

Self-Phase Modulation in Optical Fiber Communications: Good or Bad?

Govind P. Agrawal

Institute of Optics University of Rochester Rochester, NY 14627

©2007 G. P. Agrawal

Outline Historical Introduction Self-Phase Modulation and its Applications Modulation Instability and Optical Solitons Optical Switching using Fiber Interferometers Cross-Phase Modulation and its Applications Impact on Optical Communication Systems Concluding Remarks

Historical Introduction

- Celebrating 40th anniversary of Self-Phase Modulation (SPM):
 F. Demartini et al., Phys. Rev. 164, 312 (1967);
 F. Shimizu, PRL 19, 1097 (1967).
- Pulse compression though SPM was suggested by 1969:
 R. A. Fisher and P. L. Kelley, APL 24, 140 (1969)
- First observation of optical Kerr effect inside optical fibers: R. H. Stolen and A. Ashkin, APL 22, 294 (1973).
- SPM-induced spectral broadening in optical fibers:
 R. H. Stolen and C. Lin Phys. Rev. A 17, 1448 (1978).
- Prediction and observation of solitons in optical fibers: A. Hasegawa and F. Tappert, APL 23, 142 (1973); Mollenauer, Stolen, and Gordon, PRL 45, 1095 (1980).

Self-Phase Modulation

Refractive index depends on optical intensity as (Kerr effect)

 $n(\boldsymbol{\omega}, I) = n_0(\boldsymbol{\omega}) + n_2 I(t).$

Intensity dependence leads to nonlinear phase shift

 $\phi_{\rm NL}(t) = (2\pi/\lambda)n_2 I(t)L.$

An optical field modifies its own phase (SPM).

Phase shift varies with time for pulses.

Each optical pulse becomes chirped.

 As a pulse propagates along the fiber, its spectrum changes because of SPM.

Nonlinear Phase Shift

• Pulse propagation governed by Nonlinear Schrödinger Equation

 $i\frac{\partial A}{\partial z} - \frac{\beta_2}{2}\frac{\partial^2 A}{\partial t^2} + \gamma |A|^2 A = 0.$

Dispersive effects within the fiber included through β₂.
Nonlinear effects included through γ = 2πn₂/(λA_{eff}).
If we ignore dispersive effects, solution can be written as

A(L,t) = A(0,t) exp(iφ_{NL}), where φ_{NL}(t) = γL|A(0,t)|².

Nonlinear phase shift depends on input pulse shape.
Maximum Phase shift: \$\phi_{max} = \gamma P_0 L = L/L_{NL}\$.

• Nonlinear length: $L_{\rm NL} = (\gamma P_0)^{-1}$.

SPM-Induced Chirp

• Super-Gaussian pulses: $P(t) = P_0 \exp[-(t/T)^{2m}]$.

- Gaussian pulses correspond to the choice m = 1.
- Chirp is related to the phase derivative $d\phi/dt$.

• SPM creates new frequencies and leads to spectral broadening.

SPM-Induced Spectral Broadening

- First observed inside fibers by Stolen and Lin (1978).
- 90-ps pulses transmitted through a 100-m-long fiber.
- Spectra are labelled using $\phi_{\text{max}} = \gamma P_0 L.$
- Number M of spectral peaks: $\phi_{\max} = (M \frac{1}{2})\pi$.

Output spectrum depends on shape and chirp of input pulses.
Even spectral compression can occur for suitably chirped pulses.

SPM-Induced Spectral Narrowing

Chirped Gaussian pulses with A(0,t) = A₀ exp[-¹/₂(1+iC)(t/T₀)²].
If C < 0 initially, SPM produces spectral narrowing.

SPM: Good or Bad?

- SPM-induced spectral broadening can degrade performance of a lightwave system.
- Modulation instability often enhances system noise.

On the positive side ...

- Modulation instability can be used to produce ultrashort pulses at high repetition rates.
- SPM often used for fast optical switching (NOLM or MZI).
- Formation of standard and dispersion-managed optical solitons.
- Useful for all-optical regeneration of WDM channels.
- Other applications (pulse compression, chirped-pulse amplification, passive mode-locking, etc.)

Modulation Instability

Nonlinear Schrödinger Equation

 $i\frac{\partial A}{\partial z} - \frac{\beta_2}{2}\frac{\partial^2 A}{\partial t^2} + \gamma |A|^2 A = 0.$

• CW solution unstable for anomalous dispersion $(\beta_2 < 0)$.

• Useful for producing ultrashort pulse trains at tunable repetition rates [Tai et al., PRL 56, 135 (1986); APL 49, 236 (1986)].

10/100

Modulation Instability

- A CW beam can be converted into a pulse train.
- Two CW beams at slightly different wavelengths can initiate modulation instability and allow tuning of pulse repetition rate.
- Repetition rate is governed by their wavelength difference.
- Repetition rates ~100 GHz realized by 1993 using DFB lasers (Chernikov et al., APL 63, 293, 1993).

Optical Solitons

- Combination of SPM and anomalous GVD produces solitons.
- Solitons preserve their shape in spite of the dispersive and nonlinear effects occurring inside fibers.
- Useful for optical communications systems.

• Dispersive and nonlinear effects balanced when $L_{\rm NL} = L_D$.

• Nonlinear length $L_{\rm NL} = 1/(\gamma P_0)$; Dispersion length $L_D = T_0^2/|\beta_2|$.

• Two lengths become equal if peak power and width of a pulse satisfy $P_0T_0^2 = |\beta_2|/\gamma$.

Back Close

Fundamental and Higher-Order Solitons • NLS equation: $i\frac{\partial A}{\partial z} - \frac{\beta_2}{2}\frac{\partial^2 A}{\partial t^2} + \gamma |A|^2 A = 0.$ • Solution depends on a single parameter: $N^2 = \frac{\gamma P_0 T_0^2}{|\beta_2|}.$ • Fundamental (N = 1) solitons preserve shape:

 $A(z,t) = \sqrt{P_0} \operatorname{sech}(t/T_0) \exp(iz/2L_D).$

• Higher-order solitons evolve in a periodic fashion.

13/100

Optical Switching

- A Mach-Zehnder interferometer (MZI) made using two 3-dB couplers exhibits SPM-induced optical switching.
- In each arm, optical field accumulates linear and nonlinear phase shifts.
- Transmission through the bar port of MZI:

 $T = \sin^2(\phi_L + \phi_{\rm NL});$ $\phi_{\rm NL} = (\gamma P_0/4)(L_1 - L_2).$

• T changes with input power P_0 in a nonlinear fashion.

14/100

UNIVERSITY OF ROCHESTER

Optical Switching (continued)

• Experimental demonstration around 1990 by several groups (Nayar et al., Opt. Lett. 16, 408, 1991).

- Switching requires long fibers and high peak powers.
- Required power is reduced for highly nonlinear fibers (large γ).

Nonlinear Optical-Loop Mirror

An example of the Sagnac interferometer.

• Transmission through the fiber loop:

 $T = 1 - 4f(1 - f)\cos^{2}[(f - \frac{1}{2})\gamma P_{0}L].$

f = fraction of power in the CCW direction.
T = 0 for a 3-dB coupler (loop acts as a perfect mirror)
Power-dependent transmission for f ≠ 0.5.

Close

16/100

UNIVERSITY OF ROCHESTER

NOLM Switching (continued)

 Experimental demonstration using ultrashort optical pulses (Islam et al., Opt. Lett. 16, 811, 1989).

• $T_0 = 0.3$ ps, $E_0 = 33$ pJ, f = 0.52, 100-m loop.

Cross-Phase Modulation

- Consider two optical fields propagating simultaneously.
- Nonlinear refractive index seen by one wave depends on the intensity of the other wave as

 $\Delta n_{\rm NL} = n_2 (|A_1|^2 + b|A_2|^2).$

• Total nonlinear phase shift in a fiber of length L: $\phi_{
m NL} = (2\pi L/\lambda)n_2[I_1(t) + bI_2(t)].$

 An optical beam modifies not only its own phase but also of other copropagating beams (XPM).

• XPM induces nonlinear coupling among overlapping optical pulses.

XPM-Induced Chirp

- Fiber dispersion affects the XPM considerably.
- Pulses belonging to different WDM channels travel at different speeds.
- XPM occurs only when pulses overlap.
- Asymmetric XPM-induced chirp and spectral broadening.

XPM: Good or Bad?

• XPM leads to interchannel crosstalk in WDM systems.

• It can produce amplitude and timing jitter.

On the other hand ... XPM can be used beneficially for

- Nonlinear Pulse Compression
- Passive mode locking
- Ultrafast optical switching
- Demultiplexing of OTDM channels

• Wavelength conversion of WDM channels

XPM-Induced Crosstalk

• A CW probe propagated with 10-Gb/s pump channel.

- Probe phase modulated through XPM.
- Dispersion converts phase modulation into amplitude modulation.
- Probe power after 130 (middle) and 320 km (top) exhibits large fluctuations (Hui et al., JLT, 1999).

XPM-Induced Mode Locking

• Different nonlinear phase shifts for the two polarization components: nonlinear polarization rotation.

 $\phi_x - \phi_y = (2\pi L/\lambda)n_2[(I_x + bI_y) - (I_y + bI_x)].$

Pulse center and wings develop different polarizations.
Polarizing isolator clips the wings and shortens the pulse.
Can produce ~100 fs pulses.

XPM-Induced Switching

A Mach–Zehnder or Sagnac interferometer can be used.

- Output switched to a different port using a control signal that shifts the phase through XPM.
- If control signal is in the form of a pulse train, a CW signal can be converted into a pulse train.
- Ultrafast switching time (<1 ps).

SPM-Based 2R Optical Regenerator

Rochette et al., IEEE J. Sel. Top. Quantum Electron. 12, 736 (2006).

- SPM inside a highly nonlinear fiber broadens channel spectrum.
- Optical filter selects a dominant spectral peak.
- Noise in "0 bit" slots is removed by the filter.
- Noise in "1 bit" slots is reduced considerably because of a step-like transfer function.

XPM-Based Wavelength Converter

Wang et al., IEEE J. Lightwave Technol. 23, 1105 (2005).
WDM channel at λ₂ requiring conversion acts as a pump.
A CW probe is launched at the desired wavelength λ₁.
Probe spectrum broadens because of pump-induced XPM.
An optical filter blocks pump and transfers data to probe.
Raman amplification improves the device performance.

XPM-Induced Demultiplexing

• XPM can be used to demultiplex Optical TDM channels.

• Control Clock is a pulse train at single-channel bit rate.

• Only pulses overlapping with the clock pulses are transmitted by the nonlinear optical loop mirror.

XPM-Induced Demultiplexing

Olsson and Blumenthal, IEEE Photon. Technol. Lett. 13, 875 (2001).

- Use of a Sagnac interferometer is not necessary.
- Configuration similar to the wavelength-conversion scheme.
- A pulse train at the single-channel bit rate acts as the pump.
- Only pulses overlapping with the pump pulses experience XPM and are transmitted by the optical filter.

Concluding Remarks

- SPM and XPM are feared by telecom system designers because they can affect system performance adversely.
- Fiber nonlinearities can be managed thorough proper system design.
- SPM and XPM are useful for many device and system applications: optical switching, soliton formation, wavelength conversion, all-optical regeneration, demultiplexing, etc.
- Photonic crystal and other microstructured fibers have been developed for enhancing the nonlinear effects.
- Non-silica fibers (chalcogenides, Bismuth oxide, etc.) are also useful for enhancing the nonlinear effects.
- SPM and XPM effects in such highly nonlinear fibers are likely to find new applications.

