



# **Optical Communication Systems (OPT428)**

#### Govind P. Agrawal

Institute of Optics University of Rochester Rochester, NY 14627

©2007 G. P. Agrawal



# **Chapter 5: Signal Recovery and Noise**

- Noise Added during Photodetection
- Signal-to-Noise Ratio (SNR)
- Bit Error Rate (BER)
- Sensitivity Degradation
- Forward Error Correction (FEC)









# **Optical Receivers**



- Front end converts optical signal into electrical form.
- Linear channel amplifies and filters the electrical signal.
- Data recovery section creates electrical bit stream using clockrecovery and decision circuits.



208/549



- A clock-recovery circuit isolates the frequency f = B from the received signal.
- The clock helps to synchronize the decision process.
- Decision circuit compares the output to a threshold level at sampling times set by the clock.
- Eye diagram is useful for system monitoring.
- The best sampling time corresponds to maximum eye opening.



The Institute of



### **Shot Noise**

- Photocurrent,  $I(t) = I_p + i_s(t)$ , fluctuates because electrons are generated at random times.
- Average current  $I_p = R_d P_{in}$ ;  $R_d = \eta q / h v_0$ ;  $\eta$  represents quantum efficiency of photodetector.
- Current fluctuations occur such that  $\langle i_s(t)
  angle=0$  and

$$\langle i_s(t)i_s(t+\tau)\rangle = \int_{-\infty}^{\infty} S_s(f) \exp(2\pi i f \tau) df.$$

- White noise: Spectral density  $S_s(f)$  constant.
- Noise variance:  $\sigma_s^2 = \int_{-\infty}^{\infty} S_s(f) df = 2qI_p \Delta f$ .
- Effective noise bandwidth  $\Delta f$  is related to detector bandwidth.
- Adding the contribution of dark current  $I_d$

 $\sigma_s^2 = 2q(I_p + I_d)\Delta f.$ 







# **Thermal noise**

- Additional fluctuations occur at any finite temperature because of thermal motion of electrons in any resistor.
- Total current:  $I(t) = I_p + i_s(t) + i_T(t)$ .
- Spectral density  $S_T(f) = 2k_BT/R_L$  depends on temperature and load resistor  $R_L$ .
- Noise variance:  $\sigma_T^2 = \int_{-\infty}^{\infty} S_s(f) df = (4k_BT/R_L)\Delta f.$
- Amplifier noise: All electrical amplifiers enhance thermal noise by the amplifier noise figure  $F_n$ .
- Total thermal noise:  $\sigma_T^2 = (4k_BT/R_L)F_n\Delta f$ .
- Total Receiver Noise:

 $\sigma^2 = \sigma_s^2 + \sigma_T^2 = 2q(I_p + I_d)\Delta f + (4k_BT/R_L)F_n\Delta f.$ 



The Institute of





#### **Signal-to-Noise Ratio**



$$\mathrm{SNR} = \frac{I_p^2}{\sigma^2} = \frac{R_d^2 P_{\mathrm{in}}^2}{2q(R_d P_{\mathrm{in}} + I_d)\Delta f + 4(k_B T/R_L)F_n\Delta f}.$$

Increase in SNR with received power  $P_{\rm in}$  for three values of  $\sigma_T$  for a receiver bandwidth of 30 GHz.



212/549

### **Thermal-Noise Limit**

• In the limit  $\sigma_T \gg \sigma_s$ , SNR becomes:

$$\mathrm{SNR} = \frac{R_L R_d^2 P_{\mathrm{in}}^2}{4k_B T F_n \Delta f}.$$

 Noise-equivalent power: Defined as the minimum optical power per unit bandwidth required to produce SNR = 1:

$$\text{NEP} = \frac{P_{\text{in}}}{\sqrt{\Delta f}} = \left(\frac{4k_B T F_n}{R_L R_d^2}\right)^{1/2} = \frac{h\nu}{\eta q} \left(\frac{4k_B T F_n}{R_L}\right)^{1/2}.$$

- NEP is often used to quantify thermal noise.
- Typical values of NEP are in the range of 1 to 10 pW/ $\sqrt{\text{Hz}}$ .
- Optical power needed to realize a specific value of SNR obtained from  $P_{\rm in} = (\text{NEP}\sqrt{\Delta f})\text{SNR}.$



The Institute of



# **Shot-Noise Limit**

• In the opposite limit,  $\sigma_s \gg \sigma_T$ :

$$\mathrm{SNR} = rac{R_d P_{\mathrm{in}}}{2q\Delta f} = rac{\eta P_{\mathrm{in}}}{2hv\Delta f}.$$

- It is possible to express SNR in terms of the number of photons  $N_p$  contained in a single 1 bit.
- Pulse energy:  $E_p = N_p h v$ .
- Optical power for a bit of duration  $T_B = 1/B$ :  $P_{in} = N_p h v B$ .
- Receiver bandwidth for NRZ bit stream:  $\Delta f = B/2$ .
- Putting it all together,  $\mathsf{SNR} = \eta N_p \approx N_p$ .
- At 1.55- $\mu$ m,  $P_{in} \approx 130$  nW is needed at 10 Gb/s to realize SNR = 20 dB ( $N_p = 100$ ).



The Institute



#### **APD Receivers**

• Average current larger for an APD by the gain factor M:

 $I_p = MR_d P_{\rm in} = R_{\rm APD} P_{\rm in}.$ 

- Thermal noise unchanged but shot noise enhanced by a factor  $F_A$  known as excess noise factor.
- Shot-noise variance:  $\sigma_s^2 = 2qM^2F_A(R_dP_{\rm in} + I_d)\Delta f$ .
- Signal-to-Noise Ratio for an APD receiver:

 $\operatorname{SNR} = \frac{I_p^2}{\sigma_s^2 + \sigma_T^2} = \frac{(MR_dP_{\rm in})^2}{2qM^2F_A(R_dP_{\rm in} + I_d)\Delta f + 4(k_BT/R_L)F_n\Delta f}.$ 

• SNR is larger for APDs because thermal noise dominates in practice.







40

35

SNR (dB) 05

25

20 L -20

-18



-8

-10

-6

-4

• Increase in SNR with received power  $P_{in}$  for three values of APD gain M for 30-GHz bandwidth.

-12

Received Power (dBm)

-14

• Excess noise factor F<sub>A</sub> depend on APD gain as  $F_A(M) = k_A M + (1 - k_A)(2 - 1/M).$ 

-16





# **Optimum APD gain**

• Thermal-Noise Limit  $(\sigma_T \gg \sigma_s)$ :

 $SNR = (R_L R_d^2 / 4k_B T F_n \Delta f) M^2 P_{in}^2.$ 

• Shot-Noise Limit  $(\sigma_s \gg \sigma_T)$ :

$$SNR = rac{R_d P_{in}}{2qF_A\Delta f} = rac{\eta P_{in}}{2h\nu F_A\Delta f}.$$

- SNR can be maximized by optimizing the APD gain *M*.
- Setting d(SNR)/dM = 0, the optimum APD gain satisfies

$$k_A M_{\text{opt}}^3 + (1 - k_A) M_{\text{opt}} = \frac{4k_B T F_n}{q R_L (R_d P_{\text{in}} + I_d)}.$$

• Approximate solution:  $M_{\text{opt}} \approx \left[\frac{4k_B T F_n}{k_A q R_L (R_d P_{\text{in}} + I_d)}\right]^{1/3}$ .



Back Close

The Institute of



# **Optimum APD Gain (continued)**



- $M_{\text{opt}}$  plotted as a function of  $P_{\text{in}}$  for several values of  $k_A$ .
- Parameter values correspond to a typical 1.55- $\mu$ m APD receiver.
- Performance improved for APDs when  $k_A \ll 1$ .



218/549





- BER =  $p(1)P(0/1) + p(0)P(1/0) = \frac{1}{2}[P(0/1) + P(1/0)].$
- P(0/1) =conditional probability of deciding 0 when 1 is sent.
- Since p(1) = p(0) = 1/2, BER  $= \frac{1}{2}[P(0/1) + P(1/0)]$ .
- Common to assume Gaussian statistics for the current.



Back Close

The Institute of



#### **Bit Error Rate (continued)**

• P(0/1) = Area below the decision level  $I_D$ 

$$P(0/1) = \frac{1}{\sigma_1 \sqrt{2\pi}} \int_{-\infty}^{I_D} \exp\left(-\frac{(I-I_1)^2}{2\sigma_1^2}\right) dI = \frac{1}{2} \operatorname{erfc}\left(\frac{I_1 - I_D}{\sigma_1 \sqrt{2}}\right)$$

• P(1/0) =Area above the decision level  $I_D$ 

$$P(1/0) = \frac{1}{\sigma_0 \sqrt{2\pi}} \int_{I_D}^{\infty} \exp\left(-\frac{(I-I_0)^2}{2\sigma_0^2}\right) dI = \frac{1}{2} \operatorname{erfc}\left(\frac{I_D - I_0}{\sigma_0 \sqrt{2}}\right)$$

- Complementary error function  $\operatorname{erfc}(x) = \frac{2}{\sqrt{\pi}} \int_x^\infty \exp(-y^2) dy$ .
- Final Answer

BER = 
$$\frac{1}{4} \left[ \operatorname{erfc} \left( \frac{I_1 - I_D}{\sigma_1 \sqrt{2}} \right) + \operatorname{erfc} \left( \frac{I_D - I_0}{\sigma_0 \sqrt{2}} \right) \right].$$



220/549



#### **Role of Decision Level**



- BER depends on the decision threshold  $I_D$ .
- *I<sub>D</sub>* is optimized in practice to reduce the BER.





#### **Minimum Bit Error Rate**

- Minimize BER by setting  $d(BER)/dI_D = 0$ .
- Minimum BER occurs when  $I_D$  is chosen such that

$$\frac{(I_D - I_0)^2}{2\sigma_0^2} = \frac{(I_1 - I_D)^2}{2\sigma_1^2} + \ln\left(\frac{\sigma_1}{\sigma_0}\right).$$

Last term is negligible in most cases, and

$$(I_D - I_0)/\sigma_0 = (I_1 - I_D)/\sigma_1 \equiv Q.$$
  
$$I_D = \frac{\sigma_0 I_1 + \sigma_1 I_0}{\sigma_0 + \sigma_1}, \qquad Q = \frac{I_1 - I_0}{\sigma_1 + \sigma_0}$$

• Final Expression

BER = 
$$\frac{1}{2}$$
 erfc  $\left(\frac{Q}{\sqrt{2}}\right) \approx \frac{\exp(-Q^2/2)}{Q\sqrt{2\pi}}$ .





**Q** Parameter



•  $Q = \frac{I_1 - I_0}{\sigma_1 + \sigma_0}$  is a measure of SNR.

- Q > 6 required for a BER of  $< 10^{-9}$ .
- Q = 7 provides a BER of  $< 10^{-12}$ .





223/549

### **Minimum Average Power**

- Receiver sensitivity = Minimum average power needed to keep the BER below a certain value ( $< 10^{-9}$ ).
- We need to relate Q parameter to incident optical power.
- Assume 0 bits carry no optical power so that  $P_0 = I_0 = 0$ .
- $I_1 = MR_d P_1 = 2MR_d \bar{P}_{rec}$ , where  $\bar{P}_{rec} = (P_1 + P_0)/2$ .
- Including both shot and thermal noise,

$$\sigma_1 = (\sigma_s^2 + \sigma_T^2)^{1/2}$$
 and  $\sigma_0 = \sigma_T$ ,  
 $\sigma_s^2 = 2qM^2F_AR_d(2\bar{P}_{rec})\Delta f$ ,  $\sigma_T^2 = (4k_BT/R_L)F_n\Delta f$ 

• Using these results

$$Q = \frac{I_1}{\sigma_1 + \sigma_0} = \frac{2MR_d\bar{P}_{\text{rec}}}{(\sigma_s^2 + \sigma_T^2)^{1/2} + \sigma_T}.$$



The Institute o



# **Receiver Sensitivity**

• Solving for received power, we obtain

$$\bar{P}_{
m rec} = rac{Q}{R_d} \left( q F_A Q \Delta f + rac{\sigma_T}{M} 
ight).$$

- For a p-i-n receiver, we set M = 1.
- Since thermal noise dominates for such a receiver,

 $\bar{P}_{\rm rec} \approx Q \sigma_T / R_d.$ 

- Using  $R \approx 1$  A/W near 1.55  $\mu$ m,  $\bar{P}_{rec} = Q\sigma_T$ .
- As an example, if we use  $R_d = 1$  A/W,  $\sigma_T = 100$  nA, and Q = 6, we obtain  $\bar{P}_{rec} = 0.6 \ \mu$ W or -32.2 dBm.



Back Close

The Institute of

#### **APD Receiver Sensitivity**

- Receiver sensitivity improves for APD receivers.
- If thermal noise dominates,  $\bar{P}_{\rm rec}$  is reduced by a factor of M.
- When shot and thermal noise are comparable, receiver sensitivity can be optimized by adjusting the APD gain *M*.
- $\bar{P}_{\rm rec}$  is minimum for an optimum value of M:

$$M_{\text{opt}} = k_A^{-1/2} \left( \frac{\sigma_T}{Qq\Delta f} + k_A - 1 \right)^{1/2} \approx \left( \frac{\sigma_T}{k_A Qq\Delta f} \right)^{1/2}$$

Best APD responsivity

$$\bar{P}_{\rm rec} = (2q\Delta f/R)Q^2(k_A M_{\rm opt} + 1 - k_A).$$



226/549

# **Number of Photons/Bit**

- Receiver sensitivity can be expressed in terms of number of photons  $N_p$  contained within a single 1 bit.
- In the shot-noise limit,  $I_0=0$  and  $\sigma_0=0$  when 0 bits carry no power, and  $Q=I_1/\sigma_1=({
  m SNR})^{1/2}.$

• SNR related to 
$$N_p$$
 as SNR  $pprox \eta N_p$ , or

 $\mathrm{BER} = \frac{1}{2} \mathrm{erfc} \left( \sqrt{\eta N_p / 2} \right).$ 

- For  $\eta = 1$ , BER =  $1 \times 10^{-9}$ ,  $N_p = 36$ . Thus, 36 photons are sufficient in the shot-noise limit.
- In practice, most optical receivers require  $N_p > 1000$  because of thermal noise.



The Institute o





# **Quantum Limit of Photodetection**

- The BER obtained in the shot-noise limit not totally accurate.
- Its derivation based on the Gaussian approximation for noise.
- Poisson statistics should be used for small number of photons.
- For an ideal detector (no thermal noise, no dark current, and η = 1),
   0 bits produce no photons, and σ<sub>0</sub> = 0.
- Error occurs only if 1 bit fails to produce even one electron.
- Probability of generating *m* electrons:  $P_m = \exp(-N_p)N_p^m/m!$ .
- Since  $P(0/1) = \exp(-N_p)$ , BER =  $\exp(-N_p)/2$ .
- $N_p = 20$  for BER =  $1 \times 10^{-9}$  (10 photons/bit on average).
- $\bar{P}_{rec} = N_p h v B / 2 = \bar{N}_p h v B = 13 \text{ nW or } -48.9 \text{ dBm at } B = 10 \text{ Gb/s.}$



Back Close

### **Sensitivity Degradation**

- Real receivers need more power than  $\bar{P}_{\rm rec}$ .
- Increase in power is referred to as power penalty.
- In decibel units, power penalty is defined as

Power Penalty =  $10 \log_{10} \left( \frac{\text{Increased Power}}{\text{Original Power}} \right).$ 

- Several mechanisms degrade the receiver sensitivity.
  - \* Finite Extinction ratio ( $P_0 \neq 0$ )
  - $\star$  Intensity Noise of received optical signal
  - $\star$  Pulse broadening induced by fiber dispersion
  - **\*** Timing Jitter of electronic circuits







#### **Finite Extinction Ratio**

- Extinction ratio is defined as  $r_{\rm ex} = P_0/P_1$ .
- Power penalty can be obtained by calculating Q parameter.
- For a p-i-n receiver  $I_1 = R_d P_1$  and  $I_0 = R_d P_0$ .
- Using  $\bar{P}_{\rm rec} = (P_1 + P_0)/2$ ,

$$Q = \left(\frac{1 - r_{\rm ex}}{1 + r_{\rm ex}}\right) \frac{2R_d \bar{P}_{\rm rec}}{\sigma_1 + \sigma_0}$$

- In thermal noise limit,  $\sigma_1 \approx \sigma_0 \approx \sigma_T$ .
- Received power for a finite extinction ratio

$$\bar{P}_{\rm rec}(r_{\rm ex}) = \left(\frac{1+r_{\rm ex}}{1-r_{\rm ex}}\right) \frac{\sigma_T Q}{R_d}.$$









Back Close

$$\delta_{\rm ex} = 10 \log_{10} \left( \frac{\bar{P}_{\rm rec}(r_{\rm ex})}{\bar{P}_{\rm rec}(0)} \right) = 10 \log_{10} \left( \frac{1 + r_{\rm ex}}{1 - r_{\rm ex}} \right).$$

1-dB penalty occurs for  $r_{\rm ex} = 0.12$ ; increases to 4.8 dB for  $r_{\rm ex} = 0.5$ .

# 

### **Intensity Noise of Lasers**

- So far, incident optical power is assumed to be constant.
- In practice, all lasers exhibit intensity noise.
- Optical amplifiers add additional power fluctuations.
- Receiver converts power fluctuations into current fluctuations, which add to those resulting from shot and thermal noise.
- Total noise variance can be written as

$$\sigma^2 = \sigma_s^2 + \sigma_T^2 + \sigma_I^2.$$

- Intensity noise  $\sigma_I = R_d \langle (\Delta P_{in}^2) \rangle^{1/2} = R_d P_{in} r_I$ ,  $r_I = \langle \Delta P_{in}^2 \rangle \rangle^{1/2} / P_{in}$ .
- Parameter  $r_I$  related to the RIN of a laser as

$$r_I^2 = \frac{1}{2\pi} \int_{-\infty}^{\infty} \operatorname{RIN}(\boldsymbol{\omega}) d\boldsymbol{\omega}.$$





# **Intensity Noise (continued)**

- Consider a p-i-n receiver with  $I_1 = R_d P_1$  and  $I_0 = 0$ .
- Using  $\bar{P}_{\rm rec} = (P_1 + P_0)/2$

$$Q = \frac{2R_d\bar{P}_{\rm rec}}{(\sigma_T^2 + \sigma_s^2 + \sigma_I^2)^{1/2} + \sigma_T}$$

• Optical power required for a finite intensity noise

$$\bar{P}_{\rm rec}(r_I) = \frac{Q\sigma_T + Q^2 q\Delta f}{R_d(1 - r_I^2 Q^2)}.$$

• Power penalty is found to be

$$\delta_I = -10 \log_{10}(1 - r_I^2 Q^2).$$









#### **Intensity Noise (continued)**



• A 2-dB penalty occurs for  $r_I = 0.1$ .

- Penalty becomes infinite when  $r_I > Q^{-1}$  (BER floor).
- In practice,  $r_I < 0.01$  (power penalty negligible).

↓
↓
Back
Close

234/549

# **Dispersive Pulse Broadening**

- Pulse energy in the bit slot decreases with pulse broadening.
- Receiver requires more average power to maintain SNR.
- For Gaussian pulses, peak power is reduced by the pulse broadening factor  $f_b$  found in Chapter 3.
- $f_b^2 = 1 + (DL\sigma_{\lambda}/\sigma_0)^2$  when source bandwidth dominates.
- $\sigma_0$  is related to duty cycle  $d_c$  as  $4\sigma_0 = d_c T_b$ .
- Using  $\sigma = (4B)^{-1}$ , power penalty is given by

 $\delta_d = 10 \log_{10} f_b = 5 \log_{10} [1 + (4BLD\sigma_{\lambda}/d_c)^2].$ 

• For a narrowband source and unchirped Gaussian pulses

 $\delta_d = 5 \log_{10}[1 + (8\beta_2 B^2 L/d_c^2)^2].$ 



235/549

The Institute





#### **Dispersive Pulse Broadening**

7

6

Power Penalty (dB)

2

1

0

0.02

0.04

• Power penalty negligible for  $\mu = |\beta_2|B^2L < 0.05$  and  $d_c > 0.5$ .

0.1

 $|\beta_2|B^2L$ 

0.12

0.14

0.16

0.18

0.2

0.08

- Increases rapidly as  $\mu$  increases and exceeds 5 dB for  $\mu = 0.1$ .
- At 10-Gb/s, L < 50 km when standard fibers are used.

0.06



# **Frequency Chirping**

- Chirping of optical pulses affects pulse broadening.
- For chirped Gaussian pulses pulse broadening factor is

$$f_b^2 = 1 + 8C\beta_2 B^2 L/d_c^2)^2 + (8\beta_2 B^2 L/d_c^2)^2.$$

• Power penalty then becomes

 $\delta_c = 5 \log_{10}[(1 + 8C\beta_2 B^2 L/d_c^2)^2 + (8\beta_2 B^2 L/d_c^2)^2].$ 

- Penalty can be quite large when  $\beta_2 C > 0$ .
- This is the case for directly nodulated DFB lasers (C > -4) operating near 1.55  $\mu$ m ( $\beta_2 < 0$ ).









# **Frequency Chirping**



• To keep penalty below 0.1 dB,  $|\beta_2|B^2L < 0.002$  is required.

- For standard fibers  $B^2L$  is limited to 100  $(Gb/s)^2$ -km.
- System performance can be improved by ensuring that  $\beta_2 C < 0$ .





# **Timing Jitter**

- Signal must be sampled at the peak of the current pulse.
- Decision instant determined by the clock-recovery circuit.
- In practice, sampling time fluctuates from bit to bit.
- If bit is not sampled at the bit center, sampled value is reduced by an amount that depends on timing jitter  $\Delta t$ .
- Since  $\Delta t$  is a random variable, signal becomes more noisy.
- SNR reduced as a result of such additional fluctuations.
- SNR can be maintained by increasing received power (power penalty).







# **Timing Jitter (continued)**

• Q parameter in the presence of timing jitter

$$Q = rac{I_1 - \langle \Delta i_j \rangle}{(\sigma_T^2 + \sigma_j^2)^{1/2} + \sigma_T}.$$

- If  $S_p(t)$  governs the shape of current pulse,  $\Delta i_j = I_1[S_p(0) S_p(\Delta t)]$ .
- Approximating  $S_p$  as  $S_p(t) = 1 \frac{1}{2}(c_p B t)^2$ ,  $\Delta i_j = (c_p B \Delta t)^2 I_1$ .

• Probability density of timing jitter  $\Delta t$ 

$$p(\Delta t) = \frac{1}{\tau_j \sqrt{2\pi}} \exp\left(-\frac{\Delta t^2}{2\tau_j^2}\right).$$

• Find  $p(\Delta i_j)$  and use it to calculate  $\langle \Delta i_j \rangle$  and  $\sigma_j$ .



The Institute o



# **Timing Jitter (continued)**

• Probability density of current fluctuation  $\Delta i_j$ 

$$p(\Delta i_j) = \frac{1}{\sqrt{\pi b \Delta i_j I_1}} \exp\left(-\frac{\Delta i_j}{b I_1}\right),$$

• Average and standard deviation are found to be

$$\langle \Delta i_j \rangle = bI_1/2, \qquad \sigma_j = bI_1/\sqrt{2}.$$

• Receiver sensitivity

$$\bar{P}_{\rm rec}(b) = \left(\frac{\sigma_T Q}{R_d}\right) \frac{1 - b/2}{(1 - b/2)^2 - b^2 Q^2/2}.$$

• Power penalty is found to be

$$\delta_j = 10 \log_{10} \left( \frac{1 - b/2}{(1 - b/2)^2 - b^2 Q^2/2} \right).$$



The Institute of

 $b = (c_p B \sigma_t)^2.$ 


Power Penalty (dB)

í٥.

0.02

0.04

0.06



• Pulse curvature  $c_p$  at center of bit slot plays important role.

0.08

• Power penalty becomes infinitely large at a certain value of  $B\sigma_t$ .

0.1

Normalized Timing Jitter, Bo,

0.12

0.14

0.16

0.18

0.2

- Tolerable value  $B\sigma_t$  depends on  $c_p$  and decreases as  $c_p$  increases.
- Typically  $c_p < 1$ , and power penalty <0.5 dB) if  $B\sigma_t < 0.08$ .



242/549



#### **Eye-Closure Penalty**



- Eye diagrams at 40 Gb/s in the case of NRZ, CSRZ, NRZ-DPSK, and RZ-DPSK formats.
- L = 0 (top row) and L = 263 km (bottom row).
- Alternative measure of system performance is provided by the eye opening.



243/549

#### **Forward Error Correction**

- It is entirely possible that a specified BER cannot be achieved.
- Only viable alternative—Use an error-correction scheme.
- In one approach, errors are detected but not corrected.
- Suitable when packet switching is used (Internet protocol).
- In FEC, errors are detected and corrected at the receiver without any retransmission of bits.
- This scheme is best suited for lightwave systems operating with SONET or SDH protocol.
- Historically, lightwave systems did not employ FEC until the use of in-line optical amplifiers became common.



Back

Close

The Institute

#### **Error-Correcting Codes**

- Basic idea: Add extra bits at transmitter using a suitable code.
- At the receiver end, a decoder uses these control bits to detect and correct errors.
- How many errors can be corrected depends on the coding scheme employed.
- In general, more errors can be corrected by adding more control bits to the signal.
- There is a limit to this process since bit rate of the system increases after the FEC coder.
- If  $B_e$  is effective bit rate after coding, FEC overhead is  $B_e/B 1$ .
- Redundancy of a code is defined as  $\rho = 1 B/B_e$ .







# 

#### **Error-Correcting Codes**

- Classified under names such as linear, cyclic, Hamming, Reed-Solomon, convolutional, product, and turbo codes.
- Among these, Reed–Solomon (RS) codes have attracted most attention for lightwave systems.
- Denoted as RS(n,k), where k is the size of packet that is converted into a larger packet with n bits  $(n = 2^m 1)$ .
- ITU recommendation: RS(255, 239) with m = 8. FEC overhead for this code is 6.7%.
- RS(255, 207) with an overhead of 23.2% is also used.
- Improvement in BER is quantified through the coding gain.





## **Coding Gain**

- Coding gain: A measure of improvement in BER through FEC.
- It is expressed in terms of the equivalent value of Q as  $G_c = 20 \log_{10}(Q_c/Q)$ .
- $Q_c$  and Q are related to the BERs as

 $\operatorname{BER}_c = \frac{1}{2}\operatorname{erfc}(Q_c/\sqrt{2}), \quad \operatorname{BER} = \frac{1}{2}\operatorname{erfc}(Q/\sqrt{2}).$ 

- Factor of 20 is used in place of 10 because performance is often quantified through  $Q^2$ .
- If FEC decoder improves BER from 10<sup>-3</sup> to 10<sup>-9</sup>, Q increases from 3 to 6, resulting in a coding gain of 6 dB.
- Magnitude of coding gain increases with the FEC overhead.



The Institute



### **Coding Gain**



- For single RS codes, coding gain is 5.5 dB for 10% overhead and increases sublinearly, reaching 8 dB for 50% overhead.
- It can be improved by concatenating two or more RS codes or by employing the RS product codes.



248/549

The Institute of



### **Product Codes**



- Same code is applied along the rows and columns of a block.
- Overhead of  $n^2/k^2 1$  for a RS product code is larger, but it also allows more error control.
- 6 dB of coding gain possible with only 5% overhead.



249/549

## **Coding Gain**

- While implementing FEC, one faces a dilemma.
- As the overhead is increased to realize more coding gain, bit rate of the signal increases.
- Since Q factor realized at the receiver depends on the bit rate, its value is reduced, and BER actually worsens.
- Decoder improves it but it first has to overcome the degradation caused by the increased bit rate.
- If an aggressive FEC scheme is employed, BER may degrade so much that the system is not operable even with the FEC coder.
- An optimum range of coding overhead exists for every system designed to operate at a specific bit rate over a certain distance.



Back Close

The Institute

## **Coding Gain**





251/549

- Numerically simulated Q factors (a)
   before and (b) after the FEC decoder as a function of code redundancy for a WDM system with 25 channels at 40 Gb/s.
- With FEC, Q factor becomes worse as overhead increases.



## **Chapter 6: Optical Amplifier Noise**

- Origin of Amplifier Noise
- Optical Signal-to-Noise Ratio
- Electrical Signal-to-Noise Ratio
- Receiver Sensitivity and Q Factor
- Role of Dispersive and Nonlinear Effects
- Periodically Amplified Lightwave Systems







# **Optical Amplifiers**

- Used routinely for loss compensation since 1995.
- Amplify the input signal but also add some noise.
- Several kinds of amplifiers have been developed:
  - \* Semiconductor optical amplifiers
  - \* Raman-based fiber amplifiers
  - ★ Erbium-doped fiber amplifiers
- EDFAs are used most commonly for lightwave systems.
- Raman amplifiers work better for long-haul systems.









### **Erbium-Doped Fiber Amplifiers**

- Developed after 1987 and commercialized during the 1990s.
- Fiber core doped with erbium (length 20-200 m).
- Pumped using diode lasers operating at 980 or 1480 nm.
- Provide 20–30 dB gain at pump powers <50 mW.
- Gain bandwidth up to 40 nm possible.
- Relatively low noise; Noise figure 4 to 5 dB.
- Provide polarization-independent gain.
- Gain pattern independent (Response time  ${\sim}10$  ms).
- Can be designed to work in both the C and L bands.







# **Pumping and Gain**



- Semiconductor lasers at 980 or 1480 nm are used for pumping.
- Pumping efficiency up to 11 dB/mW possible at 980 nm.
- Amplification occurs when ions in the excited state emit coherent light through stimulated emission.

Back Close

# **Origin of Amplifier Noise**



- Source of noise: Spontaneous emission
- Spontaneous emitted photons have random phase and polarization.
- They perturb both A and phase  $\phi$  in a random fashion.
- Such random perturbations are the source of amplifier noise.



The Institute of



# 

## **Modeling of Amplifier Noise**

• NLS equation including the gain and noise of optical amplifiers:

$$\frac{\partial A}{\partial z} + \frac{i\beta_2}{2}\frac{\partial^2 A}{\partial t^2} = i\gamma|A|^2A + \frac{1}{2}(g_0 - \alpha)A + f_n(z, t).$$

- Gain coefficient  $g_0 = \sigma_e N_2 \sigma_a N_1$ ;  $\sigma_e$  and  $\sigma_a$  are emission and absorption cross sections.
- Noise term vanishes on average, i.e,  $\langle f_n(z,t) \rangle = 0$ .
- Noise modeled as a Markovian process with Gaussian statistics

$$\langle f_n^*(z,t)f_n(z',t')\rangle = n_{\rm sp}h\nu_0g_0\delta(z-z')\delta(t-t').$$

- Spontaneous-emission factor  $n_{\rm sp} = \sigma_e N_2 / (\sigma_e N_2 \sigma_a N_1)$ .
- Two delta functions ensure that all spontaneous-emission events are independent of each other in time and space.







## **Noise of Lumped Amplifiers**

- Amplifier Length  $l_a$  is much shorter than amplifier spacing  $L_A$ .
- Neither loss, nor dispersion, nor nonlinearities are important within the amplifier.
- Neglecting them and integrating, we obtain:  $A_{\text{out}}(t) = \sqrt{G}A_{\text{in}}(t) + a_n(t)$  with  $G = \exp(g_0 l_a)$ .
- Amplified spontaneous emission (ASE) at the amplifier output:

$$a_n(t) = \int_0^{l_a} f_n(z,t) \exp\left[\frac{1}{2}g_0(l_a-z)\right] dz.$$

• Since  $\langle f_n(z,t) \rangle = 0$ ,  $a_n(t)$  also vanishes on average.

• Second moment of  $a_n(t)$  is found to be

 $\langle a_n(t)a_n(t')\rangle = S_{ASE}\delta(t-t'), \qquad S_{ASE} = n_{sp}hv_0(G-1).$ 





#### **Total Noise Power**

- It is important to note that  $a_n(t)$  represents only the portion of ASE that is coupled to the mode occupied by the signal.
- One must add up noise over the entire bandwidth of amplifier.
- If an optical filter is used, ASE power becomes

$$P_{\rm ASE} = 2 \int_{-\infty}^{\infty} S_{\rm ASE} H_f(\boldsymbol{\nu} - \boldsymbol{\nu}_0) \, d\boldsymbol{\nu} \approx 2 S_{\rm ASE} \Delta \boldsymbol{\nu}_o.$$

- $\Delta v_o$  is the effective bandwidth of optical filter.
- Factor of 2 takes into account two orthogonally polarized modes of fiber.
- Only half the noise power is copolarized with the optical signal.



The Institute



# 

## **Distributed Amplification**

- In the case of distributed amplification, NLS equation should be solved along the entire fiber link.
- Gain  $g_0(z)$  is not constant along the fiber length.
- It is not easy to solve the NLS equation. If we set  $\beta_2 = 0$  and  $\gamma = 0$ , the solution is  $A(L,t) = \sqrt{G(L)}A(0,t) + a_n(t)$  with

$$a_n(t) = \sqrt{G(L)} \int_0^L \frac{f_n(z,t)}{\sqrt{G(z)}} dz, \quad G(z) = \exp\left(\int_0^z [g_0(z') - \alpha] dz'\right)$$

- $a_n(t)$  vanishes on average and its second moment is given by  $\langle a_n(t)a_n(t')\rangle = G(L)\int_0^L dz \int_0^L dz' \frac{\langle f_n(z,t)f_n(z',t')\rangle}{\sqrt{G(z)G(z')}} = S_{ASE}\delta(t-t'),$
- Spectral density:  $S_{ASE} = n_{sp}h\nu_0 G(L) \int_0^L \frac{g_0(z)}{G(z)} dz$ .







## **Distributed Raman Amplification**

- The origin of noise is related to spontaneous Raman scattering.
- Spontaneous-emission factor  $n_{\rm sp}$  has a different meaning than that in the case of EDFAs.
- No electronic transitions involved during Raman amplification.
- Spontaneous Raman scattering is affected by phonon population that depends on temperature of the fiber.
- More precisely,  $n_{\rm sp}$  is given by

$$n_{\rm sp}(\Omega) = 1 + \frac{1}{\exp(\hbar\Omega/k_BT) - 1} \equiv \frac{1}{1 - \exp(-\hbar\Omega/k_BT)}$$

• At room temperature  $n_{\rm sp} = 1.14$  near the Raman-gain peak.





#### **Total ASE Power**

- Total ASE power is obtained by adding contributions over the Raman-gain bandwidth or the bandwidth of optical filter.
- Assuming a filter is used, the total ASE power is given by

$$P_{\rm ASE} = 2 \int_{-\infty}^{\infty} S_{\rm ASE} H_f(\mathbf{v} - \mathbf{v}_0) \, d\mathbf{v} = 2 S_{\rm ASE} \Delta \mathbf{v}_o.$$

- Factor of 2 includes both polarization components.
- Substituting the expression for  $S_{ASE}$ , ASE power becomes

$$P_{\text{ASE}} = 2n_{\text{sp}}h\boldsymbol{v}_0\Delta\boldsymbol{v}_o\boldsymbol{G}(L)\int_0^L \frac{g_0(z)}{\boldsymbol{G}(z)}dz.$$

• ASE power depends on the pumping scheme through  $g_0(z)$ .





262/549

## **Optical SNR**

- Optical SNR = Ratio of optical power to ASE power.
- Assume that all amplifiers are spaced apart by  $L_A$  and have the same gain  $G = \exp(\alpha L_A)$ .
- Total ASE power for a chain of  $N_A$  amplifiers:

$$P_{\rm ASE}^{\rm tot} = 2N_A S_{\rm ASE} \Delta v_o = 2n_{\rm sp} h v_0 N_A (G-1) \Delta v_o.$$

- Factor of 2 takes into account unpolarized nature of ASE.
- Optical SNR is thus given by

$$\mathrm{SNR}_o = \frac{P_{\mathrm{in}}}{P_{\mathrm{ASE}}^{\mathrm{tot}}} = \frac{P_{\mathrm{in}} \ln G}{2n_{\mathrm{sp}}h v_0 \Delta v_o \alpha L_T (G-1)}.$$

• We used  $N_A = L_T/L_A = \alpha L_T/\ln G$  for a link of total length  $L_T$ .



Back Close

The Institute of

## **Optical SNR**



• SNR can be enhanced by reducing the gain of each amplifier.

- ASE-limited system length as a function of  $L_A$  for several values of input power using  $\alpha = 0.2 \text{ dB/km}$ ,  $n_{\text{sp}} = 1.6$ ,  $\Delta v_o = 100 \text{ GHz}$ .
- It is assumed that an SNR of 20 is required by the system.



The Institute o

↓
↓
Back
Close



## **Optimum Amplifier Spacing**

- Optimum  $L_A$  becomes smaller as system length increases.
- Amplifier spacing can be improved by increasing input power  $P_{\rm in}$ .
- In practice, maximum launched power is limited by the onset of various nonlinear effects.
- Typically,  $P_{\rm in}$  is limited to close to 1 mW.
- At such power levels,  $L_A$  should be in the range of 40 to 50 km for submarine lightwave systems with lengths of 6,000 km or more.
- Amplifier spacing can be increased to 80 km for terrestrial systems with link lengths under 3,000 km.







266/549

Back

Close

## **Case of Distributed Amplification**

• Optical SNR in this case takes the form

$$\mathsf{SNR}_o = \frac{P_{in}}{2N_A S_{\rm ASE} \Delta v_o}, \qquad S_{\rm ASE} = n_{\rm sp} h v_0 G(L) \int_0^L \frac{g_0(z)}{G(z)} dz.$$

- Pump power can be injected in the forward, backward, or both directions.
- g(z) depends on the pumping scheme, and  $S_{ASE}$  depends on g(z).
- We can control optical SNR by adopting a suitable pumping scheme.
- Consider a 100-km-long fiber section pumped bidirectionally to provide distributed Raman amplification.
- ASE spectral density and optical SNR are shown as a function of net gain when  $P_{in} = 1$  mW.



#### **SNR for Raman Amplification**



- Fraction of forward pumping varies from 0 to 100%.
- Losses are 0.26 and 0.21 dB/km at pump and signal wavelengths.
- Other parameters are  $n_{
  m sp}=1.13$ ,  $hv_0=0.8$  eV, and  $g_R=0.68$  W $^{-1}/{
  m km}$ .



267/549



## **Distributed Raman Amplification**

- Optical SNR is highest in the case of purely forward pumping.
- It degrades by as much as 15 dB as the fraction of backward pumping is increased from 0 to 100%.
- ASE generated near the input end experiences losses over the full length of the fiber in the case of forward pumping.
- It experiences only a fraction of losses for backward pumping.
- If  $N_A$  such sections are employed to form a long-haul fiber link, SNR is reduced by a factor of  $N_A$ .
- Even when  $L_T = 10,000$  km ( $N_A = 100$ ), SNR<sub>o</sub> remains >20 dB.
- Such high values of optical SNR are difficult to maintain when ED-FAs are used.





# 

## **Electrical SNR**

- Optical SNR is not what governs the BER at the receiver.
- Electrical SNR of the current generated is more relevant for signal recovery at the receiver.
- Assume that a single optical amplifier is used before receiver to amplify a low-power signal before it is detected.
- This configuration is sometimes used to improve receiver sensitivity through optical preamplifcation.





Back Close



#### **ASE-Induced Current Fluctuations**

- Photocurrent  $I = R_d(|\sqrt{G}E_s + E_{cp}|^2 + |E_{op}|^2) + i_s + i_T$ .
- It is necessary to separate the ASE into two parts because only its copolarized part can beat with the signal.
- ASE-induced current noise has its origin in beating of  $E_s$  with  $E_{cp}$  and beating of ASE with itself.
- Useful to divide bandwidth  $\Delta v_o$  into M bins, each of bandwidth  $\Delta v_s$ , and write

$$E_{\rm cp} = \sum_{m=1}^{M} (S_{\rm ASE} \Delta v_s)^{1/2} \exp(i\phi_m - i\omega_m t).$$

- $\phi_m$  is the phase of noise component at  $\omega_m = \omega_l + m(2\pi\Delta\nu_s)$ .
- An identical form applies for  $E_{\rm op}$ .







#### **ASE-Induced Current Fluctuations**

• Using  $E_s = \sqrt{P_s} \exp(i\phi_s - i\omega_s t)$  and including all beating terms,

 $I = R_d G P_s + i_{\text{sig-sp}} + i_{\text{sp-sp}} + i_s + i_T.$ 

*i*<sub>sig-sp</sub> and *i*<sub>sp-sp</sub> represent current fluctuations resulting from signal– ASE and ASE–ASE beating:

$$i_{\mathrm{sig-sp}} = 2R_d (GP_s S_{\mathrm{ASE}} \Delta v_s)^{1/2} \sum_{m=1}^M \cos[(\omega_s - \omega_m)t + \phi_m - \phi_s],$$

$$i_{\mathrm{sp-sp}} = 2R_d S_{\mathrm{ASE}} \Delta v_s \sum_{m=1}^M \sum_{n=1}^M \cos[(\omega_n - \omega_m)t + \phi_m - \phi_n].$$

- $\langle i_{\rm sp-sp} \rangle = 2R_d S_{\rm ASE} \Delta v_s M \equiv 2R_d S_{\rm ASE} \Delta v_o \equiv R_d P_{\rm ASE}.$
- Variances of two noise currents are found to be

$$\sigma_{\rm sig-sp}^2 = 4R_d^2 GP_s S_{\rm ASE} \Delta f, \qquad \sigma_{\rm sp-sp}^2 = 4R_d^2 S_{\rm ASE}^2 \Delta f (\Delta v_o - \Delta f/2)$$





#### **Impact of ASE on SNR**

• Total variance  $\sigma^2$  of current fluctuations is given by

$$\sigma^2 = \sigma_{\mathrm{sig-sp}}^2 + \sigma_{\mathrm{sp-sp}}^2 + \sigma_s^2 + \sigma_T^2$$

• Electrical SNR at the receiver becomes

$$\mathrm{SNR}_e = \frac{\langle I \rangle^2}{\sigma^2} = \frac{R_d^2 (GP_s + P_{\mathrm{ASE}})^2}{\sigma_{\mathrm{sig-sp}}^2 + \sigma_{\mathrm{sp-sp}}^2 + \sigma_s^2 + \sigma_T^2}$$

• SNR realized in the absence of optical amplifier:

$$\mathrm{SNR}'_e = \frac{R_d^2 P_s^2}{\sigma_s^2 + \sigma_T^2}$$

• For an ideal receiver with no thermal noise and  $R_d = q/hv_0$ ,  $SNR'_e = P_s/(2hv_0\Delta f)$ .



The Institute o



## **Noise Figure of Amplifier**

- In practice, current variance is dominated by  $\sigma_{sig-sp}^2$ .
- Neglecting  $\sigma_{\mathrm{sp-sp}}^2$ , the SNR is found to be

$$\mathrm{SNR}_e = \frac{GP_s}{(4S_{\mathrm{ASE}} + 2hv_0)\Delta f}$$

• Using  $S_{ASE} = n_{sp}hv_0(G-1)$ , optical amplifier is found to degrade the electrical SNR by a factor of

$$F_o = \frac{\mathrm{SNR}'_e}{\mathrm{SNR}_e} = 2n_{\mathrm{sp}}\left(1 - \frac{1}{G}\right) + \frac{1}{G}.$$

- $F_o$  is known as the noise figure of an optical amplifier.
- In the limit  $G \gg 1$ , SNR is degraded by  $F_o = 2n_{\rm sp}$ .
- Even when  $n_{\rm sp} = 1$ , SNR is reduced by 3 dB.



Back Close

The Institute

# 

### **Impact of Thermal Noise**

- Preceding conclusion holds for an ideal receiver.
- In practice, thermal noise exceeds shot noise by a large amount.
- It should be included before concluding that an optical amplifier always degrades the electrical SNR.
- Retaining only the dominant term  $\sigma_{
  m sig-sp}^2$ :

 $\frac{\mathrm{SNR}_e}{\mathrm{SNR}'_e} = \frac{G\sigma_T^2}{4R_d^2 P_s S_{\mathrm{ASE}} \Delta f}.$ 

- This ratio can be made quite large by lowering  $P_s$ .
- Electrical SNR can be improved by 20 dB or more compared with its value possible without amplification.







#### **Electrical SNR**

- Thermal noise is the most important factor that limits the electrical SNR.
- Optical preamplification helps to mask thermal noise, resulting in an improved SNR.
- If we retain only dominant noise term, the electrical SNR becomes

$$SNR_e = \frac{GP_s}{4S_{ASE}\Delta f} = \frac{GP_s\Delta v_o}{2P_{ASE}\Delta f}.$$

- This should be compared with the optical SNR of  $GP_s/P_{ASE}$ .
- Electrical SNR is higher by a factor of  $\Delta v_o/(2\Delta f)$  under identical conditions.
- The reason is that ASE noise contributes only over the receiver bandwidth  $\Delta f$  that is much narrower than filter bandwidth  $\Delta v_o$ .

Back Close UNIVERSITY OF ROCHESTER

### **Noise Figure of Distributed Amplifiers**

• Because of gain variations, noise figure is given by

$$F_o = 2n_{\rm sp} \int_0^L \frac{g_0(z)}{G(z)} dz + \frac{1}{G(L)}.$$





- The predicted  $F_o$  can exceed 15 dB depending on the span length.
- This does not mean distributed amplifiers are more noisy than lumped amplifiers.



The Institute o



## **Noise Figure of Distributed Amplifiers**



- When  $G_R = 0$  (no pumping), 100-km-long passive fiber has a noise figure of 20 dB.
- If signal is amplified using a lumped amplifier, additional 5-dB degradation results in a total noise figure of 25 dB.
- This value decreases as  $G_R$  increases, reaching a level of 17.5 dB for  $G_R = 20$  dB (no lumped amplification).



The Institute o




### **Noise Figure of Distributed Amplifiers**

- It is common to introduce the concept of an *effective* noise figure using  $F_{\text{eff}} = F_o \exp(-\alpha L)$ .
- $F_{\rm eff} < 1$  is negative on the decibel scale by definition.
- It is this feature of distributed amplification that makes it so attractive for long-haul WDM lightwave systems.
- In the preceding example,  $F_{\rm eff} \approx -2.5~{\rm dB}$  when pure distributed amplification is employed.
- Effective noise figure of a Raman amplifier depends on the pumping scheme used.
- Forward pumping provides the highest SNR, and the smallest noise figure.



Back

Close



#### **Receiver Sensitivity and Q Factor**

- BER can be calculated following the method used in Chapter 5.
- BER =  $p(1)P(0/1) + p(0)P(1/0) = \frac{1}{2}[P(0/1) + P(1/0)].$
- Conditional probabilities require PDF for the current I.
- Strictly speaking, PDF does not remain Gaussian when optical amplifiers are used.
- If we assume it to remain Gaussian,  $BER = \frac{1}{2} \operatorname{erfc}\left(\frac{Q}{\sqrt{2}}\right)$ .
- Q factor: defined as  $Q = \frac{I_1 I_0}{\sigma_1 + \sigma_0}$ , where

$$egin{aligned} &\sigma_1^2 = \sigma_{ ext{sig-sp}}^2 + \sigma_{ ext{sp-sp}}^2 + \sigma_s^2 + \sigma_T^2, \ &\sigma_0^2 = \sigma_{ ext{sp-sp}}^2 + \sigma_T^2. \end{aligned}$$







## **Approximate Q Factor**

- In the case of 0 bits,  $\sigma_s^2$  and  $\sigma_{sig-sp}^2$  can be neglected as they are signal-dependent.
- Even for 1 bits  $\sigma_s^2$  can be neglected in comparison with  $\sigma_{sig-sp}^2$ .
- Thermal noise  $\sigma_T^2$  can also be neglected when optical power at the receiver is relatively large (>0.1 mW).
- Noise currents  $\sigma_1$  and  $\sigma_0$  are then approximated by

$$\sigma_1 = (\sigma_{\mathrm{sig-sp}}^2 + \sigma_{\mathrm{sp-sp}}^2)^{1/2}, \qquad \sigma_0 = \sigma_{\mathrm{sp-sp}}$$

• We calculate the Q factor using

$$Q = \frac{I_1 - I_0}{\sigma_1 + \sigma_0} = \frac{I_1 - I_0}{\sqrt{\sigma_{\text{sig-sp}}^2 + \sigma_{\text{sp-sp}}^2} + \sigma_{\text{sp-sp}}}$$





#### **Receiver Sensitivity**

- Assume that no energy is contained in 0 bits so that  $I_0 = 0$  and  $I_1 = 2R_d \bar{P}_{rec}$ .
- Using Q and expressions for  $\sigma_1$  and  $\sigma_0$ ,

 $\bar{P}_{\rm rec} = h v_0 F_o \Delta f [Q^2 + Q(\Delta v_o / \Delta f - \frac{1}{2})^{1/2}].$ 

- Using  $\bar{P}_{rec} = \bar{N}_p h v_0 B$  and  $\Delta f = B/2$ ,  $\bar{N}_p$  is given by  $\bar{N}_p = \frac{1}{2} F_o [Q^2 + Q(r_f - \frac{1}{2})^{1/2}].$
- $r_f = \Delta v_o / \Delta f$  is the factor by which the optical filter bandwidth exceeds the receiver bandwidth.
- A remarkably simple expression for the receiver sensitivity.
- It shows why amplifiers with a small noise figure must be used.
- It also shows how narrowband optical filters can help.





#### **Receiver Sensitivity**



- Using Q = 6 with  $F_o = 2$  and  $r_f = 2$ , the minimum value  $\bar{N}_p = 43.3$  photons/bit.
- Without optical amplifiers,  $\bar{N}_p$  exceeds 1000.







#### **Non-Gaussian Receiver Noise**

- Even though the ASE itself has a Gaussian PDF, detector current does not follow Gaussian statistics.
- Detector current  $I = R_d(|E_s + E_{cp}|^2 + |E_{op}|^2)$ .
- Orthogonal part of noise can be suppressed by placing a polarizer in front of the receiver.
- Using  $E_{cp} = \sum_{m=1}^{M} (S_{ASE} \Delta v_s)^{1/2} \exp(i\phi_m i\omega_m t)$ :  $I = I_s + 2\sqrt{I_N I_s} \sum_{m=1}^{M} c_m + I_N \sum_{m=1}^{pM} (c_m^2 + s_m^2).$
- Signal  $I_s = R_d |E_s|^2$  and noise current  $I_N = R_d S_{ASE} \Delta v_s$ .
- Random variables  $c_m$  and  $s_m$  defined as  $c_m + is_m = \exp(i\phi_m)$ .
- Integer p = 1 or 2 depending on whether a polarizer is used or not.







#### **Non-Gaussian Receiver Noise**

- *I* is a function of a large number of random variables, each of which follows Gaussian statistics.
- Without ASE-ASE beating, I follows a Gaussian PDF.
- However, this beating term cannot be ignored, and the statistics of *I* are generally non-Gaussian.
- PDF can be obtained in an analytic form. In the case of 0 bits

$$p_0(I) = \frac{I^{pM-1}}{(pM-1)!I_N^{pM}} \exp\left(-\frac{I}{I_N}\right).$$

• In the case of 1 bits (using  $I_s = I_1$ )

$$p_1(I) = \frac{1}{I_N} \left(\frac{I}{I_1}\right)^{\frac{1}{2}(pM-1)} \exp\left(-\frac{I+I_1}{I_N}\right) \mathscr{I}_{pM-1}\left(-\frac{2\sqrt{II_1}}{I_N}\right)$$



Back Close



- Measured and predicted PDFs for 0 (top) and 1 bits (bottom). A dashed line shows the Gaussian approximation.
- PDF is far from Gaussian for 0 bits.
- Deviations relatively small in the case of 1 bits.
- Gaussian approximation holds better as the bandwidth of optical filter increases.





### **Q** Factor and Optical SNR

• Assume  $I_0 \approx 0$  and  $I_1 = R_d P_1$ .

• 
$$\sigma_{\mathrm{sig-sp}}^2 = 2R_d \sqrt{P_1 P_{\mathrm{ASE}}} / M, \qquad \sigma_{\mathrm{sp-sp}}^2 = P_{\mathrm{ASE}}^2 / M.$$

- We assumed  $M = \Delta v_o / \Delta f \gg 1$ .
- Using  $\sigma_1$  and  $\sigma_0$  in the expression for Q,

$$Q = \frac{\mathsf{SNR}_o \sqrt{M}}{\sqrt{2\mathsf{SNR}_o + 1} + 1}$$

- $SNR_o \equiv P_1/P_{ASE}$  is the optical SNR.
- This relation can be inverted to find

$$\operatorname{SNR}_o = \frac{2Q^2}{M} + \frac{2Q}{\sqrt{M}}.$$









#### **Q** Factor and Optical SNR



- Optical SNR as a function of M for several values of Q factor.
- We only need  $SNR_o = 7.5$  when M = 16 to maintain Q = 6.

↓
↓
▲
Back
Close

287/549

# Noise Growth through Modulation Instability

- Each amplifier adds ASE noise that propagates with the signal.
- In a purely linear system, noise power would not change.
- Modulation instability amplifies ASE noise.
- Using  $A(z,t) = \sqrt{p(z)}B(z,t)$ , NLS equation becomes  $\frac{\partial B}{\partial z} + \frac{i\beta_2}{2}\frac{\partial^2 B}{\partial t^2} = i\gamma p(z)|B|^2B + f_n(z,t)/\sqrt{p(z)}.$
- p(z) is defined such that p(z) = 1 at the location of amplifiers.
- A numerical approach is necessary in general.
- Assuming a CW signal, the solution is of the form  $B(z,t) = [\sqrt{P_0} + a(z,t)] \exp(i\phi_{\rm NL}).$
- $\phi_{\rm NL} = \gamma P_0 \int_0^z p(z) dz$  is the SPM-induced nonlinear phase shift.



**OP** 

CS



• Assuming noise is much weaker than signal  $(|a|^2 \ll P_0)$ ,

$$\frac{\partial a}{\partial z} + \frac{i\beta_2}{2}\frac{\partial^2 a}{\partial t^2} = i\gamma P_0 e^{-\alpha z}(a+a^*).$$

• This linear equation is easier to solve in the Fourier domain and leads to two coupled equations:

$$\frac{db_1}{dz} = \frac{i}{2}\beta_2\Omega^2 b_1 + i\gamma P_0 e^{-\alpha z}(b_1 + b_2^*),$$
  
$$\frac{db_2}{dz} = \frac{i}{2}\beta_2\Omega^2 b_2 + i\gamma P_0 e^{-\alpha z}(b_2 + b_1^*),$$

- $b_1(z) = \tilde{a}(z, \Omega), \ b_2(z) = \tilde{a}(z, -\Omega), \text{ and } \Omega = \omega_n \omega_0.$
- When  $\Omega$  falls within the gain bandwidth of modulation instability, the two noise components are amplified.





- Coupled linear equations can be solved easily when  $\alpha = 0$ .
- They can also be solved when  $\alpha \neq 0$ . but the solution involves Hankel functions of complex order and argument.
- In a simple approach, fiber is divided into multiple segments.
- Propagation through each segment of length h is governed by

 $\begin{pmatrix} b_1(z_n+h) \\ b_2(z_n+h) \end{pmatrix} = \begin{pmatrix} M_{11} & M_{12} \\ M_{21} & M_{22} \end{pmatrix} \begin{pmatrix} b_1(z_n) \\ b_2(z_n) \end{pmatrix}.$ 

- Matrix elements  $M_{mn}$  are constants in each fiber segment but change from segment to segment.
- Solution at the end of fiber is obtained by multiplying individual matrices.









- An example of numerically simulated spectrum at the end of a 2,500-km fiber link with 50 amplifiers placed 50 km apart.
- Broad pedestal represents the ASE spectrum expected even in the absence of nonlinear effects.



291/549





- Possible to calculate factor  $F_v$  by which  $\sigma_{sig-sp}^2$  changes.
- $F_v$  as a function of launched power (four 100-km-long sections).
- (a) anomalous [D = 2 ps/(km-nm)];
  (b) normal dispersion [D = -2 ps/(km-nm)].
- $\Delta f = 2$  GHz (crosses), 8 GHz (pluses), 20 GHz (stars), and 30 GHz (circles).







#### **Noise-Induced Signal Degradation**

- Optical signal degrades as ASE noise is added by amplifiers.
- As expected, ASE induces power fluctuations (reduced SNR).
- Surprisingly, ASE also induces timing jitter.
- Physical origin of ASE-induced jitter: Amplifiers affect not only amplitude but also phase of amplified signal.
- Chirping of pulses shifts signal frequency from  $\omega_0$  by a small amount after each amplifier.
- Since group velocity depends on frequency (because of dispersion), speed at which a pulse propagates is affected by each amplifier.
- Speed changes produce random shifts in pulse position at receiver.





#### **Moment Method Revisited**

- Moment method can be used by introducing two new moments.
- q and  $\Omega$  represent pulse position and shift in the carrier frequency:

$$q(z) = \frac{1}{E} \int_{-\infty}^{\infty} t |B(z,t)|^2 dt, \quad \Omega(z) = \frac{i}{2E} \int_{-\infty}^{\infty} \left( B^* \frac{\partial B}{\partial t} - B \frac{\partial B^*}{\partial t} \right) dt.$$

- $E(z) \equiv \int_{-\infty}^{\infty} |B(z,t)|^2 dt$  is related to pulse energy.
- Differentiating E, q, and  $\Omega$  with respect to z,

$$\frac{dE}{dz} = 0, \qquad \frac{dq}{dz} = \beta_2 \Omega, \qquad \frac{d\Omega}{dz} = 0.$$

- Energy E and frequency  $\Omega$  do not change during propagation.
- Pulse position shifts for a finite value of  $\Omega$  as  $q(z) = \beta_2 \Omega z$ .





# 

#### **Moment Method Revisited**

• Because of ASE added by the amplifier, E,  $\Omega$ , and q change by random amounts  $\delta E_k$ ,  $\delta \Omega_k$ , and  $\delta q_k$  after each amplifier:

$$\frac{dE}{dz} = \sum_{k} \delta E_{k} \delta(z - z_{k}),$$
  
$$\frac{dq}{dz} = \beta_{2} \Omega + \sum_{k} \delta q_{k} \delta(z - z_{k}),$$
  
$$\frac{d\Omega}{dz} = \sum_{k} \delta \Omega_{k} \delta(z - z_{k}).$$

- The sum is over the total number of amplifiers encountered by the pulse before it arrives at *z*.
- ASE-induced timing jitter can be reduced by operating a lightwave system near the zero-dispersion wavelength of fiber.



Back Close

#### **Noise-Induced Timing Jitter**

- Total jitter at the end of the fiber link:  $\sigma_t^2 = \langle q_f^2 \rangle \langle q_f \rangle^2$ .
- Angle brackets denote averaging over amplifier noise.
- Final result turns out to be relatively simple:

 $\sigma_t^2 = (S_{\text{ASE}}/E_0)T_0^2 N_A[(1+(C_0+N_A d_a/T_0^2)^2].$ 

- $d_a = \int_0^{L_A} \beta_2(z) dz$  is the dispersion accumulated over the entire link.
- In the case of perfect dispersion compensation  $(d_a = 0)$ ,  $\sigma_t^2$  increases linearly with the number  $N_A$  of amplifiers.
- When  $d_a \neq 0$ , it increases with  $N_A$  in a cubic fashion.









- ASE-induced timing jitter as a function of system length for several values of average dispersion  $\bar{\beta}_2$ .
- Results are for a 10-Gb/s system with  $T_0 = 30$  ps,  $L_A = 50$  km,  $C_0 = 0.2$ , and  $S_{\rm ASE}/E_0 = 10^{-4}$ .
- ASE-induced jitter becomes a significant fraction of pulse width because of the cubic dependence of  $\sigma_t^2$  on system length  $L_T$ .



297/549



**Distributed Amplification** 

8

6



• Raman gain is varied from 0 to 16 dB (total loss over 80 km).

• Dashed line shows the tolerable value of timing jitter.



# 

### **Numerical Approach**

- Nonlinear and dispersive effects act on a noisy optical signal simultaneously.
- Their mutual interplay cannot be studied analytically.
- Most practical approach for designing modern lightwave system consists of solving the NLS equation numerically.
- Numerical simulations indeed show that nonlinear effects often limit the system performance.
- System design requires optimization of various parameters such as amplifier spacing and input power launched.
- Several software packages are available commercially.
- One such package called OptSim 4.0 is provided on the CD.









- Layout of a typical lightwave system for modeling based on the software package OptSim.
- Main advantage: Optimum values of various system parameters can be found such that design objectives are met at a minimum cost.



The Institute of

↓
↓
Back
Close

### **Numerical Approach**

- Input to optical transmitter is a pseudo-random sequence of electrical pulses, representing 1 and 0 bits.
- The length N of this bit pattern determines the computing time and should be chosen judiciously.
- Typically,  $N = 2^M$ , where M is in the range of 6 to 10.
- Optical bit stream obtained by solving the rate equations that govern the modulation response of the laser or modulator.
- Deformation of optical bit stream during its transmission calculated by solving the NLS equation.
- Method most commonly used for solving this equation is known as the spit-step Fourier method.





## **Numerical Approach**

- Two equivalent techniques used for adding ASE noise to the signal during numerical simulations.
- In one case, noise is added in the time domain, while ensuring that it follows Gaussian statistics with  $\langle a_n(t)a_n(t')\rangle = S_{\rm ASE}\delta(t-t')$ .
- Because of a finite temporal resolution  $\Delta t$ , delta function is replaced with a "rect function" of width  $\Delta t$ .
- Its height is chosen to be  $1/\Delta t$  so that  $\int_{-\infty}^{-\infty} \delta(t) dt = 1$  is satisfied.
- Alternatively, noise can be added in the frequency domain:

 $\tilde{A}_{\text{out}}(\mathbf{v}) = \sqrt{G}\tilde{A}_{\text{in}}(\mathbf{v}) + \tilde{a}_n(\mathbf{v}).$ 

- Real and imaginary parts of  $\tilde{a}_n(\mathbf{v})$  follow Gaussian statistics.
- Noise is assumed to be white (same variance at each frequency).





#### **Numerical Approach**

- A receiver model converts optical signal into electric domain.
- An electric filter used with its bandwidth  $\Delta f$  smaller than bit rate B (typically  $\Delta f/B = 0.6$ –0.8).
- Electric bit stream is used to find the instantaneous values of currents,  $I_0$  and  $I_1$  by sampling it at the center of each bit slot.
- Eye diagram is constructed using the filtered bit stream.
- System performance is quantified through the Q factor, related directly to the BER.
- Calculation of Q factor requires that the NLS equation be solved a large number of times with different seeds for amplifier noise.
- Such an approach becomes quite time-consuming for WDM systems.



Back Close





- Q-factor variations with launched power in long-haul systems.
- Q factor increases initially with launched power, reaches a peak value, and then decreases with a further increase in power because of the onset of the nonlinear effects.
- Use of distributed amplification improves system performance.









- Numerical results for a 32-channel WDM system.
- Maximum distance plotted as a function of input power.
- Fiber link contains 80-km sections whose 20-dB loss compensated using (a) forward or (b) backward pumping configuration.
- Pump depletion becomes significant at arrow location.



