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Chapter 3:
Signal Propagation in Optical Fibers
• Fiber fundamentals

• Basic propagation equation

• Impact of fiber losses

• Impact of fiber dispersion

• Polarization-mode dispersion

• Polarization-dependent losses
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Optical Fibers
• Most suitable as communication channel because of dielectric

waveguiding (act like an optical wire).

• Total internal reflection at the core-cladding interface.

• Single-mode propagation for core size < 10 µm.

What happens to Signal?

• Fiber losses: limit the transmission distance (minimum loss near

1.55 µm).

• Chromatic dispersion: limits the bit rate through pulse broadening.

• Nonlinear effects: distort the signal and limit the system

performance.
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Single-Mode Fibers
• Fibers support only one mode when the core size is such that

V = k0a
√

n2
1−n2

2 < 2.405.

• This mode is almost linearly polarized (|Ez|2 � |ET |2).

• Spatial mode distribution approximately Gaussian

Ex(x,y,z,ω) = A0(ω)exp
(
−x2 + y2

w2

)
exp[iβ (ω)z].

• Spot size: w/a≈ 0.65+1.619V−3/2 +2.879V−6.

• Mode index: n̄ = n2 +b(n1−n2)≈ n2(1+b∆)

b(V )≈ (1.1428−0.9960/V )2.
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Fiber Dispersion
Origin: Frequency dependence of the mode index n(ω):

β (ω) = n̄(ω)ω/c = β0 +β1(ω−ω0)+β2(ω−ω0)2 + · · · .

• Transit time for a fiber of length L : T = L/vg = β1L.

• Different frequency components travel at different speeds and arrive

at different times at output end (pulse broadening).
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Fiber Dispersion (continued)
• Pulse broadening is governed by group-velocity dispersion.

• Consider delay in arrival time over a bandwidth ∆ω :

∆T =
dT
dω

∆ω =
d

dω

L
vg

∆ω = L
dβ1

dω
∆ω = Lβ2∆ω.

• ∆ω is pulse bandwidth and L is fiber length.

• GVD parameter: β2 =
(

d2β

dω2

)
ω=ω0

.

• Alternate definition: D = d
dλ

(
1
vg

)
=−2πc

λ 2 β2.

• Limitation on the bit rate: ∆T < Tb = 1/B, or

B(∆T ) = BLβ2∆ω ≡ BLD∆λ < 1.
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Basic Propagation Equation
• Optical field inside a single-mode fiber has the form

E(r, t) = Re[êF(x,y)A(z, t)exp(iβ0z− iω0t)].

• F(x,y) represents spatial profile of the fiber mode.

• ê is the polarization unit vector.

• Since pulse amplitude A(z, t) does not depend on x and y, we need

to solve a simple one-dimensional problem.

• It reduces to a scalar problem if ê does not change with z.
Let us assume this to be the case.

• It is useful to work in the frequency domain (∆ω = ω−ω0):

A(z, t) =
1

2π

∫
∞

−∞

Ã(z,ω)exp(−i∆ωt)d(∆ω).
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Spectral Amplitude
• Consider one frequency component at ω . Its amplitude at z is

related to that at z = 0 by a simple phase factor:

Ã(z,ω) = Ã(0,ω)exp[iβp(ω)z− iβ0z].

• Propagation constant has the following general form:

βp(ω)≈ βL(ω)+βNL(ω0)+ iα(ω0)/2.

• βL(ω) = n̄(ω)ω/c, βNL(ω0) = (ω0/c)δnNL(ω0).

• Expand βL(ω) is a Taylor series around ω0:

βL(ω)≈ β0 +β1(∆ω)+
β2

2
(∆ω)2 +

β3

6
(∆ω)3,

where βm = (dmβ/dωm)ω=ω0.
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Dispersion Parameters
• Parameter β1 is related inversely to group velocity: β1 = 1/vg.

• β2 and β3: second- and third-order dispersion parameters.

• They are responsible for pulse broadening in optical fibers.

• β2 is related to D as D = d
dλ

(
1
vg

)
=−2πc

λ 2 β2.

• It vanishes at the zero-dispersion wavelength (λZD).

• Near this wavelength, D varies linearly as D≈ S(λ −λZD).

• β3 is related to the dispersion slope S as S = (2πc/λ 2)2β3.

• Parameters λZD, D, and S vary from fiber to fiber.

• Fibers with relatively small values of D in the spectral region near

1.55 µm are called dispersion-shifted fibers.



96/89

JJ
II
J
I

Back

Close

Dispersive Characteristics of
Some Commercial Fibers

Fiber Type and Aeff λZD D (C band) Slope S
Trade Name (µm2) (nm) ps/(km-nm) ps/(km-nm2)
Corning SMF-28 80 1302–1322 16 to 19 0.090
Lucent AllWave 80 1300–1322 17 to 20 0.088
Alcatel ColorLock 80 1300–1320 16 to 19 0.090
Corning Vascade 101 1300–1310 18 to 20 0.060
TrueWave-RS 50 1470–1490 2.6 to 6 0.050
Corning LEAF 72 1490–1500 2 to 6 0.060
TrueWave-XL 72 1570–1580 −1.4 to −4.6 0.112
Alcatel TeraLight 65 1440–1450 5.5 to 10 0.058

• Effective mode area Aeff of a fiber depends on F(x,y).

• Aeff = πw2 if mode shape is approximated with a Gaussian.
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Pulse Propagation Equation
• Pulse envelope is obtained using

A(z, t) =
1

2π

∫
∞

−∞

Ã(0,∆ω)exp[iβp(ω)z− iβ0z]d(∆ω).

• Substitute βp(ω) in terms of its Taylor expansion.

• Calculate ∂A/∂ z and convert to time domain by replacing

∆ω with i(∂A/∂ t).

• Final equation:

∂A
∂ z

+β1
∂A
∂ t

+
iβ2

2
∂ 2A
∂ t2 −

β3

6
∂ 3A
∂ t3 = iβNLA− α

2
A.



98/89

JJ
II
J
I

Back

Close

Nonlinear Contribution
• Nonlinear term van be written as

βNL =
2π

λ0
(n2I) =

2πn2

λ0

|A|2

Aeff
= γ|A|2.

• Nonlinear parameter γ = 2πn2
λ0Aeff

.

• For pure silica n2 = 2.6×10−20 m2/W.

• Effective mode area Aeff depends on fiber design and varies in the

range 50–80 µm2 for most fibers.

• As an example, γ ≈ 2.1 W−1/km for a fiber with Aeff = 50 µm2.

• Fibers with a relatively large value of Aeff are called large-effective-

area fibers (LEAFs).
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Pulse Propagation Equation

∂A
∂ z

+β1
∂A
∂ t

+
iβ2

2
∂ 2A
∂ t2 −

β3

6
∂ 3A
∂ t3 = iγ|A|2A− α

2
A.

• β1 term corresponds to a constant delay experienced by a pulse as

it propagates through the fiber.

• Since this delay does not affect the signal quality in any way, it is

useful to work in a reference frame moving with the pulse.

• This can be accomplished by introducing new variables t ′ and z′ as

t ′ = t−β1z and z′ = z:

∂A
∂ z′

+
iβ2

2
∂ 2A
∂ t ′2

− β3

6
∂ 3A
∂ t ′3

= iγ|A|2A− α

2
A.
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Nonlinear Schrödinger Equation
• Third-order dispersive effects are often negligible in practice.

• Setting β3 = 0, we obtain

∂A
∂ z

+
iβ2

2
∂ 2A
∂ t2 = iγ|A|2A− α

2
A.

• If we also neglect losses and set α = 0, we obtain the so-called

NLS equation

i
∂A
∂ z
− β2

2
∂ 2A
∂ t2 + iγ|A|2A = 0.

• If we neglect the nonlinear term as well (low-power case)

i
∂A
∂ z
− β2

2
∂ 2A
∂ t2 = 0.
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Linear Low-Power Case
• Pulse propagation in a fiber is governed by

i
∂A
∂ z
− β2

2
∂ 2A
∂ t2 = 0.

• Compare it with the paraxial equation governing diffraction:

2ik
∂A
∂ z

+
∂ 2A
∂x2 = 0.

• Slit-diffraction problem identical to pulse propagation problem.

• The only difference is that β2 can be positive or negative.

• Many results from diffraction theory can be used for pulses.

• A Gaussian pulse should spread but remain Gaussian in shape.
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Fiber Losses
Definition: α(dB/km) =−10

L log10

(
Pout
Pin

)
≈ 4.343α .

• Material absorption (silica, impurities, dopants)

• Rayleigh scattering (varies as λ−4)

• Waveguide imperfections (macro and microbending)

Dispersion
Conventional Fiber

Dry Fiber
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Impact of Fiber Losses
• Fiber losses reduce signal power inside the fiber.

• They also reduce the strength of nonlinear effects.

• Using A(z, t) = B(z, t)exp(−αz/2) in the NLS equation,

we obtain
∂B
∂ z

+
iβ2

2
∂ 2B
∂ t2 = iγe−αz|B|2B.

• Optical power |A(z, t)|2 decreases as e−αz because of fiber losses.

• Decrease in the signal power makes nonlinear effects weaker, as

expected intuitively.

• Loss is quantified in terms of the average power defined as

Pav(z) = lim
T→∞

1
T

∫ T/2

−T/2
|A(z, t)|2 dt = Pav(0)e−αz.
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Loss Compensation
• Fiber losses must be compensated for distances >100 km.

• A repeater can be used for this purpose.

• A repeater is a receiver–transmitter pair: Receiver output

is directly fed into an optical transmitter.

• Optical bit stream first converted into electric domain.

• It is then regenerated with the help of an optical transmitter.

• This technique becomes quite cumbersome and expensive for

WDM systems as it requires demultiplexing of individual channels

at each repeater.

• Alternative Solution: Use optical amplifiers.
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Optical Amplifiers
• Several kinds of optical amplifiers were developed in the 1980s to

solve the loss problem.

• Examples include: semiconductor optical amplifiers, Raman ampli-

fiers, and erbium-doped fiber amplifiers (EDFAs).

• They amplify multiple WDM channels simultaneously and

thus are much more cost-effective.

• All modern WDM systems employ optical amplifiers.

• Amplifier can be cascaded and thus enable one to transmit over

distances as long as 10,000 km.

• We can divide amplifiers into two categories known as lumped and

distributed amplifiers.
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Lumped and Distributed Amplifiers

• In lumped amplifiers losses accumulated over 70–80 km are

compensated using short lengths (∼10 m) of EDFAs.

• Distributed amplification uses the transmission fiber itself

for amplification through stimulated Raman scattering.

• Pump light injected periodically using directional couplers.
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Amplifier Noise
• All amplifiers degrade the SNR of an optical bit stream.

• They add noise to the signal through spontaneous emission.

• Noise can be included by adding a noise term to the NLS equation:

∂A
∂ z

+
iβ2

2
∂ 2A
∂ t2 = iγ|A|2A+

1
2
[g0(z)−α]A+n(z, t).

• g0(z) is the gain coefficient of amplifiers used.

• Langevin noise n(z, t) accounts for amplifier noise.

• Noise vanishes on average, i.e., 〈n(z, t)〉= 0.

• Noise is assumed to be Gaussian with the second moment:

〈n(z, t)n(z′, t ′)〉= g0(z)hνδ (z− z′)δ (t− t ′).
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Lumped Amplification
• Length of each amplifier is much shorter (la < 0.1 km) than spacing

LA between two amplifiers (70–80 km).

• In each fiber section of length LA, g0 = 0 everywhere except within

each amplifier of length la.

• Losses reduce the average power by a factor of exp(αLA).

• They can be fully compensated if gain GA = exp(g0la) = exp(αLA).

• EDFAs are inserted periodically and their gain is adjusted such that

GA = exp(αLA).

• It is not necessary that amplifier spacing be uniform.

• In the case of nonuniform spacing, Gn = exp[α(Ln−Ln−1)].
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Distributed Amplification
• NLS equation with gain is solved for the entire fiber link.

• g0(z) chosen such that losses are fully compensated.

• Let A(z, t) =
√

p(z)B(z, t), where p(z) governs power variations

along the link length.

• p(z) is found to satisfy d p
dz = [g0(z)−α]p.

• If g0(z) = α for all z, fiber is effectively lossless.

• In practice, pump power does not remain constant because of fiber

losses at the pump wavelength.

• Losses can still be compensated over a distance LA if the condition∫ LA
0 g0(z)dz = αLA is satisfied.

• Distance LA is called the pump-station spacing.
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Distributed Raman Amplification
• Stimulated Raman scattering is used for distributed amplification.

• Scheme works by launching CW power at several wavelengths at

pump stations spaced apart 80 to 100 km.

• Wavelengths of pump lasers are chosen near 1.45 µm for amplifying

1.55-µm WDM signals.

• Wavelengths and pump powers are chosen to provide a uniform gain

over the entire C band (or C and L bands).

• Backward pumping is commonly used for distributed Raman

amplification.

• Such a configuration minimizes the transfer of pump intensity noise

to the amplified signal.
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Bidirectional Pumping
• Use of a bidirectional pumping scheme beneficial in some cases.

• Consider when one pump laser is used at both ends of a fiber section

of length LA. Gain coefficient g(z) is of the form

g0(z) = g1 exp(−αpz)+g2 exp[−αp(LA− z)].

• Integrating d p
dz = [g0(z)−α]p, average power is found to vary as

p(z) = exp
[

αLA

(
sinh[αp(z−LA/2)]+ sinh(αpLA/2)

2sinh(αpLA/2)

)
−αz

]
.

• In the case of backward pumping, g1 = 0, and

p(z) = exp
{

αLA

[
exp(αpz)−1

exp(αpLA)−1

]
−αz

}
.
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Bidirectional Pumping
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• Variations in signal power between two pump stations.

• Backward pumping: (solid line). Bidirectional pumping (dashed

line). Lumped amplifiers: dotted line. LA = 50 km in all cases.

• Signal power varies by a factor of 10 in lumped case, by a factor

<2 for backward pumping and <15% for bidirectional pumping.
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Impact of Fiber Dispersion
• Different spectral components of the signal travel at slightly

different velocities within the fiber.

• This phenomenon is referred to as group-velocity dispersion (GVD).

• GVD parameter β2 governs the strength of dispersive effects.

• How GVD limits the performance of lightwave systems?

• To answer this question, neglect the nonlinear effects (γ = 0).

• Assuming fiber losses are compensated periodically (α = 0),

dispersive effects are governed by

∂A
∂ z

+
iβ2

2
∂ 2A
∂ t2 = 0.
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General Solution
• Using the Fourier-transform method, general solution is given by

A(z, t) =
1

2π

∫
∞

−∞

Ã(0,ω)exp
(

i
2

β2zω
2− iωt

)
dω.

• Ã(0,ω) is the Fourier transform of A(0, t):

Ã(0,ω) =
∫

∞

−∞

A(0, t)exp(iωt)dt.

• It follows from the linear nature of problem that we can study dis-

persive effects for individual pulses in an optical bit stream..

• Considerable insight is gained by focusing on the case of chirped

Gaussian pulses.
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Chirped Gaussian Pulses
• Chirped Gaussian Pulse at z = 0:

A(0, t) = A0 exp
[
−(1+ iC)t2

2T 2
0

]
.

• Input pulse width: TFWHM = 2(ln2)1/2T0 ≈ 1.665T0.

• Input chirp: δω(t) =−∂φ

∂ t = C
T 2

0
t.

• Pulse spectrum:

Ã(0,ω) = A0

(
2πT 2

0

1+ iC

)1/2

exp
[
− ω2T 2

0

2(1+ iC)

]
.

• Spectral width: ∆ω0 =
√

1+C2/T0.
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Pulse Broadening
• Optical field at a distance z is found to be:

A(ξ , t) =
A0√

b f
exp

[
−(1+ iC1)t2

2T 2
0 b2

f
+

i
2

tan−1
(

ξ

1+Cξ

)]
.

• Normalized distance ξ = z/LD is introduced through the dispersion

length defined as LD = T 2
0 /|β2|.

• Broadening factor b f and chirp C1 vary with ξ as

b f (ξ ) = [(1+ sCξ )2 +ξ
2]1/2, C1(ξ ) = C + s(1+C2)ξ .

• s = sgn(β2) = ±1 depending on whether pulse propagates in the

normal or anomalous dispersion region of the fiber.

• Main Conclusion: Pulse maintains its Gaussian shape but its width

and chirp change with propagation.
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Evolution of Width and Chirp
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=
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Cβ2z
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0

)2

+
(

β2z
T 2

0

)2
]1/2

.

• Broadening depends on the sign of β2C.

• Unchirped pulse broadens by a factor
√

1+(z/LD)2.
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Effect of Chirp
• When β2C > 0, chirped pulse broadens more because dispersion-

induced chirp adds to the input chirp.

• If β2C < 0, dispersion-induced chirp is of opposite kind.

• From C1(ξ ) = C + s(1+C2)ξ , C1 becomes zero at a distance

ξ = |C|/(1+C2), and pulse becomes unchirped.

• Pulse width becomes minimum at that distance:

T min
1 = T0/

√
1+C2.

• Pulse rebroadens beyond this point and its width eventually

becomes larger than the input width.

• Chirping in time for a pulse is analogous to curvature of the

wavefront for an optical beam.
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Pulses of Arbitrary Shape
• In practice, pulse shape differs from a Gaussian.

• Third-order dispersion effects become important close to the

zero-dispersion wavelength.

• A Gaussian pulse does not remains Gaussian in shape when

effects of β3 are included.

• Such pulses cannot be properly characterized by their FWHM.

• A measure of pulse width for pulses of arbitrary shapes is the root-

mean square (RMS) width:

σ
2
p(z) = 〈t2〉−〈t〉2, 〈tm〉=

∫
∞

−∞
tm|A(z, t)|2 dt∫

∞

−∞
|A(z, t)|2 dt

.
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RMS Pulse Width
• It turns out that σp can be calculated for pulses of arbitrary shape,

while including dispersive effects to all orders.

• Derivation is based on the observation that pulse spectrum does

not change in a linear dispersive medium.

• First step consists of expressing the moments in terms of Ã(z,ω):

〈t〉=
−i
N

∫
∞

−∞

Ã∗
∂ Ã
∂ω

dω, 〈t2〉=
1
N

∫
∞

−∞

∣∣∣∣ ∂ Ã
∂ω

∣∣∣∣2 dω.

• N ≡
∫

∞

−∞
|Ã(z,ω)|2 dω is a normalization factor.

• Spectral components propagate according to the simple relation

Ã(z,ω) = Ã(0,ω)exp[iβL(ω)z− iβ0z].

• βL(ω) includes dispersive effects to all orders.
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RMS Pulse Width
• Let Ã(0,ω) = S(ω)eiθ ; θ(ω) related to chirp.

• RMS width σp at z = L is found from the relation

σ
2
p(L) = σ

2
0 +[〈τ2〉−〈τ〉2]+2[〈τθω〉−〈τ〉〈θω〉].

• 〈 f 〉= 1
N

∫
∞

−∞
f (ω)S2(ω)dω ; θω = dθ/dω .

• Group delay τ is defined as τ(ω) = (dβL/dω)L.

• Conclusion: σ 2
p(L) is a quadratic polynomial of L.

• Broadening factor can be written as

fb = (1+ c1L+ c2L2)1/2.

• This form applies for pulses of any shape propagating inside a fiber

link with arbitrary dispersion characteristics.
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Rect-Shape Pulses
• For a pulse of width 2T0, A(0, t) = A0 for |t|< T0.

• Taking the Fourier transform:

S(ω) = (2A0T0)sinc(ωT0), θ(ω) = 0.

• Expanding βL(ω) to second-order in ω , group delay is given by

τ(ω) = (dβL/dω)L = (β1 +β2ω)L.

• We can now calculate all averaged quantities:

〈τ〉= β1L, 〈τ2〉= β
2
1 +β

2
2 L2/2T 2

0 , 〈τθω〉= 0, 〈θω〉= 0.

• Final result for the RMS width is found to be

σ
2
p(L) = σ

2
0 + 1

2T 2
0 ξ 2 = σ 2

0 (1+ 3
2ξ 2).

• Rectangular pulse broadens more than a Gaussian pulse under the

same conditions because of its sharper edges.
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Hyperbolic Secant Pulses
• For an unchirped pulse, A(0, t) = A0sech(t/T0).

• Such pulses are relevant for soliton-based systems.

• Taking the Fourier transform:

S(ω) = (πA0T0)sech(πωT0/2), θ(ω) = 0.

• Using τ(ω) = (β1 +β2ω)L and
∫

∞

−∞
x2sech2(x)dx = π2/6

〈τ〉= β1L, 〈τ2〉= β
2
1 +π

2
β

2
2 L2/(12T 2

0 ),

• RMS width of sech pulses increases with distance as

σ
2
p(L) = σ

2
0 (1+ 1

2ξ 2), σ 2
0 = π2T 2

0 /6.

• A sech pulse broaden less than a Gaussian pulse because its tails

decay slower than a Gaussian pulse.
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Effects of Third-Order Dispersion
• Consider the effects of β3 on Gaussian pulses.

• Expanding βL(ω) to third-order in ω , group delay is given by

τ(ω) = (β1 +β2ω + 1
2β3ω2)L.

• Taking Fourier transform of A(0, t), we obtain

S2(ω) =
4πA2

0σ 2
0

1+C2 exp
(
−2ω2σ 2

0

1+C2

)
, θ(ω) =

Cω2σ 2
0

1+C2 − tan−1C.

• All averages can be performed analytically. The final result is found

to be

σ 2

σ 2
0

=
(

1+
Cβ2L
2σ 2

0

)2

+
(

β2L
2σ 2

0

)2

+

(
β3L(1+C2)

4
√

2σ 3
0

)2

.
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Effects of Source Spectrum
• We have assumed that source spectrum is much narrower than

the pulse spectrum.

• This condition is satisfied in practice for DFB lasers but not for

light-emitting diodes.

• To account source spectral width, we must consider the coherence

properties of the source.

• Input field A(0, t) = A0(t)ap(t), where ap(t) represents pulse shape

and fluctuations in A0(t) produce source spectrum.

• To account for source fluctuations,we replace 〈t〉 and 〈t2〉 with

〈〈t〉〉s and 〈〈t2〉〉s, where outer brackets stand for an ensemble

average over source fluctuations.
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Effects of Source Spectrum
• S(ω) becomes a convolution of the pulse and source spectra

S(ω) =
∫

∞

−∞

Sp(ω−ω1)F(ω1)dω1.

• F(ω) is the Fourier transform of A0(t) and satisfies

〈F∗(ω1)F(ω2)〉s = G(ω1)δ (ω1−ω2).

• Source spectrum G(ω) assumed to be Gaussian:

G(ω) =
1

σω

√
2π

exp
(
− ω2

2σ 2
ω

)
.

• σω is the RMS spectral width of the source.
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Effects of Source Spectrum
• For a chirped Gaussian pulse,all integrals can be calculated

analytically as they involve only Gaussian functions.

• It is possible to obtain 〈〈t〉〉s and 〈〈t2〉〉s in a closed form.

• RMS width of the pulse at the end of a fiber of length L:

σ 2
p

σ 2
0

=
(

1+
Cβ2L
2σ 2

0

)2

+(1+V 2
ω)
(

β2L
2σ 2

0

)2

+ 1
2(1+C2 +V 2

ω)2
(

β3L
4σ3

0

)2
.

• Vω = 2σωσ0 is a dimensionless parameter for a source with RMS

width σω .

• This equation provides an expression for dispersion-induced pulse

broadening under general conditions.
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Dispersion Limitations
Large Source Spectral Width: Vω � 1

• Assume input pulse to be unchirped (C = 0).

• Set β3 = 0 when λ 6= λZD:

σ
2 = σ

2
0 +(β2Lσω)2 ≡ σ

2
0 +(DLσλ)2.

• 96% of pulse energy remains within the bit slot if 4σ < TB = 1/B.

• Using 4Bσ ≤ 1, and σ � σ0, BL|D|σλ ≤ 1
4.

• Set β2 = 0 when λ = λZD to obtain

σ
2 = σ

2
0 + 1

2(β3Lσ 2
ω)2 ≡ σ 2

0 + 1
2(SLσ 2

λ
)2.

• Dispersion limit: BL|S|σ 2
λ
≤ 1/

√
8.
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Dispersion Limitations
Small Source Spectral Width: Vω � 1

• When β3 = 0 and C = 0,

σ
2 = σ

2
0 +(β2L/2σ0)2.

• One can minimize σ by adjusting input width σ0.

• Minimum occurs for σ0 = (|β2|L/2)1/2 and leads to σ = (|β2|L)1/2.

• Dispersion limit when β3 = 0:

B
√
|β2|L≤ 1

4.

• Dispersion limit when β2 = 0:

B(|β3|L)1/3 ≤ 0.324.
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Dispersion Limitations (cont.)

• Even a 1-nm spectral width limits BL < 0.1 (Gb/s)-km.

• DFB lasers essential for most lightwave systems.

• For B > 2.5 Gb/s, dispersion management required.
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Effect of Frequency chirp

• Numerical simulations necessary for more realistic pulses.

• Super-Gaussian pulse: A(0,T ) = A0 exp
[
−1+iC

2

(
t

T0

)2m
]
.

• Chirp can affect system performance drastically.



132/89

JJ
II
J
I

Back

Close

Dispersion compensation

... ... ...
β21

β22

l1

l2

Lm

LA

• Dispersion is a major limiting factor for long-haul systems.

• A simple solution exists to the dispersion problem.

• Basic idea: Compensate dispersion along fiber link in a periodic

fashion using fibers with opposite dispersion characteristics.

• Alternate sections with normal and anomalous GVD are employed.

• Periodic arrangement of fibers is referred to as a dispersion map.
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Condition for Dispersion Compensation
• GVD anomalous for standard fibers in the 1.55-µm region.

• Dispersion-compensating fibers (DCFs) with β2 > 0 have been de-

veloped for dispersion compensation.

• Consider propagation of optical signal through one map period:

A(Lm, t) =
1

2π

∫
∞

−∞

Ã(0,ω)exp
[

i
2

ω
2(β21l1 +β22l2)− iωt

]
dω.

• If second fiber is chosen such that the phase term containing ω2

vanishes, A(Lm, t)≡ A(0, t) (Map period Lm = l1 + l2).

• Condition for perfect dispersion compensation:

β21l1 +β22l2 = 0 or D1l1 +D2l2 = 0.
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Polarization-Mode Dispersion
• State of polarization (SOP) of optical signal does not remain fixed

in practical optical fibers.

• It changes randomly because of fluctuating birefringence.

• Geometric birefringence: small departures in cylindrical symmetry

during manufacturing (fiber core slightly elliptical).

• Both the ellipticity and axes of the ellipse change randomly along

the fiber on a length scale ∼10 m.

• Second source of birefringence: anisotropic stress on the fiber core

during manufacturing or cabling of the fiber.

• This type of birefringence can change with time because of

environmental changes on a time scale of minutes or hours.
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PMD Problem
• SOP of light totally unpredictable at any point inside the fiber.

• Changes in the SOP of light are not of concern because

photodetectors respond to total power irrespective of SOP.

• A phenomenon known as polarization-mode dispersion (PMD)

induces pulse broadening.

• Amount of pulse broadening can fluctuate with time.

• If the system is not designed with the worst-case scenario in mind,

PMD- can move bits outside of their allocated time slots, resulting

in system failure in an unpredictable manner.

• Problem becomes serious as the bit rate increases.
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Fibers with Constant Birefringence
• Consider first polarization-maintaining fibers.

• Large birefringence intentionally induced to mask small fluctuations

resulting from manufacturing and environmental changes.

• A single-mode fiber supports two orthogonally polarized modes.

• Two modes degenerate in all respects for perfect fibers.

• Birefringence breaks this degeneracy.

• Two modes propagate inside fiber with slightly different propagation

constants (n̄ slightly different).

• Index difference ∆n = n̄x− n̄y is a measure of birefringence.

• Two axes along which the modes are polarized are known as the

principal axis.
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Polarization-Maintaining Fibers
• When input pulse is polarized along a principal axis, its SOP does

not change because only one mode is excited.

• Phase velocity vp = c/n̄ and group velocity vg = c/n̄g different for

two principal axes.

• x axes chosen along principal axis with larger mode index.

• It is called the slow axis; y axis is the fast axis.

• When input pulse is not polarized along a principal axis, its energy

is divided into two polarization modes.

• Both modes are equally excited when input pulse is polarized

linearly at 45◦.

• Two orthogonally polarized components of the pulse separate along

the fiber because of their different group velocities.
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Pulse Splitting

• Two components arrive at different times at the end of fiber.

• Single pulse splits into two pulses that are orthogonally polarized.

• Delay ∆τ in the arrival of two components is given by

∆τ =
∣∣∣∣ L
vgx

− L
vgy

∣∣∣∣= L|β1x−β1y|= L(∆β1).

• ∆β1 = ∆τ/L = v−1
gx − v−1

gy .

• ∆τ is called the differential group delay (DGD).

• For a PMF, ∆β1 ∼ 1 ns/km.
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Fibers with Random Birefringence
• Conventional fibers exhibit much smaller birefringence (∆n∼ 10−7).

• Birefringence magnitude and directions of principal axes change ran-

domly at a length scale (correlation length) lc ∼ 10m.

• SOP of light changes randomly along fiber during propagation.

• What affects the system is not a random SOP but pulse distortion

induced by random changes in the birefringence.

• Two components of the pulse perform a random walk, each one

advancing or retarding in a random fashion.

• Final separation ∆τ becomes unpredictable, especially if birefrin-

gence fluctuates because of environmental changes.



140/89

JJ
II
J
I

Back

Close

Theoretical Model
Local birefringence axes Fiber sections

• Birefringence remains constant in each section but changes

randomly from section to section.

• Introduce the Ket vector |Ã(z,ω)〉=
(

Ãx(z,ω)
Ãy(z,ω)

)
.

• Propagation of each frequency component governed by a composite

Jones matrix obtained by multiplying individual Jones matrices for

each section:

|Ã(L,ω)〉= TNTN−1 · · ·T2T1|Ã(0,ω)〉 ≡ Tc(ω)|Ã(0,ω)〉.



141/89

JJ
II
J
I

Back

Close

Principal States of Polarization
• Two special SOPs, known as PSPs, exist for any fiber.

• When a pulse is polarized along a PSP, the SOP at the output of

fiber is independent of frequency to first order.

• PSPs are analogous to the slow and fast axes associated with PMFs.

• They are in general elliptically polarized.

• An optical pulse polarized along a PSP does not split into two parts

and maintains its shape.

• DGD ∆τ is defined as the relative delay in the arrival time of pulses

polarized along the two PSPs.

• PSPs and ∆τ change with L in a a random fashion.
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PMD-Induced Pulse Broadening
• Optical pulses are rarely polarized along one of PSPs.

• Each pulse splits into two parts that are delayed by a random amount

∆τ .

• PMD-induced pulse broadening is characterized by RMS value of

∆τ obtained after averaging over random birefringence.

• Several approaches have been used to calculate this average.

• The second moment of ∆τ is given by

〈(∆τ)2〉 ≡ ∆τ
2
RMS = 2(∆β1)2l2

c [exp(−z/lc)+ z/lc−1].

• lc is the length over which two polarization components remain

correlated.
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PMD Parameter
• RMS Value of DGD depends on distance z as

∆τ
2
RMS(z) = 2(∆β1)2l2

c [exp(−z/lc)+ z/lc−1].

• For short distances such that z� lc, ∆τRMS = (∆β1)z.

• This is expected since birefringence remains constant.

• For z� 1 km, take the limit z� lc:

∆τRMS ≈ (∆β1)
√

2lcz≡ Dp
√

z.

• Square-root dependence on length expected for a random walk.

• Dp is known as the PMD parameter.
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Impact of PMD Parameter
• Measured values of Dp vary from fiber to fiber in the range

Dp = 0.01–10 ps/
√

km.

• Fibers installed during the 1980s had a relatively large PMD.

• Modern fibers are designed to have low PMD; typically

Dp < 0.1 ps/
√

km.

• PMD-induced pulse broadening relatively small compared with GVD

effects.

• For example, ∆τRMS = 1 ps for a fiber length of 100 km, if we use

Dp = 0.1 ps/
√

km.

• PMD becomes a limiting factor for systems designed to operate

over long distances at high bit rates.
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DGD Fluctuations

• Experimental data over a 20-nm-wide range for a fiber with mean

DGD of 14.7 ps.

• DGD fluctuates with the wavelength of light.

• Measured values of DGD vary randomly from 2 ps to more than

30 ps depending on wavelength of light.
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Polarization-Dependent Losses
• Losses of a fiber link often depend on SOP of the signal

propagating through it.

• Silica fibers themselves exhibit little PDL.

• Optical signal passes through a variety of optical components

(isolators, modulators, amplifiers, filters, couplers, etc.)

• Most components exhibit loss (or gain) whose magnitude depends

on the SOP of the signal.

• PDL is relatively small for each component (∼0.1 dB).

• Cumulative effect of all components produces an output signal

whose power may fluctuate by a factor of 10 or more depending

on its input SOP.
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Chapter 4: Nonlinear Impairments
• Inclusion of nonlinear effects essential for long-haul systems

employing a chain of cascaded optical amplifiers.

• Noise added by the amplifier chain degrades the SNR and requires

high launched powers.

• Nonlinear effects accumulate over multiple amplifiers and distort

the bit stream.

• Five Major Nonlinear Effects are possible in optical fibers:

? Stimulated Raman Scattering (SRS)

? Stimulated Brillouin Scattering (SBS)

? Self-Phase Modulation (SPM)

? Cross-Phase Modulation (XPM)

? Four-Wave Mixing (FWM)
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Self-Phase Modulation
• Pulse propagation inside an optical fiber is governed by

∂A
∂ z

+
iβ2

2
∂ 2A
∂ t2 = iγ|A|2A+

1
2
[g0(z)−α]A.

• Eliminate gain–loss terms using A(z, t) =
√

P0p(z)U(z, t).

• p(z) takes into account changes in average power of signal along

the fiber link; it is defined such that p(nLA) = 1.

• U(z, t) satisfies the NLS equation

∂U
∂ z

+
iβ2

2
∂ 2U
∂ t2 = iγP0p(z)|U |2U.

• Last term leads to Self-Phase Modulation (SPM).
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Nonlinear Phase Shift
• In the limit β2 = 0, ∂U

∂ z = ip(z)
LNL

|U |2U .

• Nonlinear length is defined as LNL = 1/(γP0).

• It provides a length scale over which nonlinear effects become rele-

vant.

• As an example, if γ = 2 W−1/km, LNL = 100 km for P0 = 5 mW.

• Using U = V exp(iφNL), we obtain

∂V
∂ z

= 0,
∂φNL

∂ z
=

p(z)
LNL

V 2.

• General solution: U(L, t) = U(0, t)exp[iφNL(L, t)].

• Nonlinear Phase Shift: φNL(L, t) = |U(0, t)|2(Leff/LNL).

• Effective fiber length Leff =
∫ L

0 p(z)dz = NA
∫ LA

0 p(z)dz.
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Self-Phase Modulation
• Nonlinear term in the NLS equation leads to an intensity-dependent

phase shift.

• This phenomenon is referred to as SPM because the signal modu-

lates its own phase.

• It was first observed in a 1978 experiment.

• Nonlinear phase shift φNL = |U(0, t)|2(Leff/LNL).

• Maximum phase shift φmax = Leff/LNL = γP0Leff.

• Leff is smaller than L because of fiber losses.

• In the case of lumped amplification, p(z) = exp(−αz).

• Effective link length Leff = L[1− exp(−αLA)]/(αLA)≈ NA/α .

• In the absence of fiber losses, Leff = L.
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SPM-Induced Chirp
• Consider a single 1 bit within an RZ bit stream.

• A temporally varying phase implies that carrier frequency differs

across the pulse from its central value ω0.

• The frequency shift δω is itself time-dependent:

δω(t) =−∂φNL

∂ t
=−

(
Leff

LNL

)
∂

∂ t
|U(0, t)|2.

• Minus sign is due to the choice exp(−iω0t).

• δω(t) is referred to as the frequency chirp.

• New frequency components are generated continuously as signal

propagates down the fiber.

• New frequency components broaden spectrum of the bit stream.
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SPM-Induced Chirp
• For a random bit sequence U(0, t) = ∑bnUp(t−nTb).

• SPM-induced phase shift can be written as

φNL(L, t)≈ (Leff/LNL)∑
k

b2
k|Up(t− kTb)|2.

• Nonlinear phase shift occurs for only 1 bits.

• The form of φNL mimics the bit pattern of the launched signal.

• Magnitude of SPM-induced chirp depends on pulse shape.

• In the case of a super-Gaussian pulse

δω(t) =
2m
T0

Leff

LNL

(
t
T0

)2m−1

exp

[
−
(

t
T0

)2m
]

.

• Integer m = 1 for a Gaussian pulse.
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SPM-Induced Chirp
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• φNL and δω across the pulse at a distance Leff = LNL for Gaussian

(m = 1) and super-Gaussian (m = 3) pulses (dashed curves).
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Spectral Broadening and Narrowing
• Spectrum of a bit stream changes as it travels down the link.

• SPM-induced spectral broadening can be estimated from δω(t).

• Maximum value δωmax = m f (m)φmax/T0:

f (m) = 2
(

1− 1
2m

)1−1/2m

exp
[
−
(

1− 1
2m

)]
.

• f (m) = 0.86 for m = 1 and tends toward 0.74 for m > 1.

• Using ∆ω0 = T−1
0 with m = 1, δωmax = 0.86∆ω0φmax.

• Spectral shape of at a distance L is obtained from

S(ω) =
∣∣∣∣∫ ∞

−∞

U(0, t)exp[iφNL(L, t)+ i(ω−ω0)t]dt
∣∣∣∣2 .
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Pulse Spectra and Input Chirp
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• Gaussian-pulse spectra for 4 values of C when φmax = 4.5π .

• Spectrum broadens for C < 0 but becomes narrower for C < 0.
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Control of SPM
• Sign of the chirp parameter C plays a critical role.

• A negatively chirped pulse undergoes spectral narrowing.

• This behavior can be understood by noting that SPM-induced chirp

is partially cancelled by when C is negative.

• If we use φNL(t) ≈ φmax(1− t2/T 2
0 ) for Gaussian pulses, SPM-

induced chirp is nearly cancelled for C =−2φmax.

• SPM-induced spectral broadening should be controlled for any sys-

tem.

• As a rough design guideline, SPM effects become important only

when φmax > 1. This condition satisfied if P0 < α/(γNA).

• For typical values of α and γ , peak power is limited to below 1 mW

for a fiber links containing 30 amplifiers.
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Effect of Dispersion
• Dispersive and nonlinear effects act on bit stream simultaneously.

• One must solve the NLS equation:

∂U
∂ z

+
iβ2

2
∂ 2U
∂ t2 = iγP0p(z)|U |2U.

• When p = 1 and β2 < 0, the NLS equation has solutions in the

form of solitons.

• Solitons are pulses that maintain their shape and width in spite

of dispersion.

• Another special case is that of “rect” pulses propagating in a fiber

with β2 > 0 (normal GVD).

• This problem is identical to the hydrodynamic problem of

“breaking a dam.”
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Pulse Broadening Revisited
• SPM-induced chirp affects broadening of optical pulses.

• Broadening factor can be estimated without a complete solution.

• A perturbative approach yields:

σ
2
p(z) = σ

2
L(z)+ γP0 fs

∫ z

0
β2(z1)

[∫ z1

0
p(z2)dz2

]
dz1.

• σ 2
L is the RMS width expected in the linear case (γ = 0).

• Shape of input pulse enters through fs =
∫

∞
−∞ |U(0,t)|4 dt∫
∞
−∞ |U(0,t)|2 dt .

• For a Gaussian pulse, fs = 1/
√

2≈ 0.7. For a square pulse, fs = 1.

• For p(z) = 1 and constant β2, σ 2
p(z) = σ 2

L(z)+ 1
2γP0 fsβ2z2.
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Pulse Spectra and Input Chirp
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• Width ratio σp/σ0 as a function of propagation distance for a super-

Gaussian pulse (m = 2, p0 = γP0LD).

• SPM enhances pulse broadening when β2 > 0 but leads to pulse

compression in the case of anomalous GVD.

• This behavior can be understood by noting that SPM-induced chirp

is positive (C > 0).
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Modulation Instability
• Modulation instability is an instability of the CW solution of the

NLS equation in the anomalous-GVD regime.

• CW solution has the form U(z) = exp(iφNL).

• Perturb the CW solution such that U = (1+a)exp(iφNL).

• Linearizing in a we obtain

i
∂a
∂ z

=
β2

2
∂ 2a
∂ t2 − γP0(a+a∗).

• This linear equation has solution in the form

a(z, t) = a1 exp[i(Kz−Ωt)]+a2 exp[−i(Kz−Ωt)],

• Solution exists only if K = 1
2|β2Ω|[Ω2 + sgn(β2)Ω2

c]
1/2, where

Ω
2
c =

4γP0

|β2|
=

4
|β2|LNL

.
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Gain Spectrum
• Dispersion relation: K = 1

2|β2Ω|[Ω2 + sgn(β2)Ω2
c]

1/2.

• CW solution is unstable when K becomes complex because any

perturbation then grows exponentially.

• Stability depends on whether light experiences normal or anomalous

GVD inside the fiber.

• In the case of normal GVD (β2 > 0), K is real for all Ω, and steady

state is stable.

• When β2 < 0, K becomes imaginary for |Ω|< Ωc.

• Instability transforms a CW beam into a pulse train.

• Gain g(Ω) = 2Im(K) exists only for |Ω|< Ωc:

g(Ω) = |β2Ω|(Ω2
c−Ω

2)1/2.
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Gain Spectrum
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• LNL = 20 km (dashed curve) or 50 km; β2 =−5 ps2/km.

• Gain peaks at frequencies Ωmax =±Ωc√
2
=±

√
2γP0/|β2|.

• Peak value gmax ≡ g(Ωmax) = 1
2|β2|Ω2

c = 2γP0.
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Impact of Modulation Instability
• Modulation instability affects the performance of periodically am-

plified lightwave systems.

• It can be seeded by broadband noise added by amplifiers.

• Growth of this noise degrades the SNR at the receiver end.

• In the case of anomalous GVD, spectral components of noise falling

within the gain bandwidth are amplified.

• SPM-induced reduction in signal SNR has been observed in several

experiments.

• Use of optical filters after each amplifier helps in practice.
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Cross-Phase Modulation
• Nonlinear refractive index seen by one wave depends on the

intensity of other copropagating channels.

• Nonlinear index for two channels:

∆nNL = n2(|A1|2 +2|A2|2).

• Total nonlinear phase shift for multiple channels:

φ
NL
j = γLeff

(
Pj +2 ∑

m6= j
Pm

)
.

• XPM induces a nonlinear coupling among channels.

• XPM is a major source of crosstalk in WDM systems.
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Coupled NLS Equations
• Consider a two-channel lightwave system with total field

A(z, t) = A1(z, t)exp(−iΩ1t)+A2(z, t)exp(−iΩ2t).

• Substituting it in the NLS equation, we obtain:

∂A1

∂ z
+Ω1β2

∂A1

∂ t
+

iβ2

2
∂ 2A1

∂ t2 = iγ(|A1|2 +2|A2|2)A1 +
i
2

β2Ω
2
1A1

∂A2

∂ z
+Ω2β2

∂A2

∂ t
+

iβ2

2
∂ 2A2

∂ t2 = iγ(|A2|2 +2|A1|2)A2 +
i
2

β2Ω
2
2A2.

• Single nonlinear term |A|2A gives rise to two nonlinear terms.

• Second term is due to XPM and produces a nonlinear phase shift

that depends on the power of the other channel.



166/89

JJ
II
J
I

Back

Close

XPM-Induced Phase Shift
• For an M-channel WDM system, we obtain M equations of the form

∂A j

∂ z
+Ω jβ2

∂A j

∂ t
+

iβ2

2
∂ 2A j

∂ t2 = iγ
(
|A j|2 +2 ∑

m 6= j
|Am|2

)
A j +

i
2

β2Ω
2
jA j.

• These equations can be solved analytically in the CW case or when

the dispersive effects are ignored.

• Setting β2 = 0 and integrating over z, we obtain

A j(L) =
√

Pj exp(iφ j), φ j = γLeff

(
Pj +2 ∑

m 6= j
Pm

)
.

• XPM phase shift depends on powers of all other channels.
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Limitation on Channel powers
• Assume input power is the same for all channels.

• Maximum value of phase shift occurs when 1 bits in all channels

overlap simultaneously.

• φmax = NA(γ/α)(2M−1)Pch, where Leff = NA/α was used.

• XPM-induced phase shift increases linearly both with M and NA.

• It can become quite large for long-haul WDM systems.

• If we use φmax < 1 and NA = 1, channel power is restricted to

Pch < α/[γ(2M−1)].

• For typical values of α and γ , Pch < 10 mW even for five channels.

• Allowed power level reduces to below 1 mW for >50 channels.
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Effects of Group-Velocity Mismatch
• Preceding analysis overestimates the XPM-induced phase shift.

• Pulses belonging to different channels travel at different speeds.

• XPM can occur only when pulses overlap in the time domain.

• XPM-induced phase shift induced is reduced considerably by the

walk-off effects.

• Consider a pump-probe configuration in which one of the

channels is in the form of a weak CW field.

• If we neglect dispersion, XPM coupling is governed by

∂A1

∂ z
+δ

∂A1

∂ t
= iγ|A1|2A1 +

i
2

β2Ω
2
1A1−

α

2
A1.

∂A2

∂ z
= 2iγ|A1|2A2−

α

2
A2, δ = Ω1β2.
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Pump-Probe Configuration
• Introducing A1 =

√
P1 exp(iφ1), pump power P1(z, t) satisfies

∂P1
∂ z +δ

∂P1
∂ t +αA1 = 0.

• Its solution is P1(z, t) = Pin(t−δ z)e−αz.

• Probe equation can also be solved to obtain

A2(z) = A2(0)exp(−αL/2+ iφXPM).

• XPM-induced phase shift is given by

φXPM(t) = 2γ

∫ L

0
Pin(t−δ z)e−αz dz.

• For a CW pump we recover the result obtained earlier.

• For a time-dependent pump, phase shift is affected considerably by

group-velocity mismatch through δ .
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Effects of Group-Velocity Mismatch
• Consider a pump modulated sinusoidally at ωm as

Pin(t) = P0 + pm cos(ωmt).

• Writing probe’s phase shift in the form φXPM = φ0 +φm cos(ωmt +
ψ), we find φ0 = 2γP0Leff and

φm(ωm) = 2γ pmLeff
√

ηXPM.

• ηXPM is a measure of the XPM efficiency:

ηXPM(ωm) =
α2

α2 +ω2
mδ 2

[
1+

4sin2(ωmδL/2)e−αL

(1− e−αL)2

]
.

• Phase shift φm(ωm) depends on ωm but also on channel spacing Ω1

through δ .
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Effects of Group-Velocity Mismatch

• XPM index, defined as φm/pm, plotted as a function of ωm for two

different channel spacings.

• Experiment used 25-km-long single-mode fiber with 16.4 ps/(km-

nm) dispersion and 0.21 dB/km losses.

• Experimental results agree well with theoretical predictions.
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XPM-Induced Power Fluctuations

• XPM-induced phase shift should not affect a lightwave system

because receivers respond to only channel powers.

• Dispersion converts pattern-dependent phase shifts into power

fluctuations, resulting in a lower SNR.

• Power fluctuations at 130 (middle) and 320 km (top).

• Bit stream in the pump channel is shown at bottom.
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XPM-Induced Timing Jitter
• Combination of GVD and XPM also leads to timing jitter.

• Frequency chirp induced by XPM depends on dP/dt.

• This derivative has opposite signs at leading and trailing edges.

• As a result, pulse spectrum first shifts toward red and then toward

blue.

• In a lossless fiber, collisions are perfectly symmetric, resulting in no

net spectral shift at the end of the collision.

• Amplifiers make collisions asymmetric, resulting in a net frequency

shift that depends on channel spacing.

• Such frequency shifts lead to timing jitter (the speed of a channel

depends on its frequency because of GVD).
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Control of XPM Interaction
• Dominant contribution to XPM for any channel comes from two

channels that are its nearest neighbors.

• XPM interaction can be reduced by increasing channel spacing.

• A larger channel spacing increases the group velocity mismatch.

• As a result, pulses cross each other so fast that they overlap for a

relatively short duration.

• This scheme is effective but it reduces spectral efficiency.

• XPM effects can also be reduced by lowering channel powers.

• This approach not practical because a reduction in channel power

also lowers the SNR at the receiver.
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Control of XPM Interaction
• A simple scheme controls the state of polarization (SOP) of neigh-

boring channels.

• Channels are launched such that any two neighboring channels are

orthogonally polarized.

• In practice, even- and odd-numbered channels are grouped together

and their SOPs are made orthogonal.

• This scheme is referred to as polarization channel interleaving.

• XPM interaction between two orthogonally polarized is reduced

significantly.

• Mathematically, the factor of 2 in the XPM-induced phase shift is

replaced with 2/3.
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Four-Wave Mixing (FWM)
• FWM is a process in which two photons of energies h̄ω1 and h̄ω2

are converted into two new photons of energies h̄ω3 and h̄ω4.

• Energy conservation: ω1 +ω2 = ω3 +ω4.

• Degenerate FWM: 2ω1 = ω3 +ω4.

• Momentum conservation or phase matching is required.

• FWM efficiency governed by phase mismatch:

∆ = β (ω3)+β (ω4)−β (ω1)−β (ω2).

• Propagation constant β (ω) = n̄(ω)ω/c for a channel at ω .

• FWM becomes important for WDM systems designed with

low-dispersion or dispersion-flattened fibers.
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FWM-Induced Degradation
• FWM can generate a new wave at frequency ωFWM = ωi +ω j−ωk

for any three channels at ωi, ω j, and ωk.

• For an M-channel system, i, j, and k vary from 1 to M, resulting

in a large combination of new frequencies.

• When channels are not equally spaced, most FWM components fall

in between the channels and act as background noise.

• For equally spaced channels, new frequencies coincide with existing

channel frequencies and interfere coherently with the signals in those

channels.

• This interference depends on bit pattern and leads to considerable

fluctuations in the detected signal at the receiver.

• System performance is degraded severely in this case.
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FWM Equations
• Total optical field: A(z, t) = ∑

M
m=1 Am(z, t)exp(−iΩmt).

• NLS equation for a pecific channel takes the form

∂Am

∂ z
+Ω jβ2

∂Am

∂ t
+

iβ2

2
∂ 2Am

∂ t2 =
i
2

β2Ω
2
mAm−

α

2
Am

+iγ
(
|Am|2 +2

M

∑
j 6=m

|A j|2
)

Am + iγ ∑
i

∑
j
∑

k
AiA jA∗k.

• Triple sum restricted to only frequency combinations that

satisfy ωm = ωi +ω j−ωk.

• Consider a single FWM term in the triple sum, focus on the quasi-

CW case, and neglect phase shifts induced by SPM and XPM.

• Eliminate the remaining β2 term through the transformation

Am = Bm exp(iβ2Ω2
mz/2−αz/2).
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FWM Efficiency
• Bm satisfies the simple equation

dBm

dz
= iγBiB jB∗k exp(−αz− i∆kz), ∆k = β2(Ω2

m +Ω
2
k−Ω

2
i −Ω

2
j).

• Power transferred to FWM component: Pm = ηFWM(γL)2PiPjPke−αL,

where Pj = |A j(0)|2 is the channel power.

• FWM efficiency is defined as

ηFWM =
∣∣∣∣1− exp[−(α + i∆k)L]

(α + i∆k)L

∣∣∣∣2 .

• ηFWM depends on channel spacing through phase mismatch ∆k.

• Using Ωm = Ωi +Ω j−Ωk, this mismatch can be written as

∆k = β2(Ωi−Ωk)(Ω j−Ωk)≡ β2(ωi−ωk)(ω j−ωk).
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FWM Efficiency
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• Figure shows how ηFWM varies with ∆νch for several values of D,

using α = 0.2 dB/km.

• FWM efficiency is relatively large for low-dispersion fibers.

• In contrast, ηFWM ≈ 0 for ∆νch > 50 GHz if D > 2 ps/(km-nm).
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Channel Spectra

• Input (a) and output (c) optical spectra for eight equally spaced

channels launched with 2-mW powers (link length 137 km).

• Input (b) and output (d) optical spectra in the case of unequal

channel spacings.
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Control of FWM
• Design WDM systems with unequal channel spacings.

• This scheme is not practical since many WDM components

require equally spaced channels.

• Such a scheme is also spectrally inefficient.

• A practical solution offered by dispersion-management technique.

• Fibers with normal and anomalous GVD combined to form

a periodic dispersion map.

• GVD is locally high in all fiber sections but its average value

remains close to zero.

• By 1996, the use of dispersion management became common.

• All modern WDM systems make use of dispersion management.
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FWM: Good or Bad?
• FWM leads to interchannel crosstalk in WDM systems.

• It can be avoided through dispersion management.

On the other hand . . .

FWM can be used beneficially for

• Parametric amplification

• Optical phase conjugation

• Demultiplexing of OTDM channels

• Wavelength conversion of WDM channels

• Supercontinuum generation
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Stimulated Raman Scattering (SRS)
• Scattering of light from vibrating molecules.

• Scattered light shifted in frequency.

• Raman gain spectrum extends over 40 THz.

• Raman shift at Gain peak: ΩR = ωp−ωs ≈ 13 THz.



185/89

JJ
II
J
I

Back

Close

SRS Equations
• SRS governed by two coupled nonlinear equations:

dIs

dz
= gR(Ω)IpIs−αsIs.

dIp

dz
=−ωp

ωs
gR(Ω)IpIs−αpIp

• Assume pump is so intense that its depletion can be ignored.

• Using Ip(z) = I0 exp(−αpz), Is satisfies

dIs/dz = gRI0 exp(−αpz)Is−αsIs.

• For a fiber of length L the solution is

Is(L) = Is(0)exp(gRI0Leff−αsL).

• Effective fiber length Leff = (1− e−αL)/α .
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Spontaneous Raman Scattering
• SRS builds up from spontaneous Raman scattering occurring all

along the fiber.

• Equivalent to injecting one photon per mode at the input of fiber.

• Stokes power results from amplification of this photon over the

entire bandwidth of Raman gain:

Ps(L) =
∫

∞

−∞

h̄ω exp[gR(ωp−ω)I0Leff−αsL]dω.

• Using the method of steepest descent we obtain

Ps(L) = Peff
s0 exp[gR(ΩR)I0Leff−αsL],

• Effective input power at z = 0 is given by

Peff
s0 = h̄ωs

(
2π

I0Leff

)1/2(
∂ 2gR

∂ω2

)−1/2

ω=ωs

.
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Raman Threshold
• Raman threshold: input pump power at which Stokes power equals

pump power at the fiber output: Ps(L) = Pp(L)≡ P0 exp(−αpL).

• Assuming αs ≈ αp, threshold condition becomes

Peff
s0 exp(gRP0Leff/Aeff) = P0.

• Assuming a Lorentzian shape for Raman gain spectrum, threshold

power can be estimated from

gRPthLeff

Aeff
≈ 16.

• Leff ≈ 1/α for long fiber lengths.

• Using gR ≈ 6×10−14 m/W, Pth is about 500 mW near 1.55 µm.

• SRS is not of much concern for single-channel systems.
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Raman Threshold
• Situation is quite different for WDM systems.

• Transmission fiber acts as a distributed Raman amplifier.

• Each channel amplified by all channels with a shorter wavelength as

long as their wavelength difference is within Raman-gain bandwidth.

• Shortest-wavelength channel is depleted most as it can pump all

other channels simultaneously.

• Such an energy transfer is detrimental because it depends on bit

patterns of channels.

• It occurs only when 1 bits are present in both channels

simultaneously and leads to power fluctuations.
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Brillouin Scattering
• Scattering of light from self-induced acoustic waves.

• Energy and momentum conservation laws require

ΩB = ωp−ωs and kA = kp−ks.

• Brillouin shift: ΩB = |kA|vA = 2vA|kp|sin(θ/2).

• Only possibility θ = π for single-mode fibers

(backward propagating Stokes wave).

• Using kp = 2π n̄/λp, νB = ΩB/2π = 2n̄vA/λp.

• With vA = 5.96 km/s and n̄ = 1.45, νB ≈ 11 GHz near 1.55 µm.

• Stokes wave grows from noise.

• Becomes efficient at relatively low pump powers.
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Stimulated Brillouin Scattering
• Governed by two coupled equations:

dIp

dz
=−gBIpIs−αpIp, −dIs

dz
= +gBIpIs−αsIs.

• Brillouin gain has a narrow Lorentzian spectrum:

gB(ν) =
gB(νB)

1+4(ν−νB)2/(∆νB)2 .

• Phonon lifetime TB < 10 ns results in gain bandwidth >30 MHz.

• Peak Brillouin gain ≈ 5×10−11 m/W.

• Compared with Raman gain, peak gain larger by a factor of 1000

but its bandwidth is smaller by a factor of 100,000.

• SBS is the most dominant nonlinear process in silica fibers.
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Growth of Stokes Wave
• Assume pump is so intense that its depletion can be ignored.

• Using solution for the pump beam, we obtain

dIs/dz =−gR(P0/Aeff)exp(−αpz)Is +αsIs.

• Solution for a fiber of length L is given by

Is(0) = Is(L)exp(gBP0Leff/Aeff−αL),

• Stokes wave grows exponentially in the backward direction from an

initial seed injected at the fiber output end at z = L.

• Threshold power Pth for SBS is found from

gB(νB)PthLeff/Aeff ≈ 21.

• For long fibers Pth for the SBS onset can be as low as 1 mW.
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Growth of Stokes Wave

• Transmitted (solid circles) and reflected (empty circles) powers as

a function of input power for a 13-km-long fiber.

• Brillouin threshold is reached at a power level of about 5 mW.

• Reflected power increases rapidly after threshold and consists of

mostly SBS-generated Stokes radiation.
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SBS Threshold
• Optical signal in lightwave systems is in the form of a bit stream

consisting of pulses whose width depend on the bit rate.

• Brillouin threshold higher for an optical bit stream.

• Calculation of Brillouin threshold quite involved because 1 and 0

bits do not follow a fixed pattern.

• Simple approach: Situation equivalent to that of a CW pump with

a wider spectrum and a reduced peak power.

• Brillouin threshold increases by about a factor of 2 irrespective of

the actual bit rate of the system.

• Channel powers limited to below 5 mW under typical conditions.
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Control of SBS
• Some applications require launch powers in excess of 10 mW.

• An example provided by shore-to-island fiber links designed to trans-

mit information without in-line amplifiers or repeaters.

• Threshold can be controlled by increasing either ∆νB (about 30 MHz)

or line width of the optical carrier (<10 MHz).

• Bandwidth of optical carrier can be increased by modulating

its phase at a frequency lower than the bit rate (typically,

∆νm < 1 GHz).

• Brillouin gain is reduced by a factor of (1+∆νm/∆νB).

• SBS threshold increases by the same factor.
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Control of SBS
• Brillouin-gain bandwidth ∆νB can be increased to more than

400 MHz by designing special fibers.

• Sinusoidal strain along the fiber length can be used for this

purpose.

• Strain changes Brillouin shift νB by a few percent in a periodic

manner.

• Strain can be applied during cabling of the fiber.

• Brillouin shift νB can also be changed by making core radius nonuni-

form along fiber length.

• Same effect can be realized by changing dopant concentration along

fiber length.
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Nonlinear Pulse Propagation
• Two analytic techniques can be used for solving the NLS equation

approximately (the Moment method and Variational method).

• They can be used provided one can assume that the pulse maintains

a specific shape inside the fiber link.

• Pulse parameters (amplitude, phase, width, and chirp) are allowed

to change continuously with z.

• This assumption holds reasonably well in several cases of

practical interest.

• A Gaussian pulse maintains its shape at low powers.

• Let us assume that the Gaussian shape remains approximately valid

when the nonlinear effects are relatively weak.
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Moment Method
• Treat the optical pulse like a particle whose energy E, RMS width

σ , and chirp C are defined as E =
∫

∞

−∞
|U |2dt,

σ
2 =

1
E

∫
∞

−∞

t2|U |2dt, C =
i
E

∫
∞

−∞

t
(

U∗∂U
∂ t

−U
∂U∗

∂ t

)
dt.

• Differentiate them with respect to z and use the NLS Equation

∂U
∂ z

+
iβ2

2
∂ 2U
∂ t2 = iγP0p(z)|U |2U.

• We find that dE/dz = 0 but σ 2 and C satisfy

dσ 2

dz
=

β2

E

∫
∞

−∞

t2Im
(

U∗∂ 2U
∂ t2

)
dt,

dC
dz

=
2β2

E

∫
∞

−∞

∣∣∣∣∂U
∂ t

∣∣∣∣2 dt +
γP0

E
p(z)

∫
∞

−∞

|U |4dt.
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Equations for Pulse Parameters
• For a chirped Gaussian pulse: U(z, t) = a exp[−1

2(1+ iC)(t/T )2].

• All four pulse parameters (a, C, T , and φ ) are functions of z.

• Peak amplitude a is related to energy as E =
√

πa2T .

• Width parameter T is related to the RMS width σ as T =
√

2σ .

• Width T and chirp C are found to change with z as

dT
dz

=
β2C
T

,

dC
dz

= (1+C2)
β2

T 2 + γP0
p(z)√

2
T0

T
.

• These two equations govern how the nonlinear effects modify the

width and chirp of a Gaussian pulse.
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Physical Interpretation
• Considerable physical insight gained from moment equations.

• SPM does not affect the pulse width directly as γ appears only in

the chirp equation.

• Two terms on the right side of chirp equation originate from the

dispersive and nonlinear effects, respectively.

• They have the same sign for normal GVD (β2 > 0).

• Since SPM-induced chirp then adds to GVD-induced chirp, we ex-

pect SPM to increase the rate of pulse broadening.

• When GVD is anomalous (β2 < 0), two terms have opposite signs,

and pulse broadening should be reduced.

• Width equation leads to T 2(z) = T 2
0 +2

∫ z
0 β2(z)C(z)dz.
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Variational Method
• Variational method uses the Lagrangian L =

∫
∞

−∞
Ld(q,q∗)dt.

• Lagrangian density Ld satisfies the Euler–Lagrange equation

∂

∂ t

(
∂Ld

∂qt

)
+

∂

∂ z

(
∂Ld

∂qz

)
− ∂Ld

∂q
= 0,

• qt and qz are derivatives of q with respect to t and z, respectively.

• NLS equation can be derived from the Euler–Lagrange equation

with q = U∗ when

Ld =
i
2

(
U∗∂U

∂ z
−U

∂U∗

∂ z

)
+

β2

2

∣∣∣∣∂U
∂ t

∣∣∣∣2 + 1
2γP0p(z)|U |4.

• If pulse shape is known in advance, integration can be performed

analytically to obtain L in terms of pulse parameters.
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Lagrangian for a Gaussian Pulse
• In the case of a chirped Gaussian pulse

U(z, t) = aexp[−1
2(1+ iC)(t/T )2 + iφ ].

• Lagrangian L is found to be

L =
β2E
4T 2 (1+C2)+

γ p(z)E2
√

8πT
+

E
4

(
dC
dz
− 2C

T
dT
dz

)
−E

dφ

dz
.

• E =
√

πa2T is the pulse energy.

• Final step: Minimize
∫

L (z)dz with respect to four pulse

parameters using the Euler–Lagrange equation

d
dz

(
∂L

∂qz

)
− ∂L

∂q
= 0.

• q represents one of the pulse parameters (qz = dq/dz).
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Variational Equations
• If we use q = φ , we obtain dE/dz = 0.

• Using q = E, we obtain the phase equation:

dφ

dz
=

β2

2T 2 +
5γ p(z)E
4
√

2πT
.

• Using q = C and q = T , we obtain the width and chirp equations:

dT
dz

=
β2C
T

,

dC
dz

= (1+C2)
β2

T 2 + γP0
p(z)√

2
T0

T
.

• These equations are identical to those obtained earlier with the

moment method.
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Specific Analytic Solutions
• Apply the moment equations to the linear case (γ = 0):

dT
dz

=
β2C
T

,
dC
dz

= (1+C2)
β2

T 2 .

• From dT/dC it follows that (1+C2)/T 2 = (1+C2
0)/T 2

0 .

• General solution is found to be (ξ = z/LD)

T 2(ξ ) = T 2
0 [1+2sC0ξ +(1+C2

0)ξ
2], C(z) = C0 + s(1+C2

0)ξ .

• These results agree with those obtained in Section 3.3.

• Assume nonlinear effects are weak and write as C = CL +C′:

dC′

dz
=

γP0√
2

T0

T
, C′(z)≈ γP0T0√

2β2CL
(T −T0).

• Pulse width is found from T 2(z) = T 2
0 +2β2

∫ z
0 C(z)dz.
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Numerical Solution
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• Numerical Solution for several values of µ = γP0LD.

• The linear case corresponds to µ = 0.

• Gaussian input pulses are assumed to be unchirped.

• As nonlinear effects increase, pulse broadens less and less and may

even compress.
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SPM-Induced Pulse Compression
• Pulse compression can be understood from the chirp equation:

dC
dz

= (1+C2)
β2

T 2 + γP0
p(z)√

2
T0

T
.

• In the case of normal GVD, two terms have the same sign.

• Pulse broadens even faster than that expected without SPM.

• Two terms have opposite signs when β2 < 0.

• SPM cancels dispersion-induced chirp and reduces pulse broadening.

• For a certain value of µ = γP0LD, two terms nearly cancel, and

pulse width does not change (soliton formation).

• For larger values of µ , pulse would compress, at least initially.
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Soliton Formation
• Use the moment method with U(z, t)= asech(t/T )exp[−iC(t/T )2].

• Width equation does not change: dT
dz = β2C

T .

• Chirp equation is modified slightly:

dC
dz

=
(

C2 +
4

π2

)
β2

T 2 + γP0p(z)
4

π2

T0

T
.

• Introducing τ = T/T0, p(z) = 1, and LD = T 2
0 /|β2|:

LD
dC
dz

=
(

C2 +
4

π2

)
s

τ2 + γP0LD
4

π2τ
.

• If initially C = 0 and τ = 1, dC/dz remains 0 when s =−1 and peak

power of the pulse satisfies γP0LD = LD/LNL = 1. Pulse maintains

its width in spite of SPM and GVD (a soliton).


