A. Antikainen¹, B. Tai², L. Rishøj², S. Ramachandran², and G. P. Agrawal¹

¹ Institute of Optics, University of Rochester
 ² ECE Department, Boston University

Intermodal Raman Scattering of Ultrashort Pulses in Multimode Fibers

FTh4E.3 CLEO 2018

Introduction

Raman scattering is an inelastic scattering process where the scattered photon has a different frequency than the incident photon [1]

Energy is transferred to (Stokes) or from (Anti-Stokes) the medium in the form of lattice vibrations (phonons)

Manifests as a delayed third-order optical nonlinearity:

$$P(t) = \ldots + E(t) \int_0^\infty h_R(t') |E(t - t')|^2 dt'$$

[1] G. P. Agrawal, Nonlinear Fiber Optics, 5th ed. (Academic Press, 2012)

Introduction

The nonlinear response function h(t) depends on the material and determines the frequency of the scattered photons

Raman effects in single-mode fibers

Generation of a Stokes pulse [1]

[1] G. P. Agrawal, Nonlinear Fiber Optics, 5th ed. (Academic Press, 2012)

BOSTON UNIVERSITY

Raman effects in single-mode fibers

Soliton self-frequency shift [2]

[2] F. M. Mitschke and L. F. Mollenauer, Opt. Lett 11(10) pp. 659-661 (1986)

Raman effects in single-mode fibers

Stokes pulse generation suffers from differences in group velocities between the pump pulse and the Stokes pulse

Walkoff: ~ 10 ps²/km * 13.2 THz = 132 ps/m

For short pulses the Stokes pulse essentially becomes part of the original pulse and the result is seen as a red shift of the pulse spectrum

The red side of a short pulse acts as a seed: Stimulated Raman scattering

Nonlinearities in multimode fibers

Each mode can have the same effects as the fundamental mode of a single-mode fiber (self-phase modulation, four-wave mixing, modulation instability, solitons, ...)

In addition: Intermodal four-wave mixing [3] and soliton interactions [4]

Intermodal nonlinear effects are generally weaker due to smaller mode overlap [5]: $\int_{lmnp} \propto \int F_l F_m^* F_n F_p^* dA$

[3] J. Demas, P. Steinvurzel, B. Tai, L. Rishøj, Y. Chen, and S. Ramachandran, Optica 2(1) pp. 14-17 (2015)
[4] L. Rishøj, B. Tai, P. Kristensen, and S. Ramachandran, paper Sth3K.2 in CLEO 2017
[5] F. Poletti and P. Horak, JOSA B 25(10), pp. 1645-1654 (2008)

Group velocity matching between modes

Different spatial modes have different group velocities → Two different wavelengths can propagate at the same speed if they are on different modes

ERSITY

RSITY

Power transfer from LP(0,19) to LP(0,18) happens over a short distance once it starts

Power transfer starting distance depends roughly quadratically On input pulse duration

Group velocity matching and power transfer

No appreciable power builds up on LP(1,18)

Group velocity matched for small frequency separation

LP(1,18) is antisymmetric → Nonlinear overlap factors are small or identically zero

UNIVERSITY of

Group velocity matching and power transfer

Power transfer happens when the initial pulse has red shifted to satisfy group velocity matching for a frequency separation near the Raman gain peak

Spectral FWHM > 3 THz

Conclusions

Intermodal Raman scattering transfers close to 100 % of the total power to a lower-order spatial mode

Power transfer between two modes requires group velocity matching and a non-negligible nonlinear overlap integral

The shorter the pulse, the shorter the distance during which power is transferred

A strong dispersive wave can be generated at the pump mode upon intermodal power transfer, further study needed

