

Optical Communication Systems (OPT428)

Govind P. Agrawal

Institute of Optics University of Rochester Rochester, NY 14627

©2007 G. P. Agrawal

Chapter 7: Dispersion Management

- Dispersion Problem and Its Solution
- Dispersion-Compensating Fibers
- Dispersion-Equalizing Filters
- Fiber Bragg Gratings
- Optical Phase Conjugation
- Other Techniques
- High-Speed Lightwave Systems

307/549

Back Close

Dispersion Problem and Its Solution

- Systems built during 1980s used standard fibers with their zero-dispersion wavelength near 1.3 μ m.
- Standard fibers have large dispersion near 1.55 μ m.
- Operation near zero-dispersion wavelength not realistic for WDM systems.
- Even with DFB lasers, transmission distance is limited to

$$L < \frac{1}{16|\beta_2|B^2} = \frac{\pi c}{8\lambda^2 |D|B^2}.$$

- L < 35 km at B =10 Gb/s if we use $|\beta_2| \approx 21$ ps²/km.
- Dispersion must be compensated or managed using a suitable technique before old systems can be upgraded to 10 Gb/s.

Basic Idea

• Pulse propagation in the linear case is governed by

$$\frac{\partial A}{\partial z} + \frac{i\beta_2}{2}\frac{\partial^2 A}{\partial t^2} - \frac{\beta_3}{6}\frac{\partial^3 A}{\partial t^3} = 0.$$

• Using the Fourier-transform method, the solution is

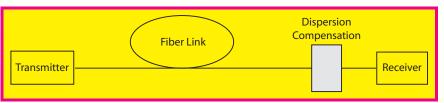
$$A(z,t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \tilde{A}(0,\omega) \exp\left(\frac{i}{2}\beta_2\omega^2 z + \frac{i}{6}\beta_3\omega^3 z - i\omega t\right) d\omega.$$

• Fiber acts as an optical filter with the transfer function

$$H_f(z,\boldsymbol{\omega}) = \exp(i\beta_2\boldsymbol{\omega}^2 z/2 + i\beta_3\boldsymbol{\omega}^3 z/6).$$

- All dispersion-management schemes implement a dispersion compensating "filter" that cancels this phase factor.
- If $H(\omega) = H_f^*(L, \omega)$, the output signal can be restored.

Dispersion-Compensating Filters



• Optical field after the filter is given by

$$A(L,t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \tilde{A}(0,\omega) H(\omega) \exp\left(\frac{i}{2}\beta_2 \omega^2 L + \frac{i}{6}\beta_3 \omega^3 L - i\omega t\right) d\omega$$

• Expanding the phase of $H(\omega)$ in a Taylor series: $H(\omega) \approx |H(\omega)| \exp[i(\phi_0 + \phi_1\omega + \frac{1}{2}\phi_2\omega^2 + \frac{1}{6}\phi_3\omega^3)].$

- Constant phase ϕ_0 and time delay ϕ_1 can be ignored.
- Dispersion compensated when $\phi_2 = -\beta_2 L$ and $\phi_3 = -\beta_3 L$.
- Signal is restored perfectly only if $|H(\omega)| = 1$ and higher-order terms in the expansion are negligible.

Back Close

Dispersion-Compensating Fibers

- Optical filters with $H(\boldsymbol{\omega}) = H_f^*(L, \boldsymbol{\omega})$ are not easy to design.
- Simplest solution: Use a fiber as an optical filter because it automatically has the desired form of the transfer function.
- This solution was suggested as early as 1980.
- It provides an all-optical, fiber-based solution to the dispersion problem.
- Special dispersion-compensating fibers (DCFs) developed.
- Such fibers are routinely used for upgrading old fiber links.
- Such a scheme works well even when the nonlinear effects are not negligible as long as the average optical power launched into the fiber link is optimized properly.

Back

Close

Conditions for Dispersion Compensation

• After two fibers of lengths L_1 and L_2 , optical field is given by

 $A(L_1+L_2,t)=\frac{1}{2\pi}\int_{-\infty}^{\infty}\tilde{A}(0,\boldsymbol{\omega})H_{f1}(L_1,\boldsymbol{\omega})H_{f2}(L_2,\boldsymbol{\omega})\exp(-i\boldsymbol{\omega}t)d\boldsymbol{\omega}.$

- If second fiber (DCF) is designed such that $H_{f1}(L_1, \omega)H_{f2}(L_2, \omega) = 1$, the pulse will fully recover its original shape.
- Conditions for perfect dispersion compensation are

 $\beta_{21}L_1 + \beta_{22}L_2 = 0, \qquad \beta_{31}L_1 + \beta_{32}L_2 = 0.$

• In terms of dispersion parameter D and dispersion slope S

 $D_1L_1 + D_2L_2 = 0, \qquad S_1L_1 + S_2L_2 = 0.$

• First condition sufficient if TOD does not affect a bit stream.

Requirements for DCFs

- Consider the upgrade problem for fiber links made with standard telecommunication fibers.
- Such fibers have $D_1 \approx 16 \text{ ps/(km-nm)}$ near 1.55- μ m.
- The DCF must exhibit normal GVD $(D_2 < 0)$.
- For practical reasons, L_2 should be as small as possible.
- This is possible only if the DCF has a large negative value of D_2 .
- As an example, if we assume $L_1 = 50$ km, we need a 10-km-long DCF when $D_2 = -80$ ps/(km-nm).
- This length can be reduced to 6.7 km if the DCF is designed to have $D_2 = -120 \text{ ps}/(\text{km-nm})$.
- DCFs with larger values of $|D_2|$ are preferred to minimize extra losses incurred inside a DCF.

DCFs for WDM Systems

- For a WDM system, the same DCF must compensate dispersion over for all channels.
- The slope condition, $S_1L_1 + S_2L_2 = 0$ must be satisfied.
- Reason: both D_1 and D_2 are wavelength-dependent.
- The condition $D_1L_1 + D_2L_2 = 0$ is replaced with

 $D_1(\lambda_n)L_1+D_2(\lambda_n)L_2=0 \quad (n=1,\ldots,N),$

- Near the ZDWL of a fiber, $D_j(\lambda_n) = D_j^c + S_j(\lambda_n \lambda_c)$.
- Dispersion slop of the DCF should satisfy

 $S_2 = -S_1(L_1/L_2) = S_1(D_2/D_1).$

• Ratio *S*/*D*, called relative dispersion slope should be the same for both fibers.

Negative-Slope DCFs

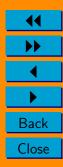
- Using $D \approx 16 \text{ ps/(km-nm)}$ and $S \approx 0.05 \text{ ps/(km-nm^2)}$, ratio S/D is positive and about 0.003 nm⁻¹ for standard fibers.
- Since D is negative for a DCF, S should also be negative such that $S_2/S_1 = D_2/D_1$.
- For a DCF with $D \approx -100 \text{ ps/(km-nm)}$, dispersion slope S should be $-0.3 \text{ ps/(km-nm^2)}$.
- The use of negative-slope DCFs offers the simplest solution for WDM systems with a large number of channels.
- Such DCFs were developed and commercialized during the 1990s.
- In 2001, broadband DCFs were used to transmit 101 channels, each operating at 10 Gb/s, over 9,000 km.

Dispersion Maps

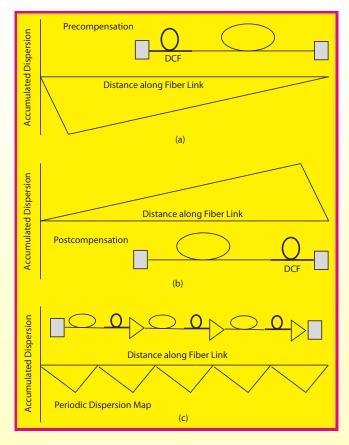
- A fiber link may contain multiple types of fibers with different dispersion characteristics.
- Solution for an arbitrary form of $oldsymbol{eta}_2(z)$ is given by

$$A(z,t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \tilde{A}(0,\omega) \exp\left(\frac{i}{2}d_a(z)\omega^2 - i\omega t\right) d\omega.$$

- Total accumulated dispersion $d_a(z) = \int_0^z \beta_2(z') dz'$.
- Dispersion management requires $d_a(L) = 0$ at the end of a fiber link so that A(L,t) = A(0,t).
- Three schemes used in practice: (a) precompensation, (b) postcompensation, and (c) periodic compensation.



Dispersion Maps



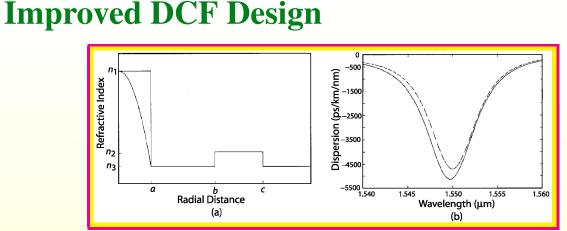
Dispersion Maps

- Precompensation: Dispersion accumulated over the entire link is compensated at the transmitter end.
- Postcompensation: A DCF of appropriate length is placed at the receiver end.
- Periodic compensation: Dispersion is compensated in a periodic fashion all along the link.
- For a truly linear system (no nonlinear effects), all three schemes are identical.
- Three configurations behave differently when nonlinear effects are included.
- System performance improved by optimizing dispersion map.

Single-Mode DCF Design

- In a single-mode design, V parameter is made close to 1.
- Accomplished in practice by reducing the core size (diameter 4–5 μm).
- A large fraction of the mode propagates outside the core.
- Waveguiding contribution to dispersion is enhanced, resulting in large negative values of *D*.
- Values of D < -100 ps/(km-nm) can be realized.
- Such DCFs suffer from two problems, both resulting from their relatively narrow core diameter.
- Relatively high losses (lpha= 0.4–0.6 dB/km).
- Nonlinear parameter γ is larger by about a factor of 4.

Back Close



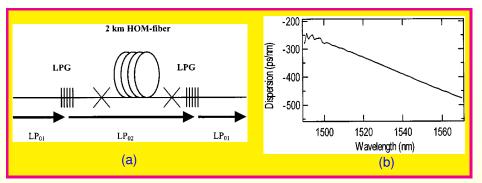
• DCF is designed with two concentric cores, separated by a ringshaped cladding region.

- Size parameters *a*, *b*, and *c* and refractive indices *n*₁, *n*₂, and *n*₃ optimized to realized desired dispersion characteristics.
- D can be as large as -5,000 ps/(km-nm) when $a = 1 \ \mu\text{m}$, $b = 15.2 \ \mu\text{m}$, and $c = 22 \ \mu\text{m}$.

Two-Mode DCF

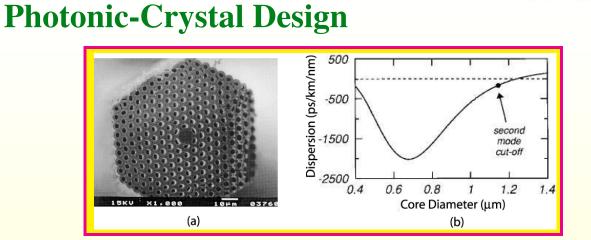
- Best Solution: Employ a two-mode DCF with $V \approx 2.5$.
- Second mode exhibits large negative values of D.
- A 1-km length can compensate dispersion accumulated over 50 km, while adding little extra loss or nonlinear degradation.
- The use of a two-mode DCF requires a mode-conversion device.
- Mode converter should be polarization-insensitive and operate over a broad bandwidth.
- A long-period grating is used for this purpose.
- Grating period $\Lambda \sim 100 \ \mu$ m is chosen to match the index difference $\delta \bar{n}$ between two modes ($\Lambda = \lambda / \delta \bar{n}$).

Two-Mode DCF Design



- First grating transfers power to higher-order mode.
- Seconds grating transfers power back into fundamental mode.
- Measured dispersion characteristics of such a 2-km-long DCF show D = -420 ps/(km-nm) near 1,550 nm.
- Such DCFs are polarization-insensitive, exhibit low insertion loss, and offer dispersion compensation over the entire C band.

Back Close



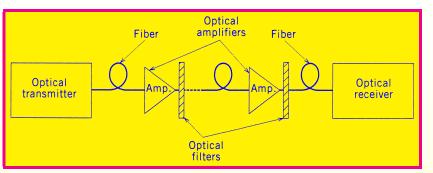
- Photonic-crystal fibers contain a two-dimensional array of air holes that modify dispersion characteristics.
- D for a PCF is also depends on the core diameter.
- Values as large as -2,000 ps/(km-nm) are possible with a suitable design.
- Broadband dispersion compensation can be realized by tailoring size and spacing of air holes.



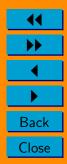
Reverse-Dispersion Fibers

- Such fibers are designed such that the signs of both *D* and *S* are reversed compared to standard fibers.
- Dispersion is compensated using fiber sections of same lengths.
- Lengths of fiber sections are reduced below 10 km so that the map period L_m becomes a small fraction of amplifier spacing L_A .
- This technique is referred to as short-period or dense dispersion management.
- Length of fiber drawn from a single perform is close to 5 km.
- Fiber cable is made by combining two types of fibers, resulting in a dispersion-free cable.

Dispersion-Equalizing Filters



- A shortcoming of DCFs is that a relatively long length (>5 km) is required.
- Losses encountered within each DCF add considerably to total link loss.
- Most dispersion-equalizing filters are relatively compact.
- Such a filter can be combined with the amplifier to compensate fiber losses and dispersion simultaneously in a periodic fashion.



Fabry–Perot Filters

- Any interferometer acts as an optical filter because its transmission (or reflection) is frequency dependent.
- A simple example is provided by the Fabry–Perot interferometer.
- The only problem is that its transfer function affects both the amplitude and phase.
- A good dispersion-equalizing filter should affect only the phase of light propagating through it.
- This problem can be solved by using a Gires–Tournois interferometer.
- It is just a FP interferometer whose back mirror is made 100% reflective.

Gires–Tournois Filters

• Transfer function of a GT filter:

$$H_{\rm GT}(\boldsymbol{\omega}) = H_0 \left[\frac{-r + \exp(i\boldsymbol{\omega}T_r)}{1 - r \exp(-i\boldsymbol{\omega}T_r)} \right].$$

- Constant H_0 takes into account all losses, $|r|^2$ is front-mirror reflectivity, and T_r is round-trip time within the cavity.
- If losses are constant over the signal bandwidth, only spectral phase is modified by such a filter.
- Phase $\phi(\omega)$ of $H_{\mathrm{GT}}(\omega)$ is far from ideal.
- It is a periodic function, peaking at frequencies that correspond to longitudinal modes of the cavity.
- Near each peak, phase variations are nearly quadratic in $\omega.$

The Institute

Dispersion of Gires–Tournois Filters

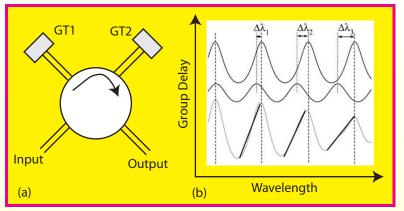
- Group delay $au_g = d\phi(\omega)/d\omega$, is also a periodic function.
- $\phi_2 = d au_g / d \omega$ is related to the slope of the group delay as

 $\phi_2 = 2T_r^2 r(1-r)/(1+r)^3.$

- For a 2-cm-thick GT filter designed with r = 0.8, $\phi_2 \approx 2,200$ ps².
- Such a filter can compensate dispersion acquired over 110 km of standard fiber.
- A GT filter can compensate dispersion for multiple channels simultaneously as it exhibits a periodic response.
- Periodic nature also indicates that ϕ_2 is same for all channels.
- A GT filter cannot compensate for the dispersion slope of transmission fiber without suitable design modifications.

Back Close

Dispersion Slope Compensation

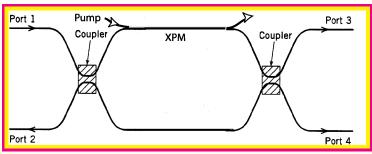


- In one approach, two GT filters are cascaded in series.
- Two filters have different cavity lengths and reflectivities, resulting in slightly shifted peaks and different amplitudes.
- Figure shows group delay for individual filters and the total group delay (gray curve). Dark lines show the slope.
- Different slopes indicate different dispersion near each peak.

↓
↓
Back
Close

328/549

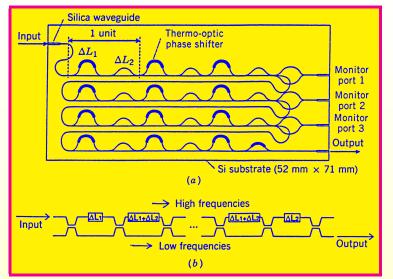
Mach–Zehnder Interferometer



- A MZ interferometer constructed by connecting two 3-dB directional couplers in series.
- First coupler splits input signal into two equal parts.
- Different phase shifts acquired in the MZ arms.
- Two fields interfere at the second coupler.
- Transfer function for the bar port

 $H_{\rm MZ}(\boldsymbol{\omega}) = \frac{1}{2} [1 + \exp(i\boldsymbol{\omega}\tau)].$

Mach–Zehnder Chain



• A cascaded chain of several MZ interferometers used in practice.

- Fabricated in the form of a planar lightwave circuit using silica-on-silicon technology.
- A chromium heater provides thermo-optic control of phase shift.

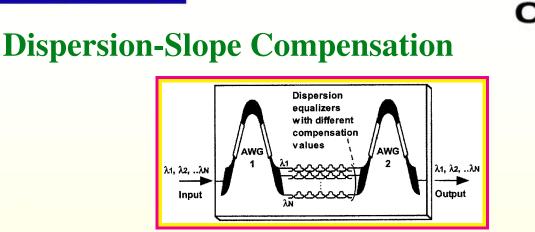
Mach–Zehnder Chain

- Functioning of the MZ chain can be understood as follows.
- Higher-frequency components of a pulse propagate in the longer arm of the MZ interferometers.
- Lower-frequency components take the shorter route.
- Relative delay is just the opposite of that introduced by a standard fiber exhibiting anomalous dispersion.
- In a 1994 implementation, a MZ chain with only five MZ interferometers provided a relative delay of 836 ps/nm.
- Such a 5-cm device can compensate dispersion acquired over 50 km.
- Main limitations: Relatively narrow bandwidth (\sim 10 GHz) and sensitivity to input polarization.

Back

Close

The Institute

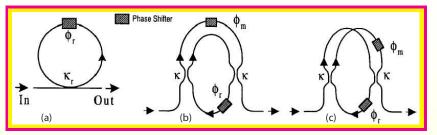


- A planar lightwave circuit capable of compensating both dispersion and dispersion slope is used.
- A separate MZ chain is employed for each WDM channel.
- WDM signal demultiplexed and then multiplexed back using arrayed waveguide gratings (AWGs).
- All components can be integrated on a single chip using silica-onsilicon technology.

The Institute o

Image: A state of the state of the

All-Pass Filters

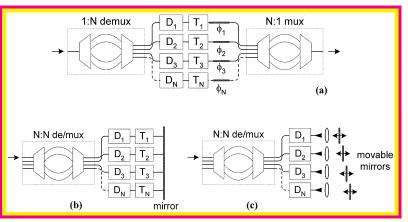


- (a) A simple ring resonator with a built-in phase shifter; cascading of multiple rings increases the amount of dispersion.
- An asymmetric or symmetric MZ configuration also acts as an allpass filter.
- Phase shifters are incorporated using thin-film chromium heaters.
- Such devices can compensate even the dispersion slope of a fiber.
- One device exhibited dispersion that varied from -378 to -3026 ps/nm depending on the channel wavelength.

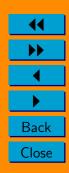


333/549

All-Pass Filters



- (a) A transmissive filter with controllable dispersion for each channel through optical delay lines and phase shifters.
- (b) A reflective filter with a fixed mirror.
- (c) A reflective filter with moving mirrors acting as delay lines.
- Such designs, although complicated, provide the most flexibility.



334/549

Fiber Bragg Gratings

- Bragg gratings act as optical filters because of a stop band.
- Light reflected back if its wavelengths falls within stop band.
- Stop band centered at the Bragg wavelength: $\lambda_B = 2\bar{n}\Lambda$.
- Grating period $\Lambda \approx 0.5 \ \mu$ m near 1.55 μ m.
- A holographic technique is used for making Bragg gratings.
- Use of gratings for dispersion compensation proposed in the 1980s.
- Their use became practical after 1990.
- Fiber gratings are available commercially and used routinely for a variety of applications.

The Institute

Coupled-Mode Equations

- Refractive index varies along the length periodically as $n(z) = \bar{n} + n_g \cos(2\pi z/\Lambda).$
- Index modulation depth $n_g \sim 10^{-4}$.
- Bragg gratings analyzed using coupled-mode equations

 $dA_f/dz = +i\delta A_f + i\kappa A_b,$

$$dA_b/dz = -i\delta A_b - i\kappa A_f.$$

- Detuning $\delta = \frac{2\pi}{\lambda_0} \frac{2\pi}{\lambda_B}$ and coupling coefficient $\kappa = \frac{\pi n_g \Gamma}{\lambda_B}$.
- Transfer function is found to be

 $H(\boldsymbol{\omega}) = r(\boldsymbol{\omega}) = \frac{A_b(0)}{A_f(0)} = \frac{i\kappa\sin(qL_g)}{q\cos(qL_g) - i\delta\sin(qL_g)}.$

• Dispersion relation $q^2 = \delta^2 - \kappa^2$ (L_g = grating length).

Grating-Induced Dispersion

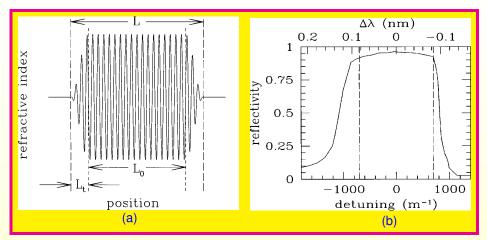
- Dispersion of the grating is related to the frequency dependence of the phase of $H(\omega)$.
- Grating-induced dispersion exists mostly outside the stop band.
- In this region $(|\delta| > \kappa)$, dispersion parameters are

$$\beta_2^g = -\frac{\operatorname{sgn}(\delta)\kappa^2/v_g^2}{(\delta^2 - \kappa^2)^{3/2}}, \qquad \beta_3^g = \frac{3|\delta|\kappa^2/v_g^3}{(\delta^2 - \kappa^2)^{5/2}}.$$

- Grating dispersion normal $(\beta_2^g > 0)$ on the "red" side of the stop band (used for dispersion compensation).
- A single 2-cm-long grating can compensate dispersion accumulated over 100 km of fiber.

337/549

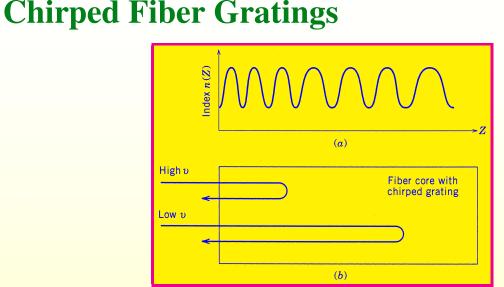
Apodized Gratings



- An apodization technique is used to improve grating response.
- Index change n_g nonuniform, resulting in a z-dependent κ .
- Reflectivity spectrum of an apodized 7.5-cm-long grating.
- In some gratings κ is varied linearly over length.

↓
↓
Back
Close

338/549



- Bragg wavelength $\lambda_B = 2\bar{n}\Lambda$ also varies along grating length.
- Equivalent to multiple cascaded gratings with different λ_B .
- Resulting stop band can become quite wide (>1 nm).

Back Close

Dispersion of Chirped Gratings

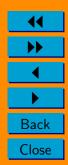
- Origin of Dispersion: Different spectral components of an optical pulse are reflected at different points within the grating where the Bragg condition is satisfied locally.
- Low-frequency components of a pulse are delayed more if optical period increases along the grating.
- This situation corresponds to anomalous GVD.
- The same grating can provide normal GVD if it is flipped.
- Optical period $\bar{n}\Lambda$ of the grating should decrease for it to provide normal GVD.
- Dispersion magnitude determined by the rate at which $\bar{n}\Lambda$ decreases.

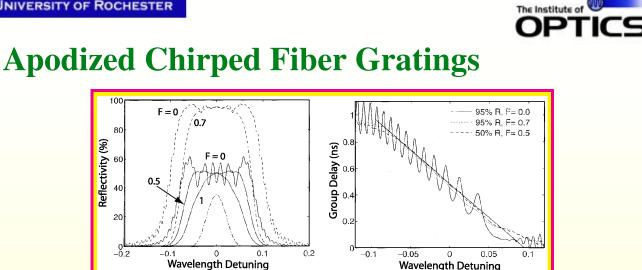
Back

Close

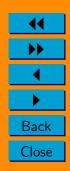
Dispersion Parameter

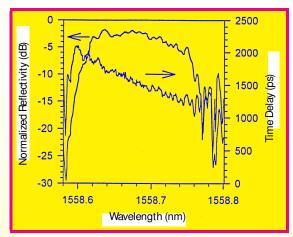
- Dispersion parameter D_g of a chirped grating of length L_g is determined from the relation $T_R = D_g L_g \Delta \lambda$.
- Here T_R is the round-trip time and $\Delta\lambda$ is the difference in the Bragg wavelengths at the two ends of the grating.
- Since $T_R = 2\bar{n}L_g/c$, grating dispersion is given by $D_g = 2\bar{n}/(c\Delta\lambda)$.
- As an example, $D_g \approx 5 imes 10^7$ ps/(km-nm) for a grating bandwidth $\Delta \lambda = 0.2$ nm.
- Because of such large values of D_g , a 10-cm-long chirped grating can compensate dispersion acquired over 300 km.
- This is remarkable for an optical filter that is only 10 cm long.





- Fraction F of the grating length over which a chirped grating is apodized plays an important role.
- (a) Reflectivity and (b) group delay for chirped gratings with 50% (solid) or 95% (dashed) reflectivity for different values of F.
- Group delay should vary with wavelength linearly to produce a constant GVD across the signal spectrum.
- It should be as ripple-free as possible.



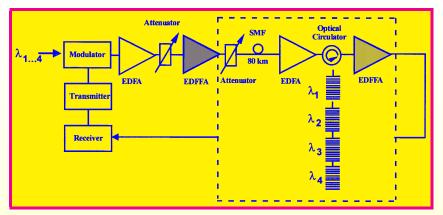


- Measured reflectivity and group delay for a linearly chirped fiber grating with a bandwidth of 0.12 nm.
- In a 1996 experiment, two chirped gratings were cascaded in series to compensate fiber dispersion over 537 km.
- Chirped gratings work as a reflection filter. An optical circulator is used in practice to reduce insertion losses.

Back

Close

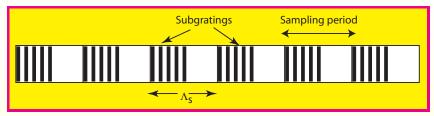
Chirped Gratings for WDM Systems



- A chirped grating can have a stop band as wide as 10 nm if it is made long enough.
- When WDM bandwidth is larger than that, several gratings are cascaded in series.
- By 2000, this approach was applied to a 32-channel WDM system with 18-nm bandwidth.



Sampled Gratings



- A sampled or superstructure grating consists of multiple subgratings separated from each other by a section of uniform index.
- Each subgrating is a sample, hence the name "sampled" grating.
- Made by blocking certain regions during fabrication such that $\kappa = 0$ in the blocked regions.
- It can also be made by etching away parts of an existing grating.
- New feature: $\kappa(z)$ varies periodically along z.
- This periodicity modifies the stop band.

Amplitude-Sampled Gratings

- Coupled-mode equations show that a sampled grating exhibits multiple periodic stop bands.
- Spacing Δv_p among reflectivity peaks is set by sample period Λ_s as $\Delta v_p = c/(2n_g\Lambda_s)$.
- If subgratings are chirped, dispersion of each reflectivity peak is governed by the local chirp.
- Sampling period Λ_s shoud be about 1 mm to ensure that Δv_p is close to 100 GHz.
- In the simplest kind of grating, sampling function is a "rect" function such that S(z) = 1 over each subgrating.

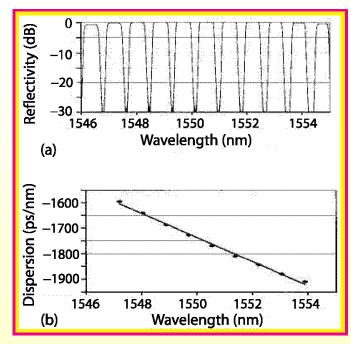
Back Close

Design of Sampled Gratings

- Shape of the reflectivity spectrum is governed by the Fourier transform of *S*(*z*).
- For a "rect" function S(z), reflectivity follows a "sinc" function.
- A constant reflectivity for all peaks can be realized using $S(z) = \sin(az)/az$.
- Dispersion slope can be compensated by introducing a chirp in the sampling period Λ_s , in addition to the grating period.
- Figure shows the reflection and dispersion characteristics of a 10cm-long grating designed for 8 channels with 100-GHz spacing.

↓
↓
Back
Close

UNIVERSITY OF ROCHESTER



348/549

The Institute of

ICS

OP

↓
↓
Back
Close

Phase-Sampled Gratings

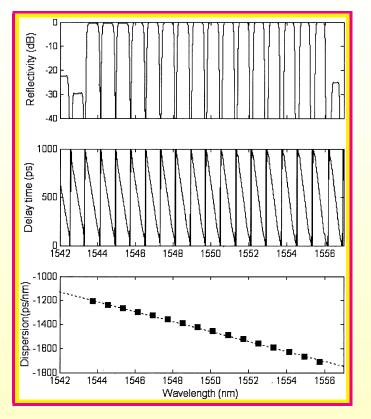
- Amplitude smapling impractical as the number of WDM channels increases.
- In phase-sampled gratings S(z) modifies phase of κ , rather than its amplitude.
- In contrast with the case of amplitude sampling, refractive index is modulated over the entire grating length.
- Mathematically, index variations are of the form

 $n(z) = \bar{n} + n_g \operatorname{Re}\{\exp[2i\pi(z/\Lambda_0) + i\phi_s(z)]\}.$

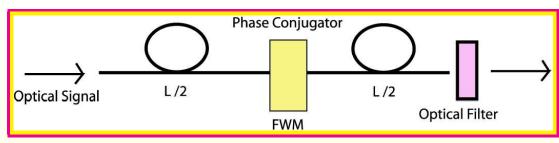
• Reflectivity, group delay, and dispersion of a phase-sampled grating designed for 16 WDM channels are shown in the following figure.

Back Close

Phase-Sampled Gratings



Optical Phase Conjugation



- Four-wave mixing used to generate phase-conjugated idler field in the middle of fiber link.
- β_2 reversed for the phase-conjugated field:

$$\frac{\partial A}{\partial z} + \frac{i\beta_2}{2}\frac{\partial^2 A}{\partial t^2} = 0 \quad \rightarrow \quad \frac{\partial A^*}{\partial z} - \frac{i\beta_2}{2}\frac{\partial^2 A^*}{\partial t^2} = 0.$$

- Pulse shape restored at the fiber end.
- Basic idea patented in 1979.
- First experimental demonstration in 1993.

Thory Behind Phase Conjugation

- Pulse spectrum just before the phase conjugator: $\tilde{A}(L/2, \omega) = \tilde{A}(0, \omega) \exp(i\omega^2 \beta_2 L/4).$
- Pulse spectrum just after phase conjugation:

 $\tilde{A}^*(L/2,\boldsymbol{\omega}) = \tilde{A}^*(0,-\boldsymbol{\omega})\exp(-i\boldsymbol{\omega}^2\boldsymbol{\beta}_2 L/4).$

- Spectrum inverted because $\omega_c = 2\omega_p \omega$.
- Optical field at the end of fiber link:

$$A^*(L,t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \tilde{A}^*\left(\frac{L}{2},\omega\right) \exp\left(\frac{i}{4}\beta_2 L\omega^2 - i\omega t\right) d\omega.$$

• It is easy to see that $A(L,t) = A^*(0,t)$.

• Pulse shape restored to its input form irrespective of how much pulse broadened in the first section.

SPM Compensation

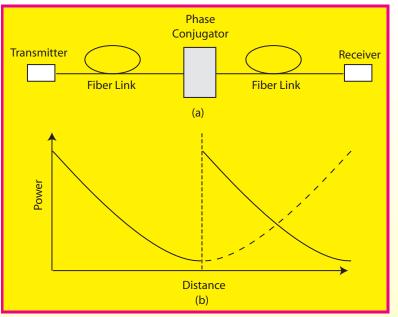
• Using A(z,t) = B(z,t)p(z), pulse propagation is governed by

 $\frac{\partial B}{\partial z} + \frac{i\beta_2}{2}\frac{\partial^2 B}{\partial t^2} = i\gamma p(z)|B|^2 B.$

- Signs of both eta_2 and γ change when $B o B^*$.
- Both SPM and GVD can be compensated by OPC when p(z) = 1.
- Fiber losses destroy this important property of midspan OPC.
- Physical reason: SPM-induced phase shift is power dependent.
- Much larger phase shifts are induced in the first-half of the link than the second half.
- Use of an optical amplifier at z = L/2 does not help.

Back Close

SPM Compensation



• Dashed line shows p(z) required for SPM compensation (p(z) = p(L-z)).

• Distributed amplification helps to some extent.

The Institute of

ICS

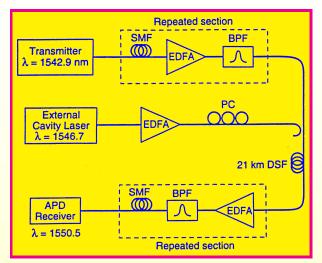
Dispersion-Decreasing Fibers

- Perfect compensation of both GVD and SPM can be realized by employing dispersion-decreasing fibers.
- In such fibers $|\beta_2|$ decreases along fiber length.
- With the transformation $\xi = \int_0^z p(z) dz$,

$$\frac{\partial B}{\partial \xi} + \frac{i}{2}b(\xi)\frac{\partial^2 B}{\partial t^2} = i\gamma|B|^2B.$$

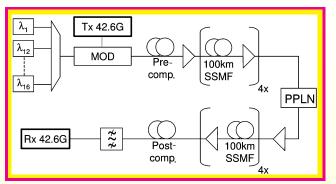
- Effective dispersion parameter $b(z) = \beta_2(z)/p(z)$.
- If $\beta_2(z)$ decreases in exactly the same way as p(z), b(z) becomes independent of z as the ratio remains constant.
- Thus, GVD should decrease as $e^{-\alpha z}$.
- Such fibers can be made by tailoring core radius of the fiber.

Experimental Results

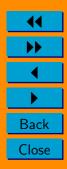


- A long fiber used for OPC in a 1993 experiment.
- Pump wavelength coincided with zero-dispersion wavelength.
- Practical issues: Wavelength shift of OPC signal, polarization sensitivity, insertion losses, higher-order dispersion, etc.

WDM Systems



- A Periodically poled lithium niobate (PPLN) can also act as a phase conjugator.
- It was used in 2004 to demonstrate transmission of 16 channels (at 40 Gb/s) over 800 km of standard fiber.
- A single pump phase-conjugated all 16 WDM channels as it inverted the signal spectrum around the pump wavelength.



Prechirp Technique

- Modifies input pulses before they are launched into fiber link.
- Prechirping of input pulse modifies a Gaussian pulse as

$$A(0,t) = A_0 \exp\left[-\frac{1+iC}{2}\left(\frac{t}{T_0}\right)^2\right].$$

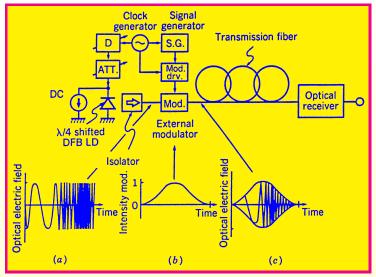
- Suitably chirped pulses can propagate over longer distances before they broaden outside its bit slot.
- Assuming broadening by $\sqrt{2}$ is tolerable,

$$L = \frac{C + \sqrt{1 + 2C^2}}{1 + C^2} L_D.$$

- Maximize L with respect to the chirp parameter C.
- $L = \sqrt{2}L_D$ for $C = 1/\sqrt{2}$ (41% increase).

UNIVERSITY OF ROCHESTER

Prechirp Technique (continued)



- Frequency of DFB laser modulated (FM) through direct current modulation.
- An external modulator modulates envelope (AM).
- Simultaneous AM and FM produces chirped pulses.

Prechirp Technique (continued)

• FM optical signal can be written as

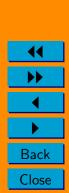
 $E(0,t) = A_0 \exp(-t^2/T_0^2) \exp[-i\omega_0(1+\delta\sin\omega_m t)t],$

• Near pulse center, $\sin(\omega_m t) pprox \omega_m t$, and

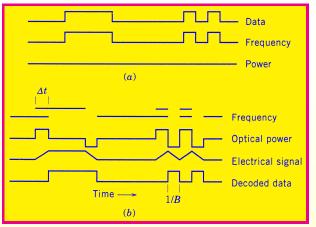
$$E(0,t) \approx A_0 \exp\left[-\frac{1+iC}{2}\left(\frac{t}{T_0}\right)^2\right] \exp(-i\omega_0 t).$$

- Effective Chirp parameter $C = 2\delta \omega_m \omega_0 T_0^2$.
- Both the sign and magnitude of C can be controlled by changing FM parameters δ and ω_m .
- Phase modulation can also be used:

 $E(0,t) = A_0 \exp(-t^2/T_0^2) \exp[-i\omega_0 t + i\delta\cos(\omega_m t)].$

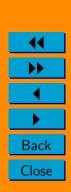


FSK Format



• FSK: 1 and 0 bits transmitted with different carrier wavelengths.

- Two wavelengths travel at slightly different speeds.
- Wavelength shift $\Delta \lambda$ delays 0 bits by $\Delta T = DL \Delta \lambda$.
- $\Delta \lambda$ chosen such that $\Delta T = T_B = 1/B$.
- This scheme is called dispersion-supported transmission.

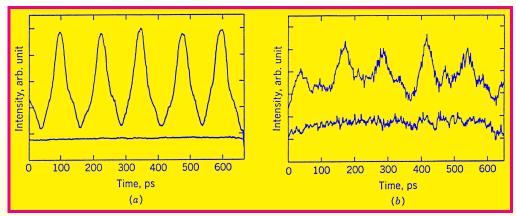


Duobinary Coding

- Duobinary coding reduces signal bandwidth by 50%.
- Dispersive effects reduced for a smaller-bandwidth signal.
- Two successive bits in the digital bit stream summed to form a three-level duobinary code at half the bit rate.

1+1=2, 0+0=0, 0+1=1, 1+0=1.

- Receiver design quite complicated because of the ambiguity between 0 + 1 and 1 + 0 combinations.
- Phase information is used to distinguish the two.



- Amplify transmitter output using an SOA.
- Gain saturation leads to time-dependent variations in the carrier density, and thus in the refractive index.
- SOA not only amplifies the pulse but also chirps it.
- Input pulse compressed when $\beta_2 < 0$.
- 16-Gb/s signal transmitted over 70 km of standard fiber.

Back

Close

SPM-Induced Prehirping

- Uses self-phase modulation (SPM) for chirping the pulse.
- Transmitter output passed through a fiber of suitable length:

$$A(0,t) = \sqrt{P(t)} \exp[i\gamma L_m P(t)].$$

• In the case of Gaussian pulses

$$A(0,t) \approx \sqrt{P_0} \exp\left[-\frac{1+iC}{2}\left(\frac{t}{T_0}\right)^2\right] \exp(-i\gamma L_m P_0).$$

- Effective SPM-induced hirp parameter: $C = 2\gamma L_m P_0$.
- Transmission fiber itself can be used for chirping the pulse.
- This is the basic idea behind solitons.

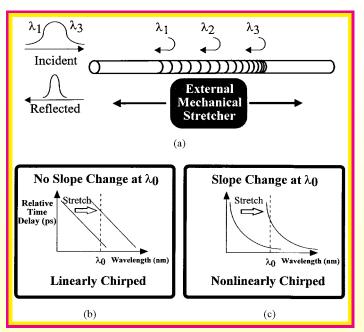
Postcompensation Techniques

- Employs an electronic technique at the receiver.
- Relatively easy to implement if a heterodyne receiver is used.
- Heterodyne receivers first convert data into microwave format.
- A microwave bandpass filter cancel the effects of GVD.
- Much harder to solve the GVD problem for direct detection since all phase information is lost.
- Several nonlinear equalization techniques permit signal recovery.
- They require electronic logic circuits operating at the bit rate.
- Electronic equalization limited to low bit rates and to distances of only a few dispersion lengths.

Tunable Dispersion Compensation

- Not all WDM channels can be compensated perfectly by a single DCF.
- Residual dispersion for each channel needs compensation at the receiver (called postcompensation).
- Precise amount of residual dispersion not known in practice (dispersion variations along fiber length).
- Dynamic variations can occur because of temperature fluctuations.
- Solution: Tunable dispersion compensation

Stretched Fiber Gratings



• Dispersion tuned by stretching a nonlinearly chirped grating.

 Grating is placed on a mechanical stretcher and a piezoelectric transducer is used to stretch it.

The Institute of

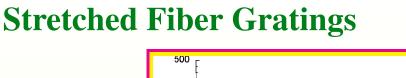
↓
↓
Back
Close

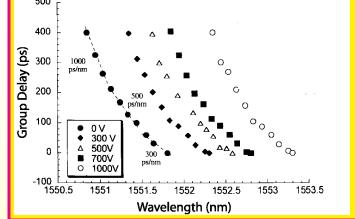
Role of Nonlinear Chirp

- In a chirped grating, group delay $\tau_g = \frac{2}{c} \int_0^{L_g} \bar{n}(z) dz$.
- Stress-induced changes in mode index \bar{n} change the local Bragg wavelength as $\lambda_B(z) = 2\bar{n}(z)\Lambda(z)$.
- Slope of group delay at a given wavelength does not change when \bar{n} is a linear function of z.
- Grating dispersion is given by

$$D_g(\lambda) = \frac{d\tau_g}{d\lambda} = \frac{2}{c} \frac{d}{d\lambda} \left(\int_0^{L_g} \bar{n}(z) \, dz \right).$$

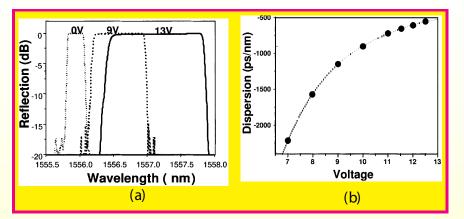
• Value of D_g at any wavelength can be altered by changing mode index \bar{n} (through heating or stretching).





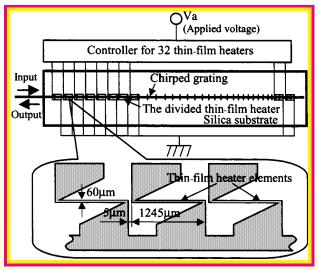
- Group delay as a function of wavelength at several applied voltages for a 5-cm-long nonlinearly chirped fiber grating.
- For a fixed channel wavelength, dispersion can be changed from -300 to -1,000 ps/nm by changing voltage.
- Tunable compensation for multiple channels possible by using a sampled grating with nonlinear chirp.

Temperature Tuning

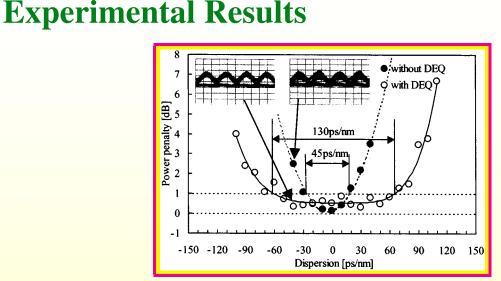


- Grating is made with a linear chirp, and a temperature gradient is used to produce tunable dispersion.
- Distributed heating requires a thin-film heater deposited on the outer surface of the fiber grating.
- (a) Reflection spectrum and (b) total GVD as a function of voltage for a fiber grating with temperature gradient.

Temperature Tuning



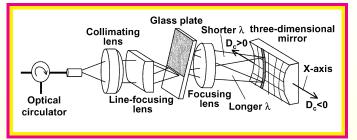
- A segmented thin-film heater provides better temperature control.
- 32 chromium heating elements formed on a silica substrate.
- Only a few volts required to change dispersion slope from +100 to -300 ps/nm^2 .



- Solid and dashed curves show power penalties with (filled circles) and without (empty circles) the dispersion equalizer.
- Recorded eye diagrams are shown at two data points (arrows).
- Tolerable dispersion range can be more than doubled.

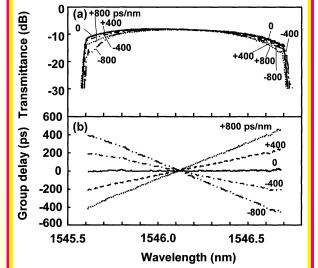
Back Close

Virtually Imaged Phased Array



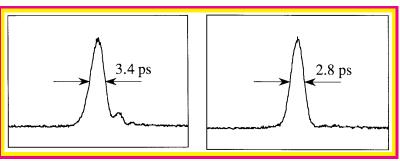
- A virtually imaged phased array can provide tunable dispersion.
- Signal is focused onto a tilted glass plate with 100% and 98% reflecting layers on its front and back surfaces.
- This arrangement creates multiple beams that appear to diverge from an array of virtual images.
- Interference among these beams produces output at an angle that varies with wavelength.

The Institute of **Virtually Imaged Phased Array** 0 (a)+800 ps/nm +400 -10 +400+800 -20 800



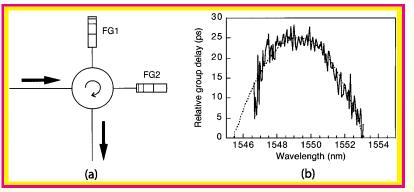
- Light is focused on a mirror that provides controllable wavelengthdependent group delay by moving the mirror along one axis.
- Dispersion can be varied from -800 to +800 ps/nm.

Higher-Order Dispersion Management



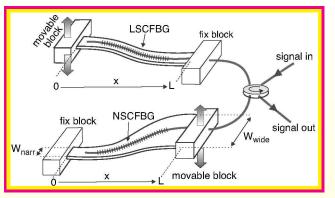
- Third-order dispersion requires $\beta_{31}L_1 + \beta_{32}L_2 = 0$.
- Necessary when short pulses are used at high bit rates.
- Cascaded MZ filters can be used for this purpose.
- Pulse distorted when a 2.1-ps pulse was transmitted over 100 km.
- Equalizing filter eliminated oscillatory tail and reduces pulse width to 2.8 ps.
- Residual increase in the pulse width is due to PMD.

Cascaded Chirped Fiber Gratings



- A nonlinearly chirped fiber grating can compensate TOD.
- Cascading of two chirped gratings ccomensates β_3 without affecting β_2 .
- One of the chirped grating is flipped so that the combination provides no net GVD.
- Their TOD contributions add up to produce a nearly parabolic shape for the relative group delay.

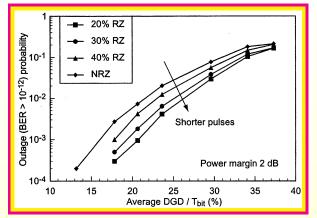
Cascaded Chirped Fiber Gratings



- A linearly strain-chirped fiber Bragg grating (LSCFBG) is cascaded with another that is nonlinearly chirped (NSCFBG).
- Both gratings are mounted on a substrate that could be bent by moving a block.
- It was possible to change only dispersion slope from 0 to -58 ps/nm^2 over a bandwidth of 1.7 nm.

377/549

PMD Problem



- A PMD-limited system is quantified through outage probability.
- Outage probability depends on data format; performance better for RZ format with shorter pulses.
- Outage probability $< 10^{-5}$ (5 min/year) is required.
- Average DGD should satisfy $\sigma_T < 0.1/B$.

378/549

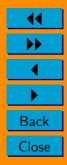
Need for PMD Compensation

• Average pulse broadening governed by the PMD parameter:

 $\sigma_T = D_p \sqrt{L}.$

- If we use $B\sigma_T = 0.1$, $B^2 L < (10 D_p)^{-2}$.
- In the case of "old" fiber links, $B^2L < 10^4 \ (Gb/s)^2$ -km, if we use $D_p = 1 \ ps/\sqrt{km}$ as a representative value.
- Such fibers require PMD compensation at B = 10 Gb/s when link length exceeds even 100 km.
- For modern fibers $D_p < 0.1 \text{ ps}/\sqrt{\text{km}}$. As a result, B^2L exceeds $10^6 \text{ (Gb/s)}^2\text{-km}$.
- PMD compensation is not necessary at 10 Gb/s but may be required at 40 Gb/s if the link length exceeds 600 km.

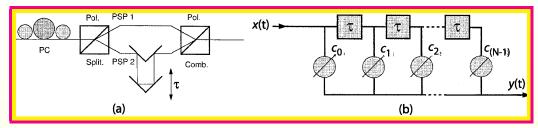
The Institute of



380/549

Back Close

PMD Compensation Techniques



- Schematic illustration of (a) optical and (b) electrical PMD compensators.
- Electrical PMD equalizer corrects for the PMD effects within the receiver using a transversal filter.
- This filter splits electrical signal x(t) into a number of branches using multiple delay lines to form $y(t) = \sum_{m=0}^{N-1} c_m x(t m\tau)$.
- Error signal for control electronics is based on closing of the "eye" at the receiver.

Optical PMD Compensation

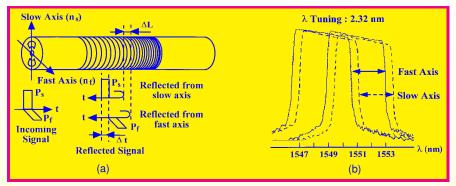
- PMD-distorted signal is separated into two components along PSPs, which are delayed by different amounts before being combined.
- Delay is adjustable in one branch through a variable delay line.
- A feedback loop is used to adjust polarization controller in response to changes in the fiber PSPs.
- The success of this technique depends on $L/L_{\rm PMD}$, where $L_{\rm PMD} = (T_0/D_p)^2$.
- Considerable improvement expected for $L < 4L_{PMD}$.
- $L_{
 m PMD} \sim$ 10,000 km for $D_p pprox 0.1$ ps/ $\sqrt{
 m km}$ and $T_0 = 10$ ps.
- Optical PMD compensators can work over transoceanic distances for 10-Gb/s systems.

The Institute

381/549

Back

Close



- A birefringent chirped fiber grating can be used.
- Because of birefringence, two components have different Bragg wavelengths and slightly shifted stop bands.
- Resulting DGD that can compensate for the PMD-induced DGD.
- This DGD is wavelength-dependent for a chirped grating.
- It can be tuned over 5 nm by stretching the grating.

The Institute of

Chapter 8: Nonlinearity Management

- Role of Fiber Nonlinearity
- Solitons in Optical Fibers
- Dispersion-Managed Solitons
- Pseudo-linear Lightwave Systems
- Intrachannel Nonlinear Effects
- High-Speed Lightwave Systems

Role of Fiber Nonlinearity

- In the absence of nonlinear effects, system performance is only limited by the SNR degradation induced by amplifier noise.
- Since SNR can be improved by increasing input optical power, link length can be made arbitrarily long.
- However, nonlinear effects are not negligible for long-haul systems when power levels exceed a few milliwats.
- Degradation induced by the nonlinear effects depends on the dispersion map employed.
- Different dispersion maps can lead to different Q factors.
- An optimum power level exists at which BER is the lowest and the system performs best.

Nonlinear Schrödinger Equation

• Propagation of an optical bit stream inside a dispersion-managed system is governed by the NLS equation:

$$i\frac{\partial A}{\partial z} - \frac{\beta_2}{2}\frac{\partial^2 A}{\partial t^2} + \gamma |A|^2 A = \frac{i}{2}(g_0 - \alpha)A.$$

• With the transformation $A(z,t) = \sqrt{P_0 p(z)} U(z,t)$, this equation becomes

$$i\frac{\partial U}{\partial z} - \frac{\beta_2}{2}\frac{\partial^2 U}{\partial t^2} + \gamma P_0 p(z)|U|^2 U = 0.$$

- P_0 = input peak power; $p(z) = \exp\left(\int_0^z [g_0(z) \alpha(z)] dz\right)$.
- $p(z_m) = 1$, where $z_m = mL_A$ is amplifier location.
- In the case of lumped amplifiers, $p(z) = \exp[-\int_0^z \alpha(z) dz]$.

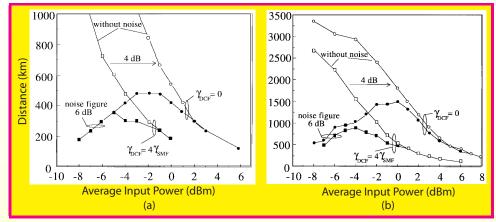
Back

Close

System Design Issues

- Two major design issues exist for a dispersion-managed system:
 - \star What is the optimum dispersion map?
 - \star Which modulation format provides the best performance?
- Both of them studied by solving the NLS equation numerically.
- Dispersion map: 50 km of standard fiber $[D = 16 \text{ ps/(km-nm)}, \alpha = 0.2 \text{ dB/km}, \text{ and } \gamma = 1.31 \text{ W}^{-1}/\text{km}]$ followed by 10 km of DCF $[D = -80 \text{ ps/(km-nm)}, \alpha = 0.5 \text{ dB/km}, \text{ and } \gamma = 5.24 \text{ W}^{-1}/\text{km}].$
- Optical amplifiers with 6-dB noise figure placed 60 km apart.
- Maximum transmission distance L calculated at which eye opening is reduced by 1 dB for a 40-Gb/s system.

The Institute o



- Results for (a) NRZ and (b) RZ formats.
- Without amplifier noise, distance can be increased by decreasing launched power (empty symbols).
- When noise is included, an optimum power level exists for which link length is maximum.
- This distance is <400 km for the NRZ format.

Back Close

The Institute of

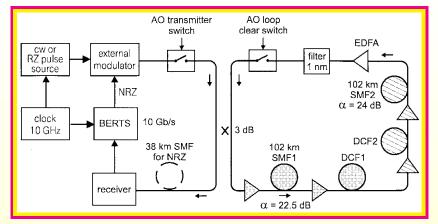
Nonlinear Effects Within DCF

- Reason: RZ-format pulses spread quickly and their peak power is reduced considerably.
- This reduction in the peak power lowers the impact of SPM.
- Buildup of nonlinear effects within DCFs also affects system performance.
- Even for RZ format, maximum distance is <900 km at a power of -4 dBm because of DCF-induced nonlinear degradation.
- Not only DCFs have a larger nonlinear parameter, pulses are also compressed inside them, resulting in much higher peak powers.
- If the nonlinear effects can be suppressed within DCF, maximum distance can be increased close to 1,500 km.

Back

Close

Recirculating Fiber Loop



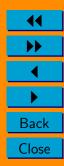
- Recirculating fiber loop used to demonstrate transmission of a 10-Gb/s signal over 2,040 km of standard fiber.
- Two 102-km sections of standard fiber and two 20-km DCFs used.
- A filter with a 1-nm bandwidth used to reduce ASE noise.
- Two acousto-optic switches control the the loop.

Back Close

The Institute of

System Design

- Perfect compensation of GVD in each map period is not the best solution in the presence of nonlinear effects.
- A numerical approach is used to optimize the design of dispersionmanaged lightwave systems.
- In a 1998 experiment, a 40-Gb/s signal was transmitted over 2,000 km of standard fiber using a novel dispersion map.
- Distance could be increased to 16,500 km at 10 Gb/s by placing amplifier right after the DCF.
- NRZ format can be used at 10 Gb/s but the RZ format is superior for lightwave systems operating at 40 Gb/s or more.

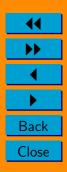


Semianalytic Approach

- Considerable insight possible by adopting a semianalytic approach based on a single Gaussian pulse (an isolated 1 bit).
- Using the moment or variational method, NLS equation is reduced to two coupled equations:

$$\frac{dT}{dz} = \frac{\beta_2(z)C}{T}, \qquad \frac{dC}{dz} = (1+C^2)\frac{\beta_2(z)}{T^2} + \frac{\gamma(z)p(z)E_0}{\sqrt{2\pi}T}.$$

- Details of loss and dispersion managements appear through z dependence of β_2 , γ , and p.
- For given values of three input pulse parameters $(T_0, C_0, \text{ and } E_0)$ these equations can be solved numerically.
- Pulse energy E_0 is related to average power as $P_{\rm av} = \frac{1}{2}BE_0 = (\sqrt{\pi}/2)P_0(T_0/T_b).$



391/549

Solution in the Linear Case

- Consider first the linear case by setting $\gamma(z) = 0$.
- *E*⁰ plays no role because pulse propagation is independent of input pulse energy.
- Moment equations can be solved analytically:

$$T^{2}(z) = T_{0}^{2} + 2\int_{0}^{z} \beta_{2}(z)C(z) dz, \quad C(z) = C_{0} + \frac{1+C_{0}^{2}}{T_{0}^{2}}\int_{0}^{z} \beta_{2}(z) dz.$$

• For a two-section dispersion map values of T and C at the end of the map period $z = L_{map}$ are given by

 $T_1 = T_0[(1+C_0d)^2 + d^2]^{1/2}, \qquad C_1 = C_0 + (1+C_0^2)d.$

• Parameter d is defined as $d = \frac{1}{T_0^2} \int_0^{L_{\text{map}}} \beta_2(z) dz = \frac{\overline{\beta}_2 L_{\text{map}}}{T_0^2}.$

The Institute of

150

100

50

0

n

-5

-15

-20└─ 0

Chirp Chirp

(b)

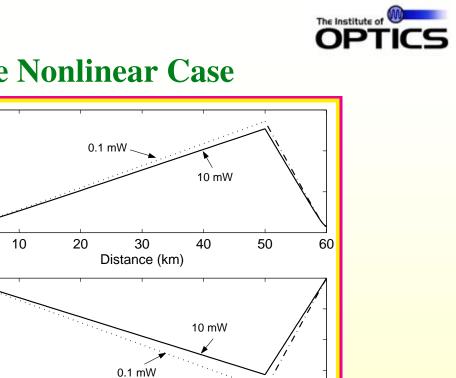
10

20

0

Width (ps)

(a)



Solution in the Nonlinear Case

• Nonlinear effects modify both width and chirp but changes are not large even for a 10-mW launched power.

30

Distance (km)

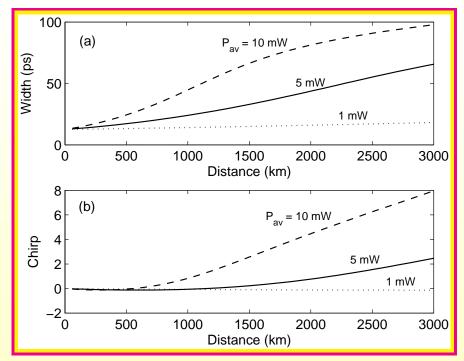
40

50

60

393/549

Buildup of Nonlinear Effects



• Even for $P_{av} = 5 \text{ mW}$, pulse width becomes larger than the bit slot after a distance of 1,000 km.

394/549

Soliton and Pseudo-linear Regimes

- Management of nonlinear effects is important.
- Parameters associated with dispersion map can be controlled to manage the nonlinearity problem.
- Two main techniques have evolved: Systems employing them are said to operate in the pseudo-linear and soliton regimes.
- It was noted in several experiments that a nonlinear system performs best when GVD compensation is only 90 to 95% .
- Solitons can form when residual dispersion is anomalous.
- Performance improved if input pulse is initially chirped such that $\bar{\beta}_2 C < 0.$
- This observation led to the adoption of the chirped RZ (CRZ) format used for pseudo-linear systems.

Normalized NLS equation

- Consider a lightwave system in which dispersion is compensated only at the transmitter and receiver ends.
- Introduce two length scales $L_D = T_0^2/|\beta_2|$ and $L_{\rm NL} = (\gamma P_0)^{-1}$.
- Using au as $au = t/T_0$, NLS equation becomes

$$iL_D \frac{\partial U}{\partial z} - \frac{s}{2} \frac{\partial^2 U}{\partial \tau^2} + \frac{L_D}{L_{\rm NL}} p(z) |U|^2 U = 0.$$

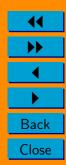
- $s = sign(\beta_2) = \pm 1$ depending on the sign of β_2 .
- For $\gamma = 2 \text{ W}^{-1}/\text{km}$, $L_{
 m NL} \sim 100 \text{ km}$ for P_0 of 2 to 4 mW.
- Dispersion length L_D can vary over a wide range (from ~ 1 to 10,000 km) depending on the bit rate of the system and type of fibers used.

Back Close

Soliton Regime

- If $L_D \gg L_{\rm NL}$ and $L < L_D$, dispersive effects play a minor role.
- This is the situation at a bit rate of 2.5 Gb/s or less.
- L_D exceeds 1,000 km at B = 2.5 Gb/s even for standard fibers and can exceed 10,000 km for dispersion-shifted fibers.
- If L_D and L_{NL} are comparable, dispersive and nonlinear terms are equally important in the NLS equation.
- This is the situation for 10-Gb/s systems. The use of solitons is most beneficial in the regime.
- A soliton-based system confines each pulse tightly to its bit slot through by a careful balance of GVD and SPM effects.
- Since GVD is used to offset the impact of nonlinear effects, dispersion is never fully compensated in soliton-based systems.

The Institute



Pseudo-linear Regime

- If $L_D \ll L_{\rm NL}$, dispersive effects dominate locally, and nonlinear effects can be treated in a perturbative manner.
- This situation is encountered at a bit rate of 40 Gb/s or more.
- If T_0 is <10 ps, L_D is reduced to below 5 km.
- Input pulses spread quickly over several neighboring bits.
- Extreme broadening reduces their peak power by a large factor.
- Nonlinear effects are reduced considerably because of averaging that produces a nearly constant total power in all bit slots.
- Overlapping of neighboring pulses enhances *intrachannel* nonlinear effects.

Soliton in Optical Fibers

- Solitons maintain their shape by balancing the dispersive and nonlinear effects.
- GVD broadens optical pulses except when the pulse is initially chirped such that $\beta_2 C < 0$.
- SPM imposes a chirp on the optical pulse such that C > 0.
- Soliton formation possible only when $\beta_2 < 0$.
- SPM and GVD can cooperate when input power is adjusted such that SPM-induced chirp just cancels GVD-induced broadening.
- Nonlinear Schrödinger Equation

$$i\frac{\partial A}{\partial z} - \frac{\beta_2}{2}\frac{\partial^2 A}{\partial t^2} + \gamma |A|^2 A = 0.$$

Properties of Solitons

• Introducing $\xi = z/L_d$, $\tau = t/T_0$, and $U = A/\sqrt{P_0}$:

 $i\frac{\partial U}{\partial \xi} \pm \frac{1}{2}\frac{\partial^2 U}{\partial \tau^2} + N^2|U|^2U = 0.$

• Its solution depends on a single parameter N defined as

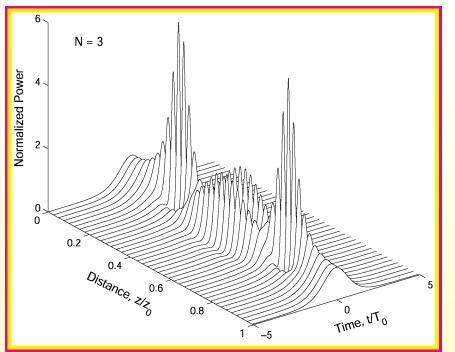
$$N^2 = L_D = L_D / L_{\rm NL} = \gamma P_0 T_0^2 / |\beta_2|.$$

- Dispersive and nonlinear lengths: $L_D = \frac{T_0^2}{|\beta_2|}, \ L_{\rm NL} = \frac{1}{\gamma P_0}.$
- The two are balanced when $L_{\rm NL} = L_D$ or N = 1.
- Input pulses of the form $u(0, \tau) = N \operatorname{sech}(\tau)$ evolve in a periodic fashion (inverse scattering method).

The Institute of

400/549

Soliton Evolution



- Pulses shape invariant for N = 1 (Fundamental soliton).
- Periodic evolution for N > 1 with period $z_0 = \frac{\pi}{2}L_D = \frac{\pi}{2}\frac{T_0^2}{|\beta_2|}$.

Fundamental Soliton Solution

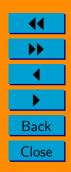
• For fundamental solitons, NLS equation becomes

$$i\frac{\partial u}{\partial \xi} + \frac{1}{2}\frac{\partial^2 u}{\partial \tau^2} + |u|^2 u = 0.$$

- If $u(\xi, \tau) = V(\tau) \exp[i\phi(\xi)]$, V satisfies $\frac{d^2V}{d\tau^2} = 2V(K V^2)$.
- Multiplying by $2\left(dV/d au
 ight)$ and integrating over au,

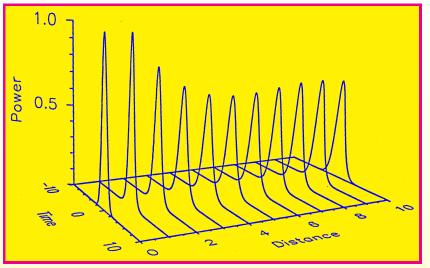
 $(dV/d\tau)^2 = 2KV^2 - V^4 + C.$

- C = 0 from the boundary condition $V \to 0$ as $|\tau| \to \infty$.
- Constant $K = \frac{1}{2}$ using V = 1 and $dV/d\tau = 0$ at $\tau = 0$.
- Final Solution: $u(\xi, \tau) = \operatorname{sech}(\tau) \exp(i\xi/2)$.



UNIVERSITY OF ROCHESTER

Stability of Fundamental Solitons



- Evolution of a Gaussian pulse with N = 1.
- Very stable; can be excited using any pulse shape.
- Nonlinear index $\Delta n = n_2 I(t)$ larger near the pulse center.
- Solitons is a temporal mode of a SPM-induced waveguide.

Loss-Managed Solitons

- Fiber losses destroy the balance needed for solitons.
- Soliton energy and peak power decrease along the fiber.
- Nonlinear effects become weaker and cannot balance dispersion completely.
- Pulse width begins to increase.
- Solution: Compensate losses periodically using amplifiers.
- Solitons sustained through periodic amplification are called loss-managed solitons.
- They must be launched with a higher energy.

Back

Close

The Institute of

Path-Averaged Solitons

• The NLS equation with losses included through p(z):

$$i\frac{\partial u}{\partial \xi} + \frac{1}{2}\frac{\partial^2 u}{\partial \tau^2} + p(z)|u|^2u = 0.$$

- Rapid variations in p(z) can destroy a soliton if its width changes rapidly.
- Solitons evolve little over a distance short compared with L_D .
- If $L_A \ll L_D$, width of a soliton remains virtually unchanged even if its peak power varies between two amplifiers.
- In effect, replace p(z) by its average value $\bar{p} = L_A^{-1} \int_0^{L_A} e^{-\alpha z} dz$.
- Fundamental soliton can be excited if input peak power P_s is larger by a factor of $1/\bar{p}$.

The Institute

Energy Enhancement Factor

• Energy enhancement factor for loss-managed solitons is given by

$$f_{\rm LM} = \frac{P_s}{P_0} = \frac{1}{\bar{p}} = \frac{\alpha L_A}{1 - \exp(-\alpha L_A)} = \frac{G \ln G}{G - 1}.$$

- Launched peak power must be larger by a factor $f_{\rm LM}$ for solitons to survive in lossy fibers.
- As an example, G=10 and $f_{\rm LM}\approx 2.56$ when $L_{\!A}=50$ km and lpha=0.2 dB/km.
- Condition $L_A \ll L_D$ must be satisfied for such soliton systems.
- The moment method can be used to study how fiber losses affect evolution of solitons.

The Institute of

Soliton Evolution in Lossy Fibers

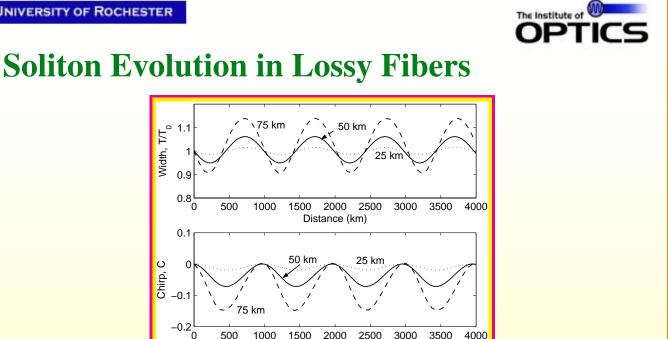
- Assume $U(z,t) = a \operatorname{sech}(t/T) \exp(-iCt^2/T^2 + i\phi)$.
- Using the moment method, we obtain:

$$\frac{dT}{dz} = \frac{\beta_2 C}{T}$$

$$\frac{dC}{dz} = \left(\frac{4}{\pi^2} + C^2\right)\frac{\beta_2}{T^2} + \frac{2\gamma p(z)E_0}{\pi^2 T}.$$

- Losses included through $p(z) = \exp(-\alpha z)$.
- If $\alpha = 0$, both derivatives vanish at z = 0 if $\beta_2 < 0$, C = 0 and $E_0 = 2|\beta_2|/(\gamma T_0)$.
- Using $E_0 = 2P_0T_0$, this occurs for $N = L_D/L_{\rm NL} = 1$.

••
>>
•
Back
Close



- Evolution of pulse with and chirp for when $L_D = 100$ km.
- For $L_A = 25$ km, width and chirp remain close to input values.

Distance (km)

- Width can change by more than 10% when $L_A = 75$ km.
- If $L_A/L_D > 1$, pulse width starts to increase exponentially.

408/549

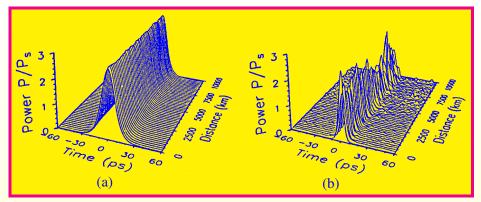
Numerical Evolution over Long Fiber Links

The Institut

409/549

Back

Close

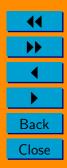


- Evolution of a loss-managed soliton over 10,000 km.
- Amplifier spacing is fixed at $L_A = 50$ km.
- Dispersion length L_D is varied by changing T_0 .
- When $L_D = 200$ km, soliton is preserved even after 10,000 km.
- If dispersion length is reduced to 25 km, soliton is unable to sustain itself.

Design of Soliton Systems

- Condition $L_A < L_D$ with $L_D = T_0^2/|\beta_2|$ leads to $T_0 > \sqrt{|\beta_2|L_A}$.
- T_0 must be a small fraction of $T_b = 1/B$ to ensure that neighboring solitons are well separated.
- This requirement can be used to relate T_0 to the bit rate B using $T_b = 2q_0T_0$.
- Typically, q_0 exceeds 4 to ensure pulse tails do not overlap.
- Using $T_0 = (2q_0B)^{-1}$, we obtain $B^2L_A < (4q_0^2|\beta_2|)^{-1}$.
- For $\beta_2 = -2 \text{ ps}^2/\text{km}$, $L_A = 50 \text{ km}$, and $q_0 = 5$, we obtain $T_0 > 10 \text{ ps}$ and B < 10 Gb/s.
- To operate at 10 Gb/s, one must reduce L_A if β_2 is kept fixed.

The Institute



Design of Soliton Systems

- Condition $L_A \ll L_D$ can be relaxed considerably by employing distributed amplification.
- A distributed-amplification scheme provides a nearly lossless fiber by compensating losses locally at every point along fiber link.
- Distributed Raman amplification was used by 1985.
- A 1988 experiment transmitted solitons over 4000 km using periodic Raman amplification.
- This experiment was the first to demonstrate that solitons can be transmitted over transoceanic distances.
- Main drawback is that Raman amplification requires pump lasers emitting more than 500 mW of power near 1.46 μ m.

Back Close

Dispersion-Managed solitons

- Dispersion management is employed commonly for modern WDM systems.
- Solitons can form even when β₂ varies along the link but their properties are quite different.
- A scheme proposed in 1987 relaxes the restriction $L_A \ll L_D$ by employing a new kind of fiber in which GVD varies along its length.
- Such fibers are called *dispersion-decreasing* fibers (DDFs).
- They are designed such that the decreasing GVD counteracts the reduced SPM experienced by solitons weakened from fiber losses.

Dispersion-Decreasing Fibers

- In the NLS equation β_2 is a function of z.
- Introducing $\xi = T_0^{-2} \int_0^z eta_2(z) dz$ and $\tau = t/T_0$,

$$i\frac{\partial U}{\partial \xi} + \frac{1}{2}\frac{\partial^2 U}{\partial \tau^2} + N^2(z)|U|^2U = 0.$$

• Here,
$$N^2(z) = \gamma P_0 T_0^2 p(z) / |\beta_2(z)|$$
.

- If $|\beta_2(z)| = |\beta_2(0)|p(z)$, N becomes a constant.
- Fiber losses then have no effect on a soliton.
- L_A can exceed L_D if GVD decreases between two amplifiers as $|\beta_2(z)| = |\beta_2(0)| \exp(-\alpha z)$.
- Under such conditions, a fundamental soliton maintains its shape and width even in a lossy fiber.

Dispersion-Decreasing Fibers

- Fibers with a nearly exponential GVD profile have been fabricated.
- A practical technique for making DDFs consists of reducing core diameter along fiber length during fiber-drawing process.
- Variations in fiber diameter reduce $|\beta_2|$.
- GVD can be varied by a factor of 10 over a length of 20 to 40 km with an accuracy better than 0.1 ps²/km.
- Propagation of solitons in DDFs has been observed in several experiments.
- Exponential GVD profile can be approximated with a staircase by splicing together several constant-dispersion fibers.
- Benefits of DDFs can be realized using just four fiber segments.

Periodic Dispersion Maps

- Use of dispersion management forces each soliton to propagate in the normal-dispersion regime of a fiber.
- At first sight, such a scheme should not even work because the normal-GVD fibers do not support solitons.
- It turns out that new kinds of solitons (called dispersion-managed solitons) can still form.
- Pulses then evolve in a linear fashion over a single map period.
- On a longer length scale, solitons form if SPM effects are balanced by the average dispersion.
- Not only the peak power but also the width and shape of such solitons oscillate in a periodic fashion.

Back Close

Input Pulse Parameters

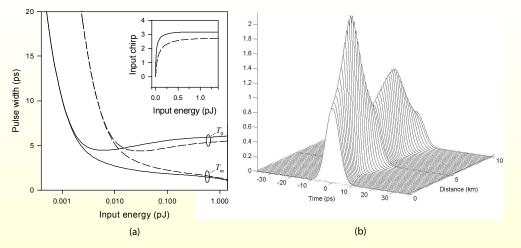
- Moment Equations can be used to study dispersion-managed solitons.
- Width and chirp equations should be solved with the periodic boundary conditions to ensure that a DM soliton recovers its initial state after each amplifier.
- Periodic boundary conditions fix the initial width T_0 and chirp C_0 of input pulses at z = 0.
- A new feature of DM solitons is that the input pulse width depends on the dispersion map and cannot be chosen arbitrarily.
- In general, input pulses must be chirped appropriately.
- Pulse parameters depends on the dispersion map used and should be determined numerically.

Back

Close

The Institute of

Input Pulse Parameters

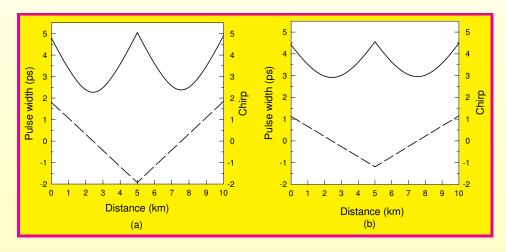


- (a) Changes in T_0 and T_m for $\alpha = 0$ (solid lines) and 0.25 dB/km (dashed lines). Inset shows input chirp C_0 .
- (b) Evolution of DM soliton over one map period for $E_0 = 0.1$ pJ. Dispersion Map: Two 5-km fiber sections with $\beta_2 = \mp 4$ ps²/km.
- Minimum pulse width T_m occurs in the anomalous-GVD section.

The Institute of

Periodic Width and Chirp Variations

- Both T_0 and T_m decrease rapidly as pulse energy is increased.
- T_0 attains its minimum value at a certain pulse energy E_c .
- T_0 and T_m differ by a large factor for $E_0 \gg E_c$.
- Pulse width changes considerably in each fiber section when this regime is approached. (a) $E_0 = 0.1$ pJ; (b) E_0 close to E_c .



↓
↓
Back
Close

Soliton System Design

- Many different DM solitons coexist for the same map with different values of E_0 , T_0 , and C_0 .
- How should one choose among these multiple solutions?
- Pulse energies much smaller than E_c should be avoided because a low average power would lead to SNR degradation.
- When $E_0 \gg E_c$, large variations in pulse width induce XPM-induced interaction between neighboring solitons.
- Region near $E_0 = E_c$ is most suited for designing DM soliton systems.
- Numerical solutions of the NLS equation confirm this conclusion.

Back

Close

Optimum Pulse Width

• Optimum values of T_0 can be found from the moment equations:

$$T_0 = T_{\text{map}} \sqrt{\frac{1+C_0^2}{|C_0|}}, \qquad T_{\text{map}} = \left(\frac{|\beta_{2n}\beta_{2a}l_nl_a|}{\beta_{2n}l_n - \beta_{2a}l_a}\right)^{1/2}.$$

- T_{map} is a parameter with dimensions of time involving only the map parameters.
- It provides a time scale associated with an arbitrary dispersion map.
- Minimum value of T_0 occurs for $|C_0| = 1$ and is given by $T_0^{\min} = \sqrt{2}T_{\max}$.
- Minimum pulse width $T_m = T_{map}$ under such conditions.

Back Close

The Institute o

Map Strength

- It is useful to look for other combinations of map parameters that play an important role in designing a DM soliton system.
- Two useful parameters are defined as

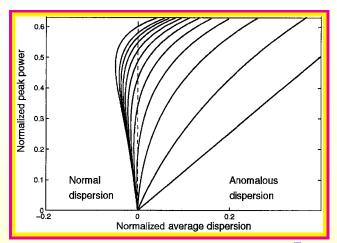
$$ar{eta}_2 = rac{eta_{2n}l_n + eta_{2a}l_a}{l_n + l_a}, \qquad S_{ ext{map}} = rac{eta_{2n}l_n - eta_{2a}l_a}{T_{ ext{FWHM}}^2}.$$

- $T_{\rm FWHM} \approx 1.665 T_m$ is the minimum FWHM.
- $\bar{\beta}_2$ represents average GVD of the entire link.
- Map strength S_{map} is a measure of how much GVD changes abruptly between two fibers in each map period.
- DM solitons can exist even when average GVD is normal provided map strength exceeds a critical value S_{cr} .

Back Close

The Institute o

Map Strength



- Peak power of DM solitons as a function of $\bar{\beta}_2/\beta_{2a}$.
- Map strength is zero for the rightmost curve, increases in step of 2 until 20, and becomes 25 for the leftmost curve.
- Periodic solutions in the normal-GVD regime exist if S_{map} exceeds 4.8.

422/549

Experiments with DM Solitons

- In a 1996 experiment, a periodic dispersion map enabled transmission of 20-Gb/s soliton bit stream over 5520 km.
- In another 20-Gb/s experiment, solitons were transmitted over 9,000 km.
- In a 1997 experiment, a 10-Gb/s signal was transmitted over 28,000 km using a fiber loop consisting of 100 km of normal-GVD fiber and 8 km of anomalous-GVD fiber.
- By 1999, 10-Gb/s DM solitons could be transmitted over 16,000 km of standard fiber.
- Solitons system work quite well at 10 Gb/s but their performance is less satisfactory at 40 Gb/s.

Back

Close

Timing Jitter

- Timing jitter problem severe for soliton-based systems.
- In the case of DM solitons, the moment method provides the following expression for it:

$$\sigma_t^2 = \frac{S_{ASE}T_m^2}{E_0} [N_A(1+C_0^2) + N_A(N_A-1)C_0d + \frac{1}{6}N_A(N_A-1)(2N_A$$

- N_A = Number of amplifiers; $d = \frac{1}{T_m^2} \int_0^{L_A} \beta_2(z) dz = \frac{\overline{\beta}_2}{T_m^2} L_A = \frac{L_A}{L_D}$.
- For $N_A \gg 1$, jitter is approximately given by

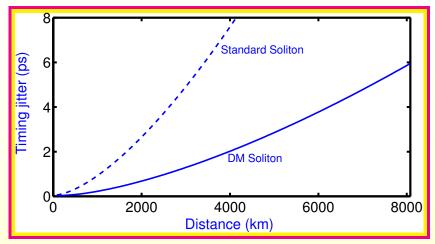
$$\frac{\sigma_t^2}{T_m^2} \approx \frac{S_{\text{ASE}}}{3E_0} N_A^3 d^2 = \frac{S_{\text{ASE}} L_T^3}{3E_0 L_D^2 L_A},$$

• $L_D = T_m^2 / |\bar{\beta}_2|$ and $N_A = L_T / L_A$.



424/549

Timing Jitter



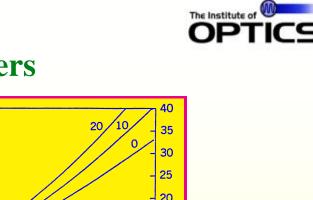
- ASE-induced timing jitter for a 20-Gb/s system.
- Jitter should be less than 10% of the bit slot (< 5 ps).
- Dispersion map consists of 10.5 km of anomalous-GVD fiber and 9.7 km of normal-GVD fiber $[D = \pm 4 \text{ ps}/(\text{km-nm})]$.

The Institute of

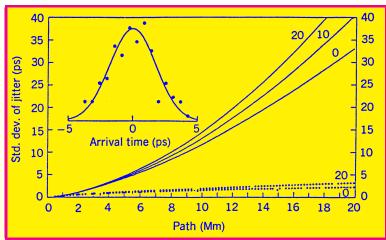
Control of Timing Jitter

- Optical filters can reduce timing jitter of solitons.
- Soliton bit stream passes through the filter but most of ASE is blocked by it.
- If an optical filter is placed after each amplifier, it improves the SNR as well as timing jitter.
- Filter technique can be improved by allowing the center frequency of filters to slide slowly along the link.
- Such *sliding-frequency* filters avoid accumulation of ASE within the filter bandwidth.
- As filter passband shifts, solitons shift their spectrum to minimize filter-induced losses.
- ASE noise accumulated over a few amplifiers is filtered out later.

The Institute



Sliding-Frequency Filters



- Timing jitter with (dotted curves) and without (solid curves) sliding-frequency filters.
- Inset shows a Gaussian fit to numerically simulated jitter at 10,000 km for a 10-Gb/s system.
- Bit-rate dependence is due to contribution of acoustic waves.

427/549

Synchronous Modulation

- Soliton jitter can also be controlled using synchronous amplitude modulation (implemented using a LiNbO₃ modulator).
- Technique works by introducing additional losses for those solitons that have shifted from their original position.
- Modulator forces solitons to move toward its transmission peak where the loss is minimum.
- This technique can also be implemented using a phase modulator.
- A frequency shift is associated with all time-dependent phase variations.
- Since a change in soliton frequency is equivalent to a change in the group velocity, phase modulation leads to temporal displacement.

Back Close

Postcompensation of Dispersion

- Postcompensation of accumulated dispersion can be used for reducing timing jitter.
- Cubic jitter term depends on the accumulated dispersion.
- If accumulated dispersion is compensated using fiber of length L_c and GVD β_{2c} , jitter becomes

$$\sigma_c^2 = N_A^3 d^2 T_m^2 (S_{\text{ASE}}/E_0) (y^2 - y + 1/3).$$

- $y = -d_c/(N_A d)$ is the fraction by which accumulated dispersion $N_A d$ is compensated.
- Minimum value occurs for y = 0.5. Timing jitter of solitons can be reduced by a factor of 2 by postcompensating accumulated dispersion by 50%.

Back

Close

Pseudo-linear Lightwave Systems

- Local dispersion length is much shorter than nonlinear length in all fiber sections of a pseudo-linear system.
- This approach is most suitable for systems operating at bit rates of 40 Gb/s or more.
- Relatively short pulses spread quickly over multiple bits.
- This spreading reduces peak power and lowers the impact of SPM.
- In one design, pulses spread throughout the link and are compressed back at the receiver end.
- In another, pulses are spread even before they are launched using a DCF (precompensation).

Design of Pseudo-linear Systems

- It is not essential to compensate dispersion only once at the transmitter or the receiver end.
- A periodic dispersion map can also be used.
- It is made such that the pulse broadens by a large factor in the first section and is compressed back in the second section.
- A small amount of dispersion is left uncompensated in each map period.
- This residual dispersion per span can be used to control the impact of intrachannel nonlinear effects.
- Combination of pre- and post-compensation is employed to improve further system performance.

Back

Close

Intrachannel Nonlinear Effects

- Optical pulses spread considerably outside their assigned bit slot in all pseudo-linear systems.
- They overlap and interact with each other through the nonlinear term in the NLS equation.
- Enhanced nonlinear interaction among the 1 bits of the same channel produces intrachannel nonlinear effects.
- If left uncontrolled, they limit performance of all pseudo-linear systems.
- Important question is whether pulse spreading helps to lower the overall impact of fiber nonlinearity.
- The answer to this question turned out to be yes.

433/549

0.

0

Back Close

Origin of Intrachannel Effects

- In a numerical approach, NLS equation is solved using a pseudorandom bit stream with the input $U(0,t) = \sum_{j=1}^{M} U_j(0,t-t_j)$.
- Considerable physical insight can be gained with a semi-analytic approach focusing on three neighboring pulses.
- Writing $U = U_1 + U_2 + U_3$ in the NLS equations, we obtain $i\frac{\partial U_1}{\partial z} - \frac{\beta_2}{2}\frac{\partial^2 U_1}{\partial t^2} + \gamma P_0 p(z)[(|U_1|^2 + 2|U_2|^2 + 2|U_3|^2)U_1 + U_2^2 U_3^*]$ $i\frac{\partial U_2}{\partial z} - \frac{\beta_2}{2}\frac{\partial^2 U_2}{\partial t^2} + \gamma P_0 p(z)[(|U_2|^2 + 2|U_1|^2 + 2|U_3|^2)U_2 + 2U_1U_2^*U_3]$ $i\frac{\partial U_3}{\partial z} - \frac{\beta_2}{2}\frac{\partial^2 U_3}{\partial t^2} + \gamma P_0 p(z)[(|U_3|^2 + 2|U_1|^2 + 2|U_2|^2)U_3 + U_2^2 U_1^*]$
- Last nonlinear term corresponds to four-wave mixing.

Intrachannel XPM

• Consider two isolated 1 bits by setting $U_3 = 0$:

$$i\frac{\partial U_n}{\partial z} - \frac{\beta_2}{2}\frac{\partial^2 U_n}{\partial t^2} + \gamma P_0 p(z)(|U_n|^2 + 2|U_{3-n}|^2)U_n = 0.$$

• Over a distance Δz , XPM shifts the phase by

$$\phi_n(z,t) = 2\gamma P_0 p(z) \Delta z |U_{3-n}(z,t)|^2.$$

 As this phase shift depends on pulse shape, it produces frequency chirp

$$\delta \omega_n \equiv -\frac{\partial \phi_n}{\partial t} = -2\gamma P_0 p(z) \Delta z \frac{\partial}{\partial t} |U_{3-n}(z,t)|^2.$$

• Similar to an ASE-induced frequency shift, XPM-induced frequency shift translates into a timing jitter.

The Institute of

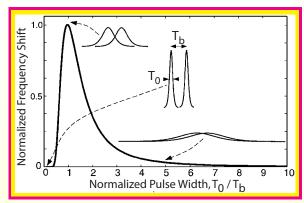
XPM-Induced Timing Jitter

- If all pulses were to shift in time by the same amount, this effect would be harmless.
- Because of XPM, time shift depends on the pattern of bits surrounding each pulse.
- This shift varies from bit to bit depending on the data transmitted.
- Pulses shift in their respective bit slots by random amounts (timing jitter).
- XPM also introduces amplitude fluctuations.
- A quantitative analysis of the XPM effects can be carried out with the moment method.
- Results of this approach reveal several interesting features.

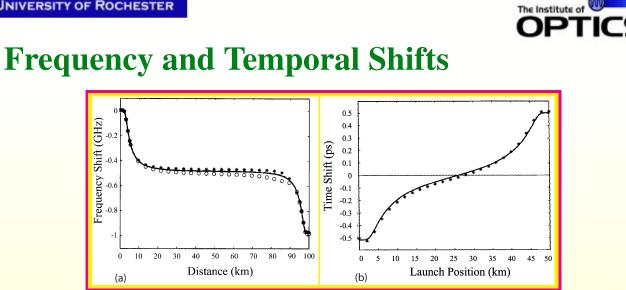
436/549

Back Close

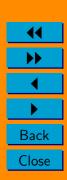
XPM-Induced Frequency Shift

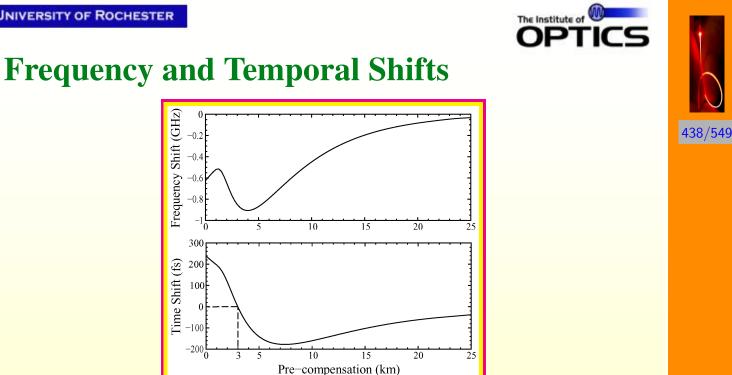


- Consider two Gaussian pulses separated by T_b .
- Frequency shift is largest when $T_0 \approx T_b$.
- Surprisingly, Δv is small for wide pulses.
- Frequency chirp depends on dP/dt. This slope is smaller for wider pulses and changes sign, resulting in an averaging effect.
- Stretching of optical pulses over multiple bit slots helps.



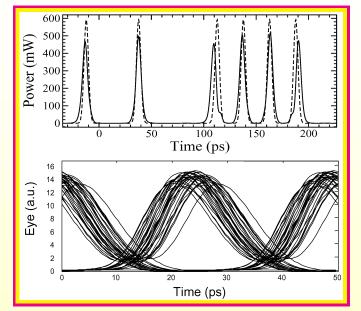
- A 100-km link with two 50-km sections ($D = \pm 10 \text{ ps/km/nm}$).
- (a) Frequency shift for two 5-ps pulses separated by 25 ps.
- (b) Change in pulse spacing as a function of launch position.
- Pulse position does not shift for a symmetric dispersion map as timing shifts produced in the two sections cancel each other.





- Frequency and time shifts after 100 km as a function of DCF length used for chirping input pulses.
- XPM-induced time shift can be cancelled by suitably chirping input pulses.

XPM-Induced Degradation



• 40-Gb/s bit stream in 80-km fiber with D = 4 ps/(km-nm).

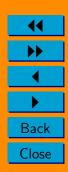
- Dashed curve shows for comparison the input bit stream.
- Output bit stream exhibits both amplitude and timing jitters.

The Institute of

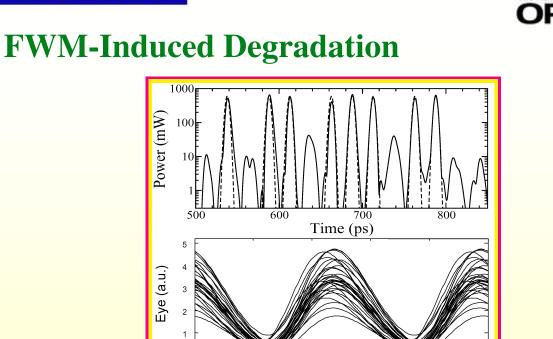
↓
↓
Back
Close

Intrachannel FWM

- Intrachannel FWM is of concern because it transfers energy from one pulse to neighboring pulses.
- It can create new pulses in bit slots that represent 0's and contain no pulse initially.
- Such FWM-generated pulses (called ghost pulses) are undesirable because they can lead to additional errors.
- Numerical simulations are often used to predict the impact of such ghost pulses.
- As an example, consider a 40-Gb/s system designed using 80 km of standard fiber with D = 17 ps/(km-nm).
- 5-ps chirped Gaussian input pulses propagate through the link.
- Bit stream is severely degraded only after 80 km.



440/549



441/549

The Institute of

• 40-Gb/s bit stream in 80-km fiber with D = 17 ps/(km-nm).

20

30

Time (ps)

40

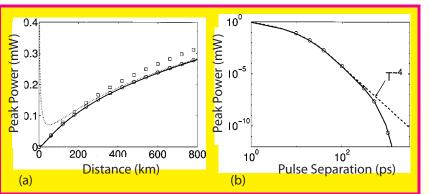
- Dashed curve shows for comparison the input bit stream.
- Ghost pulses degrade the eye diagram considerably.

10

442/549

The Institute of

Intrachannel FWM

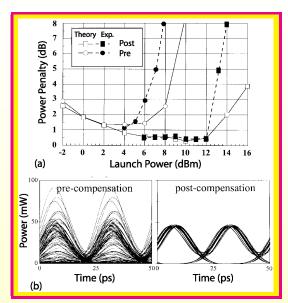


- Peak power of ghost pulse as a function of (a) link length L and (b) pulse separation T_b obtained analytically (solid curves).
- Dotted curves show an asymptotic approximation.
- Symbols show the results of numerical simulations.
- Total peak power at the end of a link of length L grows as $P_t(L) = P_g(L_{map})(L/L_{map})^2$.

Control of Intrachannel Nonlinear Effects

- Optimization of dispersion map can reduce the impact of intrachannel nonlinear effects.
- Two main choices: (i) dispersion accumulates along the link and is compensated using DCFs at the transmitter and receiver ends.
- (ii) Dispersion is compensated periodically at least partially.
- Both types of dispersion maps have been used for 40-Gb/s systems.
- In the first case, one has the choice of pre- or post-compensation.
- Next figure shows measured and calculated power penalties as a function of launched power for two choices.

Cmparison of Pre- and Post-compensation



• Eye diagrams are simulated numerically.

• Much higher powers could be launched in the case of postcompensation, while keeping the penalty below 0.5 dB.

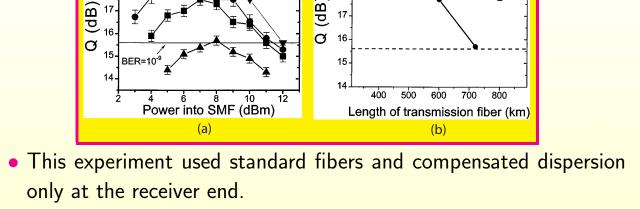
↓
↓
Back
Close

20

18

19-BER=10

Role of Amplifier Spacing



20

19

18

17

- It employed 2.5-ps pulses at 40-Gb/s with $L_A = 120$ km (left).
- For $L_A = 120$ km, system length was limited to 720 km.

-**w**– 360km

-720km

• Longer distances could be realized by reducing L_A to 80 km.

The Institute of

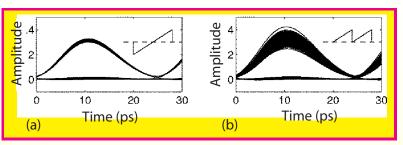
80-km spacing

120-km spacing

Optimization of Dispersion maps

- Optimization of a dispersion map is not a trivial task.
- It involves a large number of design parameters (lengths and dispersion of individual fibers used to make the map, the amount of pre- and post-compensation employed, pulse width, etc.).
- Extensive numerical simulations reveal several interesting features.
- When fiber dispersion is relatively small [D < 4 ps/(km-nm)], soliton regime works best with an RZ duty cycle near 50%.
- When dispersion is large along most of the link, pseudo-linear regime is more desirable for designing a 40-Gb/s system.
- Pseudo-linear systems are most suitable for old links made with standard fibers.

Back Close



- Can intrachannel nonlinear effects be controlled by optimizing a dispersion map? Answer: Yes.
- Both amplitude and timing jitter are reduced if dispersion map is symmetric: $d_a(z) = d_a(L-z)$, where $d_a(z) = \int_0^z D(z) dz$.
- This can be realized by compensating 50% of dispersion at transmitter and remaining 50% at receiver.
- Numerical simulations show eye diagrams for 2.5-ps pulses with a 25-ps bit slot propagated over 1,600 km of standard fiber.

Back Close

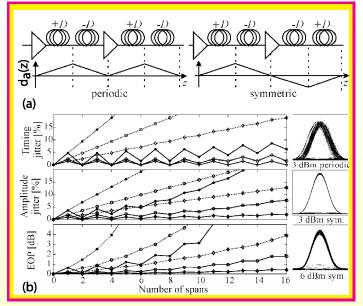
The Institute o

- Timing jitter results from XPM-induced frequency shifts that cancel for a symmetric map.
- Indeed, timing jitter would vanish in the absence of losses [p(z) = 1].
- Residual jitter is due to variations in the average power along the link when lumped amplifiers are used.
- How one one symmetrize the dispersion map?
- If a periodic dispersion map is made with two fiber sections of equal lengths, reversing two fibers in every alternate map period makes the map symmetric.

448/549

The Institute o

Symmetric Dispersion maps



- Timing and amplitude jitter over 16 spans (each 80 km long) for symmetric (solid) and asymmetric (dashed) links.
- Launched powers are 3, 6, and 9 dBm for diamonds, circles, and squares, respectively.

Back

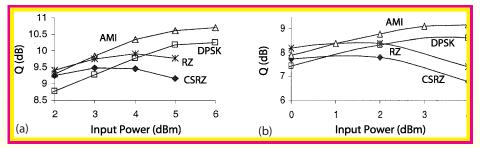
Close

The Institute of

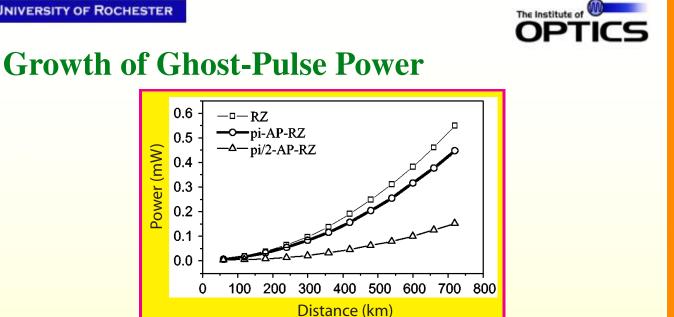
450/549

Back Close

Phase-Alternation Techniques



- Power dependence of Q factor found numerically for a 40-Gb/s channel at a distance of 1,000 km for four modulation formats.
- In (a) D = 19 ps/(km-nm) for the first and third 30-km sections but D = -28 ps/(km-nm) for the 40-km-long middle section.
- Map (b) employs 100 km of standard fiber with D = 17 ps/(km-nm) whose dispersion is compensated using DCFs.
- DPSK and AMI formats provide better performance compared with RZ and CSRZ formats.



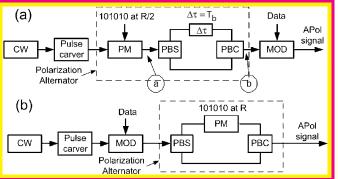
- Growth of power with distance for a 40-Gb/s signal (6.25-ps pulses) and three RZ-type formats.
- Power of ghost pulses depends on phases of neighboring bits.
- AP-RZ format works best because a $\pi/2$ phase difference minimizes buildup of ghost pulses.

451/549

Polarization Bit Interleaving

- This technique alternates polarization of neighboring bits.
- Both XPM and FWM processes depend on the state of polarization of interacting waves.
- If neighboring bits are polarized orthogonally, their impact is reduced considerably.
- Bit interleaving was first used in 1991 for reducing interaction between neighboring solitons.
- In a different approach, neighboring channels in a WDM system are orthogonally polarized to reduce channel crosstalk.
- Reduction of Intrachannel nonlinear effects requires that neighboring bits of the same channel be polarized orthogonally.

The Institute

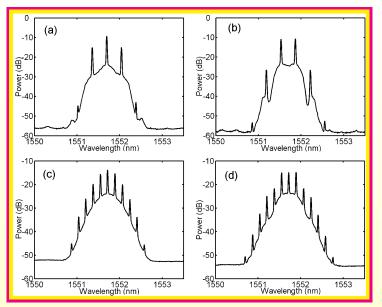


- Two schemes used for for polarization bit interleaving.
- In (a) phase modulator first imposes phase shift on pulse train.
- This train is split into polarization components that are combined back after one bit delay. A data modulator codes the RZ signal.
- In (b) pulse train is first coded with data, then split into its components that are combined back after a phase modulator imposes phase shift on one of the components.

Back Close

The Institute of

Spectra for Four Modulation Formats

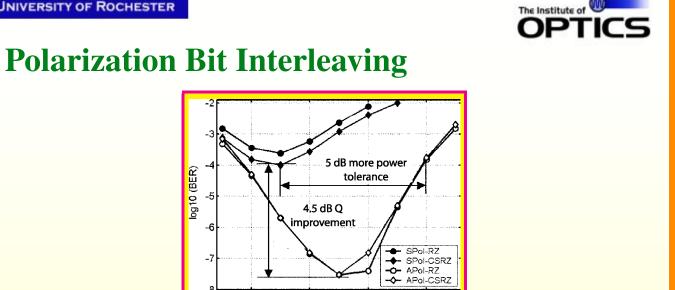


• Spectra of standard (a) RZ and (b) CSRZ signals.

• Modified spectra of (c) RZ and (d) CSRZ signals when neighboring bits are orthogonally polarized.

The Institute of

↓
↓
Back
Close



• BER at a distance of 2,000 km for the four formats whose spectra are shown in previous Figure.

Launch power (dBm)

0

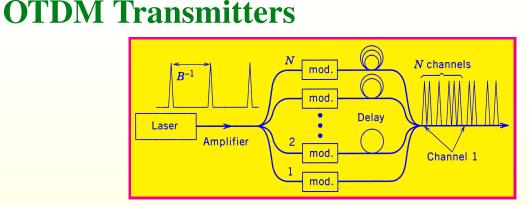
-2

- Q^2 factor improves by 4.5 dB when neighboring bits are orthogonally polarized.
- With polarization alternation, intrachannel nonlinear impairments are reduced significantly and lead to a much lower BER.

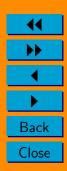
455/549

High-Speed Lightwave Systems

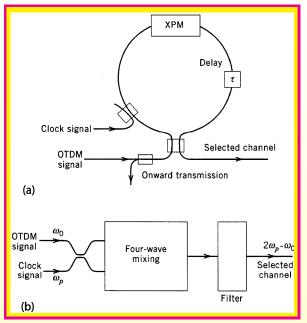
- If intrachannel nonlinear effects can be controlled, it is possible to increase the bit rate beyond 40 Gb/s.
- Such optical signals cannot be generated electrically because of limitations imposed by high-speed electronics.
- Time-division multiplexing (TDM) is employed to create bit streams at data rates higher than 40 Gb/s.
- Optical TDM (OTDM) has been used to transmit data at a single carrier wavelength at bit rates as high as 1.128 Tb/s.
- Use of OTDM requires new types of transmitters and receivers for all-optical multiplexing and demultiplexing.



- A laser emitting a pulse train at bit rate B is used.
- Pulse width T_p shouls satisfy $T_p < T_b = (NB)^{-1}$ to ensure that each pulse will fit within its allocated time slot T_b .
- Laser output is split into N branches.
- Bit stream in the *n*th branch is delayed by (n-1)/(NB).
- The output of all branches is combined to form a composite signal.



OTDM Receivers



- Demultiplexing schemes: (a) XPM within a Sagnac interferometer and (b) FWM inside a nonlinear medium.
- A semiconductor optical amplifier also used in place of fiber.

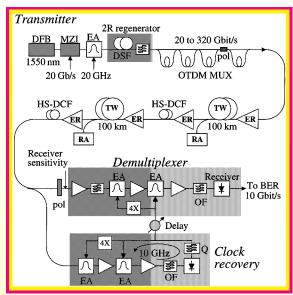
→
Back
Close

Performance of OTDM Systems

- Transmission distance of OTDM systems is limited by fiber dispersion because of the use of short optical pulses.
- A 200-Gb/s system is limited to <50 km even even when $\beta_2 = 0$.
- OTDM systems require simultaneous compensation of both second- and third-order dispersions.
- Even then, PMD is a limiting factor and its compensation is necessary.
- Intrachannel nonlinear effects also limit performance.
- By 1999, operation at 3 Tb/s was realized by combining 19 channels operating at 160 Gb/s.

Back Close

Performance of OTDM Systems



• Schematic of a 320-Gb/s OTDM experiment over 200 km.

• In 2000, a 1.28-Tb/s ODTM signal was transmitted over 70 km, but it required compensation of fourth-order dispersion.

The Institute of

↓
↓
Back
Close