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Introduction

• Internet traffic has been growing exponentially every year.

• System capacity must follow this growth to avoid a capacity crunch.

• The use of WDM, PSK, and PDM helped us during the last decade.

• Space-division multiplexing (SDM) may help us during this decade.

(Essiambre and Tkach, IEEE Proc., May 2012)
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System Design Issues

• Linear coupling among fiber modes would invariably lead to channel crosstalk.

• Nonlinear coupling among fiber modes will also occur through cross-phase

modulation (XPM) an four-wave mixing (FWM).

• How does the linear coupling affect nonlinear penalties in a specific channel

of a SDM system?

• If polarization-division-multiplexing (PDM) is employed in addition to WDM

and SDM, what is the impact of birefringence fluctuations?

• To answer such questions, it is necessary to develop a comprehensive nu-

merical model for SDM systems.

• In this talk, I present our theoretical model and recent numerical results.

Mumtaz et al., PTL 24, 1574-1576 (2012); JLT 31, 398-406 (2013).



Theoretical Framework
• We start with the wave equation in the frequency domain

∇
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• Expand the optical field in terms of fiber modes
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Nonlinear Propagation Equations

• The time-domain equation for the pth mode satisfies
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• Linear and nonlinear couplings among spatial modes governed by

qmp ∝ k0

∫∫
∆n(x,y,z)F∗pFm dxdy, flmnp =

∫∫
F∗l FmFnF∗p dxdy.

• Fiber modes are normalized such that∫∫
F∗p(x,y)Fm(x,y)dxdy = δmp.



Linear Coupling in Multimode Fibers

• Coupling between modes does not occur in a perfect multimode fiber.

• In practice, spatial modes experience random coupling owing to fiber

imperfections.

• Coupling is governed by small fluctuations in the refractive index

[∆n(x,y,z)∼ 10−4].

This case will be discussed later

in this talk.



Linear Coupling in Multicore Fibers

• Coupling between two cores depends on the spacing between them.

• Coupling coefficient qmp is a measure of this coupling.

• Coupling length Lc = π/(2q) can vary from <1 cm to >1000 km depending

on how close the two cores are.



Nonlinear Coupling in Multicore Fibers

• Governed by the mode-overlap factor flmnp ∝
∫∫

F∗l FmFnF∗p dxdy.

• Self-phase modulation (SPM) occurs through fpppp = 1.

• Cross-phase modulation (XPM) governed by terms like fppmm.

• Other Combinations represent FWM-like effects.

XPM and FWM terms are neg-

ligible in multicore fibers whose

cores of radius a are separated

by d > 4a.



Numerical Results for Multicore Fibers

• We considered multicore fibers with up to 19 cores.

• Two 28.5-Gbaud PDM-QPSK symbol streams launched into each core.

• Propagation over 1000 km by the split-step Fourier method.

• Least square equalizer (LSE) is based on a training sequence.

• Actual bit error rate (BER) calculated using 220 bits during simulations.
Simulation details

 Two 28 Gbaud PDM-QPSK symbol streams launched into each core.

 Propagation through fiber by the split-step Fourier method.

 Least square equalizer (LSE): non-adaptive, based on training 
sequence.

 Actual bit error rate (BER) calculated using 20,000 bits during 
simulation.
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Three-core Fibers
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Stronger linear coupling (shorter Lc) improves the BER at a given OSNR.



OSNR penalties
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OSNR penalties calculated after 1000 km using Lc = 100 m.



SPM-Induced Noise

Nonlinear noise

NL noise after 100 km for and input power of 12 dBm

1-core 3-core
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• Nonlinear noise after 100 km for an input power of 12 dBm.

• Degradations induced by SPM are reduced in a 3-core fiber.



Multicore Fibers
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Simulated BER curves for fibers containing up to 7 cores.



Multicore Fibers (cont.)
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Birefringence Fluctuations

• Birefringence fluctuations must be included in realistic simulations.

• Their inclusion makes all mode-propagation equations stochastic.

• Numerical simulations become time-consuming as one must solve these

equations many times before averaging.

• In the case of single-mode fibers, Manakov equations are found to be quite

useful for predicting the average behavior.

• We have derived new Manakov equations for multimode fibers assuming

strong polarization coupling but no coupling among spatial modes.

• Fiber divided into many sections with randomly oriented phase plates [Mum-

taz et al., JLT 31, 398 (2013)].



Manakov Equations for Multimode Fibers

• After averaging over birefringence fluctuations, we obtain
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• Modal group-velocity mismatch included through dp.

• The SPM term contains the usual factor of 8/9 as in single-mode fibers.

• The factor of 2 in the XPM terms is reduced to 4/3.

• This reduction indicates that XPM penalties are reduced in multimode

fibers in the presence of birefringence fluctuations.

• The contribution of all FWM terms averages out to zero.

• Numerical simulation support these conclusions.



Numerical Results for Multimode Fibers

• We consider both step-index and graded-index multimode fibers.

• Core diameter 12 µm, ∆ = 0.01, V = 5 at 1550 nm.



Numerical Results for Multimode Fibers

• PDM-QPSK symbol streams launched into each mode (bit rate 114 G/s).

• Propagation over 1000 km by the split-step Fourier method.

• Solid curves, Manakov; Squares, full model; circles, no birefringence.
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Manakov Equations in Strong-Coupling Regime

• Coupling between spatial modes can occur in practice.

• In general, coupling strength varies for various mode pairs and is strongest

for nearly degenerate modes.

• Strong-coupling regime (all modes strongly coupled) is easy to deal with

[(Mecozzi et al., Opt. Exp. 20, 11673 (2012)].

• Manakov equation in this regime takes the form
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• Here ¯A is a column vector with 2M elements (M modes, 2 polarizations).



Numerical Results
• PDM-QPSK symbol streams launched into each mode (bit rate 114 Gb/s).

• Propagation over 1000 km by the split-step Fourier method.

• Coupling regimes compared in the case of a graded index fiber.



Mode Coupling in Multimode Fibers

• Neither of the two preceding coupling models is realistic.

• Spatial modes of an ideal fiber are not coupled. In this case, two orthogo-

nally polarized components of each mode are coupled through birefringence

fluctuations (no coupling among spatial modes).

• In practice, random fluctuations in the refractive index of a multimode fibre

result in coupling of all spatial modes.

• However, not all modes are strongly coupled since coupling also depends

on how close the propagation constants of the two modes are.

• A more general coupling model is needed that takes into account such

mode-dependent coupling.



General Mode-Coupling Model

• We are developing a model that takes into account of the fact that the

strength of mode coupling varies from one mode pair to another.

• To account for random refractive index fluctuations, we assume ε(x,y,z) =
n2(x,y)+∆ε(x,y,z), where ∆ε(x,y,z) is a random variable.

• ∆ε(x,y,z) vanishes on average at every point in the transverse plane such

that

〈∆ε(x,y,z)∆ε(x,y,z′)〉= σ
2
ε exp(−|z− z′|/ld).



Coupling and Transfer Matrices
• Fluctuations ∆ε(x,y,z) couple all spatial modes of a multimode fiber through

a random coupling matrix.

• Average value of all elements of this martix is zero but the variance depends

on the standard deviation of index fluctuations.

• A transfer matrix can be used to propagate all modes simultaneously along

the fiber.

• It turn out that the strength of coupling between two modes is governed

by the ratio qmn = κmn/|βm−βn|.

• Here κmn is the root-mean square value of the coupling coefficient and βm

is the propagation constant of the mth mode.

• As expected, modes with smaller values of |βm−βn| exhibit stronger cou-

pling.



Concluding Remarks

• The use of SDM through multimode or multicore fibers is promising for

future telecom systems.

• We have studied the impact of mode coupling on nonlinear penalties in

such systems.

• In a multicore fiber, nonlinear penalties are reduced when coupling is en-

hanced by bringing cores together.

• Random birefringence must be included in all cases.

• Two new Manakov equations derived in the weak and strong coupling

regimes by averaging over random birefringence.

• A new coupling model is under development. It will allow us to study the

transition from no coupling to strong coupling.


