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Chapter 3:
Signal Propagation in Optical Fibers

e Fiber fundamentals

e Basic propagation equation
e Impact of fiber losses

e Impact of fiber dispersion

e Polarization-mode dispersion

e Polarization-dependent losses
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Optical Fibers

e Most suitable as communication channel because of dielectric
waveguiding (act like an optical wire).

e Total internal reflection at the core-cladding interface.

e Single-mode propagation for core size < 10 um.

What happens to Signal?

e Fiber losses: limit the transmission distance (minimum loss near

1.55 um).
e Chromatic dispersion: limits the bit rate through pulse broadening.

e Nonlinear effects: distort the signal and limit the system
performance.
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Single-Mode Fibers

e Fibers support only one mode when the core size is such that
V =koay/nt —n3 < 2.405.

e This mode is almost linearly polarized (|E.|* < |Er|?).

e Spatial mode distribution approximately Gaussian

E (x,y,2,®0) = Ap(®) exp (_xzv;ﬁ) explif(®)z].

e Spot size: w/a~0.65+1.619V3/242.879V~°.
e Mode index: 1 =ny+b(n; —ny) = ny(1+bA)

b(V) =~ (1.1428 —0.9960/V)*.
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Fiber Dispersion
Origin: Frequency dependence of the mode index n(®):
B(w) =i(w)w/c = Bo+Pi(®— )+ Pa(@ — @p)*+---.
e Transit time for a fiber of length L: T =L/v, = B|L.

e Different frequency components travel at different speeds and arrive

at different times at output end (pulse broadening).

Dispersive Fiber ‘
INput s
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Fiber Dispersion (continued)
e Pulse broadening is governed by group-velocity dispersion.

e Consider delay in arrival time over a bandwidth A®:

—A® = LpAw.
dw da)vg da) P

e Aw is pulse bandwidth and L is fiber length.
e GVD parameter: B, = (d2ﬁ> .
O=ay

dw?

1\ _ _ 27c
e Alternate definition: D = 7= ( ) = =52/

e Limitation on the bit rate: AT < T, =1/B, or

B(AT) = BLBA®w = BLDAA < 1.
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Basic Propagation Equation

e Optical field inside a single-mode fiber has the form
E(r,r) = Re[eF(x,y)A(z,t) exp(ifoz — ityt)].
e F(x,y) represents spatial profile of the fiber mode.

e € is the polarization unit vector.

e Since pulse amplitude A(z,) does not depend on x and y, we need
to solve a simple one-dimensional problem.

e |t reduces to a scalar problem if & does not change with z.
Let us assume this to be the case.

e It is useful to work in the frequency domain (A®w = @ — ay):

Aet) =5 / A(z, ®) exp(—idort) d(Aw).
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Spectral Amplitude

e Consider one frequency component at . Its amplitude at z is
related to that at z =0 by a simple phase factor:

A(z,0) = A(0, ®) exp[iB,(®)z — ifoz]-
e Propagation constant has the following general form:
Bp(0) ~ Br(@) + Prr(wp) +ic(an)/2.

* f(w) =A(w)o/c,  Pyr(wn) = (@n/c)dny(w).

e Expand B (®) is a Taylor series around @y:

Bu(o) ~ o+ B (a0) + Z(a0) + 2 (a0,

where B, = (d"B/d@0™) w=cw,-
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Dispersion Parameters
e Parameter f3; is related inversely to group velocity: B = 1/v,.
e 3, and B3: second- and third-order dispersion parameters.

e They are responsible for pulse broadening in optical fibers.
e 3, is related to D as D = ( ) = 2”0[32

e It vanishes at the zero-dispersion wavelength (Azp).

e Near this wavelength, D varies linearly as D ~ S(A — Azp).
e [3; is related to the dispersion slope S as S = (27c/A%) ;.
e Parameters Azp, D, and S vary from fiber to fiber.

e Fibers with relatively small values of D in the spectral region near
1.55 um are called dispersion-shifted fibers.
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Dispersive Characteristics of
Some Commercial Fibers
Fiber Type and Actf A7D D (C band) Slope S
Trade Name (um?) | (nm) ps/(km-nm) | ps/(km-nm?)
Corning SMF-28 80 |1302-1322 16 to 19 0.090
Lucent AllWave 80 |1300-1322 17 to 20 0.088
Alcatel ColorLock | 80 |1300-1320| 16 to 19 0.090
Corning Vascade | 101 |1300-1310| 18 to 20 0.060
TrueWave-RS 50 | 1470-1490 2.6 to 6 0.050
Corning LEAF 72 | 1490-1500 2to 6 0.060
TrueWave-XL 72 |1570-1580 | —1.4 to —4.6 0.112
Alcatel Teralight | 65 |1440-1450| 5.5 to 10 0.058

e Effective mode area A of a fiber depends on F(x,y).

o A = tw? if mode shape is approximated with a Gaussian.
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Pulse Propagation Equation
e Pulse envelope is obtained using
At =5 [ A(0.A0)expliBy (@)~ iBicld(Aw).

e Substitute B,(w) in terms of its Taylor expansion.

e Calculate dA/dz and convert to time domain by replacing
Aw with i(dA/dt).

e Final equation:

0A l[)’z d%A ﬁ3 d23A . o
9z i 8t > 97 6o~ PuA—7A
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Nonlinear Contribution

e Nonlinear term van be written as

B M(”Z) Ao Aut Y|A]

27Ny
AoActr”

e For pure silica ny = 2.6 x 10720 m?/W.

e Nonlinear parameter y =

e Effective mode area A.s depends on fiber design and varies in the
range 50-80 um? for most fibers.

e As an example, Y~ 2.1 W1 /km for a fiber with A = 50 um?.

e Fibers with a relatively large value of A are called large-effective-
area fibers (LEAFs).
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Pulse Propagation Equation
d0A 0A iﬁz d%A ﬁ3 d3A . ) o
5 TPyt o g an T AlAT A

e [3; term corresponds to a constant delay experienced by a pulse as
it propagates through the fiber.

e Since this delay does not affect the signal quality in any way, it is
useful to work in a reference frame moving with the pulse.

e This can be accomplished by introducing new variables ' and 7' as
t'=t—PBizand 7/ =z

dA N i,0°A B30°A

a7 2 Jt? 6 Jt?

(04
= iy\AyzA—EA.
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Nonlinear Schrodinger Equation
e Third-order dispersive effects are often negligible in practice.
e Setting B3 =0, we obtain

OA | iB9%A
Jz | 2 o

. o
= iy|A|*A — ZA.
2
e |f we also neglect losses and set o = 0, we obtain the so-called

NLS equation
0A  [,0°A

— — T +iYAPA =0.
5 2o T
e If we neglect the nonlinear term as well (low-power case)
0A [,0%A
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Linear Low-Power Case

e Pulse propagation in a fiber is governed by

e Compare it with the paraxial equation governing diffraction:

aA J’A

e Slit-diffraction problem identical to pulse propagation problem.
e The only difference is that 3, can be positive or negative.
e Many results from diffraction theory can be used for pulses.

e A Gaussian pulse should spread but remain Gaussian in shape.
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Fiber Losses
Definition: o/(dB/km) = —121log, (POut) ~ 4.343a.

Pin

e Material absorption (silica, impurities, dopants)
e Rayleigh scattering (varies as 1 ~%)

e Waveguide imperfections (macro and microbending)
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Impact of Fiber Losses
e Fiber losses reduce signal power inside the fiber.
e They also reduce the strength of nonlinear effects.

e Using A(z,t) = B(z,t)exp(—az/2) in the NLS equation,
we obtain

OB ifd’B . .. 5
- B|*B.
T2 e IB

| 2

e Optical power |A(z,t)|” decreases as e~ % because of fiber losses.

e Decrease in the signal power makes nonlinear effects weaker, as
expected intuitively.

e Loss is quantified in terms of the average power defined as

; 1 T/2 2 -
Py(z) = lim — |A(z,1)|7dt = Pyy(0)e™ %~
T T J_T/2
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Loss Compensation
e Fiber losses must be compensated for distances >100 km.
e A repeater can be used for this purpose.

e A repeater is a receiver—transmitter pair: Receiver output
is directly fed into an optical transmitter.

e Optical bit stream first converted into electric domain.
e |t is then regenerated with the help of an optical transmitter.

e This technique becomes quite cumbersome and expensive for
WDM systems as it requires demultiplexing of individual channels
at each repeater.

e Alternative Solution: Use optical amplifiers.
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Optical Amplifiers

e Several kinds of optical amplifiers were developed in the 1980s to
solve the loss problem.

e Examples include: semiconductor optical amplifiers, Raman ampli-
fiers, and erbium-doped fiber amplifiers (EDFAs).

e They amplify multiple WDM channels simultaneously and
thus are much more cost-effective.

e All modern WDM systems employ optical amplifiers.

e Amplifier can be cascaded and thus enable one to transmit over
distances as long as 10,000 km.

e We can divide amplifiers into two categories known as lumped and
distributed amplifiers.
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Lumped and Distributed Amplifiers N

106,89

Pumping

‘%%’ﬂ

Couplers

(b)

e In lumped amplifiers losses accumulated over 70-80 km are
compensated using short lengths (~10 m) of EDFAs.

e Distributed amplification uses the transmission fiber itself
for amplification through stimulated Raman scattering.

e Pump light injected periodically using directional couplers.
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Amplifier Noise
e All amplifiers degrade the SNR of an optical bit stream.
e They add noise to the signal through spontaneous emission.

e Noise can be included by adding a noise term to the NLS equation:

0A N i3, 0°A
dz 2 0Jt?

1
= i7|APA + 5[80(@ — a]A+n(z,t).

e g0(2) is the gain coefficient of amplifiers used.
e Langevin noise n(z,t) accounts for amplifier noise.
e Noise vanishes on average, i.e., (n(z,7)) =0.

e Noise is assumed to be Gaussian with the second moment:

(n(z,0)n(Z,t")) = go(2)hvd(z—2)0(t —1').
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Lumped Amplification

e Length of each amplifier is much shorter (I, < 0.1 km) than spacing
L4 between two amplifiers (70-80 km).

e In each fiber section of length L4, go = 0 everywhere except within
each amplifier of length [,.

e Losses reduce the average power by a factor of exp(atLy).
e They can be fully compensated if gain G4 = exp(gol,) = exp(aL,).

e EDFAs are inserted periodically and their gain is adjusted such that
Ga =exp(aLy).

e |t is not necessary that amplifier spacing be uniform.

e In the case of nonuniform spacing, G, = exp|a(L, —L,—1)].
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Distributed Amplification
e NLS equation with gain is solved for the entire fiber link.
e g0(z) chosen such that losses are fully compensated.

o Let A(z,t) = +/p(z) B(z,t), where p(z) governs power variations
along the ||nk Iength.

e p(z) is found to satisfy ‘Zl—z = [g0(z) — a]p.
o If go(z) = a for all z, fiber is effectively lossless.

e |n practice, pump power does not remain constant because of fiber
losses at the pump wavelength.

e Losses can still be compensated over a distance L, if the condition
S go(z) dz = @y is satisfied.

e Distance L, is called the pump-station spacing.
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Distributed Raman Amplification
e Stimulated Raman scattering is used for distributed amplification.

e Scheme works by launching CW power at several wavelengths at
pump stations spaced apart 80 to 100 km.

e Wavelengths of pump lasers are chosen near 1.45 um for amplifying
1.55-um WDM signals.

e Wavelengths and pump powers are chosen to provide a uniform gain
over the entire C band (or C and L bands).

e Backward pumping is commonly used for distributed Raman
amplification.

e Such a configuration minimizes the transfer of pump intensity noise
to the amplified signal.
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Bidirectional Pumping
e Use of a bidirectional pumping scheme beneficial in some cases.

e Consider when one pump laser is used at both ends of a fiber section
of length L4. Gain coefficient g(z) is of the form

80(z) = g1exp(—0,z) + g2exp[— 0, (La — 2)].

e Integrating ‘fl—z = |go(z) — &]p, average power is found to vary as

)t [aLA <sinh[ap (z ;Sl;ﬁlf (Z;LZASE?(%LA/ 2)) ~ az] .

e In the case of backward pumping, g1 =0, and

SR Gl Bt
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Bidirectional Pumping N
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e Variations in signal power between two pump stations.

e Backward pumping: (solid line). Bidirectional pumping (dashed
line). Lumped amplifiers: dotted line. Ly = 50 km in all cases.

e Signal power varies by a factor of 10 in lumped case, by a factor
<2 for backward pumping and <15% for bidirectional pumping.
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Impact of Fiber Dispersion

e Different spectral components of the signal travel at slightly
different velocities within the fiber.

e This phenomenon is referred to as group-velocity dispersion (GVD).
e GVD parameter 3, governs the strength of dispersive effects.

e How GVD limits the performance of lightwave systems?

e To answer this question, neglect the nonlinear effects (v = 0).

e Assuming fiber losses are compensated periodically (o = 0),
dispersive effects are governed by

JA if,d°A
22
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General Solution
e Using the Fourier-transform method, general solution is given by

1

A(th) :ﬂ

/ A(0, ) exp (%,Bzza)z — icot) do.

o A(0,®) is the Fourier transform of A(0,1):

oo

A0, ) = / A(0, 1) explior) dt.

— 00

e |t follows from the linear nature of problem that we can study dis-
persive effects for individual pulses in an optical bit stream..

e Considerable insight is gained by focusing on the case of chirped
Gaussian pulses.
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Chirped Gaussian Pulses

e Chirped Gaussian Pulse at z = 0:

A(0,1) = Agexp [—(1+—1C)t2]

217

o Input pulse width: Trwpwm = 2(In2)'/?Ty ~ 1.665T.
e Input chirp: dw(r) = —%—‘f = Cr

e Pulse spectrum:

3 2772\ '/* 0T}
A0, ®) =A0< " iO ) exp [_2(—0] :

e Spectral width: Awy = v/ 1+ C?/Ty.
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Pulse Broadening

e Optical field at a distance z is found to be:

A (1+iC)* i &
A€ 1) =— — +—t
(5,1) /b; P 2T5b% 7 14+CE

e Normalized distance & = z/Lp is introduced through the dispersion
length defined as Lp = T /| Ba|.

e Broadening factor by and chirp C; vary with & as
bp(§) = [(145CE)*+E7'2,  Ci(§) =C+s(1+C?)E.

e s = sgn(f) = £1 depending on whether pulse propagates in the
normal or anomalous dispersion region of the fiber.

e Main Conclusion: Pulse maintains its Gaussian shape but its width
and chirp change with propagation.
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Evolution of Width and Chirp

Broadening Factor
Chirp Parameter

0 0.5 1 15 2 0 0.5 1 1.5 2
Distance, z/LD Distance, z/LD

(a) (b)

ey (]

e Broadening depends on the sign of 3,C.

e Unchirped pulse broadens by a factor \/1+ (z/Lp)?.
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Effect of Chirp

e When [,C > 0, chirped pulse broadens more because dispersion-
induced chirp adds to the input chirp.

e If B,C < 0, dispersion-induced chirp is of opposite kind.

e From C(&) =C+s(1+C?)&, C) becomes zero at a distance
& =|C|/(1+C?), and pulse becomes unchirped.

e Pulse width becomes minimum at that distance:
™ =Ty/\/1+C2.

e Pulse rebroadens beyond this point and its width eventually
becomes larger than the input width.

e Chirping in time for a pulse is analogous to curvature of the
wavefront for an optical beam.
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Pulses of Arbitrary Shape
e In practice, pulse shape differs from a Gaussian.

e Third-order dispersion effects become important close to the
zero-dispersion wavelength.

e A Gaussian pulse does not remains Gaussian in shape when
effects of B5 are included.

e Such pulses cannot be properly characterized by their FWHM.

e A measure of pulse width for pulses of arbitrary shapes is the root-
mean square (RMS) width:

Jo Az 1) dr
JoulA(z,0)[Pdr

6, (@)= (") - ("=
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RMS Pulse Width

e It turns out that 0, can be calculated for pulses of arbitrary shape,
while including dispersive effects to all orders.

e Derivation is based on the observation that pulse spectrum does
not change in a linear dispersive medium.

e First step consists of expressing the moments in terms ofﬁ(z, ®):

- 2
/A*—dw <t2>:]lV/ 3—2

e N=["_|A(z,w)]*dw is a normalization factor.

e Spectral components propagate according to the simple relation
A(z, 0) = A(0, o) expliBr(@)z —ifoz].

e B.(®) includes dispersive effects to all orders.
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RMS Pulse Width
o Let A(0,0) = S(w)e’®; O(w) related to chirp.
e RMS width 6, at z= L is found from the relation
0, (L) = 05 + [(7°) — (7)] +2[{60) — (7) (6u)].
o (f) =~ /" f(0)S*(0)dw; 6,=db/dw.
e Group delay 7 is defined as 7(®) = (df./dw)L.
e Conclusion: 0;(L) is a quadratic polynomial of L.

e Broadening factor can be written as
fo = (14 c1L+c,L2)12.

e This form applies for pulses of any shape propagating inside a fiber
link with arbitrary dispersion characteristics.
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Rect-Shape Pulses
e For a pulse of width 2Ty, A(0,7) = Ay for |t| < To.
e Taking the Fourier transform:
S(w) = (2A0Ty) sinc(wTy), O(w)=0.
e Expanding B () to second-order in @, group delay is given by
7(0) = (dBL/dw)L = (B + o)L
e We can now calculate all averaged quantities:
(1) =BiL, (v°)=PBi+B;L*/2T5, (t00) =0, (6s)=0.

e Final result for the RMS width is found to be

0, (L) = 05 +;5T578* = 05 (1+387).

e Rectangular pulse broadens more than a Gaussian pulse under the
same conditions because of its sharper edges.
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Hyperbolic Secant Pulses
e For an unchirped pulse, A(0,¢) = Agsech(t/Tp).
e Such pulses are relevant for soliton-based systems.
e Taking the Fourier transform:
S(w) = (wAyTy) sech(rwTy/2), O(w)=0.
e Using (@) = (B + B@)L and [~_x?sech®(x)dx = 7*/6
(r)=BiL, (%) =B +7°B;L*/(12T5),
e RMS width of sech pulses increases with distance as
o,(L)=0;(14+38%),  of =mT3/6.

e A sech pulse broaden less than a Gaussian pulse because its tails
decay slower than a Gaussian pulse.
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Effects of Third-Order Dispersion

e Consider the effects of B3 on Gaussian pulses.

e Expanding B.(w) to third-order in w, group delay is given by
T(®) = (Bi + oo + 3 B30%) L.

e Taking Fourier transform of A(0,7), we obtain
_ 4rnAjo; , ( 2w26§) (@) = Cw’op

2 (W) = -
(0) =TTz %P | T

e All averages can be performed analytically. The final result is found

to be
2 2 2 o\ 2
o 1_|_Cﬁ2L H p.L i BsL(1+C?)
op 20% 20; 4267 '
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Effects of Source Spectrum

e We have assumed that source spectrum is much narrower than
the pulse spectrum.

e This condition is satisfied in practice for DFB lasers but not for
light-emitting diodes.
e To account source spectral width, we must consider the coherence

properties of the source.

e Input field A(0,¢) = Ay(t)a,(t), where a,(t) represents pulse shape
and fluctuations in Ay(t) produce source spectrum.

e To account for source fluctuations,we replace (t) and (r?) with
((t))s and ({¢?)),, where outer brackets stand for an ensemble
average over source fluctuations.
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Effects of Source Spectrum

e S(w) becomes a convolution of the pulse and source spectra
S(w) :/ Sy(0—)F(w)do,.

e F() is the Fourier transform of Ay(¢) and satisfies
(F*(01)F(an))s = G(w1)d (@ — ).

e Source spectrum G(w) assumed to be Gaussian:

G(o) : e ( i >
— xp| —— .
CuV 2T e 202

® O, is the RMS spectral width of the source.
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Effects of Source Spectrum

e For a chirped Gaussian pulse,all integrals can be calculated
analytically as they involve only Gaussian functions.

e It is possible to obtain ({¢)), and ((#*)), in a closed form.
e RMS width of the pulse at the end of a fiber of length L:
o2 C 2

L = (1+ AL ) +(1+V,) (ﬁz ) +1(1+C*+V2)? (ﬁig) .

4
op 203 20; %%

e V, =20,0) is a dimensionless parameter for a source with RMS
width ©y,.

e This equation provides an expression for dispersion-induced pulse
broadening under general conditions.
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Dispersion Limitations
Large Source Spectral Width: V, > 1

e Assume input pulse to be unchirped (C = 0).
e Set B3 =0 when A # Azp:

6% = oy + (BLoy)* = o + (DLoy,)*.
e 96% of pulse energy remains within the bit slot if 46 < Tz = 1/B.

e Using 4Bo < 1, and 6 > 0y, BL|D|o; < 1.

e Set 3, = 0 when A = Azp to obtain
0> =05+ 2(BsLo2)* = of +3(SLo})>.

e Dispersion limit: BL|S|o7 < 1//8.
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Dispersion Limitations
Small Source Spectral Width: V, < 1
e When 33 =0 and C =0,
0 = o; + (B.L/200)*.
e One can minimize ¢ by adjusting input width op.
e Minimum occurs for 6y = (|82|L/2)"/? and leads to 6 = (|B,|L)"/%.

e Dispersion limit when 33 = 0:

B\/|B.|L < 5.

e Dispersion limit when 3, = 0:

B(|Bs|L)'/3 < 0.324.
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Dispersion Limitations (cont.) D
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e Even a 1-nm spectral width limits BL < 0.1 (Gb/s)-km.
e DFB lasers essential for most lightwave systems.

e For B> 2.5 Gb/s, dispersion management required.
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Effect of Frequency chirp

B2 = —20 ps®/km
__ 1000 ¢
€ L
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Chirp parameter, C

e Numerical simulations necessary for more realistic pulses.
: 14iC o
o Super-Gaussian pulse: A(0,7) = Agexp | -5~ (To) .

e Chirp can affect system performance drastically.
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Dispersion compensation
i

"
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e Dispersion is a major limiting factor for long-haul systems.
e A simple solution exists to the dispersion problem.

e Basic idea: Compensate dispersion along fiber link in a periodic
fashion using fibers with opposite dispersion characteristics.

e Alternate sections with normal and anomalous GVD are employed.

e Periodic arrangement of fibers is referred to as a dispersion map.
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Condition for Dispersion Compensation
e GVD anomalous for standard fibers in the 1.55-um region.

e Dispersion-compensating fibers (DCFs) with B, > 0 have been de-
veloped for dispersion compensation.

e Consider propagation of optical signal through one map period:

1 o .
A(Lm,l‘) = E/_ A(O, (1)) exp [%wz(ﬁmll +ﬁ2212) —iot| do.

e If second fiber is chosen such that the phase term containing ®?
vanishes, A(L,,,t) = A(0,7) (Map period L,, =1, + ).

e Condition for perfect dispersion compensation:

Boili + Bl =0 or Dyl +Dyl, =0.
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Polarization-Mode Dispersion

e State of polarization (SOP) of optical signal does not remain fixed
in practical optical fibers.

e |t changes randomly because of fluctuating birefringence.

e Geometric birefringence: small departures in cylindrical symmetry
during manufacturing (fiber core slightly elliptical).

e Both the ellipticity and axes of the ellipse change randomly along
the fiber on a length scale ~10 m.

e Second source of birefringence: anisotropic stress on the fiber core
during manufacturing or cabling of the fiber.

e This type of birefringence can change with time because of
environmental changes on a time scale of minutes or hours.
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PMD Problem

e SOP of light totally unpredictable at any point inside the fiber.

e Changes in the SOP of light are not of concern because
photodetectors respond to total power irrespective of SOP.

e A phenomenon known as polarization-mode dispersion (PMD)
induces pulse broadening.

e Amount of pulse broadening can fluctuate with time.

e If the system is not designed with the worst-case scenario in mind,
PMD- can move bits outside of their allocated time slots, resulting
in system failure in an unpredictable manner.

e Problem becomes serious as the bit rate increases.
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Fibers with Constant Birefringence
e Consider first polarization-maintaining fibers.

e Large birefringence intentionally induced to mask small fluctuations
resulting from manufacturing and environmental changes.

e A single-mode fiber supports two orthogonally polarized modes.
e Two modes degenerate in all respects for perfect fibers.
e Birefringence breaks this degeneracy.

e Two modes propagate inside fiber with slightly different propagation
constants (7 slightly different).

e Index difference An = i1, — 71, is a measure of birefringence.

e Two axes along which the modes are polarized are known as the
principal axis.
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Polarization-Maintaining Fibers

e When input pulse is polarized along a principal axis, its SOP does
not change because only one mode is excited.

e Phase velocity v, = ¢/ and group velocity v, = c/7i, different for
two principal axes.

e x axes chosen along principal axis with larger mode index.
e |t is called the slow axis; y axis is the fast axis.

e When input pulse is not polarized along a principal axis, its energy
is divided into two polarization modes.

e Both modes are equally excited when input pulse is polarized
linearly at 45°.

e Two orthogonally polarized components of the pulse separate along
the fiber because of their different group velocities.
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Pulse Splitting

1 k\& JTL ____________

Pr|nC|paI axes Pulse s spllttmg

e Two components arrive at different times at the end of fiber.
e Single pulse splits into two pulses that are orthogonally polarized.

e Delay AT in the arrival of two components is given by

At=| L B LB — Bl = L(ABY).

Vex  Vgy

° Aﬁl ZAT/szgxl —V;yl.

e At is called the differential group delay (DGD).
e For a PMF, AB; ~ 1 ns/km.
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Fibers with Random Birefringence
e Conventional fibers exhibit much smaller birefringence (An ~ 1077).

e Birefringence magnitude and directions of principal axes change ran-
domly at a length scale (correlation length) I, ~ 10m.

e SOP of light changes randomly along fiber during propagation.

e What affects the system is not a random SOP but pulse distortion
induced by random changes in the birefringence.

e Two components of the pulse perform a random walk, each one
advancing or retarding in a random fashion.

e Final separation AT becomes unpredictable, especially if birefrin-
gence fluctuates because of environmental changes.
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Theoretical Model
T Local birefringen;e: axes /Fiber sections \

£ O =000

e Birefringence remains constant in each section but changes

randomly from section to section.

e Introduce the Ket vector |A(z,®)) = (

Az, ) )
Ay(z, ®) )

e Propagation of each frequency component governed by a composite
Jones matrix obtained by multiplying individual Jones matrices for
each section:

A(L,®)) = TyTy_--- LT |A(0,0)) = T.(w)|A(0, ®)).
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Principal States of Polarization
e Two special SOPs, known as PSPs, exist for any fiber.

e When a pulse is polarized along a PSP, the SOP at the output of
fiber is independent of frequency to first order.

e PSPs are analogous to the slow and fast axes associated with PMFs.
e They are in general elliptically polarized.

e An optical pulse polarized along a PSP does not split into two parts
and maintains its shape.

e DGD AT is defined as the relative delay in the arrival time of pulses
polarized along the two PSPs.

e PSPs and At change with L in a a random fashion.
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PMD-Induced Pulse Broadening

e Optical pulses are rarely polarized along one of PSPs.

e Each pulse splits into two parts that are delayed by a random amount
AT.

e PMD-induced pulse broadening is characterized by RMS value of
AT obtained after averaging over random birefringence.

e Several approaches have been used to calculate this average.

e The second moment of AT is given by
((AT)?) = Atgys = 2(AB1)° I [exp(—z/1c) + 2/l — 1].

e /. is the length over which two polarization components remain
correlated.




UNIVERSITY OF ROCHESTER ‘I‘Minlﬂtuhnfh

OPTICS
PMD Parameter
e RMS Value of DGD depends on distance z as

Atgus(2) = 2(AB1) o [exp(—z/1e) + 2/ — 1].

e For short distances such that z < I., ATrms = (AP1)z.
e This is expected since birefringence remains constant.

e For z> 1 km, take the limit z > [
ATrMs & (Aﬁl)\/ 2ch = Dp\/z

e Square-root dependence on length expected for a random walk.

e D, is known as the PMD parameter.
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Impact of PMD Parameter

o Measured values of D), vary from fiber to fiber in the range

D, = 0.01-10 ps/vkm.
e Fibers installed during the 1980s had a relatively large PMD.

e Modern fibers are designed to have low PMD; typically
D, < 0.1 ps/vkm.

e PMD-induced pulse broadening relatively small compared with GVD
effects.

e For example, ATgrms = 1 ps for a fiber length of 100 km, if we use

D, =0.1 ps/vkm.

e PMD becomes a limiting factor for systems designed to operate
over long distances at high bit rates.
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DGD Fluctuations

J‘U“} FA w
|
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e Experimental data over a 20-nm-wide range for a fiber with mean
DGD of 14.7 ps.

e DGD fluctuates with the wavelength of light.

e Measured values of DGD vary randomly from 2 ps to more than
30 ps depending on wavelength of light.
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Polarization-Dependent Losses

e Losses of a fiber link often depend on SOP of the signal
propagating through it.

e Silica fibers themselves exhibit little PDL.

e Optical signal passes through a variety of optical components
(isolators, modulators, amplifiers, filters, couplers, etc.)

e Most components exhibit loss (or gain) whose magnitude depends
on the SOP of the signal.

e PDL is relatively small for each component (~0.1 dB).

e Cumulative effect of all components produces an output signal
whose power may fluctuate by a factor of 10 or more depending
on its input SOP.
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Chapter 4: Nonlinear Impairments

e Inclusion of nonlinear effects essential for long-haul systems
employing a chain of cascaded optical amplifiers.

e Noise added by the amplifier chain degrades the SNR and requires
high launched powers.

e Nonlinear effects accumulate over multiple amplifiers and distort
the bit stream.

e Five Major Nonlinear Effects are possible in optical fibers:

* Stimulated Raman Scattering (SRS)
* Stimulated Brillouin Scattering (SBS)
* Self-Phase Modulation (SPM)

* Cross-Phase Modulation (XPM)

* Four-Wave Mixing (FWM)
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Self-Phase Modulation

e Pulse propagation inside an optical fiber is governed by

8A+i,[)’282A
dz 2 dr?

, 1
= IAPA+ 3 [g0(2) — A,

e Eliminate gain—loss terms using A(z,t) = \/Pop(z) U(z,1).

e p(z) takes into account changes in average power of signal along
the fiber link; it is defined such that p(nLy) = 1.

e U(z,t) satisfies the NLS equation

U ipoU
9. T2 o = e

(IU*U.

e Last term leads to Self-Phase Modulation (SPM).
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Nonlinear Phase Shift

e In the limit B, =0, %—lzj = %WPU.
e Nonlinear length is defined as Ly = 1/(YR).

e |t provides a length scale over which nonlinear effects become rele-
vant.

e As an example, if y=2 W_l/km, Ly, = 100 km for Py =5 mW.
e Using U = Vexp(ifnL), we obtain

W agw_pla)
aZ 8z LNL

e General solution: U(L,t) = U(0,7)exp[idn(L,1)].
e Nonlinear Phase Shift: ¢ni(L,2) = [U(0,)|*(Lege/Lnv)-

0, V.

o Effective fiber length Loy = [i p(z)dz = Ny [y * p(z) dz.
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Self-Phase Modulation

e Nonlinear term in the NLS equation leads to an intensity-dependent
phase shift.

e This phenomenon is referred to as SPM because the signal modu-
lates its own phase.

e |t was first observed in a 1978 experiment.

e Nonlinear phase shift ¢np = |U(0,2)|*(Legr/LnL).

e Maximum phase shift @max = Lefr/Lnt, = YPoLegr.

e L. is smaller than L because of fiber losses.

e In the case of lumped amplification, p(z) = exp(—oz).

e Effective link length Leg = L[1 —exp(—aL4)]/(0tLs) =~ Na/ .

e In the absence of fiber losses, L.ss = L.
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SPM-Induced Chirp

e Consider a single 1 bit within an RZ bit stream.

e A temporally varying phase implies that carrier frequency differs
across the pulse from its central value ay.

e The frequency shift 0@ is itself time-dependent:

don (L O >
() =~ —— (1) S o)

e Minus sign is due to the choice exp(—iwyt).
e Ow(t) is referred to as the frequency chirp.

e New frequency components are generated continuously as signal
propagates down the fiber.

e New frequency components broaden spectrum of the bit stream.
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SPM-Induced Chirp
e For a random bit sequence U(0,7) =Y b,U,(t —nT}).

e SPM-induced phase shift can be written as
OnL(L,1) =~ (Lett/Lnv) Y DU, (t —kTy)].
k

e Nonlinear phase shift occurs for only 1 bits.
e The form of ¢ni. mimics the bit pattern of the launched signal.
e Magnitude of SPM-induced chirp depends on pulse shape.

e In the case of a super-Gaussian pulse

To La \ T P T '

e Integer m =1 for a Gaussian pulse.
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SPM-Induced Chirp
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e On and S across the pulse at a distance Lest = Ly for Gaussian
(m = 1) and super-Gaussian (m = 3) pulses (dashed curves).
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Spectral Broadening and Narrowing
e Spectrum of a bit stream changes as it travels down the link.
e SPM-induced spectral broadening can be estimated from d@(¢).

e Maximum value 8 Wy = mf(m)Pmax/To:

-2 ) el (-2

e f(m)=0.86 for m =1 and tends toward 0.74 for m > 1.
o Using Awy = T, ' with m = 1, 8 Onax = 0.86A W) Prnax.

e Spectral shape of at a distance L is obtained from

S(w) = ‘/ZU(O,t)eXp[id)NL(L,t) +i(w— ay)t| dt




UNIVERSITY OF ROCHESTER

Pulse Spectra and Input Chirp
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e Gaussian-pulse spectra for 4 values of C when ¢p.x = 4.57.

e Spectrum broadens for C < 0 but becomes narrower for C < 0.
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Control of SPM

e Sign of the chirp parameter C plays a critical role.
e A negatively chirped pulse undergoes spectral narrowing.

e This behavior can be understood by noting that SPM-induced chirp
is partially cancelled by when C is negative.

o If we use OnL(f) ~ Pmax(1 —%/T) for Gaussian pulses, SPM-
induced chirp is nearly cancelled for C = —2¢yax.

e SPM-induced spectral broadening should be controlled for any sys-
tem.

e As a rough design guideline, SPM effects become important only
when @n.x > 1. This condition satisfied if Py < & /(YNa).

e For typical values of & and ¥, peak power is limited to below 1 mW
for a fiber links containing 30 amplifiers.
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Effect of Dispersion
e Dispersive and nonlinear effects act on bit stream simultaneously.

e One must solve the NLS equation:
oU N i, 0*U
dz 2 Ot?

e When p =1 and 3, <0, the NLS equation has solutions in the
form of solitons.

= iyPop(2)|U°U.

e Solitons are pulses that maintain their shape and width in spite
of dispersion.

e Another special case is that of “rect” pulses propagating in a fiber
with B, > 0 (normal GVD).

e This problem is identical to the hydrodynamic problem of
“breaking a dam.”
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Pulse Broadening Revisited
e SPM-induced chirp affects broadening of optical pulses.
e Broadening factor can be estimated without a complete solution.

e A perturbative approach yields:
Z 21
0, (z) = 0;(2) +}/P0fs/0 B>(z1) [/0 p(Z2)dZ2] dz;.

e 07 is the RMS width expected in the linear case (y = 0).

[ U dr
[0 dr

e Shape of input pulse enters through f; =

e For a Gaussian pulse, f; = 1/\/5% 0.7. For a square pulse, f;=1.

o For p(z) =1 and constant B, 62(z) = 07(2) + 5 YR fsBa2*.
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Pulse Spectra and Input Chirp N
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e Width ratio 6,/ 0y as a function of propagation distance for a super-
Gaussian pulse (m =2, po= yPyLp).

e SPM enhances pulse broadening when B, > 0 but leads to pulse
compression in the case of anomalous GVD.

e This behavior can be understood by noting that SPM-induced chirp
is positive (C > 0).
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Modulation Instability

e Modulation instability is an instability of the CW solution of the
NLS equation in the anomalous-GVD regime.

e CW solution has the form U(z) = exp(ifnr).
e Perturb the CW solution such that U = (1 +a)exp(i¢ny).

e Linearizing in a we obtain
da B,d%a
— = ——— — 7P, ).
laZ 2 9.2 }/o(a+a)
e This linear equation has solution in the form
a(z,t) = ajexpli(Kz — Qt)] + ar exp|—i(Kz — Qt)],
e Solution exists only if K = 1|$,Q|[Q* + sgn(B,)Q2]'/2, where

92 _ 4’}/P() _ 4
B Bl
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Gain Spectrum
e Dispersion relation: K = 1|5,Q[[Q? +sgn(B,)Q2]"/2.

e CW solution is unstable when K becomes complex because any
perturbation then grows exponentially.

e Stability depends on whether light experiences normal or anomalous

GVD inside the fiber.

e In the case of normal GVD (3, > 0), K is real for all Q, and steady
state is stable.

e When f, <0, K becomes imaginary for |Q| < Q..

e Instability transforms a CW beam into a pulse train.

e Gain g(Q) = 2Im(K) exists only for |Q| < Q.:
g(Q) = |BQ[(Q2 - Q).
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Gain Spectrum
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o Lnr = 20 km (dashed curve) or 50 km; B, = —5 ps*/km.

e Gain peaks at frequencies Qux = :I:% = ++/2vR/|B2|-

e Peak value gnax = g(Qnax) = %’[)’2‘93 = 2YP,.
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Impact of Modulation Instability

e Modulation instability affects the performance of periodically am-
plified lightwave systems.

e |t can be seeded by broadband noise added by amplifiers.
e Growth of this noise degrades the SNR at the receiver end.

e In the case of anomalous GVD, spectral components of noise falling
within the gain bandwidth are amplified.

e SPM-induced reduction in signal SNR has been observed in several
experiments.

e Use of optical filters after each amplifier helps in practice.
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Cross-Phase Modulation

e Nonlinear refractive index seen by one wave depends on the
intensity of other copropagating channels.

e Nonlinear index for two channels:

AI’lNL = I’l2(|A1 ’2 + 2|A2’2)

e Total nonlinear phase shift for multiple channels:
;" = YLefr (Pj +2) Pm> :
mZj
e XPM induces a nonlinear coupling among channels.

e XPM is a major source of crosstalk in WDM systems.
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Coupled NLS Equations

e Consider a two-channel lightwave system with total field
A(z,t) = A (z,1) exp(—it) +As(z,1) exp(—it).

e Substituting it in the NLS equation, we obtain:

= 1,32 2 57 = 1Y(JA1]” +2|Az] )A1+§,3291A1
5. Qzﬁz + - s = WA +2{A19) Az + - B QA

e Single nonlinear term |A|?A gives rise to two nonlinear terms.

e Second term is due to XPM and produces a nonlinear phase shift
that depends on the power of the other channel.
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XPM-Induced Phase Shift

e For an M-channel WDM system, we obtain M equations of the form

8A [3 j zﬁ282A
97 P2 81? 2 9z

(1A +2 L 1Anl?)Aj+ S a3A,
m#j

e These equations can be solved analytically in the CW case or when
the dispersive effects are ignored.

e Setting B, = 0 and integrating over z, we obtain

Aj(L) = /Piexp(i9;),  ¢;= VLeff(Pj +2) Pm).
m ]

e XPM phase shift depends on powers of all other channels.
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Limitation on Channel powers
e Assume input power is the same for all channels.

e Maximum value of phase shift occurs when 1 bits in all channels
overlap simultaneously.

® Omax = Na(y/a)(2M — 1) Py, where Legs = Nay/ L was used.
e XPM-induced phase shift increases linearly both with M and Nj,.
e |t can become quite large for long-haul WDM systems.

e If we use Qmax < 1 and Ny = 1, channel power is restricted to
P < OC/[’)/(ZM— 1)]

e For typical values of o and ¥, P, < 10 mW even for five channels.

e Allowed power level reduces to below 1 mW for >50 channels.
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Effects of Group-Velocity Mismatch

e Preceding analysis overestimates the XPM-induced phase shift.
e Pulses belonging to different channels travel at different speeds.
e XPM can occur only when pulses overlap in the time domain.

e XPM-induced phase shift induced is reduced considerably by the
walk-off effects.

e Consider a pump-probe configuration in which one of the
channels is in the form of a weak CW field.

e If we neglect dispersion, XPM coupling is governed by

8A1 8A1 l o
4 —ivAPA =B Q%A — —A,.
8z+ 5 iY|A1] 1+2/32 141 > 1
dA,

o
2 2ivlA PA, — =A 5 =0,05.
2z i171A1]°A; 442, 152
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Pump-Probe Configuration

e Introducing A; = \/Piexp(i¢h), pump power P;(z,t) satisfies
A+ 8% + oA =0.

e lts solution is P(z,1) = Py(t — 87)e™*.

e Probe equation can also be solved to obtain
As(z) = A2(0) exp(—aL/2 + idxpm)-

e XPM-induced phase shift is given by

Oxpm(?) 27/ a(t —0z)e” % dz.

e For a CW pump we recover the result obtained earlier.

e For a time-dependent pump, phase shift is affected considerably by
group-velocity mismatch through 9.
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Effects of Group-Velocity Mismatch
e Consider a pump modulated sinusoidally at ®,, as

Pin(t) = Py+ pmcos(mpyt).

e Writing probe's phase shift in the form ¢xpyv = @0 + ¢, cos( @t +
W)’ we find (PO = 27POLeff and

(Pm ( wm) =2 Yp mLeff vV NIxpMm -

e Nxpm is a measure of the XPM efficiency:

o 0 4sin*( @, 6L/2)e %"
- a?+ 282 (1—e—0L)2

Nxpm ( wm)

e Phase shift ¢,,(®,,) depends on w,, but also on channel spacing Q,
through &.
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Effects of Group-Velocity Mismatch
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e XPM index, defined as ¢,,/p,., plotted as a function of @, for two
different channel spacings.

e Experiment used 25-km-long single-mode fiber with 16.4 ps/(km-
nm) dispersion and 0.21 dB/km losses.

e Experimental results agree well with theoretical predictions.
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XPM-Induced Power Fluctuations
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e XPM-induced phase shift should not affect a lightwave system
because receivers respond to only channel powers.

e Dispersion converts pattern-dependent phase shifts into power
fluctuations, resulting in a lower SNR.

e Power fluctuations at 130 (middle) and 320 km (top).

e Bit stream in the pump channel is shown at bottom.
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XPM-Induced Timing Jitter

e Combination of GVD and XPM also leads to timing jitter.
e Frequency chirp induced by XPM depends on dP/dt.
e This derivative has opposite signs at leading and trailing edges.

e As a result, pulse spectrum first shifts toward red and then toward
blue.

e In a lossless fiber, collisions are perfectly symmetric, resulting in no
net spectral shift at the end of the collision.

e Amplifiers make collisions asymmetric, resulting in a net frequency
shift that depends on channel spacing.

e Such frequency shifts lead to timing jitter (the speed of a channel
depends on its frequency because of GVD).
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Control of XPM Interaction

e Dominant contribution to XPM for any channel comes from two
channels that are its nearest neighbors.

e XPM interaction can be reduced by increasing channel spacing.
e A larger channel spacing increases the group velocity mismatch.

e As a result, pulses cross each other so fast that they overlap for a
relatively short duration.

e This scheme is effective but it reduces spectral efficiency.
e XPM effects can also be reduced by lowering channel powers.

e This approach not practical because a reduction in channel power
also lowers the SNR at the receiver.
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Control of XPM Interaction

e A simple scheme controls the state of polarization (SOP) of neigh-
boring channels.

e Channels are launched such that any two neighboring channels are
orthogonally polarized.

e In practice, even- and odd-numbered channels are grouped together
and their SOPs are made orthogonal.

e This scheme is referred to as polarization channel interleaving.

e XPM interaction between two orthogonally polarized is reduced
significantly.

e Mathematically, the factor of 2 in the XPM-induced phase shift is
replaced with 2/3.
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Four-Wave Mixing (FWM)

e FWM is a process in which two photons of energies i@, and hm,
are converted into two new photons of energies i@; and fa@;.

e Energy conservation: @, + @, = @3 + ;.
e Degenerate FWM: 2m; = @3 + @y.
e Momentum conservation or phase matching is required.

e FWM efficiency governed by phase mismatch:
A= p(w3)+ B(ws) —B(wn)— ().

e Propagation constant B(w) = 7ii(w)®/c for a channel at .

e FWM becomes important for WDM systems designed with
low-dispersion or dispersion-flattened fibers.
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FWM-Induced Degradation

e FWM can generate a new wave at frequency Wrwn = @; + @; — @
for any three channels at w;, w;, and .

e For an M-channel system, i, j, and k vary from 1 to M, resulting
in a large combination of new frequencies.

e When channels are not equally spaced, most FWM components fall
in between the channels and act as background noise.

e For equally spaced channels, new frequencies coincide with existing
channel frequencies and interfere coherently with the signals in those
channels.

e This interference depends on bit pattern and leads to considerable
fluctuations in the detected signal at the receiver.

e System performance is degraded severely in this case.




UNIVERSITY OF ROCHESTER minlﬂtutnﬂh

OPTICS
FWM Equations
e Total optical field: A(z,1) =YY | A,.(z,1)exp(—iQt).

e NLS equation for a pecific channel takes the form

dA Ap  iPpd%An i, o
8—Z+Qjﬁz 5 T2 o PEAn A
‘HY(’Am’z_'_z Z ‘Ajlz) m"‘”’ZZZAA A

J#m
e Triple sum restricted to only frequency combinations that
satisfy @,, = @; + @; — .

e Consider a single FWM term in the triple sum, focus on the quasi-
CW case, and neglect phase shifts induced by SPM and XPM.

e Eliminate the remaining B, term through the transformation
A, = Bexp(ifQ2z/2 — az/2).
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FWM Efficiency

e B, satisfies the simple equation
dB,

— = iYBiB jBiexp(—az—iAkz), Ak=B(Q, +Q; —QFf — Q7).
<

e Power transferred to FWM component: P,, = nFWM(}/L)ZB-Pije_“L,
where P; = |A;(0)|? is the channel power.

e FWM efficiency is defined as

1 —exp[— (ot + iAk)L] |
(a+iAk)L

NMEwM =

e NrwMm depends on channel spacing through phase mismatch Ak.
o Using Q,, = Q; + Q; — L, this mismatch can be written as
Ak = ,Bz(.Q.i — Qk) (Q] — .Q.k) = ﬁz((x)i — a)k)(a)j — (Dk).
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FWM Efficiency
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e Figure shows how NMgwwm varies with Avy, for several values of D,
using o = 0.2 dB/km.

e FWM efficiency is relatively large for low-dispersion fibers.

e In contrast, Nrwm ~ 0 for Ave, > 50 GHz if D > 2 ps/(km-nm).
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e Input (a) and output (c) optical spectra for eight equally spaced
channels launched with 2-mW powers (link length 137 km).

e Input (b) and output (d) optical spectra in the case of unequal
channel spacings.
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Control of FWM

e Design WDM systems with unequal channel spacings.

e This scheme is not practical since many WDM components
require equally spaced channels.

e Such a scheme is also spectrally inefficient.
e A practical solution offered by dispersion-management technique.

e Fibers with normal and anomalous GVD combined to form
a periodic dispersion map.

e GVD is locally high in all fiber sections but its average value
remains close to zero.

e By 1996, the use of dispersion management became common.

e All modern WDM systems make use of dispersion management.
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FWM: Good or Bad?

e FWM leads to interchannel crosstalk in WDM systems.

e It can be avoided through dispersion management.

On the other hand ...
FWM can be used beneficially for

e Parametric amplification

e Optical phase conjugation

e Demultiplexing of OTDM channels

e Wavelength conversion of WDM channels

e Supercontinuum generation
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Stimulated Raman Scattering (SRS)

e Scattering of light from vibrating molecules.

e Scattered light shifted in frequency.

e Raman gain spectrum extends over 40 THz.

The Institute of h
OPTICS
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e Raman shift at Gain peak: Qg = 0, — oy ~ 13 THz.
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SRS Equations

e SRS governed by two coupled nonlinear equations:

dl
— = Q)1 — ol.
dz 8R< ) P

dl w

d_§ = —EpgR(Q)Ipls — 0,1

e Assume pump is so intense that its depletion can be ignored.
e Using 1,(z) = lhexp(—0,2), I satisfies

dl;/dz = grlyexp(—0,2) L — ;.
e For a fiber of length L the solution is

I,(L) = I;(0) exp(grloLetr — 0tL).

o Effective fiber length Legr = (1 —e %) /.
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Spontaneous Raman Scattering

e SRS builds up from spontaneous Raman scattering occurring all
along the fiber.

e Equivalent to injecting one photon per mode at the input of fiber.

e Stokes power results from amplification of this photon over the
entire bandwidth of Raman gain:

= / h exp|gr(@, — ®)lpLer — QL] d 0.

e Using the method of steepest descent we obtain

P, s (L) eff o €Xp [8 R (QR)I OLeff asL] )

e Effective input power at z =0 is given by

—1/2
peif _ p ( 2 )1/2 (azgR> /
SO i ws 2 .

IoLest Jw 0=,
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Raman Threshold

e Raman threshold: input pump power at which Stokes power equals
pump power at the fiber output: P(L) = P,(L) = Pyexp(—a,L).

e Assuming 0 ~ o, threshold condition becomes

PS exp(grPoLesi/Actt) = Po.

e Assuming a Lorentzian shape for Raman gain spectrum, threshold
power can be estimated from

SrEnLett

16.
Actr

o L.~ 1/ for long fiber lengths.
o Using gr ~ 6 x 10714 m/W, Py, is about 500 mW near 1.55 pum.

e SRS is not of much concern for single-channel systems.
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Raman Threshold

e Situation is quite different for WDM systems.
e Transmission fiber acts as a distributed Raman amplifier.

e Each channel amplified by all channels with a shorter wavelength as
long as their wavelength difference is within Raman-gain bandwidth.

e Shortest-wavelength channel is depleted most as it can pump all
other channels simultaneously.

e Such an energy transfer is detrimental because it depends on bit
patterns of channels.

e |t occurs only when 1 bits are present in both channels
simultaneously and leads to power fluctuations.
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Brillouin Scattering
e Scattering of light from self-induced acoustic waves.

e Energy and momentum conservation laws require

e Brillouin shift: Qp = |ka|va = 2valk,|sin(6/2).

e Only possibility 8 = & for single-mode fibers
(backward propagating Stokes wave).

o Using k, =27ii/A,, vg = Qp/21T =20va/A,.
e With v4 =5.96 km/s and n = 1.45, vg ~ 11 GHz near 1.55 um.
e Stokes wave grows from noise.

e Becomes efficient at relatively low pump powers.
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Stimulated Brillouin Scattering

e Governed by two coupled equations:

dI, dI,
d_Z: —gBIpIs—ale” _d_z :—I—gBIpIS—OCSIS.

e Brillouin gain has a narrow Lorentzian spectrum:

_ g5(Vp)
1+4(v—vp)2/(Avg)?*

ga(V)

e Phonon lifetime T3 < 10 ns results in gain bandwidth >30 MHz.
e Peak Brillouin gain ~ 5 x 107! m/W.

e Compared with Raman gain, peak gain larger by a factor of 1000
but its bandwidth is smaller by a factor of 100,000.

e SBS is the most dominant nonlinear process in silica fibers.
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Growth of Stokes Wave

e Assume pump is so intense that its depletion can be ignored.

e Using solution for the pump beam, we obtain
d[s/dZ = —gR(P()/Aeff) exp(—apz)ls + o .
e Solution for a fiber of length L is given by

IS(O) = IS(L) €Xp(gBP0Leff/Aeff — OCL),

e Stokes wave grows exponentially in the backward direction from an
initial seed injected at the fiber output end at z = L.

e Threshold power Py, for SBS is found from
85(V)PinLett/Actt ~ 21.

e For long fibers Py, for the SBS onset can be as low as 1 mW.
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Growth of Stokes Wave
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e Transmitted (solid circles) and reflected (empty circles) powers as
a function of input power for a 13-km-long fiber.

e Brillouin threshold is reached at a power level of about 5 mW.

e Reflected power increases rapidly after threshold and consists of
mostly SBS-generated Stokes radiation.
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SBS Threshold

e Optical signal in lightwave systems is in the form of a bit stream
consisting of pulses whose width depend on the bit rate.

e Brillouin threshold higher for an optical bit stream.

e Calculation of Brillouin threshold quite involved because 1 and 0
bits do not follow a fixed pattern.

e Simple approach: Situation equivalent to that of a CW pump with
a wider spectrum and a reduced peak power.

e Brillouin threshold increases by about a factor of 2 irrespective of
the actual bit rate of the system.

e Channel powers limited to below 5 mW under typical conditions.
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Control of SBS

e Some applications require launch powers in excess of 10 mW.

e An example provided by shore-to-island fiber links designed to trans-
mit information without in-line amplifiers or repeaters.

e Threshold can be controlled by increasing either Avg (about 30 MHz)
or line width of the optical carrier (<10 MHz).

e Bandwidth of optical carrier can be increased by modulating
its phase at a frequency lower than the bit rate (typically,
Av,, < 1 GHz).

e Brillouin gain is reduced by a factor of (14 Av,,/Avp).

e SBS threshold increases by the same factor.
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Control of SBS

e Brillouin-gain bandwidth Avg can be increased to more than
400 MHz by designing special fibers.

e Sinusoidal strain along the fiber length can be used for this
purpose.

e Strain changes Brillouin shift vz by a few percent in a periodic
manner.

e Strain can be applied during cabling of the fiber.

e Brillouin shift vz can also be changed by making core radius nonuni-
form along fiber length.

e Same effect can be realized by changing dopant concentration along
fiber length.
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Nonlinear Pulse Propagation

e Two analytic techniques can be used for solving the NLS equation
approximately (the Moment method and Variational method).

e They can be used provided one can assume that the pulse maintains
a specific shape inside the fiber link.

e Pulse parameters (amplitude, phase, width, and chirp) are allowed
to change continuously with z.

e This assumption holds reasonably well in several cases of
practical interest.

e A Gaussian pulse maintains its shape at low powers.

e Let us assume that the Gaussian shape remains approximately valid
when the nonlinear effects are relatively weak.
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OPTICS
Moment Method

e Treat the optical pulse like a particle whose energy E, RMS width
o, and chirp C are defined as E = [~_|U|*dt,

1 [ dU dU*
02:—/ lUdt, C=— / U* U dt.
- E dt

e Differentiate them with respect to z and use the NLS Equation
N i3, 0°U

dz 2 dt?

e We find that dE /dz = 0 but 62 and C satisfy

dGz B Bg 82U
=g _rm (U W)dt’

dC 2B, [ |oU|* . yR /°° p
R B e R AL Ul|'dt.
dz E /_oo ot o E P2) _oo’ |

= iYPop(2)|U|*U.
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Equations for Pulse Parameters
e For a chirped Gaussian pulse: U(z,7) = a exp[—3(1+iC)(t/T)?].
e All four pulse parameters (a, C, T, and ¢) are functions of z.
e Peak amplitude a is related to energy as E = \/7a’T .
e Width parameter T is related to the RMS width ¢ as T = V20.
e Width T and chirp C are found to change with z as

dT _ B.C
dz T
dC B> ()TO
1+C? P
7 = ( +C) S+ Y AT

e These two equations govern how the nonlinear effects modify the
width and chirp of a Gaussian pulse.
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Physical Interpretation
e Considerable physical insight gained from moment equations.

e SPM does not affect the pulse width directly as ¥ appears only in
the chirp equation.

e Two terms on the right side of chirp equation originate from the
dispersive and nonlinear effects, respectively.

e They have the same sign for normal GVD (3, > 0).

e Since SPM-induced chirp then adds to GVD-induced chirp, we ex-
pect SPM to increase the rate of pulse broadening.

e When GVD is anomalous (3, < 0), two terms have opposite signs,
and pulse broadening should be reduced.

e Width equation leads to T2(z) = T¢ +2 J; B2(z)C(z) dz.
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OPTICS
Variational Method
e Variational method uses the Lagrangian . = [~ %.(q,q")dt.

e Lagrangian density .Z; satisfies the Euler-Lagrange equation

AN AN
dr \ dq; dz \ dq, dg

e g; and g, are derivatives of g with respect to ¢ and z, respectively.

e NLS equation can be derived from the Euler-Lagrange equation
with ¢ = U" when

i, 00U JUY\ B
gd_§<U6’_z_U8z)+7

2

U
—| +iyPop(2)|UJ*.

ot

e If pulse shape is known in advance, integration can be performed
analytically to obtain .Z in terms of pulse parameters.
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Lagrangian for a Gaussian Pulse

e In the case of a chirped Gaussian pulse
U(z,t) = aexp[—5(1 +iC)(t/T)* +i¢).

e Lagrangian .Z is found to be

B.E o YP(2)E? dc _2CdT\ .d¢
Z = 4T2(1+C)+ \/_T+ = Td.) Fa

o E = \/ma’T is the pulse energy.

e Final step: Minimize [.Z(z)dz with respect to four pulse
parameters using the Euler—Lagrange equation

422\ 2z _
9q. dg

e ¢ represents one of the pulse parameters (¢, = dq/dz).
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Variational Equations
o If we use ¢ = @, we obtain dE/dz=0.

e Using ¢ = E, we obtain the phase equation:

do _ B> +5YP(Z)E
dz 2T?  4\2xnT

e Using g =C and ¢ =T, we obtain the width and chirp equations:

ar _pC
dz T
dC o\ B2 p(z) To
p__
= (1+C) >+7. AT

e These equations are identical to those obtained earlier with the
moment method.
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Specific Analytic Solutions

e Apply the moment equations to the linear case (y = 0):

dT  B,C dC 2\ B2
£ P 14+C
dz T’ dz =1+ )T2

e From dT /dC it follows that (1+C?)/T*= (1+C3)/T¢.
e General solution is found to be (¢ =z/Lp)

T*(&) =Ty[1+2sCoé + (1+CH)E?],  C(z) =Co+s(1+CH)E.
e These results agree with those obtained in Section 3.3.

e Assume nonlinear effects are weak and write as C = C; +C":

! PyT
T _IAN a0 (7o),
dz \/§T \/EﬁzCL

e Pulse width is found from T?(z) = T + 2, s C(z) dz
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Numerical Solution
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e Numerical Solution for several values of u = yPyLp.
e The linear case corresponds to u = 0.
e Gaussian input pulses are assumed to be unchirped.

e As nonlinear effects increase, pulse broadens less and less and may
even compress.
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SPM-Induced Pulse Compression
e Pulse compression can be understood from the chirp equation:

dC B> p(2) Ty
az TR ST

e In the case of normal GVD, two terms have the same sign.

(1+C2)

e Pulse broadens even faster than that expected without SPM.
e Two terms have opposite signs when 3, < 0.
e SPM cancels dispersion-induced chirp and reduces pulse broadening.

e For a certain value of u = yPyLp, two terms nearly cancel, and
pulse width does not change (soliton formation).

e For larger values of U, pulse would compress, at least initially.
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Soliton Formation
e Use the moment method with U(z,t) = asech(t/T) exp[—iC(t/T)?].

dr __ poC

e Width equation does not change: - = 5-.

e Chirp equation is modified slightly:

dC 4\ B, 4 Ty
C? — 1+ vyP, —
dz ( o 2 ) t Op(z)n

e Introducing T =T /Ty, p(z) =1, and Lp = T3/ |Bs|:
dC

L C2+4 +PL 4
DdZ =) YOD

e Ifinitially C=0and =1, dC/dz remains 0 when s = —1 and peak
power of the pulse satisfies YPoLp = Lp/Ln., = 1. Pulse maintains
its width in spite of SPM and GVD (a soliton).




