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Introduction
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e Nonlinear optical effects have been studied since 1962 and have
found applications in many branches of optics.

T

e Nonlinear interaction length is limited in bulk materials because of
tight focusing and diffraction of optical beams:

Ldiff:kW(z), (k: 271'//1)

e Much longer interaction lengths become feasible in optical wave-
guides, which confine light through total internal reflection.

e Optical fibers allow interaction lengths > 1 km.
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Advantage of Waveguides
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e Efficiency of a nonlinear process in bulk media is governed by

Py 7'L'W(2) Py
IpLi, = = —.
( 0 t)bulk ( 7'CW(2)) 2 A

e In a waveguide, spot size wy remains constant across its length L.

e In this situation L, is limited by the waveguide loss «.

—9Z e obtain

e Using I(z) = [ye
B

—.
TwioL

L
(IOLint)wg 2/0 I()e_ade%

e Nonlinear efficiency in a waveguide can be improved by

(IOLint)wg _ )L
(IoLin)bux ~ TW30L

~ 10°.
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Planar and Cylindrical Waveguides
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e Optical waveguides employ total internal reflection to confine light.

e The refractive index is larger inside a central region.
e Two main classes: Planar and cylindrical waveguides.

e In the planar case, waveguides use materials such as silicon, silicon
nitride, and chalcogenide glass.
e In the cylindrical case, optical fibers are made of silica glass and

used extensively for telecommunications.
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Major Nonlinear Effects

e Self-Phase Modulation (SPM)
e Cross-Phase Modulation (XPM)
e Four-Wave Mixing (FWM)

e Stimulated Brillouin Scattering (SBS)

e Stimulated Raman Scattering (SRS)

Origin of Nonlinear Effects
e Third-order nonlinear susceptibility ¥®) dominates when ¥?) = 0.
e lts real part leads to four-photon processes (SPM, XPM, and FWM).

e Its imaginary is responsible for two-photon absorption (TPA).
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Third-order Nonlinear Susceptibility

e The tensorial nature of ¥® makes theory quite complicated.

e |t can be simplified considerably when a single optical beam excites
the fundamental mode of an optical waveguide.

e Only the component xl(?)u(—a);a),—a), ®) is relevant in this case.

e Its real and imaginary parts provide the Kerr coefficient n, and the

TPA coefficient Br as

3 3
2751(1)11(_0’; ®,—0,0).

ic
0)+—PBr(®) =——
nz( )+2a)ﬁT( ) 4eocn0

e A review paper on silicon waveguides provides more details:

Q. Lin, O. Painter, G. P. Agrawal, Opt. Express 15, 16604 (2007).
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Nonlinear Parameters

e Refractive index depends on intensity as (Kerr effect):
n(w,I) =n(w)+n(1+ir)l(t).
e Material parameter n, = 3 x 107'® m? /W is larger for silicon by a
factor of 100 compared with silica fibers.

e Dimensionless parameter r = Br/(2kon,) is related to two-photon

absorption (TPA).
e For silicon B7 =5 x 1072 m/W at wavelengths near 1550 nm.
e Dimensionless parameter r = 0.1 for silicon near 1550 nm.
e Negligible TPA occurs in silica glasses (r ~ 0).
e TPA is not negligible for chalcogenide glasses (r = 0.2).
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Pulse Propagation in Waveguides

e It is governed by the Nonlinear Schrodinger Equation

0A iﬁ282A . ) (04 ﬁT
5 T2 gp A=A

Al

e Dispersive effects within the waveguide included through S3,.
e Nonlinear effects are included through v =2mn;/(Ade).

e |f we ignore the dispersive effects, solution is A = V/Pe'? with

Py(t)e™* %

B 1+bTP0(t), ¢(z,t) zln[l_l_bTPO(t)]EZeff-

P(z,t)

e Here zer = (1 —e *)/a is a reduced length because of single-
photon losses.

e Two-photon effects are governed by by = Brzer/Aet.
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Self-Phase Modulation

e Optical pulse modifies its own phase as it travels inside a waveguide.
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e Self-phase modulation (SPM) depends on the shape of input pulses.

e Since @(z,t) varies with time, it leads to chirping of input pulses
(frequency varying in time).
e Chirping manifests as spectral broadening in the frequency domain.

e Spectral broadening depends on the shape and the peak power of
input pulses.

e The extent of broadening is reduced by two-photon absorption in
waveguides made of materials with large B7 values.

e Although not immediately obvious, SPM is a four-photon nonlinear
process since spectral broadening requires creation of new photons
of different frequencies.
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SPM-Induced Spectral Broadening
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e Gaussian input pulses: Py(t) = Pyexp[—(t/Tpy)?] with YR L = 50.
e Dashed green curves show the spectrum of input pulses.

o Left: A silica fiber with negligible TPA (Br = 0).

e Right: A silicon waveguide with appreciable TPA (b7 Py = 2).
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SPM as a Four-Photon Process

e Convert the NLS equation to frequency domain by Fourier
transforming it.

e The Fourier transform B(z, ®) of A(z,t) satisfies

aa_f i %(a—iﬁzwz)BZi(Y-FiﬁT/z)

X //_O:OB*(a) — ; — @)B(w)B(w) dwd,.

e Dispersive effects are included in this equation through f3,.

e This equation shows how the interaction of three photons of differ-
ent frequencies creates a fourth photon (intrapulse FWM).

e Two 'pump photons’ use their energy create two photons of different
frequencies such that both energy and momentum are conserved.
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Four-Wave Mixing (FWM)
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e FWM is a nonlinear process involving four photons.

e FWM requires conservation of energy and momentum:
0] + Wy = W3 + Wy, B1+ P2 = B3+ Pa.

e Degenerate FWM: Single pump (0, = a»).
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SPM as Intrapulse FWM
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e SPM-induced spectral broadening along the length of a silica fiber.

e Gaussian input pulse: Py(t) = Pyexp[—(t/Tp)?] with (yPy) "' =1 m.
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Optical Solitons
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e Combination of SPM and anomalous dispersion produces solitons.
e Dispersive and nonlinear effects balanced when N? = Lp/Ln. = 1.
e Nonlinear length Lxy, = 1/(yP,); Dispersion length Lp =T7/|B,|.

e Fundamental solitons (N = 1) preserve their “sech” shape as they
propagate if losses (both linear and nonlinear) are negligible.

e Higher-order solitons (N > 1) evolve in a periodic fashion.

e Any perturbation of such solitons though higher-order dispersive and
nonlinear effects breaks them into N fundamental solitons (called
soliton fission).

e Soliton fission leads to extreme spectral broadening through a com-
bination of several multi-photon processes.
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Higher-Order Solitons
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Fission of a Third-Order Soliton
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Supercontinuum Formation
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Fission of a fourth-order soliton in the presence of third-order disper-
sion and intrapulse Raman scattering.
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Multiphoton Processes Involved
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e Initial spectral broadening through intrapulse FWM (SPM)

e Soliton fission induced by third-order dispersion creates multiple
fundamental solitons of different widths and peak powers.

e It also forces solitons to emit radiation at blue-shifted frequencies.

e Spectrum of each soliton shifts by different ammounts toward the
red side through intrapulse Raman scattering.

e Each soliton also slows down as its spectrum shifts toward the red.

e FWM and cross-phase modulation among different spectral bands
create additional spectral contents.

e The net result is the formation of a supercontinuum for N > 6.
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Supercontinuum Generation

(a) Temporal evolution (b) Spectral evolution
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e Fission of a N = 8 soliton inside a silica fiber.
e Multiple solitons and dispersive waves produce new frequencies.

e Supercontinuum formed after one dispersion length.
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Concluding Remarks
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e Optical waveguides enhance nonlinear effects by confining light to
narrow cores and maintaining high intensities over long distances.

e Many multiphoton processes can occur under such conditions at
relatively modest power levels.

e The use of short pulses further enhances peak intensities and allows
soliton formation in the anomalous dispersion region.

e Self-phase modulation can be viewed as intrapulse FWM.

e Intrapulse Raman scattering transfers energy from blue components
of a pulse to the red ones (larger red shifts for shorter solitons).

e New kinds of fibers have been developed for enhancing nonlinear
effects (photonic crystal and other microstructured fibers).

e New applications in fields such as biomedical imaging.




