SASE

3E0
N3

Ad2 =
SASEL3

T

3E0L2
DLA

,

• LD = T 2
m/|β̄2| and NA = LT/LA.
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Timing Jitter
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• ASE-induced timing jitter for a 20-Gb/s system.

• Jitter should be less than 10% of the bit slot (< 5 ps).

• Dispersion map consists of 10.5 km of anomalous-GVD fiber and

9.7 km of normal-GVD fiber [D =±4 ps/(km-nm)].
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Control of Timing Jitter
• Optical filters can reduce timing jitter of solitons.

• Soliton bit stream passes through the filter but most of ASE is

blocked by it.

• If an optical filter is placed after each amplifier, it improves the SNR

as well as timing jitter.

• Filter technique can be improved by allowing the center frequency

of filters to slide slowly along the link.

• Such sliding-frequency filters avoid accumulation of ASE within the

filter bandwidth.

• As filter passband shifts, solitons shift their spectrum to minimize

filter-induced losses.

• ASE noise accumulated over a few amplifiers is filtered out later.
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Sliding-Frequency Filters

• Timing jitter with (dotted curves) and without (solid curves)

sliding-frequency filters.

• Inset shows a Gaussian fit to numerically simulated jitter at

10,000 km for a 10-Gb/s system.

• Bit-rate dependence is due to contribution of acoustic waves.
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Synchronous Modulation
• Soliton jitter can also be controlled using synchronous amplitude

modulation (implemented using a LiNbO3 modulator).

• Technique works by introducing additional losses for those

solitons that have shifted from their original position.

• Modulator forces solitons to move toward its transmission peak

where the loss is minimum.

• This technique can also be implemented using a phase modulator.

• A frequency shift is associated with all time-dependent phase

variations.

• Since a change in soliton frequency is equivalent to a change in the

group velocity, phase modulation leads to temporal displacement.
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Postcompensation of Dispersion
• Postcompensation of accumulated dispersion can be used for

reducing timing jitter.

• Cubic jitter term depends on the accumulated dispersion.

• If accumulated dispersion is compensated using fiber of length Lc

and GVD β2c, jitter becomes

σ
2
c = N3

Ad2T 2
m(SASE/E0)(y2− y+1/3).

• y = −dc/(NAd) is the fraction by which accumulated dispersion

NAd is compensated.

• Minimum value occurs for y = 0.5. Timing jitter of solitons can be

reduced by a factor of 2 by postcompensating accumulated

dispersion by 50%.
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Pseudo-linear Lightwave Systems
• Local dispersion length is much shorter than nonlinear length in all

fiber sections of a pseudo-linear system.

• This approach is most suitable for systems operating at bit rates of

40 Gb/s or more.

• Relatively short pulses spread quickly over multiple bits.

• This spreading reduces peak power and lowers the impact of SPM.

• In one design, pulses spread throughout the link and are compressed

back at the receiver end.

• In another, pulses are spread even before they are launched using a

DCF (precompensation).
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Design of Pseudo-linear Systems
• It is not essential to compensate dispersion only once at the

transmitter or the receiver end.

• A periodic dispersion map can also be used.

• It is made such that the pulse broadens by a large factor in the first

section and is compressed back in the second section.

• A small amount of dispersion is left uncompensated in each

map period.

• This residual dispersion per span can be used to control the

impact of intrachannel nonlinear effects.

• Combination of pre- and post-compensation is employed to

improve further system performance.
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Intrachannel Nonlinear Effects
• Optical pulses spread considerably outside their assigned bit slot in

all pseudo-linear systems.

• They overlap and interact with each other through the nonlinear

term in the NLS equation.

• Enhanced nonlinear interaction among the 1 bits of the same

channel produces intrachannel nonlinear effects.

• If left uncontrolled, they limit performance of all pseudo-linear

systems.

• Important question is whether pulse spreading helps to lower the

overall impact of fiber nonlinearity.

• The answer to this question turned out to be yes.
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Origin of Intrachannel Effects
• In a numerical approach, NLS equation is solved using a pseudo-

random bit stream with the input U(0, t) = ∑
M
j=1U j(0, t− t j).

• Considerable physical insight can be gained with a semi-analytic

approach focusing on three neighboring pulses.

• Writing U = U1 +U2 +U3 in the NLS equations, we obtain

i
∂U1

∂ z
− β2

2
∂ 2U1

∂ t2 + γP0p(z)[(|U1|2 +2|U2|2 +2|U3|2)U1 +U2
2U∗3 ] = 0,

i
∂U2

∂ z
− β2

2
∂ 2U2

∂ t2 + γP0p(z)[(|U2|2 +2|U1|2 +2|U3|2)U2 +2U1U∗2U3] = 0,

i
∂U3

∂ z
− β2

2
∂ 2U3

∂ t2 + γP0p(z)[(|U3|2 +2|U1|2 +2|U2|2)U3 +U2
2U∗1 ] = 0.

• Last nonlinear term corresponds to four-wave mixing.
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Intrachannel XPM
• Consider two isolated 1 bits by setting U3 = 0:

i
∂Un

∂ z
− β2

2
∂ 2Un

∂ t2 + γP0p(z)(|Un|2 +2|U3−n|2)Un = 0.

• Over a distance ∆z, XPM shifts the phase by

φn(z, t) = 2γP0p(z)∆z|U3−n(z, t)|2.

• As this phase shift depends on pulse shape, it produces frequency

chirp

δωn ≡−
∂φn

∂ t
=−2γP0p(z)∆z

∂

∂ t
|U3−n(z, t)|2.

• Similar to an ASE-induced frequency shift, XPM-induced

frequency shift translates into a timing jitter.
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XPM-Induced Timing Jitter
• If all pulses were to shift in time by the same amount, this effect

would be harmless.

• Because of XPM, time shift depends on the pattern of bits

surrounding each pulse.

• This shift varies from bit to bit depending on the data transmitted.

• Pulses shift in their respective bit slots by random amounts

(timing jitter).

• XPM also introduces amplitude fluctuations.

• A quantitative analysis of the XPM effects can be carried out with

the moment method.

• Results of this approach reveal several interesting features.
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XPM-Induced Frequency Shift
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• Consider two Gaussian pulses separated by Tb.

• Frequency shift is largest when T0 ≈ Tb.

• Surprisingly, ∆ν is small for wide pulses.

• Frequency chirp depends on dP/dt. This slope is smaller for

wider pulses and changes sign, resulting in an averaging effect.

• Stretching of optical pulses over multiple bit slots helps.
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Frequency and Temporal Shifts

(b)(a)

• A 100-km link with two 50-km sections (D =±10 ps/km/nm).

• (a) Frequency shift for two 5-ps pulses separated by 25 ps.

• (b) Change in pulse spacing as a function of launch position.

• Pulse position does not shift for a symmetric dispersion map as

timing shifts produced in the two sections cancel each other.
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Frequency and Temporal Shifts

• Frequency and time shifts after 100 km as a function of DCF length

used for chirping input pulses.

• XPM-induced time shift can be cancelled by suitably chirping

input pulses.
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XPM-Induced Degradation

• 40-Gb/s bit stream in 80-km fiber with D = 4 ps/(km-nm).

• Dashed curve shows for comparison the input bit stream.

• Output bit stream exhibits both amplitude and timing jitters.
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Intrachannel FWM
• Intrachannel FWM is of concern because it transfers energy from

one pulse to neighboring pulses.

• It can create new pulses in bit slots that represent 0’s and contain

no pulse initially.

• Such FWM-generated pulses (called ghost pulses) are undesirable

because they can lead to additional errors.

• Numerical simulations are often used to predict the impact of such

ghost pulses.

• As an example, consider a 40-Gb/s system designed using 80 km of

standard fiber with D = 17 ps/(km-nm).

• 5-ps chirped Gaussian input pulses propagate through the link.

• Bit stream is severely degraded only after 80 km.
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FWM-Induced Degradation

• 40-Gb/s bit stream in 80-km fiber with D = 17 ps/(km-nm).

• Dashed curve shows for comparison the input bit stream.

• Ghost pulses degrade the eye diagram considerably.
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Intrachannel FWM
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• Peak power of ghost pulse as a function of (a) link length L and

(b) pulse separation Tb obtained analytically (solid curves).

• Dotted curves show an asymptotic approximation.

• Symbols show the results of numerical simulations.

• Total peak power at the end of a link of length L grows as

Pt(L) = Pg(Lmap)(L/Lmap)2.
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Control of Intrachannel Nonlinear Effects
• Optimization of dispersion map can reduce the impact of

intrachannel nonlinear effects.

• Two main choices: (i) dispersion accumulates along the link and is

compensated using DCFs at the transmitter and receiver ends.

• (ii) Dispersion is compensated periodically at least partially.

• Both types of dispersion maps have been used for 40-Gb/s

systems.

• In the first case, one has the choice of pre- or post-compensation.

• Next figure shows measured and calculated power penalties as a

function of launched power for two choices.
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Cmparison of Pre- and Post-compensation

• Eye diagrams are simulated numerically.

• Much higher powers could be launched in the case of post-

compensation, while keeping the penalty below 0.5 dB.
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Role of Amplifier Spacing

(b)(a)

• This experiment used standard fibers and compensated dispersion

only at the receiver end.

• It employed 2.5-ps pulses at 40-Gb/s with LA = 120 km (left).

• For LA = 120 km, system length was limited to 720 km.

• Longer distances could be realized by reducing LA to 80 km.
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Optimization of Dispersion maps
• Optimization of a dispersion map is not a trivial task.

• It involves a large number of design parameters (lengths and dis-

persion of individual fibers used to make the map, the amount of

pre- and post-compensation employed, pulse width, etc.).

• Extensive numerical simulations reveal several interesting features.

• When fiber dispersion is relatively small [D < 4 ps/(km-nm)], soliton

regime works best with an RZ duty cycle near 50%.

• When dispersion is large along most of the link, pseudo-linear regime

is more desirable for designing a 40-Gb/s system.

• Pseudo-linear systems are most suitable for old links made with

standard fibers.
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Symmetric Dispersion maps
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(b)(a)

• Can intrachannel nonlinear effects be controlled by optimizing a

dispersion map? Answer: Yes.

• Both amplitude and timing jitter are reduced if dispersion map is

symmetric: da(z) = da(L− z), where da(z) =
∫ z

0 D(z)dz.

• This can be realized by compensating 50% of dispersion at trans-

mitter and remaining 50% at receiver.

• Numerical simulations show eye diagrams for 2.5-ps pulses with a

25-ps bit slot propagated over 1,600 km of standard fiber.
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Optimization of Dispersion maps
• Timing jitter results from XPM-induced frequency shifts that

cancel for a symmetric map.

• Indeed, timing jitter would vanish in the absence of losses

[p(z) = 1].

• Residual jitter is due to variations in the average power along the

link when lumped amplifiers are used.

• How one one symmetrize the dispersion map?

• If a periodic dispersion map is made with two fiber sections of equal

lengths, reversing two fibers in every alternate map period makes

the map symmetric.
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Symmetric Dispersion maps
+++ +

• Timing and amplitude jitter over 16 spans (each 80 km long) for

symmetric (solid) and asymmetric (dashed) links.

• Launched powers are 3, 6, and 9 dBm for diamonds, circles, and

squares, respectively.
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Phase-Alternation Techniques

(b)(a)

• Power dependence of Q factor found numerically for a 40-Gb/s

channel at a distance of 1,000 km for four modulation formats.

• In (a) D = 19 ps/(km-nm) for the first and third 30-km sections

but D =−28 ps/(km-nm) for the 40-km-long middle section.

• Map (b) employs 100 km of standard fiber with D = 17 ps/(km-nm)

whose dispersion is compensated using DCFs.

• DPSK and AMI formats provide better performance compared with

RZ and CSRZ formats.
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Growth of Ghost-Pulse Power

Distance (km)

Po
w

er
 (m

W
)

• Growth of power with distance for a 40-Gb/s signal (6.25-ps pulses)

and three RZ-type formats.

• Power of ghost pulses depends on phases of neighboring bits.

• AP-RZ format works best because a π/2 phase difference

minimizes buildup of ghost pulses.
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Polarization Bit Interleaving
• This technique alternates polarization of neighboring bits.

• Both XPM and FWM processes depend on the state of polarization

of interacting waves.

• If neighboring bits are polarized orthogonally, their impact is reduced

considerably.

• Bit interleaving was first used in 1991 for reducing interaction

between neighboring solitons.

• In a different approach, neighboring channels in a WDM system are

orthogonally polarized to reduce channel crosstalk.

• Reduction of Intrachannel nonlinear effects requires that neighbor-

ing bits of the same channel be polarized orthogonally.
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Polarization Bit Interleaving
∆τ

∆τ = Tb

• Two schemes used for for polarization bit interleaving.

• In (a) phase modulator first imposes phase shift on pulse train.

• This train is split into polarization components that are combined

back after one bit delay. A data modulator codes the RZ signal.

• In (b) pulse train is first coded with data, then split into its com-

ponents that are combined back after a phase modulator imposes

phase shift on one of the components.
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Spectra for Four Modulation Formats

• Spectra of standard (a) RZ and (b) CSRZ signals.

• Modified spectra of (c) RZ and (d) CSRZ signals when neighboring

bits are orthogonally polarized.
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Polarization Bit Interleaving

• BER at a distance of 2,000 km for the four formats whose spectra

are shown in previous Figure.

• Q2 factor improves by 4.5 dB when neighboring bits are orthogonally

polarized.

• With polarization alternation, intrachannel nonlinear impairments

are reduced significantly and lead to a much lower BER.
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High-Speed Lightwave Systems
• If intrachannel nonlinear effects can be controlled, it is possible to

increase the bit rate beyond 40 Gb/s.

• Such optical signals cannot be generated electrically because of

limitations imposed by high-speed electronics.

• Time-division multiplexing (TDM) is employed to create bit streams

at data rates higher than 40 Gb/s.

• Optical TDM (OTDM) has been used to transmit data at a single

carrier wavelength at bit rates as high as 1.128 Tb/s.

• Use of OTDM requires new types of transmitters and receivers for

all-optical multiplexing and demultiplexing.
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OTDM Transmitters

• A laser emitting a pulse train at bit rate B is used.

• Pulse width Tp shouls satisfy Tp < Tb = (NB)−1 to ensure that each

pulse will fit within its allocated time slot Tb.

• Laser output is split into N branches.

• Bit stream in the nth branch is delayed by (n−1)/(NB).

• The output of all branches is combined to form a composite signal.
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OTDM Receivers

• Demultiplexing schemes: (a) XPM within a Sagnac interferometer

and (b) FWM inside a nonlinear medium.

• A semiconductor optical amplifier also used in place of fiber.
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Performance of OTDM Systems
• Transmission distance of OTDM systems is limited by fiber

dispersion because of the use of short optical pulses.

• A 200-Gb/s system is limited to <50 km even even when β2 = 0.

• OTDM systems require simultaneous compensation of both

second- and third-order dispersions.

• Even then, PMD is a limiting factor and its compensation is

necessary.

• Intrachannel nonlinear effects also limit performance.

• By 1999, operation at 3 Tb/s was realized by combining 19

channels operating at 160 Gb/s.
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Performance of OTDM Systems

• Schematic of a 320-Gb/s OTDM experiment over 200 km.

• In 2000, a 1.28-Tb/s ODTM signal was transmitted over 70 km,

but it required compensation of fourth-order dispersion.


