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Chapter 5:
Signal Recovery and Noise
• Noise Added during Photodetection

• Signal-to-Noise Ratio (SNR)

• Bit Error Rate (BER)

• Sensitivity Degradation

• Forward Error Correction (FEC)
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Optical Receivers

• Front end converts optical signal into electrical form.

• Linear channel amplifies and filters the electrical signal.

• Data recovery section creates electrical bit stream using clock-

recovery and decision circuits.
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Data-Recovery Section

• A clock-recovery circuit isolates the frequency f = B from the

received signal.

• The clock helps to synchronize the decision process.

• Decision circuit compares the output to a threshold level at sampling

times set by the clock.

• Eye diagram is useful for system monitoring.

• The best sampling time corresponds to maximum eye opening.
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Shot Noise
• Photocurrent, I(t) = Ip+ is(t), fluctuates because electrons are gen-

erated at random times.

• Average current Ip = RdPin; Rd = ηq/hν0;

η represents quantum efficiency of photodetector.

• Current fluctuations occur such that 〈is(t)〉= 0 and

〈is(t)is(t + τ)〉=
∫

∞

−∞

Ss( f )exp(2πi f τ)d f .

• White noise: Spectral density Ss( f ) constant.

• Noise variance: σ 2
s =

∫
∞

−∞
Ss( f )d f = 2qIp ∆ f .

• Effective noise bandwidth ∆ f is related to detector bandwidth.

• Adding the contribution of dark current Id

σ
2
s = 2q(Ip + Id)∆ f .
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Thermal noise
• Additional fluctuations occur at any finite temperature because of

thermal motion of electrons in any resistor.

• Total current: I(t) = Ip + is(t)+ iT (t).

• Spectral density ST ( f ) = 2kBT/RL depends on temperature and

load resistor RL.

• Noise variance: σ 2
T =

∫
∞

−∞
Ss( f )d f = (4kBT/RL)∆ f .

• Amplifier noise: All electrical amplifiers enhance thermal noise by

the amplifier noise figure Fn.

• Total thermal noise: σ 2
T = (4kBT/RL)Fn∆ f .

• Total Receiver Noise:

σ
2 = σ

2
s +σ

2
T = 2q(Ip + Id)∆ f +(4kBT/RL)Fn∆ f .
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Signal-to-Noise Ratio
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.

Increase in SNR with received power Pin for three values of σT

for a receiver bandwidth of 30 GHz.
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Thermal-Noise Limit
• In the limit σT � σs, SNR becomes:

SNR =
RLR2

dP2
in

4kBT Fn∆ f
.

• Noise-equivalent power: Defined as the minimum optical power per

unit bandwidth required to produce SNR = 1:

NEP =
Pin√
∆ f

=
(

4kBT Fn

RLR2
d

)1/2

=
hν

ηq

(
4kBT Fn

RL

)1/2

.

• NEP is often used to quantify thermal noise.

• Typical values of NEP are in the range of 1 to 10 pW/
√

Hz.

• Optical power needed to realize a specific value of SNR obtained

from Pin = (NEP
√

∆ f )SNR.
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Shot-Noise Limit
• In the opposite limit, σs� σT :

SNR =
RdPin

2q∆ f
=

ηPin

2hν∆ f
.

• It is possible to express SNR in terms of the number of photons Np

contained in a single 1 bit.

• Pulse energy: Ep = Nphν .

• Optical power for a bit of duration TB = 1/B: Pin = NphνB.

• Receiver bandwidth for NRZ bit stream: ∆ f = B/2.

• Putting it all together, SNR = ηNp ≈ Np.

• At 1.55-µm, Pin ≈ 130 nW is needed at 10 Gb/s to realize

SNR = 20 dB (Np = 100).
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APD Receivers
• Average current larger for an APD by the gain factor M:

Ip = MRdPin = RAPDPin.

• Thermal noise unchanged but shot noise enhanced by a factor

FA known as excess noise factor.

• Shot-noise variance: σ 2
s = 2qM2FA(RdPin + Id)∆ f .

• Signal-to-Noise Ratio for an APD receiver:

SNR =
I2

p

σ 2
s +σ 2

T
=

(MRdPin)2

2qM2FA(RdPin + Id)∆ f +4(kBT/RL)Fn∆ f
.

• SNR is larger for APDs because thermal noise dominates

in practice.



216/549

JJ
II
J
I

Back

Close

APD Receivers (continued)
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• Increase in SNR with received power Pin for three values of APD

gain M for 30-GHz bandwidth.

• Excess noise factor FA depend on APD gain as

FA(M) = kAM +(1− kA)(2−1/M).
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Optimum APD gain
• Thermal-Noise Limit (σT � σs):

SNR = (RLR2
d/4kBT Fn∆ f )M2P2

in.

• Shot-Noise Limit (σs� σT ):

SNR =
RdPin

2qFA∆ f
=

ηPin

2hνFA∆ f
.

• SNR can be maximized by optimizing the APD gain M.

• Setting d(SNR)/dM = 0, the optimum APD gain satisfies

kAM3
opt +(1− kA)Mopt =

4kBT Fn

qRL(RdPin + Id)
.

• Approximate solution: Mopt ≈
[

4kBT Fn
kAqRL(RdPin+Id)

]1/3
.
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Optimum APD Gain (continued)

−40 −38 −36 −34 −32 −30 −28 −26 −24 −22 −20
10

0

10
1

10
2

10
3

Received Power (dBm)

O
pt

im
um

 A
P

D
 G

ai
n

k
A
 = 0 

0.001 

0.01 

0.1 

1.0 

• Mopt plotted as a function of Pin for several values of kA.

• Parameter values correspond to a typical 1.55-µm APD receiver.

• Performance improved for APDs when kA� 1.
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Bit Error Rate

• BER = p(1)P(0/1)+ p(0)P(1/0) = 1
2[P(0/1)+P(1/0)].

• P(0/1) = conditional probability of deciding 0 when 1 is sent.

• Since p(1) = p(0) = 1/2, BER = 1
2[P(0/1)+P(1/0)].

• Common to assume Gaussian statistics for the current.
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Bit Error Rate (continued)
• P(0/1) = Area below the decision level ID

P(0/1) =
1

σ1
√

2π

∫ ID

−∞

exp
(
−(I− I1)2

2σ 2
1

)
dI =

1
2

erfc
(

I1− ID

σ1
√

2

)
.

• P(1/0) = Area above the decision level ID

P(1/0) =
1

σ0
√

2π

∫
∞

ID
exp
(
−(I− I0)2

2σ 2
0

)
dI =

1
2

erfc
(

ID− I0

σ0
√

2

)
.

• Complementary error function erfc(x) = 2√
π

∫
∞

x exp(−y2)dy.

• Final Answer

BER =
1
4

[
erfc
(

I1− ID

σ1
√

2

)
+ erfc

(
ID− I0

σ0
√

2

)]
.
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Role of Decision Level
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• BER depends on the decision threshold ID.

• ID is optimized in practice to reduce the BER.



222/549

JJ
II
J
I

Back

Close

Minimum Bit Error Rate
• Minimize BER by setting d(BER)/dID = 0.

• Minimum BER occurs when ID is chosen such that

(ID− I0)2

2σ 2
0

=
(I1− ID)2

2σ 2
1

+ ln
(

σ1

σ0

)
.

• Last term is negligible in most cases, and

(ID− I0)/σ0 = (I1− ID)/σ1 ≡ Q.

ID =
σ0I1 +σ1I0

σ0 +σ1
, Q =

I1− I0

σ1 +σ0
.

• Final Expression

BER =
1
2

erfc
(

Q√
2

)
≈ exp(−Q2/2)

Q
√

2π
.
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Q Parameter
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• Q = I1−I0
σ1+σ0

is a measure of SNR.

• Q > 6 required for a BER of < 10−9.

• Q = 7 provides a BER of < 10−12.
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Minimum Average Power
• Receiver sensitivity = Minimum average power needed to keep the

BER below a certain value (< 10−9).

• We need to relate Q parameter to incident optical power.

• Assume 0 bits carry no optical power so that P0 = I0 = 0.

• I1 = MRdP1 = 2MRdP̄rec, where P̄rec = (P1 +P0)/2.

• Including both shot and thermal noise,

σ1 = (σ 2
s +σ

2
T )1/2 and σ0 = σT ,

σ
2
s = 2qM2FARd(2P̄rec)∆ f , σ

2
T = (4kBT/RL)Fn∆ f .

• Using these results

Q =
I1

σ1 +σ0
=

2MRdP̄rec

(σ 2
s +σ 2

T )1/2 +σT
.
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Receiver Sensitivity
• Solving for received power, we obtain

P̄rec =
Q
Rd

(
qFAQ∆ f +

σT

M

)
.

• For a p–i–n receiver, we set M = 1.

• Since thermal noise dominates for such a receiver,

P̄rec ≈ QσT/Rd.

• Using R≈ 1 A/W near 1.55 µm, P̄rec = QσT .

• As an example, if we use Rd = 1 A/W, σT = 100 nA, and Q = 6,

we obtain P̄rec = 0.6 µW or −32.2 dBm.
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APD Receiver Sensitivity
• Receiver sensitivity improves for APD receivers.

• If thermal noise dominates, P̄rec is reduced by a factor of M.

• When shot and thermal noise are comparable, receiver sensitivity

can be optimized by adjusting the APD gain M.

• P̄rec is minimum for an optimum value of M:

Mopt = k−1/2
A

(
σT

Qq∆ f
+ kA−1

)1/2

≈
(

σT

kAQq∆ f

)1/2

.

• Best APD responsivity

P̄rec = (2q∆ f /R)Q2(kAMopt +1− kA).
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Number of Photons/Bit
• Receiver sensitivity can be expressed in terms of number of photons

Np contained within a single 1 bit.

• In the shot-noise limit, I0 = 0 and σ0 = 0 when 0 bits carry no

power, and Q = I1/σ1 = (SNR)1/2.

• SNR related to Np as SNR ≈ ηNp, or

BER = 1
2 erfc

(√
ηNp/2

)
.

• For η = 1, BER = 1× 10−9, Np = 36. Thus, 36 photons are

sufficient in the shot-noise limit.

• In practice, most optical receivers require Np > 1000 because of

thermal noise.
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Quantum Limit of Photodetection
• The BER obtained in the shot-noise limit not totally accurate.

• Its derivation based on the Gaussian approximation for noise.

• Poisson statistics should be used for small number of photons.

• For an ideal detector (no thermal noise, no dark current, and η = 1),

0 bits produce no photons, and σ0 = 0.

• Error occurs only if 1 bit fails to produce even one electron.

• Probability of generating m electrons: Pm = exp(−Np)Nm
p /m!.

• Since P(0/1) = exp(−Np), BER = exp(−Np)/2.

• Np = 20 for BER = 1×10−9 (10 photons/bit on average).

• P̄rec = NphνB/2 = N̄phνB = 13 nW or−48.9 dBm at B = 10 Gb/s.
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Sensitivity Degradation
• Real receivers need more power than P̄rec.

• Increase in power is referred to as power penalty.

• In decibel units, power penalty is defined as

Power Penalty = 10 log10

(
Increased Power
Original Power

)
.

• Several mechanisms degrade the receiver sensitivity.

? Finite Extinction ratio (P0 6= 0)

? Intensity Noise of received optical signal

? Pulse broadening induced by fiber dispersion

? Timing Jitter of electronic circuits
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Finite Extinction Ratio
• Extinction ratio is defined as rex = P0/P1.

• Power penalty can be obtained by calculating Q parameter.

• For a p–i–n receiver I1 = RdP1 and I0 = RdP0.

• Using P̄rec = (P1 +P0)/2,

Q =
(

1− rex

1+ rex

)
2RdP̄rec

σ1 +σ0
.

• In thermal noise limit, σ1 ≈ σ0 ≈ σT .

• Received power for a finite extinction ratio

P̄rec(rex) =
(

1+ rex

1− rex

)
σT Q
Rd

.
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Extinction Ratio (continued)
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1-dB penalty occurs for rex = 0.12; increases to 4.8 dB for rex = 0.5.
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Intensity Noise of Lasers
• So far, incident optical power is assumed to be constant.

• In practice, all lasers exhibit intensity noise.

• Optical amplifiers add additional power fluctuations.

• Receiver converts power fluctuations into current fluctuations,

which add to those resulting from shot and thermal noise.

• Total noise variance can be written as

σ
2 = σ

2
s +σ

2
T +σ

2
I .

• Intensity noise σI = Rd〈(∆P2
in)〉1/2 = RdPinrI, rI = 〈∆P2

in)〉1/2/Pin.

• Parameter rI related to the RIN of a laser as

r2
I =

1
2π

∫
∞

−∞

RIN(ω)dω.
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Intensity Noise (continued)
• Consider a p–i–n receiver with I1 = RdP1 and I0 = 0.

• Using P̄rec = (P1 +P0)/2

Q =
2RdP̄rec

(σ 2
T +σ 2

s +σ 2
I )1/2 +σT

.

• Optical power required for a finite intensity noise

P̄rec(rI) =
QσT +Q2q∆ f
Rd(1− r2

I Q2)
.

• Power penalty is found to be

δI =−10 log10(1− r2
I Q2).
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Intensity Noise (continued)
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• A 2-dB penalty occurs for rI = 0.1.

• Penalty becomes infinite when rI > Q−1 (BER floor).

• In practice, rI < 0.01 (power penalty negligible).



235/549

JJ
II
J
I

Back

Close

Dispersive Pulse Broadening
• Pulse energy in the bit slot decreases with pulse broadening.

• Receiver requires more average power to maintain SNR.

• For Gaussian pulses, peak power is reduced by the pulse broadening

factor fb found in Chapter 3.

• f 2
b = 1+(DLσλ/σ0)2 when source bandwidth dominates.

• σ0 is related to duty cycle dc as 4σ0 = dcTb.

• Using σ = (4B)−1, power penalty is given by

δd = 10 log10 fb = 5 log10[1+(4BLDσλ/dc)2].

• For a narrowband source and unchirped Gaussian pulses

δd = 5 log10[1+(8β2B2L/d2
c )

2].
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Dispersive Pulse Broadening

• Power penalty negligible for µ = |β2|B2L < 0.05 and dc > 0.5.

• Increases rapidly as µ increases and exceeds 5 dB for µ = 0.1.

• At 10-Gb/s, L <50 km when standard fibers are used.
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Frequency Chirping
• Chirping of optical pulses affects pulse broadening.

• For chirped Gaussian pulses pulse broadening factor is

f 2
b = 1+8Cβ2B2L/d2

c )
2 +(8β2B2L/d2

c )
2.

• Power penalty then becomes

δc = 5 log10[(1+8Cβ2B2L/d2
c )

2 +(8β2B2L/d2
c )

2].

• Penalty can be quite large when β2C > 0.

• This is the case for directly nodulated DFB lasers (C >−4)

operating near 1.55 µm (β2 < 0).
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Frequency Chirping
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• To keep penalty below 0.1 dB, |β2|B2L < 0.002 is required.

• For standard fibers B2L is limited to 100 (Gb/s)2-km.

• System performance can be improved by ensuring that β2C < 0.
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Timing Jitter
• Signal must be sampled at the peak of the current pulse.

• Decision instant determined by the clock-recovery circuit.

• In practice, sampling time fluctuates from bit to bit.

• If bit is not sampled at the bit center, sampled value is reduced by

an amount that depends on timing jitter ∆t.

• Since ∆t is a random variable, signal becomes more noisy.

• SNR reduced as a result of such additional fluctuations.

• SNR can be maintained by increasing received power

(power penalty).
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Timing Jitter (continued)
• Q parameter in the presence of timing jitter

Q =
I1−〈∆i j〉

(σ 2
T +σ 2

j )1/2+σT
.

• If Sp(t) governs the shape of current pulse, ∆i j = I1[Sp(0)−Sp(∆t)].

• Approximating Sp as Sp(t) = 1− 1
2(cpBt)2, ∆i j = (cpB∆t)2I1.

• Probability density of timing jitter ∆t

p(∆t) =
1

τ j
√

2π
exp

(
−∆t2

2τ2
j

)
.

• Find p(∆i j) and use it to calculate 〈∆i j〉 and σ j.
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Timing Jitter (continued)
• Probability density of current fluctuation ∆i j

p(∆i j) =
1√

πb∆i jI1
exp
(
−

∆i j

bI1

)
, b = (cpBσt)2.

• Average and standard deviation are found to be

〈∆i j〉= bI1/2, σ j = bI1/
√

2.

• Receiver sensitivity

P̄rec(b) =
(

σT Q
Rd

)
1−b/2

(1−b/2)2−b2Q2/2
.

• Power penalty is found to be

δ j = 10log10

(
1−b/2

(1−b/2)2−b2Q2/2

)
.
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Timing Jitter (continued)

• Pulse curvature cp at center of bit slot plays important role.

• Power penalty becomes infinitely large at a certain value of Bσt.

• Tolerable value Bσt depends on cp and decreases as cp increases.

• Typically cp < 1, and power penalty <0.5 dB) if Bσt < 0.08.
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Eye-Closure Penalty

• Eye diagrams at 40 Gb/s in the case of NRZ, CSRZ, NRZ-DPSK,

and RZ-DPSK formats.

• L = 0 (top row) and L = 263 km (bottom row).

• Alternative measure of system performance is provided by

the eye opening.
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Forward Error Correction
• It is entirely possible that a specified BER cannot be achieved.

• Only viable alternative—Use an error-correction scheme.

• In one approach, errors are detected but not corrected.

• Suitable when packet switching is used (Internet protocol).

• In FEC, errors are detected and corrected at the receiver without

any retransmission of bits.

• This scheme is best suited for lightwave systems operating with

SONET or SDH protocol.

• Historically, lightwave systems did not employ FEC until the use of

in-line optical amplifiers became common.
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Error-Correcting Codes
• Basic idea: Add extra bits at transmitter using a suitable code.

• At the receiver end, a decoder uses these control bits to detect and

correct errors.

• How many errors can be corrected depends on the coding scheme

employed.

• In general, more errors can be corrected by adding more control bits

to the signal.

• There is a limit to this process since bit rate of the system increases

after the FEC coder.

• If Be is effective bit rate after coding, FEC overhead is Be/B−1.

• Redundancy of a code is defined as ρ = 1−B/Be.
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Error-Correcting Codes
• Classified under names such as linear, cyclic, Hamming, Reed–

Solomon, convolutional, product, and turbo codes.

• Among these, Reed–Solomon (RS) codes have attracted most at-

tention for lightwave systems.

• Denoted as RS(n,k), where k is the size of packet that is converted

into a larger packet with n bits (n = 2m−1).

• ITU recommendation: RS(255, 239) with m = 8. FEC overhead for

this code is 6.7%.

• RS(255, 207) with an overhead of 23.2% is also used.

• Improvement in BER is quantified through the coding gain.
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Coding Gain
• Coding gain: A measure of improvement in BER through FEC.

• It is expressed in terms of the equivalent value of Q as Gc =
20 log10(Qc/Q).

• Qc and Q are related to the BERs as

BERc = 1
2 erfc(Qc/

√
2), BER = 1

2 erfc(Q/
√

2).

• Factor of 20 is used in place of 10 because performance is often

quantified through Q2.

• If FEC decoder improves BER from 10−3 to 10−9, Q increases from

3 to 6, resulting in a coding gain of 6 dB.

• Magnitude of coding gain increases with the FEC overhead.
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Coding Gain

• For single RS codes, coding gain is 5.5 dB for 10% overhead and

increases sublinearly, reaching 8 dB for 50% overhead.

• It can be improved by concatenating two or more RS codes or by

employing the RS product codes.
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Product Codes

• Same code is applied along the rows and columns of a block.

• Overhead of n2/k2−1 for a RS product code is larger, but it also

allows more error control.

• 6 dB of coding gain possible with only 5% overhead.
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Coding Gain
• While implementing FEC, one faces a dilemma.

• As the overhead is increased to realize more coding gain, bit rate

of the signal increases.

• Since Q factor realized at the receiver depends on the bit rate, its

value is reduced, and BER actually worsens.

• Decoder improves it but it first has to overcome the degradation

caused by the increased bit rate.

• If an aggressive FEC scheme is employed, BER may degrade so

much that the system is not operable even with the FEC coder.

• An optimum range of coding overhead exists for every system de-

signed to operate at a specific bit rate over a certain distance.
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Coding Gain

• Numerically simulated Q factors (a)

before and (b) after the FEC de-

coder as a function of code redun-

dancy for a WDM system with 25

channels at 40 Gb/s.

• With FEC, Q factor becomes worse

as overhead increases.
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Chapter 6:
Optical Amplifier Noise
• Origin of Amplifier Noise

• Optical Signal-to-Noise Ratio

• Electrical Signal-to-Noise Ratio

• Receiver Sensitivity and Q Factor

• Role of Dispersive and Nonlinear Effects

• Periodically Amplified Lightwave Systems
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Optical Amplifiers
• Used routinely for loss compensation since 1995.

• Amplify the input signal but also add some noise.

• Several kinds of amplifiers have been developed:

? Semiconductor optical amplifiers

? Raman-based fiber amplifiers

? Erbium-doped fiber amplifiers

• EDFAs are used most commonly for lightwave systems.

• Raman amplifiers work better for long-haul systems.
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Erbium-Doped Fiber Amplifiers
• Developed after 1987 and commercialized during the 1990s.

• Fiber core doped with erbium (length 20-200 m).

• Pumped using diode lasers operating at 980 or 1480 nm.

• Provide 20–30 dB gain at pump powers <50 mW.

• Gain bandwidth up to 40 nm possible.

• Relatively low noise; Noise figure 4 to 5 dB.

• Provide polarization-independent gain.

• Gain pattern independent (Response time ∼10 ms).

• Can be designed to work in both the C and L bands.
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Pumping and Gain

• Semiconductor lasers at 980 or 1480 nm are used for pumping.

• Pumping efficiency up to 11 dB/mW possible at 980 nm.

• Amplification occurs when ions in the excited state emit coherent

light through stimulated emission.
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Origin of Amplifier Noise

Re(A)

Im(A)

Im(A)

φ

δφ
|A|

|A + δA|

Spontaneously
emitted photon
with random phase

• Source of noise: Spontaneous emission

• Spontaneous emitted photons have random phase and

polarization.

• They perturb both A and phase φ in a random fashion.

• Such random perturbations are the source of amplifier noise.
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Modeling of Amplifier Noise
• NLS equation including the gain and noise of optical amplifiers:

∂A
∂ z

+
iβ2

2
∂ 2A
∂ t2 = iγ|A|2A+

1
2
(g0−α)A+ fn(z, t).

• Gain coefficient g0 = σeN2− σaN1; σe and σa are emission and

absorption cross sections.

• Noise term vanishes on average, i.e, 〈 fn(z, t)〉= 0.

• Noise modeled as a Markovian process with Gaussian statistics

〈 f ∗n (z, t) fn(z′, t ′)〉= nsphν0g0δ (z− z′)δ (t− t ′).

• Spontaneous-emission factor nsp = σeN2/(σeN2−σaN1).

• Two delta functions ensure that all spontaneous-emission events are

independent of each other in time and space.
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Noise of Lumped Amplifiers
• Amplifier Length la is much shorter than amplifier spacing LA.

• Neither loss, nor dispersion, nor nonlinearities are important within

the amplifier.

• Neglecting them and integrating, we obtain:

Aout(t) =
√

GAin(t)+an(t) with G = exp(g0la).

• Amplified spontaneous emission (ASE) at the amplifier output:

an(t) =
∫ la

0
fn(z, t)exp

[1
2g0(la− z)

]
dz.

• Since 〈 fn(z, t)〉= 0, an(t) also vanishes on average.

• Second moment of an(t) is found to be

〈an(t)an(t ′)〉= SASEδ (t− t ′), SASE = nsphν0(G−1).
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Total Noise Power
• It is important to note that an(t) represents only the portion of ASE

that is coupled to the mode occupied by the signal.

• One must add up noise over the entire bandwidth of amplifier.

• If an optical filter is used, ASE power becomes

PASE = 2
∫

∞

−∞

SASEH f (ν−ν0)dν ≈ 2SASE∆νo.

• ∆νo is the effective bandwidth of optical filter.

• Factor of 2 takes into account two orthogonally polarized modes of

fiber.

• Only half the noise power is copolarized with the optical signal.
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Distributed Amplification
• In the case of distributed amplification, NLS equation should be

solved along the entire fiber link.

• Gain g0(z) is not constant along the fiber length.

• It is not easy to solve the NLS equation. If we set β2 = 0 and γ = 0,

the solution is A(L, t) =
√

G(L)A(0, t)+an(t) with

an(t) =
√

G(L)
∫ L

0

fn(z, t)√
G(z)

dz, G(z) = exp
(∫ z

0
[g0(z′)−α]dz′

)
.

• an(t) vanishes on average and its second moment is given by

〈an(t)an(t ′)〉= G(L)
∫ L

0
dz
∫ L

0
dz′
〈 fn(z, t) fn(z′, t ′)〉√

G(z)G(z′)
= SASEδ (t−t ′),

• Spectral density: SASE = nsphν0G(L)
∫ L

0
g0(z)
G(z) dz.
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Distributed Raman Amplification
• The origin of noise is related to spontaneous Raman scattering.

• Spontaneous-emission factor nsp has a different meaning than that

in the case of EDFAs.

• No electronic transitions involved during Raman amplification.

• Spontaneous Raman scattering is affected by phonon population

that depends on temperature of the fiber.

• More precisely, nsp is given by

nsp(Ω) = 1+
1

exp(h̄Ω/kBT )−1
≡ 1

1− exp(−h̄Ω/kBT )
.

• At room temperature nsp = 1.14 near the Raman-gain peak.
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Total ASE Power
• Total ASE power is obtained by adding contributions over the

Raman-gain bandwidth or the bandwidth of optical filter.

• Assuming a filter is used, the total ASE power is given by

PASE = 2
∫

∞

−∞

SASEH f (ν−ν0)dν = 2SASE∆νo.

• Factor of 2 includes both polarization components.

• Substituting the expression for SASE, ASE power becomes

PASE = 2nsphν0∆νoG(L)
∫ L

0

g0(z)
G(z)

dz.

• ASE power depends on the pumping scheme through g0(z).
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Optical SNR
• Optical SNR = Ratio of optical power to ASE power.

• Assume that all amplifiers are spaced apart by LA and have the

same gain G = exp(αLA).

• Total ASE power for a chain of NA amplifiers:

Ptot
ASE = 2NASASE∆νo = 2nsphν0NA(G−1)∆νo.

• Factor of 2 takes into account unpolarized nature of ASE.

• Optical SNR is thus given by

SNRo =
Pin

Ptot
ASE

=
Pin lnG

2nsphν0∆νoαLT (G−1)
.

• We used NA = LT/LA = αLT/ lnG for a link of total length LT .
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Optical SNR

20 40 60 80 100
Amplifier Spacing (km)

0

5000

10000

15000

S
ys

te
m

 L
en

gt
h 

(k
m

)
2 mW

1.0

0.5

0.2

• SNR can be enhanced by reducing the gain of each amplifier.

• ASE-limited system length as a function of LA for several values of

input power using α = 0.2 dB/km, nsp = 1.6, ∆νo = 100 GHz.

• It is assumed that an SNR of 20 is required by the system.
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Optimum Amplifier Spacing
• Optimum LA becomes smaller as system length increases.

• Amplifier spacing can be improved by increasing input power Pin.

• In practice, maximum launched power is limited by the onset of

various nonlinear effects.

• Typically, Pin is limited to close to 1 mW.

• At such power levels, LA should be in the range of 40 to 50 km for

submarine lightwave systems with lengths of 6,000 km or more.

• Amplifier spacing can be increased to 80 km for terrestrial systems

with link lengths under 3,000 km.
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Case of Distributed Amplification
• Optical SNR in this case takes the form

SNRo =
Pin

2NASASE∆νo
, SASE = nsphν0G(L)

∫ L

0

g0(z)
G(z)

dz.

• Pump power can be injected in the forward, backward, or both

directions.

• g(z) depends on the pumping scheme, and SASE depends on g(z).

• We can control optical SNR by adopting a suitable pumping scheme.

• Consider a 100-km-long fiber section pumped bidirectionally to pro-

vide distributed Raman amplification.

• ASE spectral density and optical SNR are shown as a function of

net gain when Pin = 1 mW.
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SNR for Raman Amplification
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• Fraction of forward pumping varies from 0 to 100%.

• Losses are 0.26 and 0.21 dB/km at pump and signal wavelengths.

• Other parameters are nsp = 1.13, hν0 = 0.8 eV, and

gR = 0.68 W−1/km.
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Distributed Raman Amplification
• Optical SNR is highest in the case of purely forward pumping.

• It degrades by as much as 15 dB as the fraction of backward pump-

ing is increased from 0 to 100%.

• ASE generated near the input end experiences losses over the full

length of the fiber in the case of forward pumping.

• It experiences only a fraction of losses for backward pumping.

• If NA such sections are employed to form a long-haul fiber link, SNR

is reduced by a factor of NA.

• Even when LT = 10,000 km (NA = 100), SNRo remains >20 dB.

• Such high values of optical SNR are difficult to maintain when ED-

FAs are used.
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Electrical SNR
• Optical SNR is not what governs the BER at the receiver.

• Electrical SNR of the current generated is more relevant for signal

recovery at the receiver.

• Assume that a single optical amplifier is used before receiver to

amplify a low-power signal before it is detected.

• This configuration is sometimes used to improve receiver sensitivity

through optical preamplifcation.

Optical fiber
Amplifier

DetectorG

CurrentPs GPs + PASE
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ASE-Induced Current Fluctuations
• Photocurrent I = Rd(|

√
GEs +Ecp|2 + |Eop|2)+ is + iT .

• It is necessary to separate the ASE into two parts because only its

copolarized part can beat with the signal.

• ASE-induced current noise has its origin in beating of Es with Ecp

and beating of ASE with itself.

• Useful to divide bandwidth ∆νo into M bins, each of bandwidth

∆νs, and write

Ecp =
M

∑
m=1

(SASE∆νs)1/2 exp(iφm− iωmt).

• φm is the phase of noise component at ωm = ωl +m(2π∆νs).

• An identical form applies for Eop.
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ASE-Induced Current Fluctuations
• Using Es =

√
Ps exp(iφs− iωst) and including all beating terms,

I = RdGPs + isig−sp + isp−sp + is + iT .

• isig−sp and isp−sp represent current fluctuations resulting from signal–

ASE and ASE–ASE beating:

isig−sp = 2Rd(GPsSASE∆νs)1/2
M

∑
m=1

cos[(ωs−ωm)t +φm−φs],

isp−sp = 2RdSASE∆νs

M

∑
m=1

M

∑
n=1

cos[(ωn−ωm)t +φm−φn].

• 〈isp−sp〉= 2RdSASE∆νsM ≡ 2RdSASE∆νo ≡ RdPASE.

• Variances of two noise currents are found to be

σ
2
sig−sp = 4R2

dGPsSASE∆ f , σ
2
sp−sp = 4R2

dS2
ASE∆ f (∆νo−∆ f /2).
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Impact of ASE on SNR
• Total variance σ 2 of current fluctuations is given by

σ
2 = σ

2
sig−sp +σ

2
sp−sp +σ

2
s +σ

2
T .

• Electrical SNR at the receiver becomes

SNRe =
〈I〉2

σ 2 =
R2

d(GPs +PASE)2

σ 2
sig−sp +σ 2

sp−sp +σ 2
s +σ 2

T
.

• SNR realized in the absence of optical amplifier:

SNR′e =
R2

dP2
s

σ 2
s +σ 2

T
.

• For an ideal receiver with no thermal noise and Rd = q/hν0,

SNR′e = Ps/(2hν0∆ f ).



273/549

JJ
II
J
I

Back

Close

Noise Figure of Amplifier
• In practice, current variance is dominated by σ 2

sig−sp.

• Neglecting σ 2
sp−sp, the SNR is found to be

SNRe =
GPs

(4SASE +2hν0)∆ f
.

• Using SASE = nsphν0(G−1), optical amplifier is found to degrade

the electrical SNR by a factor of

Fo =
SNR′e
SNRe

= 2nsp

(
1− 1

G

)
+

1
G

.

• Fo is known as the noise figure of an optical amplifier.

• In the limit G� 1, SNR is degraded by Fo = 2nsp.

• Even when nsp = 1, SNR is reduced by 3 dB.
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Impact of Thermal Noise
• Preceding conclusion holds for an ideal receiver.

• In practice, thermal noise exceeds shot noise by a large amount.

• It should be included before concluding that an optical amplifier

always degrades the electrical SNR.

• Retaining only the dominant term σ 2
sig−sp:

SNRe

SNR′e
=

Gσ 2
T

4R2
dPsSASE∆ f

.

• This ratio can be made quite large by lowering Ps.

• Electrical SNR can be improved by 20 dB or more compared with

its value possible without amplification.
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Electrical SNR
• Thermal noise is the most important factor that limits the

electrical SNR.

• Optical preamplification helps to mask thermal noise, resulting in

an improved SNR.

• If we retain only dominant noise term, the electrical SNR becomes

SNRe =
GPs

4SASE∆ f
=

GPs∆νo

2PASE∆ f
.

• This should be compared with the optical SNR of GPs/PASE.

• Electrical SNR is higher by a factor of ∆νo/(2∆ f ) under identical

conditions.

• The reason is that ASE noise contributes only over the receiver

bandwidth ∆ f that is much narrower than filter bandwidth ∆νo.
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Noise Figure of Distributed Amplifiers
• Because of gain variations, noise figure is given by

Fo = 2nsp

∫ L

0

g0(z)
G(z)

dz+
1

G(L)
.

• Consider the following hybrid scheme:

100 -km fiber
Lumped Amplifier

DetectorG

Raman pumpDistibuted Raman GainPin Pin

• The predicted Fo can exceed 15 dB depending on the span length.

• This does not mean distributed amplifiers are more noisy than

lumped amplifiers.
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Noise Figure of Distributed Amplifiers

total

span only

• When GR = 0 (no pumping), 100-km-long passive fiber has a noise

figure of 20 dB.

• If signal is amplified using a lumped amplifier, additional 5-dB degra-

dation results in a total noise figure of 25 dB.

• This value decreases as GR increases, reaching a level of 17.5 dB

for GR = 20 dB (no lumped amplification).
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Noise Figure of Distributed Amplifiers
• It is common to introduce the concept of an effective noise

figure using Feff = Fo exp(−αL).

• Feff < 1 is negative on the decibel scale by definition.

• It is this feature of distributed amplification that makes it

so attractive for long-haul WDM lightwave systems.

• In the preceding example, Feff ≈ −2.5 dB when pure distributed

amplification is employed.

• Effective noise figure of a Raman amplifier depends on the pumping

scheme used.

• Forward pumping provides the highest SNR, and the smallest noise

figure.



279/549

JJ
II
J
I

Back

Close

Receiver Sensitivity and Q Factor
• BER can be calculated following the method used in Chapter 5.

• BER = p(1)P(0/1)+ p(0)P(1/0) = 1
2[P(0/1)+P(1/0)].

• Conditional probabilities require PDF for the current I.

• Strictly speaking, PDF does not remain Gaussian when optical am-

plifiers are used.

• If we assume it to remain Gaussian, BER = 1
2 erfc

(
Q√

2

)
.

• Q factor: defined as Q = I1−I0
σ1+σ0

, where

σ
2
1 = σ

2
sig−sp +σ

2
sp−sp +σ

2
s +σ

2
T ,

σ
2
0 = σ

2
sp−sp +σ

2
T .
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Approximate Q Factor
• In the case of 0 bits, σ 2

s and σ 2
sig−sp can be neglected as they are

signal-dependent.

• Even for 1 bits σ 2
s can be neglected in comparison with σ 2

sig−sp.

• Thermal noise σ 2
T can also be neglected when optical power at the

receiver is relatively large (>0.1 mW).

• Noise currents σ1 and σ0 are then approximated by

σ1 = (σ 2
sig−sp +σ

2
sp−sp)

1/2, σ0 = σsp−sp.

• We calculate the Q factor using

Q =
I1− I0

σ1 +σ0
=

I1− I0√
σ 2

sig−sp +σ 2
sp−sp +σsp−sp

.
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Receiver Sensitivity
• Assume that no energy is contained in 0 bits so that

I0 = 0 and I1 = 2RdP̄rec.

• Using Q and expressions for σ1 and σ0,

P̄rec = hν0Fo∆ f [Q2 +Q(∆νo/∆ f − 1
2)

1/2].

• Using P̄rec = N̄phν0B and ∆ f = B/2, N̄p is given by

N̄p = 1
2Fo[Q2 +Q(r f − 1

2)
1/2].

• r f = ∆νo/∆ f is the factor by which the optical filter bandwidth

exceeds the receiver bandwidth.

• A remarkably simple expression for the receiver sensitivity.

• It shows why amplifiers with a small noise figure must be used.

• It also shows how narrowband optical filters can help.
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Receiver Sensitivity
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• Using Q = 6 with Fo = 2 and r f = 2, the minimum value

N̄p = 43.3 photons/bit.

• Without optical amplifiers, N̄p exceeds 1000.
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Non-Gaussian Receiver Noise
• Even though the ASE itself has a Gaussian PDF, detector current

does not follow Gaussian statistics.

• Detector current I = Rd(|Es +Ecp|2 + |Eop|2).

• Orthogonal part of noise can be suppressed by placing a polarizer

in front of the receiver.

• Using Ecp = ∑
M
m=1(SASE∆νs)1/2 exp(iφm− iωmt):

I = Is +2
√

INIs

M

∑
m=1

cm + IN

pM

∑
m=1

(c2
m + s2

m).

• Signal Is = Rd|Es|2 and noise current IN = RdSASE∆νs.

• Random variables cm and sm defined as cm + ism = exp(iφm).

• Integer p = 1 or 2 depending on whether a polarizer is used or not.
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Non-Gaussian Receiver Noise
• I is a function of a large number of random variables, each of which

follows Gaussian statistics.

• Without ASE–ASE beating, I follows a Gaussian PDF.

• However, this beating term cannot be ignored, and the statistics of

I are generally non-Gaussian.

• PDF can be obtained in an analytic form. In the case of 0 bits

p0(I) =
IpM−1

(pM−1)!IpM
N

exp
(
− I

IN

)
.

• In the case of 1 bits (using Is = I1)

p1(I) =
1
IN

(
I
I1

)1
2(pM−1)

exp
(
−I + I1

IN

)
IpM−1

(
−2
√

II1

IN

)
.
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Non-Gaussian Receiver Noise

• Measured and predicted PDFs for 0 (top) and 1 bits (bottom). A

dashed line shows the Gaussian approximation.

• PDF is far from Gaussian for 0 bits.

• Deviations relatively small in the case of 1 bits.

• Gaussian approximation holds better as the bandwidth of optical

filter increases.
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Q Factor and Optical SNR
• Assume I0 ≈ 0 and I1 = RdP1.

• σ 2
sig−sp = 2Rd

√
P1PASE/M, σ 2

sp−sp = P2
ASE/M.

• We assumed M = ∆νo/∆ f � 1.

• Using σ1 and σ0 in the expression for Q,

Q =
SNRo

√
M√

2SNRo +1+1
.

• SNRo ≡ P1/PASE is the optical SNR.

• This relation can be inverted to find

SNRo =
2Q2

M
+

2Q√
M

.
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Q Factor and Optical SNR
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• Optical SNR as a function of M for several values of Q factor.

• We only need SNRo = 7.5 when M = 16 to maintain Q = 6.
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Noise Growth through Modulation Instability
• Each amplifier adds ASE noise that propagates with the signal.

• In a purely linear system, noise power would not change.

• Modulation instability amplifies ASE noise.

• Using A(z, t) =
√

p(z)B(z, t), NLS equation becomes

∂B
∂ z

+
iβ2

2
∂ 2B
∂ t2 = iγ p(z)|B|2B+ fn(z, t)/

√
p(z).

• p(z) is defined such that p(z) = 1 at the location of amplifiers.

• A numerical approach is necessary in general.

• Assuming a CW signal, the solution is of the form

B(z, t) = [
√

P0 +a(z, t)]exp(iφNL).

• φNL = γP0
∫ z

0 p(z)dz is the SPM-induced nonlinear phase shift.
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Noise Growth
• Assuming noise is much weaker than signal (|a|2� P0),

∂a
∂ z

+
iβ2

2
∂ 2a
∂ t2 = iγP0e−αz(a+a∗).

• This linear equation is easier to solve in the Fourier domain

and leads to two coupled equations:

db1

dz
=

i
2

β2Ω
2b1 + iγP0e−αz(b1 +b∗2),

db2

dz
=

i
2

β2Ω
2b2 + iγP0e−αz(b2 +b∗1),

• b1(z) = ã(z,Ω), b2(z) = ã(z,−Ω), and Ω = ωn−ω0.

• When Ω falls within the gain bandwidth of modulation instability,

the two noise components are amplified.
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Noise Growth
• Coupled linear equations can be solved easily when α = 0.

• They can also be solved when α 6= 0. but the solution involves

Hankel functions of complex order and argument.

• In a simple approach, fiber is divided into multiple segments.

• Propagation through each segment of length h is governed by(
b1(zn +h)
b2(zn +h)

)
=
(

M11 M12

M21 M22

)(
b1(zn)
b2(zn)

)
.

• Matrix elements Mmn are constants in each fiber segment but change

from segment to segment.

• Solution at the end of fiber is obtained by multiplying individual

matrices.
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Noise Growth

• An example of numerically simulated spectrum at the end of a

2,500-km fiber link with 50 amplifiers placed 50 km apart.

• Broad pedestal represents the ASE spectrum expected even in the

absence of nonlinear effects.



292/549

JJ
II
J
I

Back

Close

Noise Growth

• Possible to calculate factor Fv by which σ 2
sig−sp changes.

• Fvas a function of launched power (four 100-km-long sections).

• (a) anomalous [D = 2 ps/(km-nm)];

(b) normal dispersion [D =−2 ps/(km-nm)].

• ∆ f = 2 GHz (crosses), 8 GHz (pluses), 20 GHz (stars), and

30 GHz (circles).
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Noise-Induced Signal Degradation
• Optical signal degrades as ASE noise is added by amplifiers.

• As expected, ASE induces power fluctuations (reduced SNR).

• Surprisingly, ASE also induces timing jitter.

• Physical origin of ASE-induced jitter: Amplifiers affect not only

amplitude but also phase of amplified signal.

• Chirping of pulses shifts signal frequency from ω0 by a small amount

after each amplifier.

• Since group velocity depends on frequency (because of dispersion),

speed at which a pulse propagates is affected by each

amplifier.

• Speed changes produce random shifts in pulse position at receiver.
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Moment Method Revisited
• Moment method can be used by introducing two new moments.

• q and Ω represent pulse position and shift in the carrier frequency:

q(z) =
1
E

∫
∞

−∞

t|B(z, t)|2 dt, Ω(z) =
i

2E

∫
∞

−∞

(
B∗

∂B
∂ t
−B

∂B∗

∂ t

)
dt.

• E(z)≡
∫

∞

−∞
|B(z, t)|2 dt is related to pulse energy.

• Differentiating E, q, and Ω with respect to z,

dE
dz

= 0,
dq
dz

= β2Ω,
dΩ

dz
= 0.

• Energy E and frequency Ω do not change during propagation.

• Pulse position shifts for a finite value of Ω as q(z) = β2Ωz.
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Moment Method Revisited
• Because of ASE added by the amplifier, E, Ω, and q change by

random amounts δEk, δΩk, and δqk after each amplifier:

dE
dz

= ∑
k

δEk δ (z− zk),

dq
dz

= β2Ω+∑
k

δqk δ (z− zk),

dΩ

dz
= ∑

k
δΩk δ (z− zk).

• The sum is over the total number of amplifiers encountered by the

pulse before it arrives at z.

• ASE-induced timing jitter can be reduced by operating a lightwave

system near the zero-dispersion wavelength of fiber.
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Noise-Induced Timing Jitter
• Total jitter at the end of the fiber link: σ 2

t = 〈q2
f 〉−〈q f 〉2.

• Angle brackets denote averaging over amplifier noise.

• Final result turns out to be relatively simple:

σ
2
t = (SASE/E0)T 2

0 NA[(1+(C0 +NAda/T 2
0 )2].

• da =
∫ LA

0 β2(z)dz is the dispersion accumulated over the entire link.

• In the case of perfect dispersion compensation (da = 0), σ 2
t in-

creases linearly with the number NA of amplifiers.

• When da 6= 0, it increases with NA in a cubic fashion.
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Noise Growth
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• ASE-induced timing jitter as a function of system length for several

values of average dispersion β̄2.

• Results are for a 10-Gb/s system with T0 = 30 ps, LA = 50 km,

C0 = 0.2, and SASE/E0 = 10−4.

• ASE-induced jitter becomes a significant fraction of pulse width

because of the cubic dependence of σ 2
t on system length LT .
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Distributed Amplification
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• Raman gain is varied from 0 to 16 dB (total loss over 80 km).

• Dashed line shows the tolerable value of timing jitter.
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Numerical Approach
• Nonlinear and dispersive effects act on a noisy optical signal

simultaneously.

• Their mutual interplay cannot be studied analytically.

• Most practical approach for designing modern lightwave system con-

sists of solving the NLS equation numerically.

• Numerical simulations indeed show that nonlinear effects often limit

the system performance.

• System design requires optimization of various parameters such as

amplifier spacing and input power launched.

• Several software packages are available commercially.

• One such package called OptSim 4.0 is provided on the CD.
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OptSim Simulation Package

• Layout of a typical lightwave system for modeling based on the

software package OptSim.

• Main advantage: Optimum values of various system parameters can

be found such that design objectives are met at a minimum cost.
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Numerical Approach
• Input to optical transmitter is a pseudo-random sequence of elec-

trical pulses, representing 1 and 0 bits.

• The length N of this bit pattern determines the computing time

and should be chosen judiciously.

• Typically, N = 2M, where M is in the range of 6 to 10.

• Optical bit stream obtained by solving the rate equations that gov-

ern the modulation response of the laser or modulator.

• Deformation of optical bit stream during its transmission calculated

by solving the NLS equation.

• Method most commonly used for solving this equation is known as

the spit-step Fourier method.
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Numerical Approach
• Two equivalent techniques used for adding ASE noise to the

signal during numerical simulations.

• In one case, noise is added in the time domain, while ensuring that

it follows Gaussian statistics with 〈an(t)an(t ′)〉= SASEδ (t− t ′).

• Because of a finite temporal resolution ∆t, delta function is replaced

with a “rect function” of width ∆t.

• Its height is chosen to be 1/∆t so that
∫ −∞

−∞
δ (t)dt = 1 is satisfied.

• Alternatively, noise can be added in the frequency domain:

Ãout(ν) =
√

GÃin(ν)+ ãn(ν).

• Real and imaginary parts of ãn(ν) follow Gaussian statistics.

• Noise is assumed to be white (same variance at each frequency).
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Numerical Approach
• A receiver model converts optical signal into electric domain.

• An electric filter used with its bandwidth ∆ f smaller than bit rate

B (typically ∆ f /B = 0.6–0.8).

• Electric bit stream is used to find the instantaneous values of

currents, I0 and I1 by sampling it at the center of each bit slot.

• Eye diagram is constructed using the filtered bit stream.

• System performance is quantified through the Q factor, related di-

rectly to the BER.

• Calculation of Q factor requires that the NLS equation be solved a

large number of times with different seeds for amplifier noise.

• Such an approach becomes quite time-consuming for WDM

systems.
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Optimum Launched Power
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• Q-factor variations with launched power in long-haul systems.

• Q factor increases initially with launched power, reaches a peak

value, and then decreases with a further increase in power because

of the onset of the nonlinear effects.

• Use of distributed amplification improves system performance.
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Optimum Launched Power

• Numerical results for a 32-channel WDM system.

• Maximum distance plotted as a function of input power.

• Fiber link contains 80-km sections whose 20-dB loss compensated

using (a) forward or (b) backward pumping configuration.

• Pump depletion becomes significant at arrow location.


