Optical Communication Systems (OPT428)

Govind P. Agrawal

Institute of Optics
University of Rochester
Rochester, NY 14627
(C) 2007 G. P. Agrawal

\perp
\perp
\quad
Back
Close

Chapter 5: Signal Recovery and Noise

- Noise Added during Photodetection
- Signal-to-Noise Ratio (SNR)
- Bit Error Rate (BER)
- Sensitivity Degradation
- Forward Error Correction (FEC)

Optical Receivers

- Front end converts optical signal into electrical form.
- Linear channel amplifies and filters the electrical signal.
- Data recovery section creates electrical bit stream using clockrecovery and decision circuits.

Data-Recovery Section

- A clock-recovery circuit isolates the frequency $f=B$ from the received signal.
- The clock helps to synchronize the decision process.
- Decision circuit compares the output to a threshold level at sampling times set by the clock.
- Eye diagram is useful for system monitoring.
- The best sampling time corresponds to maximum eye opening.

Shot Noise

- Photocurrent, $I(t)=I_{p}+i_{s}(t)$, fluctuates because electrons are generated at random times.
- Average current $I_{p}=R_{d} P_{\text {in }} ; \quad R_{d}=\eta q / h v_{0} ;$ η represents quantum efficiency of photodetector.
- Current fluctuations occur such that $\left\langle i_{s}(t)\right\rangle=0$ and

$$
\left\langle i_{s}(t) i_{s}(t+\tau)\right\rangle=\int_{-\infty}^{\infty} S_{s}(f) \exp (2 \pi i f \tau) d f
$$

- White noise: Spectral density $S_{s}(f)$ constant.
- Noise variance: $\sigma_{s}^{2}=\int_{-\infty}^{\infty} S_{s}(f) d f=2 q I_{p} \Delta f$.
- Effective noise bandwidth Δf is related to detector bandwidth.
- Adding the contribution of dark current I_{d}

$$
\sigma_{s}^{2}=2 q\left(I_{p}+I_{d}\right) \Delta f .
$$

Thermal noise

- Additional fluctuations occur at any finite temperature because of thermal motion of electrons in any resistor.
- Total current: $I(t)=I_{p}+i_{s}(t)+i_{T}(t)$.
- Spectral density $S_{T}(f)=2 k_{B} T / R_{L}$ depends on temperature and load resistor R_{L}.
- Noise variance: $\sigma_{T}^{2}=\int_{-\infty}^{\infty} S_{s}(f) d f=\left(4 k_{B} T / R_{L}\right) \Delta f$.
- Amplifier noise: All electrical amplifiers enhance thermal noise by the amplifier noise figure F_{n}.
- Total thermal noise: $\sigma_{T}^{2}=\left(4 k_{B} T / R_{L}\right) F_{n} \Delta f$.
- Total Receiver Noise:

$$
\sigma^{2}=\sigma_{s}^{2}+\sigma_{T}^{2}=2 q\left(I_{p}+I_{d}\right) \Delta f+\left(4 k_{B} T / R_{L}\right) F_{n} \Delta f .
$$

Signal-to-Noise Ratio

$$
\mathrm{SNR}=\frac{I_{p}^{2}}{\sigma^{2}}=\frac{R_{d}^{2} P_{\mathrm{in}}^{2}}{2 q\left(R_{d} P_{\mathrm{in}}+I_{d}\right) \Delta f+4\left(k_{B} T / R_{L}\right) F_{n} \Delta f} .
$$

Increase in SNR with received power $P_{\text {in }}$ for three values of σ_{T} for a receiver bandwidth of 30 GHz .

Thermal-Noise Limit

- In the limit $\sigma_{T} \gg \sigma_{s}$, SNR becomes:

$$
\mathrm{SNR}=\frac{R_{L} R_{d}^{2} P_{\mathrm{in}}^{2}}{4 k_{B} T F_{n} \Delta f}
$$

- Noise-equivalent power: Defined as the minimum optical power per unit bandwidth required to produce $\operatorname{SNR}=1$:

$$
\mathrm{NEP}=\frac{P_{\mathrm{in}}}{\sqrt{\Delta f}}=\left(\frac{4 k_{B} T F_{n}}{R_{L} R_{d}^{2}}\right)^{1 / 2}=\frac{h \nu}{\eta q}\left(\frac{4 k_{B} T F_{n}}{R_{L}}\right)^{1 / 2} .
$$

- NEP is often used to quantify thermal noise.
- Typical values of NEP are in the range of 1 to $10 \mathrm{pW} / \sqrt{\mathrm{Hz}}$.
- Optical power needed to realize a specific value of SNR obtained from $P_{\text {in }}=($ NEP $\sqrt{\Delta f})$ SNR.

Shot-Noise Limit

- In the opposite limit, $\sigma_{s} \gg \sigma_{T}$:

$$
\mathrm{SNR}=\frac{R_{d} P_{\mathrm{in}}}{2 q \Delta f}=\frac{\eta P_{\mathrm{in}}}{2 h v \Delta f} .
$$

- It is possible to express SNR in terms of the number of photons N_{p} contained in a single 1 bit.
- Pulse energy: $E_{p}=N_{p} h \nu$.
- Optical power for a bit of duration $T_{B}=1 / B: P_{\text {in }}=N_{p} h \nu B$.
- Receiver bandwidth for NRZ bit stream: $\Delta f=B / 2$.
- Putting it all together, $\mathrm{SNR}=\eta N_{p} \approx N_{p}$.
- At $1.55-\mu \mathrm{m}, P_{\text {in }} \approx 130 \mathrm{nW}$ is needed at $10 \mathrm{~Gb} / \mathrm{s}$ to realize $\mathrm{SNR}=20 \mathrm{~dB}\left(N_{p}=100\right)$.

APD Receivers

- Average current larger for an APD by the gain factor M :

$$
I_{p}=M R_{d} P_{\mathrm{in}}=R_{\mathrm{APD}} P_{\mathrm{in}} .
$$

- Thermal noise unchanged but shot noise enhanced by a factor F_{A} known as excess noise factor.
- Shot-noise variance: $\sigma_{s}^{2}=2 q M^{2} F_{A}\left(R_{d} P_{\text {in }}+I_{d}\right) \Delta f$.
- Signal-to-Noise Ratio for an APD receiver:

$$
\mathrm{SNR}=\frac{I_{p}^{2}}{\sigma_{s}^{2}+\sigma_{T}^{2}}=\frac{\left(M R_{d} P_{\mathrm{in}}\right)^{2}}{2 q M^{2} F_{A}\left(R_{d} P_{\mathrm{in}}+I_{d}\right) \Delta f+4\left(k_{B} T / R_{L}\right) F_{n} \Delta f} .
$$

- SNR is larger for APDs because thermal noise dominates in practice.

APD Receivers (continued)

- Increase in SNR with received power $P_{\text {in }}$ for three values of APD gain M for $30-\mathrm{GHz}$ bandwidth.
- Excess noise factor F_{A} depend on APD gain as $F_{A}(M)=k_{A} M+\left(1-k_{A}\right)(2-1 / M)$.

Optimum APD gain

- Thermal-Noise Limit $\left(\sigma_{T} \gg \sigma_{s}\right)$:

$$
\mathrm{SNR}=\left(R_{L} R_{d}^{2} / 4 k_{B} T F_{n} \Delta f\right) M^{2} P_{\mathrm{in}}^{2} .
$$

- Shot-Noise Limit $\left(\sigma_{s} \gg \sigma_{T}\right)$:

$$
\mathrm{SNR}=\frac{R_{d} P_{\mathrm{in}}}{2 q F_{A} \Delta f}=\frac{\eta P_{\mathrm{in}}}{2 h v F_{A} \Delta f} .
$$

- SNR can be maximized by optimizing the APD gain M.
- Setting $d(\mathrm{SNR}) / d M=0$, the optimum APD gain satisfies

$$
k_{A} M_{\mathrm{opt}}^{3}+\left(1-k_{A}\right) M_{\mathrm{opt}}=\frac{4 k_{B} T F_{n}}{q R_{L}\left(R_{d} P_{\mathrm{in}}+I_{d}\right)} .
$$

- Approximate solution: $M_{\mathrm{opt}} \approx\left[\frac{4 k_{B} T F_{n}}{k_{A} q R_{L}\left(R_{d} P_{\text {in }}+I_{d}\right)}\right]^{1 / 3}$.

Optimum APD Gain (continued)

- $M_{\text {opt }}$ plotted as a function of $P_{\text {in }}$ for several values of k_{A}.
- Parameter values correspond to a typical $1.55-\mu \mathrm{m}$ APD receiver.
- Performance improved for APDs when $k_{A} \ll 1$.

Bit Error Rate

- $\mathrm{BER}=p(1) P(0 / 1)+p(0) P(1 / 0)=\frac{1}{2}[P(0 / 1)+P(1 / 0)]$.
- $P(0 / 1)=$ conditional probability of deciding 0 when 1 is sent.
- Since $p(1)=p(0)=1 / 2, \mathrm{BER}=\frac{1}{2}[P(0 / 1)+P(1 / 0)]$.
- Common to assume Gaussian statistics for the current.

Bit Error Rate (continued)

- $P(0 / 1)=$ Area below the decision level I_{D}

$$
P(0 / 1)=\frac{1}{\sigma_{1} \sqrt{2 \pi}} \int_{-\infty}^{I_{D}} \exp \left(-\frac{\left(I-I_{1}\right)^{2}}{2 \sigma_{1}^{2}}\right) d I=\frac{1}{2} \operatorname{erfc}\left(\frac{I_{1}-I_{D}}{\sigma_{1} \sqrt{2}}\right) .
$$

- $P(1 / 0)=$ Area above the decision level I_{D}

$$
P(1 / 0)=\frac{1}{\sigma_{0} \sqrt{2 \pi}} \int_{I_{D}}^{\infty} \exp \left(-\frac{\left(I-I_{0}\right)^{2}}{2 \sigma_{0}^{2}}\right) d I=\frac{1}{2} \operatorname{erfc}\left(\frac{I_{D}-I_{0}}{\sigma_{0} \sqrt{2}}\right) .
$$

- Complementary error function $\operatorname{erfc}(x)=\frac{2}{\sqrt{\pi}} \int_{x}^{\infty} \exp \left(-y^{2}\right) d y$.
- Final Answer

$$
\mathrm{BER}=\frac{1}{4}\left[\operatorname{erfc}\left(\frac{I_{1}-I_{D}}{\sigma_{1} \sqrt{2}}\right)+\operatorname{erfc}\left(\frac{I_{D}-I_{0}}{\sigma_{0} \sqrt{2}}\right)\right] .
$$

Role of Decision Level

- BER depends on the decision threshold I_{D}.
- I_{D} is optimized in practice to reduce the BER.

Minimum Bit Error Rate

- Minimize BER by setting $d(B E R) / d I_{D}=0$.
- Minimum BER occurs when I_{D} is chosen such that

$$
\frac{\left(I_{D}-I_{0}\right)^{2}}{2 \sigma_{0}^{2}}=\frac{\left(I_{1}-I_{D}\right)^{2}}{2 \sigma_{1}^{2}}+\ln \left(\frac{\sigma_{1}}{\sigma_{0}}\right) .
$$

- Last term is negligible in most cases, and

$$
\begin{aligned}
& \left(I_{D}-I_{0}\right) / \sigma_{0}=\left(I_{1}-I_{D}\right) / \sigma_{1} \equiv Q . \\
& I_{D}=\frac{\sigma_{0} I_{1}+\sigma_{1} I_{0}}{\sigma_{0}+\sigma_{1}}, \quad Q=\frac{I_{1}-I_{0}}{\sigma_{1}+\sigma_{0}} .
\end{aligned}
$$

- Final Expression

$$
\operatorname{BER}=\frac{1}{2} \operatorname{erfc}\left(\frac{Q}{\sqrt{2}}\right) \approx \frac{\exp \left(-Q^{2} / 2\right)}{Q \sqrt{2 \pi}} .
$$

Q Parameter

- $Q=\frac{I_{1}-I_{0}}{\sigma_{1}+\sigma_{0}}$ is a measure of SNR.
- $Q>6$ required for a BER of $<10^{-9}$.
- $Q=7$ provides a BER of $<10^{-12}$.

Minimum Average Power

- Receiver sensitivity $=$ Minimum average power needed to keep the BER below a certain value $\left(<10^{-9}\right)$.
- We need to relate Q parameter to incident optical power.
- Assume 0 bits carry no optical power so that $P_{0}=I_{0}=0$.
- $I_{1}=M R_{d} P_{1}=2 M R_{d} \bar{P}_{\mathrm{rec}}$, where $\bar{P}_{\mathrm{rec}}=\left(P_{1}+P_{0}\right) / 2$.
- Including both shot and thermal noise,

$$
\begin{gathered}
\sigma_{1}=\left(\sigma_{s}^{2}+\sigma_{T}^{2}\right)^{1 / 2} \quad \text { and } \quad \sigma_{0}=\sigma_{T} \\
\sigma_{s}^{2}=2 q M^{2} F_{A} R_{d}\left(2 \bar{P}_{\mathrm{rec}}\right) \Delta f, \quad \sigma_{T}^{2}=\left(4 k_{B} T / R_{L}\right) F_{n} \Delta f .
\end{gathered}
$$

- Using these results

$$
Q=\frac{I_{1}}{\sigma_{1}+\sigma_{0}}=\frac{2 M R_{d} \bar{P}_{\mathrm{rec}}}{\left(\sigma_{s}^{2}+\sigma_{T}^{2}\right)^{1 / 2}+\sigma_{T}} .
$$

Receiver Sensitivity

- Solving for received power, we obtain

$$
\bar{P}_{\mathrm{rec}}=\frac{Q}{R_{d}}\left(q F_{A} Q \Delta f+\frac{\sigma_{T}}{M}\right) .
$$

- For a $p-i-n$ receiver, we set $M=1$.
- Since thermal noise dominates for such a receiver,

$$
\bar{P}_{\mathrm{rec}} \approx Q \sigma_{T} / R_{d} .
$$

- Using $R \approx 1 \mathrm{~A} / \mathrm{W}$ near $1.55 \mu \mathrm{~m}, \bar{P}_{\mathrm{rec}}=Q \sigma_{T}$.
- As an example, if we use $R_{d}=1 \mathrm{~A} / \mathrm{W}, \sigma_{T}=100 \mathrm{nA}$, and $Q=6$, we obtain $\bar{P}_{\text {rec }}=0.6 \mu \mathrm{~W}$ or -32.2 dBm .

APD Receiver Sensitivity

- Receiver sensitivity improves for APD receivers.
- If thermal noise dominates, $\bar{P}_{\text {rec }}$ is reduced by a factor of M.
- When shot and thermal noise are comparable, receiver sensitivity can be optimized by adjusting the APD gain M.
- $\bar{P}_{\text {rec }}$ is minimum for an optimum value of M :

$$
M_{\mathrm{opt}}=k_{A}^{-1 / 2}\left(\frac{\sigma_{T}}{Q q \Delta f}+k_{A}-1\right)^{1 / 2} \approx\left(\frac{\sigma_{T}}{k_{A} Q q \Delta f}\right)^{1 / 2}
$$

- Best APD responsivity

$$
\bar{P}_{\mathrm{rec}}=(2 q \Delta f / R) Q^{2}\left(k_{A} M_{\mathrm{opt}}+1-k_{A}\right) .
$$

Number of Photons/Bit

- Receiver sensitivity can be expressed in terms of number of photons N_{p} contained within a single 1 bit.
- In the shot-noise limit, $I_{0}=0$ and $\sigma_{0}=0$ when 0 bits carry no power, and $Q=I_{1} / \sigma_{1}=(\mathrm{SNR})^{1 / 2}$.
- SNR related to N_{p} as SNR $\approx \eta N_{p}$, or

$$
\mathrm{BER}=\frac{1}{2} \operatorname{erfc}\left(\sqrt{\eta N_{p} / 2}\right) .
$$

- For $\eta=1$, $\mathrm{BER}=1 \times 10^{-9}, N_{p}=36$. Thus, 36 photons are sufficient in the shot-noise limit.
- In practice, most optical receivers require $N_{p}>1000$ because of thermal noise.

Quantum Limit of Photodetection

- The BER obtained in the shot-noise limit not totally accurate.
- Its derivation based on the Gaussian approximation for noise.
- Poisson statistics should be used for small number of photons.
- For an ideal detector (no thermal noise, no dark current, and $\eta=1$), 0 bits produce no photons, and $\sigma_{0}=0$.
- Error occurs only if 1 bit fails to produce even one electron.
- Probability of generating m electrons: $P_{m}=\exp \left(-N_{p}\right) N_{p}^{m} / m$!.
- Since $P(0 / 1)=\exp \left(-N_{p}\right), \quad \mathrm{BER}=\exp \left(-N_{p}\right) / 2$.
- $N_{p}=20$ for $\mathrm{BER}=1 \times 10^{-9}$ (10 photons/bit on average).
- $\bar{P}_{\mathrm{rec}}=N_{p} h \nu B / 2=\bar{N}_{p} h \nu B=13 \mathrm{nW}$ or -48.9 dBm at $B=10 \mathrm{~Gb} / \mathrm{s}$.

Sensitivity Degradation

- Real receivers need more power than $\bar{P}_{\text {rec }}$.
- Increase in power is referred to as power penalty.
- In decibel units, power penalty is defined as

$$
\text { Power Penalty }=10 \log _{10}\left(\frac{\text { Increased Power }}{\text { Original Power }}\right) .
$$

- Several mechanisms degrade the receiver sensitivity.
* Finite Extinction ratio $\left(P_{0} \neq 0\right)$
* Intensity Noise of received optical signal
* Pulse broadening induced by fiber dispersion
* Timing Jitter of electronic circuits

Finite Extinction Ratio

- Extinction ratio is defined as $r_{\mathrm{ex}}=P_{0} / P_{1}$.
- Power penalty can be obtained by calculating Q parameter.
- For a p-i-n receiver $I_{1}=R_{d} P_{1}$ and $I_{0}=R_{d} P_{0}$.
- Using $\bar{P}_{\text {rec }}=\left(P_{1}+P_{0}\right) / 2$,

$$
Q=\left(\frac{1-r_{\mathrm{ex}}}{1+r_{\mathrm{ex}}}\right) \frac{2 R_{d} \bar{P}_{\mathrm{rec}}}{\sigma_{1}+\sigma_{0}} .
$$

- In thermal noise limit, $\sigma_{1} \approx \sigma_{0} \approx \sigma_{T}$.
- Received power for a finite extinction ratio

$$
\bar{P}_{\mathrm{rec}}\left(r_{\mathrm{ex}}\right)=\left(\frac{1+r_{\mathrm{ex}}}{1-r_{\mathrm{ex}}}\right) \frac{\sigma_{T} Q}{R_{d}} .
$$

Extinction Ratio (continued)

$$
\delta_{\mathrm{ex}}=10 \log _{10}\left(\frac{\bar{P}_{\mathrm{rec}}\left(r_{\mathrm{ex}}\right)}{\bar{P}_{\mathrm{rec}}(0)}\right)=10 \log _{10}\left(\frac{1+r_{\mathrm{ex}}}{1-r_{\mathrm{ex}}}\right) .
$$

$1-\mathrm{dB}$ penalty occurs for $r_{\mathrm{ex}}=0.12$; increases to 4.8 dB for $r_{\mathrm{ex}}=0.5$.

Intensity Noise of Lasers

- So far, incident optical power is assumed to be constant.
- In practice, all lasers exhibit intensity noise.
- Optical amplifiers add additional power fluctuations.
- Receiver converts power fluctuations into current fluctuations, which add to those resulting from shot and thermal noise.
- Total noise variance can be written as

$$
\sigma^{2}=\sigma_{s}^{2}+\sigma_{T}^{2}+\sigma_{I}^{2} .
$$

- Intensity noise $\left.\sigma_{I}=R_{d}\left\langle\left(\Delta P_{\text {in }}^{2}\right)\right\rangle^{1 / 2}=R_{d} P_{\text {in }} r_{I}, \quad r_{I}=\left\langle\Delta P_{\text {in }}^{2}\right)\right\rangle^{1 / 2} / P_{\text {in }}$.
- Parameter r_{I} related to the RIN of a laser as

$$
r_{I}^{2}=\frac{1}{2 \pi} \int_{-\infty}^{\infty} \operatorname{RIN}(\omega) d \omega
$$

Intensity Noise (continued)

- Consider a p-i-n receiver with $I_{1}=R_{d} P_{1}$ and $I_{0}=0$.
- Using $\bar{P}_{\text {rec }}=\left(P_{1}+P_{0}\right) / 2$

$$
Q=\frac{2 R_{d} \bar{P}_{\mathrm{rec}}}{\left(\sigma_{T}^{2}+\sigma_{s}^{2}+\sigma_{I}^{2}\right)^{1 / 2}+\sigma_{T}} .
$$

- Optical power required for a finite intensity noise

$$
\bar{P}_{\mathrm{rec}}\left(r_{I}\right)=\frac{Q \sigma_{T}+Q^{2} q \Delta f}{R_{d}\left(1-r_{I}^{2} Q^{2}\right)}
$$

- Power penalty is found to be

$$
\delta_{I}=-10 \log _{10}\left(1-r_{I}^{2} Q^{2}\right) .
$$

Intensity Noise (continued)

- A 2-dB penalty occurs for $r_{I}=0.1$.
- Penalty becomes infinite when $r_{I}>Q^{-1}$ (BER floor).
- In practice, $r_{I}<0.01$ (power penalty negligible).

Dispersive Pulse Broadening

- Pulse energy in the bit slot decreases with pulse broadening.
- Receiver requires more average power to maintain SNR.
- For Gaussian pulses, peak power is reduced by the pulse broadening factor f_{b} found in Chapter 3.
- $f_{b}^{2}=1+\left(D L \sigma_{\lambda} / \sigma_{0}\right)^{2}$ when source bandwidth dominates.
- σ_{0} is related to duty cycle d_{c} as $4 \sigma_{0}=d_{c} T_{b}$.
- Using $\sigma=(4 B)^{-1}$, power penalty is given by

$$
\delta_{d}=10 \log _{10} f_{b}=5 \log _{10}\left[1+\left(4 B L D \sigma_{\lambda} / d_{c}\right)^{2}\right] .
$$

- For a narrowband source and unchirped Gaussian pulses

$$
\delta_{d}=5 \log _{10}\left[1+\left(8 \beta_{2} B^{2} L / d_{c}^{2}\right)^{2}\right] .
$$

Dispersive Pulse Broadening

- Power penalty negligible for $\mu=\left|\beta_{2}\right| B^{2} L<0.05$ and $d_{c}>0.5$.
- Increases rapidly as μ increases and exceeds 5 dB for $\mu=0.1$.
- At $10-\mathrm{Gb} / \mathrm{s}, L<50 \mathrm{~km}$ when standard fibers are used.

Frequency Chirping

- Chirping of optical pulses affects pulse broadening.
- For chirped Gaussian pulses pulse broadening factor is

$$
\left.f_{b}^{2}=1+8 C \beta_{2} B^{2} L / d_{c}^{2}\right)^{2}+\left(8 \beta_{2} B^{2} L / d_{c}^{2}\right)^{2} .
$$

- Power penalty then becomes

$$
\delta_{c}=5 \log _{10}\left[\left(1+8 C \beta_{2} B^{2} L / d_{c}^{2}\right)^{2}+\left(8 \beta_{2} B^{2} L / d_{c}^{2}\right)^{2}\right] .
$$

- Penalty can be quite large when $\beta_{2} C>0$.
- This is the case for directly nodulated DFB lasers $(C>-4)$ operating near $1.55 \mu \mathrm{~m}\left(\beta_{2}<0\right)$.

Frequency Chirping

- To keep penalty below $0.1 \mathrm{~dB},\left|\beta_{2}\right| B^{2} L<0.002$ is required.
- For standard fibers $B^{2} L$ is limited to $100(\mathrm{~Gb} / \mathrm{s})^{2}-\mathrm{km}$.
- System performance can be improved by ensuring that $\beta_{2} C<0$.

Timing Jitter

- Signal must be sampled at the peak of the current pulse.
- Decision instant determined by the clock-recovery circuit.
- In practice, sampling time fluctuates from bit to bit.
- If bit is not sampled at the bit center, sampled value is reduced by an amount that depends on timing jitter Δt.
- Since Δt is a random variable, signal becomes more noisy.
- SNR reduced as a result of such additional fluctuations.
- SNR can be maintained by increasing received power (power penalty).

Timing Jitter (continued)

- Q parameter in the presence of timing jitter

$$
Q=\frac{I_{1}-\left\langle\Delta i_{j}\right\rangle}{\left(\sigma_{T}^{2}+\sigma_{j}^{2}\right)^{1 / 2}+\sigma_{T}}
$$

- If $S_{p}(t)$ governs the shape of current pulse, $\Delta i_{j}=I_{1}\left[S_{p}(0)-S_{p}(\Delta t)\right]$.
- Approximating S_{p} as $S_{p}(t)=1-\frac{1}{2}\left(c_{p} B t\right)^{2}, \Delta i_{j}=\left(c_{p} B \Delta t\right)^{2} I_{1}$.
- Probability density of timing jitter Δt

$$
p(\Delta t)=\frac{1}{\tau_{j} \sqrt{2 \pi}} \exp \left(-\frac{\Delta t^{2}}{2 \tau_{j}^{2}}\right) .
$$

- Find $p\left(\Delta i_{j}\right)$ and use it to calculate $\left\langle\Delta i_{j}\right\rangle$ and σ_{j}.

Timing Jitter (continued)

- Probability density of current fluctuation Δi_{j}

$$
p\left(\Delta i_{j}\right)=\frac{1}{\sqrt{\pi b \Delta i_{j} I_{1}}} \exp \left(-\frac{\Delta i_{j}}{b I_{1}}\right), \quad b=\left(c_{p} B \sigma_{t}\right)^{2} .
$$

- Average and standard deviation are found to be

$$
\left\langle\Delta i_{j}\right\rangle=b I_{1} / 2, \quad \sigma_{j}=b I_{1} / \sqrt{2}
$$

- Receiver sensitivity

$$
\bar{P}_{\mathrm{rec}}(b)=\left(\frac{\sigma_{T} Q}{R_{d}}\right) \frac{1-b / 2}{(1-b / 2)^{2}-b^{2} Q^{2} / 2} .
$$

- Power penalty is found to be

$$
\delta_{j}=10 \log _{10}\left(\frac{1-b / 2}{(1-b / 2)^{2}-b^{2} Q^{2} / 2}\right)
$$

Timing Jitter (continued)

- Pulse curvature c_{p} at center of bit slot plays important role.
- Power penalty becomes infinitely large at a certain value of $B \sigma_{t}$.
- Tolerable value $B \sigma_{t}$ depends on c_{p} and decreases as c_{p} increases.
- Typically $c_{p}<1$, and power penalty $\left.<0.5 \mathrm{~dB}\right)$ if $B \sigma_{t}<0.08$.

Eye-Closure Penalty

- Eye diagrams at $40 \mathrm{~Gb} / \mathrm{s}$ in the case of NRZ, CSRZ, NRZ-DPSK, and RZ-DPSK formats.
- $L=0$ (top row) and $L=263 \mathrm{~km}$ (bottom row).
- Alternative measure of system performance is provided by the eye opening.

Forward Error Correction

- It is entirely possible that a specified BER cannot be achieved.
- Only viable alternative-Use an error-correction scheme.
- In one approach, errors are detected but not corrected.
- Suitable when packet switching is used (Internet protocol).
- In FEC, errors are detected and corrected at the receiver without any retransmission of bits.
- This scheme is best suited for lightwave systems operating with SONET or SDH protocol.
- Historically, lightwave systems did not employ FEC until the use of in-line optical amplifiers became common.

Error-Correcting Codes

- Basic idea: Add extra bits at transmitter using a suitable code.
- At the receiver end, a decoder uses these control bits to detect and correct errors.
- How many errors can be corrected depends on the coding scheme employed.
- In general, more errors can be corrected by adding more control bits to the signal.
- There is a limit to this process since bit rate of the system increases after the FEC coder.
- If B_{e} is effective bit rate after coding, FEC overhead is $B_{e} / B-1$.
- Redundancy of a code is defined as $\rho=1-B / B_{e}$.

Error-Correcting Codes

- Classified under names such as linear, cyclic, Hamming, ReedSolomon, convolutional, product, and turbo codes.
- Among these, Reed-Solomon (RS) codes have attracted most attention for lightwave systems.
- Denoted as $\operatorname{RS}(n, k)$, where k is the size of packet that is converted into a larger packet with n bits $\left(n=2^{m}-1\right)$.
- ITU recommendation: $\operatorname{RS}(255,239)$ with $m=8$. FEC overhead for this code is 6.7%.
- $\operatorname{RS}(255,207)$ with an overhead of 23.2% is also used.
- Improvement in BER is quantified through the coding gain.

Coding Gain

- Coding gain: A measure of improvement in BER through FEC.
- It is expressed in terms of the equivalent value of Q as $G_{c}=$ $20 \log _{10}\left(Q_{c} / Q\right)$.
- Q_{c} and Q are related to the BERs as

$$
\operatorname{BER}_{c}=\frac{1}{2} \operatorname{erfc}\left(Q_{c} / \sqrt{2}\right), \quad \mathrm{BER}=\frac{1}{2} \operatorname{erfc}(Q / \sqrt{2}) .
$$

- Factor of 20 is used in place of 10 because performance is often quantified through Q^{2}.
- If FEC decoder improves BER from 10^{-3} to $10^{-9}, Q$ increases from 3 to 6 , resulting in a coding gain of 6 dB .
- Magnitude of coding gain increases with the FEC overhead.

Coding Gain

- For single RS codes, coding gain is 5.5 dB for 10% overhead and increases sublinearly, reaching 8 dB for 50% overhead.
- It can be improved by concatenating two or more RS codes or by employing the RS product codes.

Product Codes

- Same code is applied along the rows and columns of a block.
- Overhead of $n^{2} / k^{2}-1$ for a RS product code is larger, but it also allows more error control.
- 6 dB of coding gain possible with only 5% overhead.

Coding Gain

- While implementing FEC, one faces a dilemma.
- As the overhead is increased to realize more coding gain, bit rate of the signal increases.
- Since Q factor realized at the receiver depends on the bit rate, its value is reduced, and BER actually worsens.
- Decoder improves it but it first has to overcome the degradation caused by the increased bit rate.
- If an aggressive FEC scheme is employed, BER may degrade so much that the system is not operable even with the FEC coder.
- An optimum range of coding overhead exists for every system designed to operate at a specific bit rate over a certain distance.

Coding Gain

- Numerically simulated Q factors (a) before and (b) after the FEC decoder as a function of code redundancy for a WDM system with 25 channels at $40 \mathrm{~Gb} / \mathrm{s}$.
- With FEC, Q factor becomes worse as overhead increases.

Chapter 6: Optical Amplifier Noise

- Origin of Amplifier Noise
- Optical Signal-to-Noise Ratio
- Electrical Signal-to-Noise Ratio
- Receiver Sensitivity and Q Factor
- Role of Dispersive and Nonlinear Effects
- Periodically Amplified Lightwave Systems

Optical Amplifiers

- Used routinely for loss compensation since 1995.
- Amplify the input signal but also add some noise.
- Several kinds of amplifiers have been developed:
* Semiconductor optical amplifiers
* Raman-based fiber amplifiers
* Erbium-doped fiber amplifiers
- EDFAs are used most commonly for lightwave systems.
- Raman amplifiers work better for long-haul systems.

Erbium-Doped Fiber Amplifiers

- Developed after 1987 and commercialized during the 1990s.
- Fiber core doped with erbium (length 20-200 m).
- Pumped using diode lasers operating at 980 or 1480 nm .
- Provide $20-30 \mathrm{~dB}$ gain at pump powers $<50 \mathrm{~mW}$.
- Gain bandwidth up to 40 nm possible.
- Relatively low noise; Noise figure 4 to 5 dB .
- Provide polarization-independent gain.
- Gain pattern independent (Response time $\sim 10 \mathrm{~ms}$).
- Can be designed to work in both the C and L bands.

Pumping and Gain

- Semiconductor lasers at 980 or 1480 nm are used for pumping.
- Pumping efficiency up to $11 \mathrm{~dB} / \mathrm{mW}$ possible at 980 nm .
- Amplification occurs when ions in the excited state emit coherent light through stimulated emission.

Origin of Amplifier Noise

- Source of noise: Spontaneous emission
- Spontaneous emitted photons have random phase and polarization.
- They perturb both A and phase ϕ in a random fashion.
- Such random perturbations are the source of amplifier noise.

Modeling of Amplifier Noise

- NLS equation including the gain and noise of optical amplifiers:

$$
\frac{\partial A}{\partial z}+\frac{i \beta_{2}}{2} \frac{\partial^{2} A}{\partial t^{2}}=i \gamma|A|^{2} A+\frac{1}{2}\left(g_{0}-\alpha\right) A+f_{n}(z, t)
$$

- Gain coefficient $g_{0}=\sigma_{e} N_{2}-\sigma_{a} N_{1} ; \sigma_{e}$ and σ_{a} are emission and absorption cross sections.
- Noise term vanishes on average, i.e, $\left\langle f_{n}(z, t)\right\rangle=0$.
- Noise modeled as a Markovian process with Gaussian statistics

$$
\left\langle f_{n}^{*}(z, t) f_{n}\left(z^{\prime}, t^{\prime}\right)\right\rangle=n_{\mathrm{sp}} h v_{0} g_{0} \boldsymbol{\delta}\left(z-z^{\prime}\right) \boldsymbol{\delta}\left(t-t^{\prime}\right) .
$$

- Spontaneous-emission factor $n_{\mathrm{sp}}=\sigma_{e} N_{2} /\left(\sigma_{e} N_{2}-\sigma_{a} N_{1}\right)$.
- Two delta functions ensure that all spontaneous-emission events are independent of each other in time and space.

Noise of Lumped Amplifiers

- Amplifier Length l_{a} is much shorter than amplifier spacing L_{A}.
- Neither loss, nor dispersion, nor nonlinearities are important within the amplifier.
- Neglecting them and integrating, we obtain:

$$
A_{\text {out }}(t)=\sqrt{G} A_{\text {in }}(t)+a_{n}(t) \text { with } G=\exp \left(g_{0} l_{a}\right) .
$$

- Amplified spontaneous emission (ASE) at the amplifier output:

$$
a_{n}(t)=\int_{0}^{l_{a}} f_{n}(z, t) \exp \left[\frac{1}{2} g_{0}\left(l_{a}-z\right)\right] d z .
$$

- Since $\left\langle f_{n}(z, t)\right\rangle=0, a_{n}(t)$ also vanishes on average.
- Second moment of $a_{n}(t)$ is found to be

$$
\left\langle a_{n}(t) a_{n}\left(t^{\prime}\right)\right\rangle=S_{\mathrm{ASE}} \delta\left(t-t^{\prime}\right), \quad S_{\mathrm{ASE}}=n_{\mathrm{sp}} h v_{0}(G-1) .
$$

Total Noise Power

- It is important to note that $a_{n}(t)$ represents only the portion of ASE that is coupled to the mode occupied by the signal.
- One must add up noise over the entire bandwidth of amplifier.
- If an optical filter is used, ASE power becomes

$$
P_{\mathrm{ASE}}=2 \int_{-\infty}^{\infty} S_{\mathrm{ASE}} H_{f}\left(v-v_{0}\right) d v \approx 2 S_{\mathrm{ASE}} \Delta v_{o}
$$

- Δv_{o} is the effective bandwidth of optical filter.
- Factor of 2 takes into account two orthogonally polarized modes of fiber.
- Only half the noise power is copolarized with the optical signal.

Distributed Amplification

- In the case of distributed amplification, NLS equation should be solved along the entire fiber link.
- Gain $g_{0}(z)$ is not constant along the fiber length.
- It is not easy to solve the NLS equation. If we set $\beta_{2}=0$ and $\gamma=0$, the solution is $A(L, t)=\sqrt{G(L)} A(0, t)+a_{n}(t)$ with

$$
a_{n}(t)=\sqrt{G(L)} \int_{0}^{L} \frac{f_{n}(z, t)}{\sqrt{G(z)}} d z, \quad G(z)=\exp \left(\int_{0}^{z}\left[g_{0}\left(z^{\prime}\right)-\alpha\right] d z^{\prime}\right) .
$$

- $a_{n}(t)$ vanishes on average and its second moment is given by

$$
\left\langle a_{n}(t) a_{n}\left(t^{\prime}\right)\right\rangle=G(L) \int_{0}^{L} d z \int_{0}^{L} d z^{\prime} \frac{\left\langle f_{n}(z, t) f_{n}\left(z^{\prime}, t^{\prime}\right)\right\rangle}{\sqrt{G(z) G\left(z^{\prime}\right)}}=S_{\mathrm{ASE}} \boldsymbol{\delta}\left(t-t^{\prime}\right),
$$

- Spectral density: $S_{\mathrm{ASE}}=n_{\text {sp }} h v_{0} G(L) \int_{0}^{L} \frac{g_{0}(z)}{G(z)} d z$.

Distributed Raman Amplification

- The origin of noise is related to spontaneous Raman scattering.
- Spontaneous-emission factor $n_{\text {sp }}$ has a different meaning than that in the case of EDFAs.
- No electronic transitions involved during Raman amplification.
- Spontaneous Raman scattering is affected by phonon population that depends on temperature of the fiber.
- More precisely, $n_{\text {sp }}$ is given by

$$
n_{\mathrm{sp}}(\Omega)=1+\frac{1}{\exp \left(\hbar \Omega / k_{B} T\right)-1} \equiv \frac{1}{1-\exp \left(-\hbar \Omega / k_{B} T\right)}
$$

- At room temperature $n_{\text {sp }}=1.14$ near the Raman-gain peak.

Total ASE Power

- Total ASE power is obtained by adding contributions over the Raman-gain bandwidth or the bandwidth of optical filter.
- Assuming a filter is used, the total ASE power is given by

$$
P_{\mathrm{ASE}}=2 \int_{-\infty}^{\infty} S_{\mathrm{ASE}} H_{f}\left(v-v_{0}\right) d v=2 S_{\mathrm{ASE}} \Delta v_{o}
$$

- Factor of 2 includes both polarization components.
- Substituting the expression for $S_{\text {ASE }}$, ASE power becomes

$$
P_{\mathrm{ASE}}=2 n_{\mathrm{sp}} h v_{0} \Delta v_{o} G(L) \int_{0}^{L} \frac{g_{0}(z)}{G(z)} d z
$$

- ASE power depends on the pumping scheme through $g_{0}(z)$.

Optical SNR

- Optical SNR = Ratio of optical power to ASE power.
- Assume that all amplifiers are spaced apart by L_{A} and have the same gain $G=\exp \left(\alpha L_{A}\right)$.
- Total ASE power for a chain of N_{A} amplifiers:

$$
P_{\mathrm{ASE}}^{\mathrm{tot}}=2 N_{A} S_{\mathrm{ASE}} \Delta v_{o}=2 n_{\mathrm{sp}} h v_{0} N_{A}(G-1) \Delta v_{o} .
$$

- Factor of 2 takes into account unpolarized nature of ASE.
- Optical SNR is thus given by

$$
\mathrm{SNR}_{o}=\frac{P_{\mathrm{in}}}{P_{\mathrm{ASE}}^{\mathrm{tot}}}=\frac{P_{\mathrm{in}} \ln G}{2 n_{\mathrm{sp}} h v_{0} \Delta v_{o} \alpha L_{T}(G-1)} .
$$

- We used $N_{A}=L_{T} / L_{A}=\alpha L_{T} / \ln G$ for a link of total length L_{T}.

Optical SNR

- SNR can be enhanced by reducing the gain of each amplifier.
- ASE-limited system length as a function of L_{A} for several values of
input power using $\alpha=0.2 \mathrm{~dB} / \mathrm{km}, n_{\mathrm{sp}}=1.6, \Delta v_{o}=100 \mathrm{GHz}$.
- It is assumed that an SNR of 20 is required by the system.

Optimum Amplifier Spacing

- Optimum L_{A} becomes smaller as system length increases.
- Amplifier spacing can be improved by increasing input power $P_{\text {in }}$.
- In practice, maximum launched power is limited by the onset of various nonlinear effects.
- Typically, $P_{\text {in }}$ is limited to close to 1 mW .
- At such power levels, L_{A} should be in the range of 40 to 50 km for submarine lightwave systems with lengths of $6,000 \mathrm{~km}$ or more.
- Amplifier spacing can be increased to 80 km for terrestrial systems with link lengths under $3,000 \mathrm{~km}$.

Case of Distributed Amplification

- Optical SNR in this case takes the form

$$
\mathrm{SNR}_{o}=\frac{P_{i n}}{2 N_{A} S_{\mathrm{ASE}} \Delta v_{o}}, \quad S_{\mathrm{ASE}}=n_{\mathrm{sp}} h v_{0} G(L) \int_{0}^{L} \frac{g_{0}(z)}{G(z)} d z
$$

- Pump power can be injected in the forward, backward, or both directions.
- $g(z)$ depends on the pumping scheme, and $S_{\text {ASE }}$ depends on $g(z)$.
- We can control optical SNR by adopting a suitable pumping scheme.
- Consider a $100-\mathrm{km}$-long fiber section pumped bidirectionally to provide distributed Raman amplification.
- ASE spectral density and optical SNR are shown as a function of net gain when $P_{\mathrm{in}}=1 \mathrm{~mW}$.

SNR for Raman Amplification

- Fraction of forward pumping varies from 0 to 100%.
- Losses are 0.26 and $0.21 \mathrm{~dB} / \mathrm{km}$ at pump and signal wavelengths.
- Other parameters are $n_{\text {sp }}=1.13, h v_{0}=0.8 \mathrm{eV}$, and $g_{R}=0.68 \mathrm{~W}^{-1} / \mathrm{km}$.

Distributed Raman Amplification

- Optical SNR is highest in the case of purely forward pumping.
- It degrades by as much as 15 dB as the fraction of backward pumping is increased from 0 to 100%.
- ASE generated near the input end experiences losses over the full length of the fiber in the case of forward pumping.
- It experiences only a fraction of losses for backward pumping.
- If N_{A} such sections are employed to form a long-haul fiber link, SNR is reduced by a factor of N_{A}.
- Even when $L_{T}=10,000 \mathrm{~km}\left(N_{A}=100\right), \mathrm{SNR}_{o}$ remains $>20 \mathrm{~dB}$.
- Such high values of optical SNR are difficult to maintain when EDFAs are used.

Electrical SNR

- Optical SNR is not what governs the BER at the receiver.
- Electrical SNR of the current generated is more relevant for signal recovery at the receiver.
- Assume that a single optical amplifier is used before receiver to amplify a low-power signal before it is detected.
- This configuration is sometimes used to improve receiver sensitivity through optical preamplifcation.

ASE-Induced Current Fluctuations

- Photocurrent $I=R_{d}\left(\left|\sqrt{G} E_{s}+E_{\mathrm{cp}}\right|^{2}+\left|E_{\mathrm{op}}\right|^{2}\right)+i_{s}+i_{T}$.
- It is necessary to separate the ASE into two parts because only its copolarized part can beat with the signal.
- ASE-induced current noise has its origin in beating of E_{s} with E_{cp} and beating of ASE with itself.
- Useful to divide bandwidth Δv_{o} into M bins, each of bandwidth Δv_{s}, and write

$$
E_{\mathrm{cp}}=\sum_{m=1}^{M}\left(S_{\mathrm{ASE}} \Delta \nu_{s}\right)^{1 / 2} \exp \left(i \phi_{m}-i \omega_{m} t\right) .
$$

- ϕ_{m} is the phase of noise component at $\omega_{m}=\omega_{l}+m\left(2 \pi \Delta v_{s}\right)$.
- An identical form applies for $E_{\text {op }}$.

ASE-Induced Current Fluctuations

- Using $E_{s}=\sqrt{P_{s}} \exp \left(i \phi_{s}-i \omega_{s} t\right)$ and including all beating terms,

$$
I=R_{d} G P_{s}+i_{\mathrm{sig}-\mathrm{sp}}+i_{\mathrm{sp}-\mathrm{sp}}+i_{s}+i_{T} .
$$

- $i_{\text {sig-sp }}$ and $i_{\text {sp-sp }}$ represent current fluctuations resulting from signalASE and ASE-ASE beating:

$$
\begin{gathered}
i_{\text {sig }-\mathrm{sp}}=2 R_{d}\left(G P_{s} S_{\mathrm{ASE}} \Delta v_{s}\right)^{1 / 2} \sum_{m=1}^{M} \cos \left[\left(\omega_{s}-\omega_{m}\right) t+\phi_{m}-\phi_{s}\right], \\
i_{\mathrm{sp}-\mathrm{sp}}=2 R_{d} S_{\mathrm{ASE}} \Delta v_{s} \sum_{m=1}^{M} \sum_{n=1}^{M} \cos \left[\left(\omega_{n}-\omega_{m}\right) t+\phi_{m}-\phi_{n}\right] .
\end{gathered}
$$

- $\left\langle i_{\text {sp }-\mathrm{sp}}\right\rangle=2 R_{d} S_{\mathrm{ASE}} \Delta \nu_{s} M \equiv 2 R_{d} S_{\mathrm{ASE}} \Delta \nu_{o} \equiv R_{d} P_{\mathrm{ASE}}$.
- Variances of two noise currents are found to be

$$
\sigma_{\mathrm{sig}-\mathrm{sp}}^{2}=4 R_{d}^{2} G P_{s} S_{\mathrm{ASE}} \Delta f, \quad \sigma_{\mathrm{sp}-\mathrm{sp}}^{2}=4 R_{d}^{2} S_{\mathrm{ASE}}^{2} \Delta f\left(\Delta v_{o}-\Delta f / 2\right)
$$

Impact of ASE on SNR

- Total variance σ^{2} of current fluctuations is given by

$$
\sigma^{2}=\sigma_{\mathrm{sig}-\mathrm{sp}}^{2}+\sigma_{\mathrm{sp}-\mathrm{sp}}^{2}+\sigma_{s}^{2}+\sigma_{T}^{2}
$$

- Electrical SNR at the receiver becomes

$$
\mathrm{SNR}_{e}=\frac{\langle I\rangle^{2}}{\sigma^{2}}=\frac{R_{d}^{2}\left(G P_{s}+P_{\mathrm{ASE}}\right)^{2}}{\sigma_{\mathrm{sig}-\mathrm{sp}}^{2}+\sigma_{\mathrm{sp}-\mathrm{sp}}^{2}+\sigma_{s}^{2}+\sigma_{T}^{2}}
$$

- SNR realized in the absence of optical amplifier:

$$
\mathrm{SNR}_{e}^{\prime}=\frac{R_{d}^{2} P_{s}^{2}}{\sigma_{s}^{2}+\sigma_{T}^{2}}
$$

- For an ideal receiver with no thermal noise and $R_{d}=q / h v_{0}$, $\mathrm{SNR}_{e}^{\prime}=P_{s} /\left(2 h v_{0} \Delta f\right)$.

Noise Figure of Amplifier

- In practice, current variance is dominated by $\sigma_{\mathrm{sig}-\mathrm{sp}}^{2}$.
- Neglecting $\sigma_{\mathrm{sp}-\mathrm{sp}}^{2}$, the SNR is found to be

$$
\operatorname{SNR}_{e}=\frac{G P_{s}}{\left(4 S_{\mathrm{ASE}}+2 h v_{0}\right) \Delta f} .
$$

- Using $S_{\mathrm{ASE}}=n_{\text {sp }} h v_{0}(G-1)$, optical amplifier is found to degrade the electrical SNR by a factor of

$$
F_{o}=\frac{\mathrm{SNR}_{e}^{\prime}}{\mathrm{SNR}_{e}}=2 n_{\mathrm{sp}}\left(1-\frac{1}{G}\right)+\frac{1}{G} .
$$

- F_{o} is known as the noise figure of an optical amplifier.
- In the limit $G \gg 1$, SNR is degraded by $F_{o}=2 n_{\text {sp }}$.
- Even when $n_{\text {sp }}=1$, SNR is reduced by 3 dB .

Impact of Thermal Noise

- Preceding conclusion holds for an ideal receiver.
- In practice, thermal noise exceeds shot noise by a large amount.
- It should be included before concluding that an optical amplifier always degrades the electrical SNR.
- Retaining only the dominant term $\sigma_{\text {sig-sp }}^{2}$:

$$
\frac{\mathrm{SNR}_{e}}{\mathrm{SNR}_{e}^{\prime}}=\frac{G \sigma_{T}^{2}}{4 R_{d}^{2} P_{s} S_{\mathrm{ASE}} \Delta f} .
$$

- This ratio can be made quite large by lowering P_{s}.
- Electrical SNR can be improved by 20 dB or more compared with its value possible without amplification.

Electrical SNR

- Thermal noise is the most important factor that limits the electrical SNR.
- Optical preamplification helps to mask thermal noise, resulting in an improved SNR.
- If we retain only dominant noise term, the electrical SNR becomes

$$
\mathrm{SNR}_{e}=\frac{G P_{s}}{4 S_{\mathrm{ASE}} \Delta f}=\frac{G P_{s} \Delta v_{o}}{2 P_{\mathrm{ASE}} \Delta f} .
$$

- This should be compared with the optical SNR of $G P_{s} / P_{\text {ASE }}$.
- Electrical SNR is higher by a factor of $\Delta \nu_{o} /(2 \Delta f)$ under identical conditions.
- The reason is that ASE noise contributes only over the receiver bandwidth Δf that is much narrower than filter bandwidth Δv_{o}.

Noise Figure of Distributed Amplifiers

- Because of gain variations, noise figure is given by

$$
F_{o}=2 n_{\mathrm{sp}} \int_{0}^{L} \frac{g_{0}(z)}{G(z)} d z+\frac{1}{G(L)}
$$

- Consider the following hybrid scheme:

- The predicted F_{o} can exceed 15 dB depending on the span length.
- This does not mean distributed amplifiers are more noisy than lumped amplifiers.

Noise Figure of Distributed Amplifiers

- When $G_{R}=0$ (no pumping), 100-km-long passive fiber has a noise figure of 20 dB .
- If signal is amplified using a lumped amplifier, additional 5-dB degradation results in a total noise figure of 25 dB .
- This value decreases as G_{R} increases, reaching a level of 17.5 dB for $G_{R}=20 \mathrm{~dB}$ (no lumped amplification).

Noise Figure of Distributed Amplifiers

- It is common to introduce the concept of an effective noise figure using $F_{\text {eff }}=F_{o} \exp (-\alpha L)$.
- $F_{\text {eff }}<1$ is negative on the decibel scale by definition.
- It is this feature of distributed amplification that makes it so attractive for long-haul WDM lightwave systems.
- In the preceding example, $F_{\text {eff }} \approx-2.5 \mathrm{~dB}$ when pure distributed amplification is employed.
- Effective noise figure of a Raman amplifier depends on the pumping scheme used.
- Forward pumping provides the highest SNR, and the smallest noise figure.

Receiver Sensitivity and Q Factor

- BER can be calculated following the method used in Chapter 5.
- $\mathrm{BER}=p(1) P(0 / 1)+p(0) P(1 / 0)=\frac{1}{2}[P(0 / 1)+P(1 / 0)]$.
- Conditional probabilities require PDF for the current I.
- Strictly speaking, PDF does not remain Gaussian when optical amplifiers are used.
- If we assume it to remain Gaussian, $\operatorname{BER}=\frac{1}{2} \operatorname{erfc}\left(\frac{Q}{\sqrt{2}}\right)$.
- Q factor: defined as $Q=\frac{I_{1}-I_{0}}{\sigma_{1}+\sigma_{0}}$, where

$$
\begin{gathered}
\sigma_{1}^{2}=\sigma_{\mathrm{sig}-\mathrm{sp}}^{2}+\sigma_{\mathrm{sp}-\mathrm{sp}}^{2}+\sigma_{s}^{2}+\sigma_{T}^{2}, \\
\sigma_{0}^{2}=\sigma_{\mathrm{sp}-\mathrm{sp}}^{2}+\sigma_{T}^{2} .
\end{gathered}
$$

Approximate Q Factor

- In the case of 0 bits, σ_{s}^{2} and $\sigma_{\text {sig-sp }}^{2}$ can be neglected as they are signal-dependent.
- Even for 1 bits σ_{s}^{2} can be neglected in comparison with $\sigma_{\text {sig-sp }}^{2}$.
- Thermal noise σ_{T}^{2} can also be neglected when optical power at the receiver is relatively large ($>0.1 \mathrm{~mW}$).
- Noise currents σ_{1} and σ_{0} are then approximated by

$$
\sigma_{1}=\left(\sigma_{\text {sig }-\mathrm{sp}}^{2}+\sigma_{\mathrm{sp}-\mathrm{sp}}^{2}\right)^{1 / 2}, \quad \sigma_{0}=\sigma_{\mathrm{sp}-\mathrm{sp}} .
$$

- We calculate the Q factor using

$$
Q=\frac{I_{1}-I_{0}}{\sigma_{1}+\sigma_{0}}=\frac{I_{1}-I_{0}}{\sqrt{\sigma_{\mathrm{sig}-\mathrm{sp}}^{2}+\sigma_{\mathrm{sp}-\mathrm{sp}}^{2}}+\sigma_{\mathrm{sp}-\mathrm{sp}}} .
$$

Receiver Sensitivity

- Assume that no energy is contained in 0 bits so that

$$
I_{0}=0 \text { and } I_{1}=2 R_{d} \bar{P}_{\mathrm{rec}}
$$

- Using Q and expressions for σ_{1} and σ_{0},

$$
\bar{P}_{\mathrm{rec}}=h v_{0} F_{o} \Delta f\left[Q^{2}+Q\left(\Delta v_{o} / \Delta f-\frac{1}{2}\right)^{1 / 2}\right] .
$$

- Using $\bar{P}_{\text {rec }}=\bar{N}_{p} h v_{0} B$ and $\Delta f=B / 2, \bar{N}_{p}$ is given by

$$
\bar{N}_{p}=\frac{1}{2} F_{o}\left[Q^{2}+Q\left(r_{f}-\frac{1}{2}\right)^{1 / 2}\right] .
$$

- $r_{f}=\Delta \nu_{o} / \Delta f$ is the factor by which the optical filter bandwidth exceeds the receiver bandwidth.
- A remarkably simple expression for the receiver sensitivity.
- It shows why amplifiers with a small noise figure must be used.
- It also shows how narrowband optical filters can help.

Receiver Sensitivity

- Using $Q=6$ with $F_{o}=2$ and $r_{f}=2$, the minimum value $\bar{N}_{p}=43.3$ photons/bit.
- Without optical amplifiers, \bar{N}_{p} exceeds 1000.

Non-Gaussian Receiver Noise

- Even though the ASE itself has a Gaussian PDF, detector current does not follow Gaussian statistics.
- Detector current $I=R_{d}\left(\left|E_{s}+E_{\mathrm{cp}}\right|^{2}+\left|E_{\mathrm{op}}\right|^{2}\right)$.
- Orthogonal part of noise can be suppressed by placing a polarizer in front of the receiver.
- Using $E_{\mathrm{cp}}=\sum_{m=1}^{M}\left(S_{\mathrm{ASE}} \Delta \nu_{s}\right)^{1 / 2} \exp \left(i \phi_{m}-i \omega_{m} t\right)$:

$$
I=I_{s}+2 \sqrt{I_{N} I_{s}} \sum_{m=1}^{M} c_{m}+I_{N} \sum_{m=1}^{p M}\left(c_{m}^{2}+s_{m}^{2}\right)
$$

- Signal $I_{s}=R_{d}\left|E_{s}\right|^{2}$ and noise current $I_{N}=R_{d} S_{\mathrm{ASE}} \Delta \nu_{s}$.
- Random variables c_{m} and s_{m} defined as $c_{m}+i s_{m}=\exp \left(i \phi_{m}\right)$.
- Integer $p=1$ or 2 depending on whether a polarizer is used or not.

Non-Gaussian Receiver Noise

- I is a function of a large number of random variables, each of which follows Gaussian statistics.
- Without ASE-ASE beating, I follows a Gaussian PDF.
- However, this beating term cannot be ignored, and the statistics of I are generally non-Gaussian.
- PDF can be obtained in an analytic form. In the case of 0 bits

$$
p_{0}(I)=\frac{I^{p M-1}}{(p M-1)!I_{N}^{p M}} \exp \left(-\frac{I}{I_{N}}\right)
$$

- In the case of 1 bits (using $I_{s}=I_{1}$)

$$
p_{1}(I)=\frac{1}{I_{N}}\left(\frac{I}{I_{1}}\right)^{\frac{1}{2}(p M-1)} \exp \left(-\frac{I+I_{1}}{I_{N}}\right) \mathscr{I}_{p M-1}\left(-\frac{2 \sqrt{I I_{1}}}{I_{N}}\right)
$$

Non-Gaussian Receiver Noise

- Measured and predicted PDFs for 0 (top) and 1 bits (bottom). A dashed line shows the Gaussian approximation.
- PDF is far from Gaussian for 0 bits.
- Deviations relatively small in the case of 1 bits.
- Gaussian approximation holds better as the bandwidth of optical filter increases.

Q Factor and Optical SNR

- Assume $I_{0} \approx 0$ and $I_{1}=R_{d} P_{1}$.
- $\sigma_{\mathrm{sig}-\mathrm{sp}}^{2}=2 R_{d} \sqrt{P_{1} P_{\mathrm{ASE}}} / M, \quad \sigma_{\mathrm{sp}-\mathrm{sp}}^{2}=P_{\mathrm{ASE}}^{2} / M$.
- We assumed $M=\Delta v_{o} / \Delta f \gg 1$.
- Using σ_{1} and σ_{0} in the expression for Q,

$$
Q=\frac{\mathrm{SNR}_{o} \sqrt{M}}{\sqrt{2 \mathrm{SNR}_{o}+1}+1} .
$$

- $\mathrm{SNR}_{o} \equiv P_{1} / P_{\text {ASE }}$ is the optical SNR.
- This relation can be inverted to find

$$
\mathrm{SNR}_{o}=\frac{2 Q^{2}}{M}+\frac{2 Q}{\sqrt{M}} .
$$

Q Factor and Optical SNR

- Optical SNR as a function of M for several values of Q factor.
- We only need $\mathrm{SNR}_{o}=7.5$ when $M=16$ to maintain $Q=6$.
- Each amplifier adds ASE noise that propagates with the signal.
- In a purely linear system, noise power would not change.
- Modulation instability amplifies ASE noise.
- Using $A(z, t)=\sqrt{p(z)} B(z, t)$, NLS equation becomes

$$
\frac{\partial B}{\partial z}+\frac{i \beta_{2}}{2} \frac{\partial^{2} B}{\partial t^{2}}=i \gamma p(z)|B|^{2} B+f_{n}(z, t) / \sqrt{p(z)} .
$$

- $p(z)$ is defined such that $p(z)=1$ at the location of amplifiers.
- A numerical approach is necessary in general.
- Assuming a CW signal, the solution is of the form $B(z, t)=\left[\sqrt{P_{0}}+a(z, t)\right] \exp \left(i \phi_{\mathrm{NL}}\right)$.
- $\phi_{\mathrm{NL}}=\gamma P_{0} \int_{0}^{z} p(z) d z$ is the SPM-induced nonlinear phase shift.

Noise Growth

- Assuming noise is much weaker than signal $\left(|a|^{2} \ll P_{0}\right)$,

$$
\frac{\partial a}{\partial z}+\frac{i \beta_{2}}{2} \frac{\partial^{2} a}{\partial t^{2}}=i \gamma P_{0} e^{-\alpha z}\left(a+a^{*}\right)
$$

- This linear equation is easier to solve in the Fourier domain and leads to two coupled equations:

$$
\begin{aligned}
& \frac{d b_{1}}{d z}=\frac{i}{2} \beta_{2} \Omega^{2} b_{1}+i \gamma P_{0} e^{-\alpha z}\left(b_{1}+b_{2}^{*}\right), \\
& \frac{d b_{2}}{d z}=\frac{i}{2} \beta_{2} \Omega^{2} b_{2}+i \gamma P_{0} e^{-\alpha z}\left(b_{2}+b_{1}^{*}\right),
\end{aligned}
$$

- $b_{1}(z)=\tilde{a}(z, \Omega), b_{2}(z)=\tilde{a}(z,-\Omega)$, and $\Omega=\omega_{n}-\omega_{0}$.
- When Ω falls within the gain bandwidth of modulation instability, the two noise components are amplified.

Noise Growth

- Coupled linear equations can be solved easily when $\alpha=0$.
- They can also be solved when $\alpha \neq 0$. but the solution involves Hankel functions of complex order and argument.
- In a simple approach, fiber is divided into multiple segments.
- Propagation through each segment of length h is governed by

$$
\binom{b_{1}\left(z_{n}+h\right)}{b_{2}\left(z_{n}+h\right)}=\left(\begin{array}{ll}
M_{11} & M_{12} \\
M_{21} & M_{22}
\end{array}\right)\binom{b_{1}\left(z_{n}\right)}{b_{2}\left(z_{n}\right)} .
$$

- Matrix elements $M_{m n}$ are constants in each fiber segment but change from segment to segment.
- Solution at the end of fiber is obtained by multiplying individual matrices.

Noise Growth

- An example of numerically simulated spectrum at the end of a

2,500-km fiber link with 50 amplifiers placed 50 km apart.

- Broad pedestal represents the ASE spectrum expected even in the absence of nonlinear effects.

Noise Growth

- Possible to calculate factor F_{v} by which $\sigma_{\text {sig-sp }}^{2}$ changes.
- F_{ν} as a function of launched power (four 100-km-long sections).
- (a) anomalous $[D=2 \mathrm{ps} /(\mathrm{km}-\mathrm{nm})]$;
(b) normal dispersion $[D=-2 \mathrm{ps} /(\mathrm{km}-\mathrm{nm})]$.
- $\Delta f=2 \mathrm{GHz}$ (crosses), 8 GHz (pluses), 20 GHz (stars), and 30 GHz (circles).

Noise-Induced Signal Degradation

- Optical signal degrades as ASE noise is added by amplifiers.
- As expected, ASE induces power fluctuations (reduced SNR).
- Surprisingly, ASE also induces timing jitter.
- Physical origin of ASE-induced jitter: Amplifiers affect not only amplitude but also phase of amplified signal.
- Chirping of pulses shifts signal frequency from ω_{0} by a small amount after each amplifier.
- Since group velocity depends on frequency (because of dispersion), speed at which a pulse propagates is affected by each amplifier.
- Speed changes produce random shifts in pulse position at receiver.

Moment Method Revisited

- Moment method can be used by introducing two new moments.
- q and Ω represent pulse position and shift in the carrier frequency:

$$
q(z)=\frac{1}{E} \int_{-\infty}^{\infty} t|B(z, t)|^{2} d t, \quad \Omega(z)=\frac{i}{2 E} \int_{-\infty}^{\infty}\left(B^{*} \frac{\partial B}{\partial t}-B \frac{\partial B^{*}}{\partial t}\right) d t
$$

- $E(z) \equiv \int_{-\infty}^{\infty}|B(z, t)|^{2} d t$ is related to pulse energy.
- Differentiating E, q, and Ω with respect to z,

$$
\frac{d E}{d z}=0, \quad \frac{d q}{d z}=\beta_{2} \Omega, \quad \frac{d \Omega}{d z}=0 .
$$

- Energy E and frequency Ω do not change during propagation.
- Pulse position shifts for a finite value of Ω as $q(z)=\beta_{2} \Omega z$.

Moment Method Revisited

- Because of ASE added by the amplifier, E, Ω, and q change by random amounts $\delta E_{k}, \delta \Omega_{k}$, and δq_{k} after each amplifier:

$$
\begin{aligned}
\frac{d E}{d z} & =\sum_{k} \delta E_{k} \delta\left(z-z_{k}\right), \\
\frac{d q}{d z} & =\beta_{2} \Omega+\sum_{k} \delta q_{k} \delta\left(z-z_{k}\right), \\
\frac{d \Omega}{d z} & =\sum_{k} \delta \Omega_{k} \delta\left(z-z_{k}\right)
\end{aligned}
$$

- The sum is over the total number of amplifiers encountered by the
- ASE-induced timing jitter can be reduced by operating a lightwave system near the zero-dispersion wavelength of fiber.

Noise-Induced Timing Jitter

- Total jitter at the end of the fiber link: $\sigma_{t}^{2}=\left\langle q_{f}^{2}\right\rangle-\left\langle q_{f}\right\rangle^{2}$.
- Angle brackets denote averaging over amplifier noise.
- Final result turns out to be relatively simple:

$$
\sigma_{t}^{2}=\left(S_{\mathrm{ASE}} / E_{0}\right) T_{0}^{2} N_{A}\left[\left(1+\left(C_{0}+N_{A} d_{a} / T_{0}^{2}\right)^{2}\right] .\right.
$$

- $d_{a}=\int_{0}^{L_{A}} \beta_{2}(z) d z$ is the dispersion accumulated over the entire link.
- In the case of perfect dispersion compensation $\left(d_{a}=0\right), \sigma_{t}^{2}$ increases linearly with the number N_{A} of amplifiers.
- When $d_{a} \neq 0$, it increases with N_{A} in a cubic fashion.

Noise Growth

- ASE-induced timing jitter as a function of system length for several values of average dispersion $\bar{\beta}_{2}$.
- Results are for a $10-\mathrm{Gb} / \mathrm{s}$ system with $T_{0}=30 \mathrm{ps}, L_{A}=50 \mathrm{~km}$, $C_{0}=0.2$, and $S_{\mathrm{ASE}} / E_{0}=10^{-4}$.
- ASE-induced jitter becomes a significant fraction of pulse width because of the cubic dependence of σ_{t}^{2} on system length L_{T}.

Distributed Amplification

- Raman gain is varied from 0 to 16 dB (total loss over 80 km).
- Dashed line shows the tolerable value of timing jitter.

Numerical Approach

- Nonlinear and dispersive effects act on a noisy optical signal simultaneously.
- Their mutual interplay cannot be studied analytically.
- Most practical approach for designing modern lightwave system consists of solving the NLS equation numerically.
- Numerical simulations indeed show that nonlinear effects often limit the system performance.
- System design requires optimization of various parameters such as amplifier spacing and input power launched.
- Several software packages are available commercially.
- One such package called OptSim 4.0 is provided on the CD.

OptSim Simulation Package

- Layout of a typical lightwave system for modeling based on the software package OptSim.
- Main advantage: Optimum values of various system parameters can be found such that design objectives are met at a minimum cost.

Numerical Approach

- Input to optical transmitter is a pseudo-random sequence of electrical pulses, representing 1 and 0 bits.
- The length N of this bit pattern determines the computing time and should be chosen judiciously.
- Typically, $N=2^{M}$, where M is in the range of 6 to 10 .
- Optical bit stream obtained by solving the rate equations that govern the modulation response of the laser or modulator.
- Deformation of optical bit stream during its transmission calculated by solving the NLS equation.
- Method most commonly used for solving this equation is known as the spit-step Fourier method.

Numerical Approach

- Two equivalent techniques used for adding ASE noise to the signal during numerical simulations.
- In one case, noise is added in the time domain, while ensuring that it follows Gaussian statistics with $\left\langle a_{n}(t) a_{n}\left(t^{\prime}\right)\right\rangle=S_{\text {ASE }} \boldsymbol{\delta}\left(t-t^{\prime}\right)$.
- Because of a finite temporal resolution Δt, delta function is replaced with a "rect function" of width Δt.
- Its height is chosen to be $1 / \Delta t$ so that $\int_{-\infty}^{-\infty} \delta(t) d t=1$ is satisfied.
- Alternatively, noise can be added in the frequency domain:

$$
\tilde{A}_{\text {out }}(v)=\sqrt{G} \tilde{A}_{\text {in }}(v)+\tilde{a}_{n}(v) .
$$

- Real and imaginary parts of $\tilde{a}_{n}(v)$ follow Gaussian statistics.
- Noise is assumed to be white (same variance at each frequency).

Numerical Approach

- A receiver model converts optical signal into electric domain.
- An electric filter used with its bandwidth Δf smaller than bit rate B (typically $\Delta f / B=0.6-0.8$).
- Electric bit stream is used to find the instantaneous values of currents, I_{0} and I_{1} by sampling it at the center of each bit slot.
- Eye diagram is constructed using the filtered bit stream.
- System performance is quantified through the Q factor, related directly to the BER.
- Calculation of Q factor requires that the NLS equation be solved a large number of times with different seeds for amplifier noise.
- Such an approach becomes quite time-consuming for WDM systems.
\qquad

Optimum Launched Power

- Q factor increases initially with launched power, reaches a peak
value, and then decreases with a further increase in power because
- Q factor increases initially with launched power, reaches a peak
value, and then decreases with a further increase in power because of the onset of the nonlinear effects.
- Use of distributed amplification improves system performance.
- Q-factor variations with launched power in long-haul systems.

Optimum Launched Power

- Numerical results for a 32-channel WDM system.
- Maximum distance plotted as a function of input power.
- Fiber link contains $80-\mathrm{km}$ sections whose $20-\mathrm{dB}$ loss compensated using (a) forward or (b) backward pumping configuration.
- Pump depletion becomes significant at arrow location.

