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Chapter 1

Introduction

All natural everyday optical phenomena are essentially linear. The color of

the sky, rainbows, and re�ections from bodies of water can all be explained

in terms of linear systems where the output depends linearly on the input

[7]. This means that the propagation, re�ection, refraction, di�raction, and

scattering of light are not dependent on the intensity of the light. The reason

for this is that light in our daily lives - including sunlight - is too weak to

shown signs of nonlinear behavior. The optical materials themselves, glasses,

air, water, metals, and even vacuum, are all inherently nonlinear [8]. The ob-

servation of optical nonlinearities requires such intense light that they could

not be studied experimentally before the advent of the laser [9].

A de�ning characteristic of a linear time-invariant system H is that given

inputs f(t) and g(t) and scalar numbers (or, in general, tensors) a and b,

the output obeys H[af(t) + bg(t)] = aH[f(t)] + bH[g(t)]. In layman terms

this means that scaling the input scales the output accordingly and that any

summation can be performed either at the input end or at the output end. An
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important consequence of this is that given a sinusoidal input to the system,

the output will be a sinusoid at the same frequency as the input but with

possibly di�erent amplitude and phase. A key signature of a nonlinear system

is then the generation of new frequency components. As a simple example

of a system that behaves linearly for small amplitudes but nonlinearly for

large ones, consider the string of a guitar. Displace the string by pulling it,

release it, and it will start to oscillate around the equilibrium point making

a sound. Displace by twice as much and the oscillation amplitude is now

doubled. The sound is now louder but its frequency is still the same. Pull

the string hard enough and it will break and make a completely di�erent

sound. The frequencies you hear are now suddenly very di�erent.

The guitar thought experiment is an example of extreme nonlinear be-

havior but demonstrates how the frequency of the output will change as the

behavior of the system deviates from linear. Similar things can happen with

light when the light is intense enough. The response of any material to light

is mostly determined by how the electrons in the material react to the ex-

ternal electric �eld. If the �eld is strong enough, the displacement of the

electrons with respect to their nuclei will be a nonlinear function of eletric

�eld strength and new frequency components can be generated. In one of the

simplest manisfestations of this e�ect light can double its frequency. A com-

mon application of such frequency doubling is the green laser pointer where

the green light is generated by frequency doubling infrared light circulating

in the cavity.
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Frequency doubling of light requires that a part of the response of the ma-

terial to the external electric �eld is proportional to the square of the electric

�eld. This naturally means that the material has to be non-centrosymmetric

and only speci�c crystals are suitable for observing such second order optical

nonlinearity also known as the Pockels e�ect [8]. However, most typical ma-

terials are centrosymmetric, and the lowest order optical nonlinearities are

the third order e�ects. These include the Kerr e�ect where the material re-

sponse depends on the third power of the electric �eld and the Raman e�ect

that manifests as a delayed third order nonlinearity where the current ma-

terial polarization depends on the previous values of the cube of the electric

�eld.

The square of a sinusoid contains a term that oscillates twice as fast as

the original one, which is the mathematical origin of frequency doubling.

Namely, the relevant trigonometric identity is sin2(ωt) = [1 − cos(2ωt)]/2,

which also shows that a second order nonlinearity leads to the creation of

a static electric �eld as well as the second harmonic. The cube of a sinu-

soid, on the other hand, contains terms oscillating at three times the original

frequency, corresponding to third harmonic generation, as well as terms os-

cillating at the original frequency. It is the terms oscillating at the original

frequency that make the third order nonlinearity arguably more interesting

than that second order one, as it allows light to modify its own refractive

index. This leads to rich nonlinear dynamics allowing for phenomena such

as continuous spectral broadening and red shift of the whole spectrum of a
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pulse.

One of the extreme manifestations of many third order nonlinear optical

processes acting together is the supercontinuum, a wide spectrum generated

through the nonlinear broadening of the input spectrum. The discovery of

supercontinuum is credited to Alfano and Shapiro, who observed remarkable

spectral broadening in bulk glass and explained their �ndings in terms of

nonlinear optical processes in 1970 [10, 11]. It is noteworthy that Alfano

and Shapiro neither focused on the spectral broadening in their studies nor

coined the term supercontinuum. Similar extreme spectral broadening was

also observed in rare atomic gases by the same group [12] and later in silica

�bers by Lin and Stolen [13]. Since then, optical �bers of various kinds have

been the main platform for supercontinuum generation due to their ability

to keep light con�ned in a small area for long distances.

While the generation of a broad range of new frequencies through optical

nonlinearities is a remarkable discovery and signi�cant from the fundamental

science point of view, broadband light sources have been around for a long

time. Even the star at the heart of our Solar System provides broadband

radiation, so the broad spectrum is literally nothing new under the Sun.

However, no other broadband light source besides SC has the properties of

very high brightness, spectral stability, and most importantly spatial and

temporal coherence. Furthermore, SC are highly tunable since they can be

generated in a plethora of di�erent materials and using all kinds of lasers.

Because of the unique characteristics of SC, it also has a tremendous amount
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of applications. One of the �rst applications of supercontinuum was absorp-

tion and excitation spectroscopy, which was in turn used to study picosecond

and femtosecond processes in biology, chemistry, and solid-state physics [14].

Notable examples of the processes that were studied include photosynthe-

sis, dynamical steps of chemical reactions, and optical phonons, respectively.

Supercontinuum can also be used in optical communications in pulse com-

pression and wavelength-division multiplexing (WDM) [15, 16].

1996 saw the advent of the photonic crystal �ber (PCF) that revolution-

ized supercontinuum generation because it o�ered the possibility to tune

important �ber parameters [17]. The �rst report on SC generation in PCF

was given by Ranka et. al [18] and since then SC generation in PCF has been

studied extensively [19]. The introduction of the PCF allowed for even more

applications, and supercontinuum has subsequently found its way to high-

precision frequency metrology [20] and ultrahigh-resolution optical coherence

tomography [21], for example.

The e�ects of self-phase modulation (SPM), four-wave mixing (FWM)

and Stimulated Raman scattering (SRS) were well understood at the end

of the 1970's [22, 23, 24, 25, 26, 27, 28] and it was realized that the broad

and �at continuum could not be explained by these phenomena alone [29].

The missing piece of the puzzle was soliton self-frequeny shift (SSFS) [30].

Although solitons had been predicted in 1973 [31] and observed experimen-

tally in 1980 [32], no satisfactory explanation for the spectral broadening

was o�ered until the experimental observation of SSFS in 1985. SSFS plays
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a crucial role in expanding the SC spectrum towards longer wavelengths,

and controlling SSFS therefore o�ers a means to control the wavelength of

solitons as well as the low frequency part of the spectra of supercontinua.

Various nonlinear e�ects during supercontinuum generation generally af-

fect di�erent parts of the forming spectrum in di�erent ways. For example,

SSFS can be solely responsible for extending the spectrum to longer wave-

lengths and at the same time have virtually nothing to do with its blue side.

A SC spectrum therefore tends to be an amalgam of spectra belonging to var-

ious kinds of radiation such as dispersive waves and contiuously red shifting

solitons. The spectrum is thus generally noisy and lacks speci�c structure.

However, under certain conditions it is possible to induce a form of order into

the spectrum. When the signal is periodic in the time domain, the spectrum

will be in the form of discrete, spectrally equidistant spikes. Such structured

broad spectra are known as frequency combs and they have many uses.

By 1992 the dynamics of supercontinuum and frequency comb gener-

ation were understood to such an extent that an accurate mathematical

model could be developed and numerical simulations be used to study them

[33]. The model is known as the Generalized Nonlinear Schrödinger Equa-

tion (GNLSE) and since its introduction it has been tested thoroughly [19].

The aim of this study is to use numerical solutions to the GNLSE to �nd

ways to enhance and control optical nonlinearities in �bers. The focus is on

manipulating soliton formation, supercontinuum generation, and frequency

comb generation. The means to enhance nonlinearities include designing and
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exploring �bers with speci�c characteristics as well as seeding the nonlinear

e�ects through unconventional input �elds.
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Chapter 2

The Nature of Light

Based on an idea that dates back to at least the ancient Greeks, Sir Isaac

Newton eventually considered light to consist of small discrete particles he

called corpuscles [34]. According to Newton, corpuscles traveled in straight

lines with a �nite velocity and corpuscles representing di�erent colors of

light had di�erent sizes. Newton was, however, aware of the di�raction phe-

nomenon, which had been studied and named by the Italian priest Francesco

Maria Grimaldi in 1665, and in his earlier days he avoided speculations and

stayed ambivalent about the nature of light. Since light passing through an

aperture forms a cone, the propagation of light could not be satisfactorily ex-

plained with the corpuscular theory alone, which led Newton to incorporate

elements from the wave treatment of light by concluding that light corpus-

cles excited vibrations in an imaginary matter, aether [7]. Being unable to

explain the observed rectilinear propagation of light using wave theory only,

Newton became a supporter of the corpuscular theory in his later days.

Because of Newton's prestige, the corpuscular theory superseded the pre-
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vious idea put forward by René Descartes [35], Robert Hooke [36], and Chris-

tiaan Huygens [37], all of whom explained light via pressure or vibrations in

aether without resorting to speculations about corpuscles. Although Huy-

gens had succeeded in, for example, describing the birefringence property of

an Icelandic calcite crystal using the wave treatment of light, it wasn't until

the beginning 19th century that the mechanical corpuscle treatment of light

was fully abandoned.

The experiment that seemed to settle the matter about the wave nature

of light was Young's double slit experiment in 1801 [38]. The interference

pattern observed in Young's experiment can only be explained if light is

understood to be wavelike. The simplicity of the experiment and the impact

of the results makes one wonder why the experiment was not conducted

earlier in order to �nd out whether light had wavelike properties. One of

the reasons why the physics community had to wait until the 19th century

is that the experiment requires coherent light. Incoherent sunlight can easily

be made spatially coherent by letting it pass through a small aperture, as was

the case in the original experiment [7], but without knowing the requirement

of coherence a priori, the necessity of the pinhole is far from obvious.

Around 1814 Augustin Jean Fresnel began a revival of the wave theory

in France, unaware of Young's work and experiments. Fresnel incorporated

Huygens' wave despcription and the interference principle to calculate various

di�raction patterns arising from obstacles and apertures. Fresnel was also

able to explain, using wave formalism, the rectilinear propagation of light -
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an easily observed property of light that had been one of the main reasons

Newton had become an adherent of the corpuscular theory. [7]

Huygens had discovered polarization during his research on optical prop-

erties of calcite crystals. At �rst polarization was thought to be inherent to

crystalline media, but more than a century later Étienne Louis Malus dis-

covered that polarization was also present upon re�ection of light. This led

Fresnel and Dominique François Arago to conduct experiments to study the

e�ects of polarization on interference, but they were unable to explain their

results. This was because at that time light waves were thought to be longi-

tudinal like sound waves which were known to be longitudinal. After all, the

interference observed in Young's experiment bore remarkable similarity to

beats that are heard when two sound waves of slightly di�erent frequencies

interfere. Several years later Young was able to explain the �ndings by sug-

gesting that the aethereal vibrations might be transverse with polarization

being a manifestation of the direction of the vibrations. [7]

Although the �rst known terrestrial measurements regarding the speed

of light were performed by Armand Hippolyte Louis Fizeau in 1849 [7], the

question about the �niteness of the speed of light had been answered almost

two centuries earlier. In the 17th century the Dane Ole Christensen Rømer

observed the motion of Jupiter's nearest moon, Io, and in 1676 correctly

concluded that in order to explain his observations, the speed of light must

be �nite. Based on Rømer's observations, Huygens and Newton individually

estimated the diameter of Earth's orbit and calculated the speed of light to



CHAPTER 2. THE NATURE OF LIGHT 11

be 2.3 · 108 m/s and 2.4 · 108 m/s, respectively [39]. Fizeau's measurements

yielded the value 3.153 · 108 m/s for the speed of light. Although the results

di�ered a bit, the order of magnitude was the same astronomical 108 m/s

in all of them. The speed of light might as well have been in�nite, and

the �niteness of it was not necessarily important until the discoveries and

predictions of the Scottish physicist James Clerk Maxwell.

One of the �rst scientists to bring optics, circuit analysis, and studies of

electricity and magnetism together was Michael Faraday. Faraday noticed

that the polarization of a light beam could be altered by a strong magnetic

�eld applied to the medium in which the beam propagated [7]. Faraday's

experiments were a crucial step towards deeper understanding about the

connection between optics and electromagnetism. Leveraging Faraday's dis-

coveries and collecting other known results on electricity and magnetism as

well as producing some of his own, the physicist James Clerk Maxwell arrived

in a set of four famous equations that today bear his name. Using these four

equations Maxwell further derived two particularly important equations: one

for the electric �eld strength and one for the magnetic �ux density. Both of

the equations had the mathematical form of a wave equation. These equa-

tions had propagating solutions that correspond to propagating waves con-

sisting of oscillating magnetic and electric �elds. The equations thus allowed

for some sort of electromagnetic waves that may or may not exist in real life.

Should such waves exists, their velocity of propagation could trivially be seen

from the equations. This velocity matched the speed of light as determined
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experimentally by Fizeau, which encouraged Maxwell to conclude that light

is electromagnetic radiation.

2.1 Maxwell's Equations

In the nineteenth century Maxwell collected and published a set of universal

1 equations based on electromagnetic theory and circuit analysis. These

equations can be expressed using four vector equations:

∇ ·D = ρfree, (2.1)

∇ ·B = 0, (2.2)

∇× E = −∂B
∂t
, (2.3)

∇×H = Jf +
∂D

∂t
, (2.4)

where E and H are the electric and magnetic �eld strengths, respectively,

and D and B are the corresponding electric and magnetic �ux densities, ρfree

is the free charge density and Jf the free current density. Furthermore, the

�ux densities D and B are related to the �eld strengths E and H through
1Maxwell's equations fail to hold for some quantum mechanical situations such as

vacuum polarization with extremely strong �elds [40].



CHAPTER 2. THE NATURE OF LIGHT 13

the material relations

D = εE, (2.5)

B = µH, (2.6)

where ε is the permittivity and µ is the permeability of the medium. These

equations are also sometimes written as

D = ε0E + P, (2.7)

B = µ0H + M, (2.8)

where ε0 is the vacuum permittivity, µ0 is the vacuum permeability, P is the

induced polarization and M the induced magnetization. These forms of the

material equations are more general in the sense that the material responses

are not necessarily assumed to be instantaneous or linear. The general form

of the polarization P is

P = PL + PNL = ε0χ
(1) ∗ E + ε0

∞∑
n=2

χ(n) ∗ En, (2.9)

where PL is the linear polarization, PNL is the nonlinear polarization, χ(n) is

the nth order susceptibility, an (n+ 1)th order tensor, and ∗ denotes convolu-

tion [8]. Note that with the exception of the constant ε0, all the variables in

equation 2.9 are functions of t and r but the temporal and spatial dependen-

cies have been dropped to shorten the notation. The nth order convolution
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χ(n) ∗ En is a nested integral over n dummy variables such that for example

the third-order polarization is

ε0χ
(3) ∗E3 = ε0

∫∫
R3

∫
χ(3)(t− t1, t− t2, t− t3)

...E(r, t1)E(r, t2)E(r, t3)dt1dt2dt3.

(2.10)

Maxwell's equations are sometimes expressed in their integral form depending

on the application [41]. The four Maxwell's equations can be reduced to

two by using the concepts of di�erential form and exterior derivative and

treating the electric �eld as a 1-form and the magnetic �eld as a 2-form [42].

Quaternion formalism, which was, to some degree, also used by Maxwell

himself, allows one express all of the four equations with a single equation

without loss of information or generality [43].

Equation 2.1, is called Gauss's law for electric �elds. Since the divergence

operator measures the magnitude of a vector �eld's sources (or sinks), equa-

tion 2.1 describes how free electric charges act as the sources of an electric

�eld. Equation 2.2 is Gauss's law for magnetic �elds and it tells that for every

magnetic north pole there is a compensating south pole, which makes the di-

vergence of the magnetic �ux density vanish. No magnetic monopoles exist.

Equation 2.3 is Faraday's induction law, which Faraday derived by observing

that a time-varying magnetic �ux passing through a closed conducting loop

induces an electric current in the loop. However, since the creation of an elec-

tric �eld does not require a conducting loop, Faraday's law does not make any

reference to one, and a changing magnetic �ux density always has an asso-
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ciated electric �eld. Equation 2.4 is the Ampère-Maxwell law that describes

how time-varying electric �elds and electric currents give rise to magnetic

�elds. Maxwell's contribution to this was the derivative term known as the

displacement current, which accounts for the special cases where Ampère's

law fails to hold. [7, 41]

2.2 Quantum Theory of Light

Around year 1900 Jules Henri Poincaré and Albert Einstein were among the

prominent physicists who rejected aether. Poincaré had noticed that one

could only observe relative displacements and no experiment was able to

determine motion with respect to aether. Einstein did not believe that an

"absolutely stationary space" was even necessary for anything and he pos-

tulated that light always propagates in empty space with a de�nite velocity

c, which can be derived from the assumption that Maxwell's equations hold

in every inertial coordinate system. This led Einstein to develop the theory

of special relativity which showed that a deeper understanding of optics and

the behavior of light can profoundly a�ect the way we look at every branch of

physics. Assuming that Maxwell's equations are valid in every inertial coor-

dinate system and concluding that mass is a form of energy was a signi�cant

paradigm shift. [7, 41]

In October 1900 Max Planck introduced the foundations of what is nowa-

days known as quantum mechanics, quantum physics or quantum theory [7].
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Planck had developed the theory in order to avoid the so called ultraviolet

catastrophe by making a thoroughly radical assumption that electromagnetic

radiation was always emitted and absorbed in small packets, or quanta, of

energy [44]. At that time there was little reason to make such an assumption,

but accepting the quantum hypothesis allowed one to correctly predict the

observed spectra of black body radiation. Einstein further proposed that not

only was light emitted and absorbed in quanta, but radiation itself consisted

of quanta [44]. Quantum theory became an integral part of optics, as it al-

lowed Einstein to explain the photoelectric e�ect that Hertz had discovered

in 1887. Further developments and reformulations in quantum theory were

made in the 1920's by Sommerfeld [45], Heisenberg [46], Bohr [47], De Broglie

[48], Born [49], Dirac [50], Schrödinger [51], Pauli [52], and others. By the

end of the decade, quantum mechanics had become a well-veri�ed theory [7].

Quanta of electromagnetic radiation are called photons, and one of the

key features of quantum theory of light is that each photon has an associated

energy equal to

Ephoton = hPf, (2.11)

where f is the frequency of the photon and hP ≈ 6.626 · 10−34 m2kg/s is the

famous proportionality constant known as Planck's constant. Equation 2.11

is also one of the manifestations of wave-particle duality since the left hand

side is the energy of a photon, which is thought of as a particle, but the right

hand side tells that the energy of the particle depends on frequency, which
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in turn is clearly a property of vibration, oscillation, or a wave.

Because Planck's constant is so tiny, the number of photons in most prac-

tical situations is huge. Even an ordinary 1 mW red laser pointer produces

quadrillions of photons every second. Therefore, the classical electromagnetic

formulation can be used to model light propagation accurately, and quantum

e�ects, such as shot noise, can also be incorporated into the classical model.
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Chapter 3

Propagation of Light

Every beam of electromagnetic radiation consists of a discrete number of

photons and each photon has an associated frequency. According to equation

2.11, photons with di�erent frequencies have di�erent energies and interact

di�erently with the atoms of the medium in which they propagate. The

variations in the microscopic dynamics of interactions lead to macroscopic

e�ects such as chromatic dispersion or simply dispersion, which means that

the velocity of light in a medium depends on its frequency. In order to study

how an arbitrary electromagnetic pulse propagates through a medium, it is

necessary to know the frequency content of the pulse. It is therefore bene�cial

to rewrite Maxwell's equations in the frequency domain.

Consider a sourceless dielectric (ρfree = 0) and assume that there are no

free currents (Jf = 0). Also assume, for simplicity, that the susceptibilities1

χ and χm can be treated as scalars either because of isotropy or because the
1Susceptibilities are related to the permittivity and permeability by ε = (1 + χ)ε0 and

µ = (1 + χm)µ0.
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state of polarization is maintained, which are very good approximations for

a plethora of materials and purposes [7, 53]. The dielectric is also assumed

to be nonmagnetic (χm = 0 and M = 0). Nonlinear optical e�ects typically

require intensities so high that only a powerful laser is capable of producing

them [8], but in order to keep the derivation more general, it will not be

assumed that the material is linear. Instead, χ is allowed to depend on �eld

strength.

Polarization P is now given by P = ε0χ
(1) ∗ E + PNL, where PNL is the

nonlinear part of the polarization. The material equations 2.7 and 2.8 can

now be written as

D = ε0E + ε0χ
(1) ∗ E + PNL, (3.1)

B = µ0H, (3.2)

for the medium in question. Now taking the curl of equation 2.3, justi�ably

interchanging the curl and the time derivative on the right hand side and

furthermore plugging in equation 3.2 yields

∇×∇× E = −µ0
∂

∂t
(∇×H) . (3.3)
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Now using equations 2.4 and 3.1 while keeping in mind that Jf = 0 gives

∇×∇× E = −µ0ε0
∂2

∂t2
(
E + χ(1) ∗ E

)
− µ0

∂2

∂t2
PNL (3.4)

= − 1

c2
∂2

∂t2
(
E + χ(1) ∗ E

)
− µ0

∂2

∂t2
PNL. (3.5)

By making use of the vector calculus identity ∇×∇×E = ∇ (∇ · E)−∇2E

equation 3.5 can be written as

∇ (∇ · E)−∇2E = − 1

c2
∂2

∂t2
(
E + χ(1) ∗ E

)
− µ0

∂2

∂t2
PNL. (3.6)

The �rst term of the left hand side of equation 3.6 can be shown to be zero for

some cases, such as step-index �bers, and negligible in a myriad of other cases

of interest, such as when χ(1) is approximately constant over one wavelength

[8, 54]. By making use of this approximation that ∇ (∇ · E) ≈ 0, equation

3.6 can be written as

−∇2E = − 1

c2
∂2

∂t2
(
E + χ(1) ∗ E

)
− µ0

∂2

∂t2
PNL. (3.7)

Taking the Fourier transform of equation 3.7 gives

−∇2Ẽ =
ω2

c2
(
1 + χ̃(1)

)
Ẽ + µ0ω

2P̃NL (3.8)

=
ω2

c2
(
1 + χ̃(1)

)
Ẽ +

1

ε0

ω2

c2
P̃NL. (3.9)

ω2/c2 is simply the vacuum wave number k0, and 1+ χ̃(1) is the square of the
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frequency-dependent refractive index : 1 + χ̃(1) = n2(ω). The wave number

in the medium is k(ω) = n(ω)k0. Thus,

−∇2Ẽ = k2(ω)Ẽ +
k20
ε0
P̃NL. (3.10)

Regardless of the assumptions and the simpli�cations, equation 3.10 is very

general. Losses are included in the index of refraction, and the nonlinear po-

larization term can account for many di�erent e�ects, such as Kerr and Pock-

els e�ects and Raman scattering. Assuming that n(ω) is piecewise constant

in space and that no nonlinear e�ects are present, the equation simpli�es to

the ordinary Helmholtz equation:

∇2Ẽ + k2(ω)Ẽ = 0. (3.11)

3.1 Optical Fibers

By careful adjustment of the spatial dependence of the refractive index n(ω),

one can hope to tailor the solutions of equation 3.10, and optical �bers do

just this. From a mathematical point of view, it is convenient to describe a

�ber simply as a medium, the refractive index of which has a certain spatial

dependence on x, y (and ω). Usually �bers have cylindrical symmetry such

that n(ω) is a function of ρ =
√
x2 + y2 only. The (x, y)-dependece of the

refractive index is physically achieved by using di�erent materials for di�erent

layers of the �ber. The most typical cylindrically symmetric �ber is a thin
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rod of material with a refrative index n1 surrounded by material with a

lower refractive index n2. The surrounding material could be air, which

would result in a very simple �ber consisting of nothing but a rod of glass,

for example. Nothing restricts us to solid materials, and the fundamental

phenomena behind optical �bers can be (and have been) demonstrated using

a stream of water. However, it will be shown that for many applications

it is bene�cial to make n2 only slightly lower than n1, which in practice

means surrounding the �ber core with a cladding layer. Usually the core and

cladding are made of the same material, but the core has been doped with

an additional substance in order to make its index of refraction higher [54].

3.2 Wave Propagation in Step-Index Fiber

The step-index �ber is probably the simplest case, but understanding how

electromagnetic waves propagate in such �bers gives practical insight into

propagation in other types of �bers, too. Consider a step-index �ber concen-

tric with the z-axis. The �ber is described by a refractive index pro�le

n(ρ) =

 n1, ρ ≤ a

n2, ρ > a
, (3.12)

where ρ =
√
x2 + y2 and a is the �ber core radius. Note that we are as-

suming an in�nite cladding layer, but we will see that this is of no concern.

Because of the cylindrical symmetry, we will express equation 3.11 in cylin-
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drical coordinates ρ, φ and z such that x = ρ cosφ and y = ρ sinφ. The

Helmholtz equation 3.11 then reads

∂2Ẽ

∂ρ2
+

1

ρ

∂Ẽ

∂ρ
+

1

ρ2
∂2Ẽ

∂φ2
+
∂2Ẽ

∂z2
+ k2(ω)Ẽ = 0. (3.13)

Now k2(ω) = k20n
2
1 inside the the �ber core and k2(ω) = k20n

2
2 outside the

core, where the ω-dependence of n1 and n2 has been left out to shorten the

notation. A similar equation can be derived for the magnetic �eld strength H̃,

and as Ẽ and H̃ must also satisfy Maxwell's equations, only two components

of the six Ẽρ, Ẽφ, Ẽz, H̃ρ, H̃φ, H̃z are independent [55]. Typically Ẽz and

H̃z are chosen and they can be seen to satisfy equation 3.13.

The Helmholtz equation can be shown to be separable in cylindrical co-

ordinates for a constant k using Stäckel determinants [56]. We can thus solve

the equation in the core and in the cladding by separation of variables and

then require the tangential components of the electric and magnetic �elds

be continuous at the core-cladding interface. The general form of such a

separable solution can be shown to be

Ẽz(ω, ρ, φ, z) = A(ω)F (ω, ρ) exp(±imφ) exp(iβz), (3.14)

where A(ω) is the amplitude of the frequency component oscillating at ω, β

is the propagation constant that takes the role of the wave number k, m is
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an integer and F (ω, ρ) is a solution of

d2F

dρ2
+

1

ρ

dF

dρ
+

(
k2 − β2 − m2

ρ2

)
F = 0, (3.15)

where k = k0n1 for ρ ≤ a and k = k0n2 for ρ > a. Note that k and β depend

on ω. Equation 3.15 is Bessel's di�erential equation, and the physically

feasible (i.e. no singularities, �nite energy, di�erentiable) solutions are given

by

F (ω, ρ) =

 Jm(κρ), ρ ≤ a

Km(γρ), ρ > a
, (3.16)

where κ =
√
n2
1k

2
0 − β2 and γ =

√
β2 − n2

2k
2
0, and Jm and Km are the Bessel

function and the modi�ed Bessel function of order m, respectively. Because

Km is an exponentially decaying function, the cladding does not have to be

in�nite in practice but thick enough so thatKm(γρ) becomes negligible at the

�ber boundary. H̃z can be obtained in a similar manner [55]. The boundary

condition that the tangential components of Ẽ and H̃ are continuous means

that Ẽz, H̃z, Ẽφ, and H̃φ are to be continuous at ρ = a, which translates to

the following eigenvalue equation [55]:

[
J ′m(κa)

κJm(κa)
+

K ′m(γa)

γKm(γa)

] [
J ′m(κa)

κJm(κa)
+
n2
2

n2
1

K ′m(γa)

γKm(γa)

]
=

(
mβk0(n

2
1 − n2

2)

an1κ2γ2

)2

.

(3.17)

In general, equation 3.17 has multiple solutions for β for each integer value

of m. The solutions are usually denoted by βmn, and each βmn corresponds
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to a speci�c mode supported by the �ber, and the corresponding modal �eld

distribution can be obtained from equation 3.14 [55]. Note, however, that

imaginary electric �elds are physically infeasible, and one has to take the real

part of the complex distribution to get the physical electric �eld distribution.

There are two di�erent types of modes, denoted by HEmn and EHmn,

corresponding to whether the longitudinal magnetic �eld or electric �eld

component is dominant [55]. As a special case we mention the TM and TE

modes, where the longitudinal magnetic or electric �eld component is identi-

cally zero, respectively. Even though the mode naming convention refers to

the longitudinal �eld components, these components are generally negligible

compared to the transverse ones in many cases of practical interest. Weakly

guiding optical �bers are one such case. Neglecting the longitudinal compo-

nents simpli�es the mathematical treatment of modes considerably and leads

to degeneracy between various modes. For weakly guiding �bers the degen-

erate modes can be combined to yield a basis where all the modes are fully

linearly polarized. Figure 3.1 shows the color-coded intensity distribution for

eight di�erent linearly polarized modes.

With the exception of the fully rotationally symmetric TM and TE modes,

each mode has two orthogonal polarizations. Ideally, the two orthogonal

polarizations would propagate at the same velocity but in practice �bers can

never be fully rotationally symmetric and the degeneracy between the two

polarizations is broken. This is called polarization mode dispersion (PMD)

and will be discussed in more detail later [55].
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Figure 3.1: Transverse intensity pro�les of some of the supported modes of
a �ber. The core radius of the �ber is a = 2 µm, the refractive index of
the core n1 = 1.5, and the refractive index of the cladding n2 = 1.45. The
wavelength is 532 nm, which corresponds to a typical green diode pumped
solid state frequency doubled laser pointer. The e�ective refractive indices
of the modes are shown above or below their intensity pro�les.

The z-dependence of the electric �eld of the mode corresponding to βmn

can be seen from equation 3.14. The dependence is simply exp(iβmnz), which

describes a wave propagating in the z-direction. The time-dependence of a

frequency component at ω is exp(−iωt), so the speed of this component is

ω/βnm. Recalling that the index of refraction is c divided by the speed of

light in the medium we can de�ne the modal index or e�ective refractive

index as n̄mn = βmnc/ω = βmn/k0, where k0 is the vacuum wave number.

The modal index is smaller for larger m and n and remains between the core

and cladding indices n1 and n2, which can be seen in �gure 3.1. The physical
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explanation is that for large m and n, a larger portion of the intensity is

con�ned in the cladding where light propagates faster. This is especially

visible in �gure 3.1 for the rightmost mode in the lower row.

Because the modal index is di�erent for each mode, di�erent modes prop-

agate at di�erent velocities. This is called intermodal dispersion. Needless

to say, like all kinds of dispersion, also intermodal dispersion limits the per-

formance of optical communication systems in the general case. Consider for

example the two leftmost modes in �gure 3.1, the modal indices of which

are approximately 1.497200 and 1.485327. Assume we have a narrow initial

pulse, the energy of which is divided between the modes. After 10 km of

propagation in the �ber, the pulse has been split in two (or more) pulses

that are separated by approximately 390 nanoseconds, which means a bit

rate limitation of 2.6 Mbps due to intermodal dispersion alone. While 2.6

Mbps might be better than a semaphore line, it is nowhere near what can be

achieved using a single mode �ber, and it is thus usually bene�cial to have

the �ber support the HE11 mode only. HE11 is referred to as the fundamental

mode.

3.3 Single-Mode Operation and Properties of

the Fundamental Mode

The number of supported modes is determined by the number of solutions

to the eigenvalue equation 3.17, so if the equation can be set to have only
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one solution, the �ber will only support one mode. It is useful to de�ne a

normalized frequency or the V -parameter as

V =
2π

λ0
a
√
n2
1 − n2

2, (3.18)

where λ0 is the wavelength in vacuum. The magnitude of V determines the

supported modes, and the cuto� condition in terms of V can be derived for

every mode [53]. Since we are only interested in single-mode operation, it

su�ces to state the single-mode condition: V = Vc, where Vc ≈ 2.405 is

the �rst zero of the Bessel function J0 [i.e. the smallest positive solution

of J0(Vc) = 0]. Even though single-mode operation could be guaranteed by

making V small by tuning the refractive indices or making the core diameter

small, the V -parameters of single-mode �bers are usually in the range 2.0-2.4

[54]. This is because �bers with a small V -parameter have higher bending

losses, which is also intuitevely clear: it is harder for the light to stay in

the core in the presence of perturbations if the core diameter is small or the

refractive index of the cladding is close to that of the core.

The transverse intensity pro�le of the fundamental mode was derived in

section 3.2 and is given by

F (ρ) =

 J0(κρ), ρ ≤ a

K0(γρ), ρ > a
, (3.19)

where κ =
√
n2
1k

2
0 − β2, γ =

√
β2 − n2

2k
2
0, and ρ =

√
x2 + y2 is the radial
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distance from the �ber center. Although the intensity distribution could

be solved analytically, piecewise de�ned functions involving Bessel functions

can be inconvenient to deal with, and it is customary to use a Gaussian

approximation:

F (ρ) ≈ exp

(
− ρ

2

w2

)
, (3.20)

where the width parameter w is determined by �tting the Gaussian function

to the exact solution. For V -parameter values between 2 and 3, the width

parameter is approximately equal to the core radius a and the ratio w/a

increases with decreasing V [55]. Thus, for smaller values of V , a signi�cant

portion of the light propagates in the cladding.

3.4 Dispersion

The frequency-dependence of the refractive index, which leads to chromatic

dispersion, is not the only source of dispersion. Other properties of light

or the medium can a�ect the speed of light as well. As mentioned before,

light intensity can also a�ect the speed of light, and in the context of water

waves this would be called amplitude dispersion. In optics, however, the

intensity-dependence of the refractive index is typically treated in the context

of nonlinearities, separate from linear dispersive e�ects. The next section will

be devoted to nonlinear optical e�ects and in this section we brie�y discuss

di�erent types of linear dispersion.
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3.4.1 Chromatic Dispersion

The physical meaning of the refractive index n(ω) is that the velocity of the

frequency component at ω is v = c/n(ω). In other words, the refractive index

is the ratio of the vacuum speed of light and the speed of light in the medium.

The frequency-dependence of the refractive index is thus responsible for the

aforementioned chromatic dispersion in bulk media.

The situation is somewhat di�erent in optical �bers because the prop-

agation speed of a certain frequency component depends not only on the

corresponding bulk refractive index but also on waveguide geometry. The

bulk e�ect is then referred to as material dispersion and the dependence on

waveguide geometry is known as waveguide dispersion. Waveguide dispersion

arises because the transverse modal distribution given in equation 3.16 de-

pends on the wavelength and some frequencies are more concentrated in the

�ber core that has a higher refractive index. Frequency components that pen-

etrate deeper into the cladding layer experience an overall lower refractive

index and thus propagate faster. Both material and waveguide dispersion

contribute to the chromatic dispersion in �bers, and both of them are incor-

porated into the mathematical model via the frequency-dependence of the

propagation constant β(ω).

The exact functional form of β(ω) is usually neither known nor needed

across the whole electromagnetic spectrum, and a Taylor approximation in

the vicinity of a frequency of interest ω0 (usually the central frequency of an
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input pulse) can be used:

β(ω) ≈
N∑
n=0

βn
n!

(ω − ω0)
n (3.21)

As is known from basic Fourier analysis, a short pulse must have a broad

spectrum, and a narrow spectrum means a long pulse or a continuous wave.

A long pulse might also have a broad spectrum if the pulse is chirped, and

the amount of terms needed in the Taylor approximation for β(ω) depends

on how broad the spectrum is and how the dispersion behaves across the

spectrum. Because of chromatic dispersion, the velocities of di�erent spec-

tral components of a pulse can di�er signi�cantly. This can cause pulses to

broaden and become chirped, and chromatic dispersion is of utmost impor-

tance in nearly every �ber optical system simply because of its e�ect on light

pulses.

The Taylor expansion is convenient mathematically but also o�ers some

insight to the behavior of light in the waveguide, as some of the Taylor se-

ries coe�cients in expansion 3.21 have a clear physical meaning. The �rst

derivative is the inverse of the group velocity : vg = β−11 = (∂β/∂ω)−1, and the

physical meaning of the group velocity is that the envelope of a wave packet

propagates at the group velocity. The second derivative β2 is responsible for

group-velocity dispersion (GVD), which leads to pulse broadening, and β2 is

called the GVD parameter. The temporal broadening of a pulse is governed

by ∆T = Lβ2∆ω, where L is the length of the �ber and ∆ω is the spectral
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width of the pulse [54]. Second-order dispersion also causes pulses to become

chirped. The sign of β2 has a tremendous impact on pulse propagation, and

the case β2 < 0, which is known as anomalous dispersion, is usually the most

interesting one in �ber optics because it allows for more versatile phenomena

[54, 19, 55, 57]. The situation β2 > 0 is referred to as normal dispersion, and

it would cause the high-frequency components lag behind the low-frequency

ones causing positive chirp on the pulse, as shown in �gure 3.2 that shows the

analytically solved propagation of a Gaussian pulse in the presence of GVD

and the absence of higher-order dispersion. Figure 3.2 also shows how the

pulse envelope remains Gaussian in the absence of higher-order dispersion al-

though the pulse broadens, decreases its amplitude, and develops the already

mentioned positive chirp. Note that third-order dispersion would both make

the exact solution mathematically more tedious and distort the Gaussian

envelope shape asymmetrically (see �gure 3.3) [54]. Between the regions of

normal and anomalous dispersion lies the wavelength for which β2 = 0. This

wavelength is termed the zero-dispersion wavelength (ZDW), and there might

be more than one such wavelengths [58] or a range of wavelengths for which

β2 ≈ 0 [59]. Because the magnitude of pulse broadening is governed by β2 via

a linear relation, pulses with a central wavelength near the ZDW experience

the least broadening. Pure silica has a ZDW of 1.276 µm, and the ZDW of

silica �bers usually varies in the range 1.28 − 1.31 µm due to doping and

the e�ect of waveguide dispersion. Thus, pulses with a central wavelength

around 1.3 µm usually experience the least broadening in silica �bers, and
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Figure 3.2: Evolution of the electric �eld (thick line) and the envelope (thin
line) of a Gaussian pulse experiencing dispersion up to second order. The
pulse envelope remains Gaussian upon propagation, but second-order dis-
persion causes the pulse to broaden, decrease its amplitude, and develop a
chirp.

it would therefore be bene�cial to operate optical communication systems in

the vicinity of 1.3 µm. However, losses are quite high at that wavelength,

and high losses would necessitate the use of higher pulse energies, which

is, of course, undesirable from a practical point of view. The losses can be

made smaller by for example reducing the amount of H2O molecules caught

inside the �ber during the manufacturing process [54]. Even the purest of

silica �bers are not completely lossless simply because the silica molecules

can absorb photons, and instead of trying to reduce the losses around 1.3 µm

physicists have come up with a more cunning technique of dispersion shifting

[60, 61, 62]. Dispersion shifting means changing waveguide and material dis-

persion through modifying waveguide geometry and/or the refractive index
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pro�le by doping the core and the cladding in such a way that the ZDW falls

in a desired wavelength range. The ZDW can be made to coincide with the

wavelength that experiences the lowest losses (1.55 µm). These kind of �bers

are very suitable for optical communication applications because of low losses

and low GVD. β2 can also be made small over a wide range of wavelengths,

and �bers like this are known as dispersion �attened �bers [54]. Because of

this property, dispersion �attened �bers are suitable for multichannel opti-

cal communication applications, where pulses of di�erent central frequencies

copropagate.

Figure 3.3: The evolution of the temporal intensity pro�le of an initially
unchirped Gaussian pulse under the in�uence of third-order dispersion. The
intensity pro�le becomes asymmetric and developes an oscillatory tail upon
propagation.

When the central wavelength of the pulse in question is close to the ZDW, it

becomes necessary to include third-order dispersion (TOD) β3 in the Taylor

series 3.21. Similarly, the second-order Taylor approximation around ω0 is
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only valid in a certain range near ω0, and if the pulse spectrum is wider than

this range, more terms have to be included in the Taylor series. The e�ect

of third-order dispersion on pulses is to make the pulse envelope asymmetric

and cause oscillatory behavior in one of the edges depending on the sign of

β3. In telecom applications the oscillatory behavior occurs usually in the

trailing edge for unchirped symmetric pulses as shown in �gure 3.3. The

broadening (RMS-width) of a Gaussian pulse can still be solved analytically

when third-order dispersion is included in the model [55].

The e�ects of dispersion of orders higher than three are far less intuitive,

but the higher-order terms have to be included in the model because the

spectrum becomes, by de�nition, very broad during supercontinuum genera-

tion. While the inclusion of dispersion only up to the second or third order

simpli�es analytical treatments and is su�cient for studies regarding the

propagation of spectrally narrow single pulses, the lack of higher-order dis-

persion terms can yield unphysical results when the pulse spectrum becomes

broad.

3.4.2 Intermodal Dispersion

The solutions βmn of the eigenvalue equation 3.17 depend on the values of

m and n, which means that the propagation constant is di�erent for dif-

ferent modes of the �ber and di�erent modes thus propagate at di�erent

speeds. Although the situation in planar waveguides is a bit di�erent than in

�bers, the geometric perspective of wave propagation in planar waveguides
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o�ers an insightful explanation of intermodal dispersion. The simplest pla-

nar waveguide consists of two paraller mirrors, and light bounces back and

forth between the mirros. The re�ection upon the mirrors corresponds to

the total internal re�ection present in step-index �bers. Solving Maxwell's

equation for the planar waveguide yields the modes of the waveguide. One

can then show that in the geometric interpretation, where light travels as

rays in straight lines, the modes correspond to rays that ful�ll the so-called

self-consistency condition which means that the wavefront must reproduce

itself after two re�ections as shown in �gure 3.4 [1].

Figure 3.4: (a) A planar waveguide and a self-consistent ray of light. (b) The
copropagation of self-consistent rays leads to an intensity distribution that
is constant over the length of the waveguide. (After reference [1].)

There are multiple values of the propagation angle θ that lead to the ful�ll-

ment of the self-consistency condition, and it is evident that the larger the

propagation angle, the slower the ray propagates in the z-direction. Thus, in

the geometrical picture, some modes travel longer distances than others and

therefore appear to travel slower. The situation is a bit di�erent in optical

�bers, but the principle is similar.
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3.4.3 Polarization Mode Dispersion

All �bers support two (ideally) degenerate modes polarized in orthogonal di-

rections [55]. However, the propagation constants for these two modes are in

general di�erent because of birefringence, which means that the polarization

components propagate at di�erent speeds. The axis along which light has

to be polarized in order to experience the lowest refractive index is called

the fast axis because light polarized along that axis travels faster. The axis

of the highest refractive index is called the slow axis. Unless the light is

polarized along the fast or the slow axis, the state of polarization will change

with propagation distance from linear to elliptical and back to linear in a

periodic manner assuming the principal axes do not change their orientation

[63]. This behavior is similar to the operational principle of wave plates [7].

However, because of the manufacturing process, the birefringence and the

axes actually change randomly along the �ber [54]. This is due to random

variations in the core shape, size, stress, and possible doping.

Even for �bers with randomly varying birefringenge, two principal axes

exist, and light polarized along one of these axes will exit the �ber with its

state of polarization maintained [55]. Usually, however, one does not know

or care about the state of polarization, and the e�ect of PMD is simply to

broaden the pulses. Modeling such random PMD is easy by dividing the �ber

into small segments such that the orientation of the fast axis and possibly the

magnitude of birefringence in each segment are randomly selected. Thus, in

each segment one polarization component lags behind the other component
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by a certain time delay. This situation can easily be seen to be equivalent to

the one-dimensional random walk, and the RMS-distance of such a random

walk is known to obey the square-root law: when enough steps are taken, the

expected positive distance from the initial location after N steps is propor-

tional to
√
N . One might thus expect the PMD-induced pulse broadening

in a �ber of length L to be proportional to
√
L, if the �ber is long enough.

This turns out to be the case, as shown by the more detailed treatment by

Foschini and Poole [64]. The �ber length L has to satisfy L > lc, where lc is

the correlation length over which two polarization components remain cor-

related (typically of the order of 100 meters) [55]. The typical �ber lengths

used in SC generation tend to be much smaller than 100 meters, and it is

customary to neglect the e�ects of birefringence and use the scalar propa-

gation equation because it has been shown to agree with experiments [19],

but some authors [65, 66] insist on using coupled equations to describe pulse

propagation. PMD is more important in other optical applications, such as

communication systems, as PMD-induced pulse broadening can become a

limiting factor for long-haul high-speed optical communication systems op-

erating near the ZDW [67]. Modern communcation systems utilize digital

signal processing to compensate for PMD [68]. Interstingly enough, it has

been shown [69] that accurate long-range measurements of PMD in �bers

can be performed by using supercontinuum.

Some applications are sensitive to the polarization of the light, and it is

sometimes desirable that the �ber does not alter the state of polarization of
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the light [55]. Polarization-maintaining �bers can be made by intentionally

inducing a large amount of birefringence by either making the �ber core non-

circular on purpose or by inserting stress-inducing elements (typically two

borosilicate rods) on the opposite sides of the �ber core [70, 71]. The large

magnitude of the intentionally induced birefringence masks smaller random

variations, and light polarized along the fast or the slow axis will maintain

its state of polarization. For highly birefringent �bers the polarization ef-

fects become important also in terms of SC generation, and this has been

studied in microstructured �bers [72, 73]. In one of these studies Lehtonen

et. al [72] pointed out that the di�erent dispersion characteristics of the two

eigenpolarizations make it possible to generate two orthogonally polarized

supercontinua with di�erent properties, and all the possible combinations of

these allow for more supercontinuum tunability.
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Chapter 4

Nonlinear E�ects in Fibers

In general, the response of a material to an external electric �eld is nonlinear

and the nonlinear polarization

PNL(r, t) = ε0

∞∑
n=2

χ(n)(r, t) ∗ En(r, t) (4.1)

consists of all terms of higher-order. For centrosymmetric materials, such

as silica, all even order susceptibilities can be shown to be zero. Although

�fth-order susceptibilities as high as 1.9 · 10−12 (m/V)4 have been reported

for gases of cold atoms [74], the �fth-order e�ects usually require intensi-

ties high enough to ionize the material, in which case the model obviously

does not even work anymore. For reasonably low optical intensities in silica

�bers all but the third-order contributions can be neglected. Alternatively,

a possible way to take higher-order nonlinearities into account is to make

the third-order susceptibility intensity-dependent appropriately [55]. In this

thesis, susceptibilities of order higher than three will not be considered. The



CHAPTER 4. NONLINEAR EFFECTS IN FIBERS 41

nonlinear polarization then reduces to

PNL(r, t) = ε0

∫∫
R3

∫
χ(3)(t− t1, t− t2, t− t3)

...E(r, t1)E(r, t2)E(r, t3)dt1dt2dt3.

(4.2)

The tensorial nature of the third-order susceptibility allows for phenomena

such as nonlinear birefringence, but we can justi�ably treat χ(3) as a scalar

for most purposes. The third-order response in optical �bers is mostly due to

the nearly instantaneous electronic response and partially due to the delayed

molecular response. The electronic response times are of the order 0.1 fs, a

time scale similar to the period of revolution for an electron in a Bohr orbit

[54], though much longer response times have been demonsrated in certain

special cases [75]. The molecular response, the Raman e�ect, happens on a

timescale from 60 to 70 femtoseconds [55].

Although the third-order susceptibility is the only higher-order suscepti-

bility of interest in the case of silica �bers, not all third-order phenomena are

of interest when considering nonlinear propagation of light in silica �bers.

This section discusses di�erent third-order e�ects.

4.1 Third-Harmonic Generation

Third-harmonic generation (THG) or frequency tripling is a process where

part of the energy of light at frequency ω is converted into light at 3ω. Here,

THG refers solely to the χ(3)-process, although the third-harmonic can also
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be generated through a cascaded second-order process (namely, frequency

doubling followed by sum-frequency generation). THG was �rst observed

experimentally in 1962 using calcite crystals [76].

Chromatic dispersion causes the third-harmonic �eld at 3ω and the funda-

mental �eld at ω to propagate at di�erent speeds in the medium. Because the

third-harmonic is generated throughout the medium, it is intuitively easy to

understand that the third-harmonic electric �elds generated in di�erent parts

of the medium are out-of-phase and cancel out due to this phase-mismatch. A

rigorous treatment of this phenomenon requires a more thorough quantum-

electrodynamical approach [8], but it su�ces to state that because of the

phase-mismatch, THG is not an e�cient process unless speci�c care is taken

to ensure that the fundamental �eld and the third-harmonic propagate at

the same speed.

Phase-mathcing can be achieved because other types of dispersion can, in

some circumstances, cancel chromatic dispersion. The most typical scheme

exploits PMD, but the use of modal dispersion in harmonic generation has

also been reported for example in microstructured �bers [77]. PMD-based

phase-matching relies on birefringence and the tensorial nature of the non-

linear susceptibility. In other words, light polarized along the ordinary or the

extraordinary axis can create higher-order harmonics that are polarized along

the other axis, and birefringence and careful adjustment of the polarization

angle make it possible to achieve such a situation that the higher-order �eld

and the fundamental �eld propagate at the same speed.
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4.2 Kerr-E�ect

Kerr-e�ect is the name given to the phenomenon in which the refractive index

of light depends on the square of the electric �eld, the intensity. Although

the observation of the Kerr-e�ect in optical �bers requires the use of intense

laser �elds, the Kerr-e�ect was discovered as early as 1875 by the Scottish

physicist John Kerr. This is due to the fact that the electric �eld used in

the early experiments was a static one: a static electric �eld changes the

refractive index of a crystal in which light propagates. In nonlinear �ber

optics, the change in the refractive index is caused by the electric �eld of

the light itself, but the static �DC Kerr-e�ect� is still exploited in numerous

optical applications, such as Kerr shutters [54].

The mathematical derivation of the phenomenon stems from the fact

that the cube of a sinusoidal function of angular frequency ω includes a term

oscillating at the same frequency ω. Raman scattering and the Kerr-e�ect

will lead to the following simpler form of equation 4.2 [78]:

PNL = ε0χ
(3)E(r, t)

∞∫
0

R(t1) |E(r, t− t1)|2 dt1, (4.3)

where R(t) is the normalized nonlinear response function and it has been

assumed that PNL and E point in the same direction. The lower limit of

the convolution can be set to 0 instead of −∞ because of the requirement

of causality: R(t) = 0 for t < 0. The response function R(t) includes both
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the instantaneous electronic response and the delayed molecular response.

The delayed molecular response leads to Raman scattering, and the instan-

taneous part of the response function models the Kerr-e�ect. Let us assume,

for the time being, that the material only has the instantaneous Kerr re-

sponse and no delayed nonlinearities (the Raman e�ects can be included

later on). In this approximation the response function becomes a delta func-

tion: R(t) = δ(t). Assume that the electric �eld is polarized along the x-axis

and centered around the carrier frequency ω0: E(r, t) = x̂E(r, t) cos(ω0t+ϕ).

The nonlinear polarization of such a �eld is then

PNL = x̂ε0χ
(3)E3(r, t)

[
3

4
cos(ω0t+ ϕ) +

1

4
cos(3ω0t+ 3ϕ)

]
. (4.4)

The term oscillating at 3ω0 is responsible for THG, which is ine�ective in

�bers and hence the term can therefore be dropped. The total polarization,

including the linear and nonlinear contributions, is thus

Plin + PNL = x̂ε0χ
(1)E(r, t) cos(ω0t+ ϕ) + x̂ε0

3

4
χ(3)E3(r, t) cos(ω0t+ ϕ)

= x̂ε0

[
χ(1) +

3

4
χ(3)E2(r, t)

]
E(r, t) cos(ω0t+ ϕ). (4.5)

The bracketed expression in Eq. 4.5 can be interpreted as an e�ective sus-

ceptibility χe� consisting of the usual linear contribution from χ(1) as well

as a �eld-dependent nonlinear contribution from χ(3). Having an e�ective
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susceptibility then allows us to de�ne an e�ective refractive index through

ne� =
√

1 + χe� =

√
1 + χ(1) +

3

4
χ(3)E2(r, t). (4.6)

The nonlinear contribution to the e�ective index is very small compared to

the linear one for any feasible optical powers below the damage threshold of

silica and other common materials: 1 + χ(1) � 3
4
χ(3)E2(r, t). This allows us

to approximate the expression inside the square root as:

ne� =
√

1 + χ(1)

√
1 +

3

4

χ(3)E2(r, t)

1 + χ(1)
(4.7)

≈
√

1 + χ(1)

(
1 +

3

8

χ(3)E2(r, t)

1 + χ(1)

)
(4.8)

= n1 +
3χ(3)E2(r, t)

8n1

, (4.9)

where n1 =
√

1 + χ(1) is the linear refractive index. Now noting that the

intensity (averaged over one optical cycle) is I = 1
2
ε0n1cE

2 allows us to write

the e�ective refractive index as

ne� = n1 +
3χ(3)

4n2
1ε0c︸ ︷︷ ︸

def
=n2

I = n1 + n2I. (4.10)

where n2 is the nonlinear refractive index. This form for the e�ective re-

fractive index clearly shows the intensity-dependence. The nonlinear index

n2 > 0 for silica, meaning that intense light experiences a larger e�ective
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refractive index [79].

4.3 Self-Phase Modulation and Cross-Phase Mod-

ulation

The dependence of monochromatic light on propagation distance z and time

t can be mathematically written as exp[i(kz−ωt)] = exp[i(nk0z−ωt)] using

complex �elds. The complex phase is thus φ = nk0z−ωt. When n depends on

the intensity, the phase of the light will consequently be a�ected by the light

itself. This is referred to as self-phase modulation (SPM). The instantaneous

(angular) frequency is −dφ/dt, and in the case of linear optics this would

naturally reduce to ω. When n depends on the intensity as n = n1 + n2I,

the instantaneous frequency is

−dφ
dt

= ω − k0z
d(n1 + n2I)

dt
= ω − k0n2z

dI

dt
. (4.11)

Because n2 > 0, the instantaneous frequency is lower at the leading edge of

a pulse (where dI/dt > 0) and higher at the trailing edge, as shown by �gure

4.1. SPM therefore causes chirp in pulses. Note that the chirp is qualitatively

similar to that caused by normal dispersion and the exact opposite of that

caused by anomalous dispersion. Indeed, it turns out that the chirp caused by

the Kerr-e�ect can precisely cancel the anomalous dispersion induced chirp

for some cases [31, 32]. The nature of the Kerr-e�ect makes no distinction

whether the intensity-dependence of the refractive index experienced by light
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Figure 4.1: The change in frequency due to SPM for a Gaussian pulse at a
certain propagation distance. The frequency change is shown by the solid
line and the intensity pro�le by the dashed line.

at ω1 is caused by light at the same frequency, and it is possible for light at

another frequency ω2 to a�ect the phase of light at ω1. This phenomenon

is known as cross-phase modulation (XPM), as is also the situation where

light polarized along a certain axis a�ects the phase of light polarized along

another axis [55]. The distinction between SPM and XPM is not necessarily

straightforward. A light pulse consist of multiple frequency components, and

the e�ect of the pulse on its own phase is simply referred to as SPM. When

neglecting polarization e�ects and deriving the nonlinear propagation equa-

tion, the di�erence between SPM and XPM is more evident in the frequency

domain. In the time domain, SPM and XPM cause the propagation constant

to become intensity-dependent.

Dispersion-induced chirp is simply due to the di�erent propagation ve-

locities of the frequency components, and the spectrum remains unchanged
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because no energy is transferred from one frequency to another. SPM and

XPM, however, are accompanied by the generation of new frequency compo-

nents. This is referred to as SPM- or XPM-induced spectral broadening, and

it is a dominating spectral broadening mechanism in the case of short-pulse

SC generation [80]. The SPM-broadened spectrum of an initially Gaussian or

sech-shaped pulse develops a multipeak structure with the number of peaks

depending on the initial peak power and the propagation distance [55]. Un-

der ideal conditions an initially symmetric spectrum would remain symmetric

throughout the �ber, but in reality other nonlinear phenomena, such as Ra-

man scattering, together with dispersion and pulse asymmetry will cause one

side of the spectrum to grow more intense than the other.

Although SPM induces spectral broadening on unchirped pulses, it can

make the spectrum of a chirped pulse narrower. A negatively chirped pulse

has higher frequencies in the leading edge and lower frequencies in the trail-

ing edge. SPM can then counteract the initial chirp and shift the frequencies

of the edges closer to the central frequency, which then results in a narrower

spectrum and the pulse becoming closer to a transform-limited one. A simi-

lar scheme can be used to compress unchirped pulses in time. A transform-

limited pulse cannot be compressed without broadening its spectrum, and

the SPM- or XPM-induced spectral broadening o�ers a way compress pulses

in the anomalous dispersion regime. In that regime, the blue-shifted compo-

nents generated in the trailing edge and the red-shifted components at the

leading edge will both move towards the pulse center because of anomalous
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dispersion, and the pulse will thus become shorter. Anomalous dispersion

is not necessary if the dispersive e�ects can be compensated for at a later

stage by using a prism compressor or a grating pair, for example. This tech-

nique was used as early as 1982 to generate 30 fs pulses [81], and subsequent

experiments showed remarkable improvements in the following years [82].

4.4 Four-Wave Mixing

FWM (alternatively four-photon mixing) is another phenomenon related to

the Kerr-e�ect. It describes the interaction of four photons at frequencies ω1,

ω2, ω3, and ω4. Here FWM is understood to refer solely to processes where

the photons at frequencies ω1 and ω2 are annihilated and photons at ω3 and

ω4 are created, although some authors [55] categorize for example THG as a

FWM process in which the three photons at ω1 = ω2 = ω3 are annihilated

and a photon at ω4 = 3ω1 is created.

The energy of a photon is ~ω, where ~ = hP/(2π), and conservation of

energy requires that the combined energy of the annihilated photons equals

the energy of the photons created, so ω1 + ω2 = ω3 + ω4. On the other

hand, the requirement of momentum conservation translates to an equation

for the propagation constants: β(ω1) + β(ω2) = β(ω3) + β(ω4), where β(ωi)

is the propagation constant at frequency ωi. The momentum conservation

condition ∆k = β(ω3) + β(ω4) − β(ω1) − β(ω2) = 0 is the phase-matching

condition for the FWM process, and it is not exactly similar to the con-
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servation of momentum in classical mechanics since FWM also occurs when

∆k 6= 0 assuming the �ber length L satis�es L < Lc = 2π/∆k, where Lc is

the so-called the coherence length. FWM is ine�ective for longer �bers if the

phase-mismatch is not compensated for.

The phase-matching condition is indeed very restrictive if there are four

di�erent frequencies involved because the frequency-dependence of the prop-

agation constant is usually nontrivial, and this is the reason FWM involv-

ing four di�erent frequencies is, for the most part, ine�ective in optical

�bers. The process becomes less complicated for degenerate four-wave mix-

ing (DFWM), which refers to the situation ω1 = ω2. The phase-matching

condition for DFWM is then ∆k = β(ω3) + β(ω4) − 2β(ω1), which can be

easily satis�ed either through SPM or by virtue of λ1, the wavelength cor-

responding to ω1, being close to the ZDW [54]. Assume (without loss of

generality) that ω4 > ω3 and denote Ω = ω4 − ω1 = ω1 − ω3. When the

e�ects of SPM and XPM are taken into account and single-mode operation

is assumed, the phase-mismatch is given by [19, 55]

∆k = 2γP0 + 2
∞∑
m=1

β2m
(2m)!

Ω2m, (4.12)

where γ is the nonlinear coe�cient, P0 is the pump peak power, Ω is the

angular frequency separation from the pump, and β2m are the even order

dispersion coe�cients evaluated at the pump frequency. If β2 < 0, or β4 <

0, chances are the phase-matching condition will be at least approximately
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satis�ed for two frequency sidebands, and FWM provides the sidebands with

an amplitude gain of g =
√

(γP0)2 − (∆k/2)2. Every frequency component

in the sidebands will initially grow exponentially so that the initial sideband

amplitude As0 will have grown to As0 exp(gz) after a propagation distance of

z. Note that this is the case only in the undepleted pump approximation,

because as the pump loses some of its energy to the sidebands, its power

decreases a�ecting the gain and the location of the sidebands. Also note

that the gain exist only for g ∈ R. The sideband of the lower frequency is

called the Stokes wave and that of the higher frequency is called the anti-

Stokes wave. [19, 55]

The phase-mismatch in equation 4.12 is power-dependent because of SPM,

and hence FWM can be phase-matched because of the e�ect of SPM. When

a CW at frequency ω0 is amplitude-modulated with a sinusoidal signal at a

modulation frequency ωm, the spectrum has, in addition to the CW peak at

ω0, two smaller peaks at ω0−ωm and ω0+ωm (just take the Fourier-transform

of [A + a sin(ωmt)] exp(−iω0t) to see this). The smaller peaks in the spec-

trum are thus symmetrically located around ω0 with frequency separations

of ±ωm. If the phase-mismatch of equation 4.12 is approximately zero for

Ω = ±ωm, the gain g will be real and positive at Ω = ±ωm, and the frequency

components at ω0 − ωm and ω0 + ωm will be ampli�ed upon propagation. In

the temporal domain this means that the modulation contrast increases. A

sinusoidal modulation of a suitable frequency will therefore initially be expo-

nentially ampli�ed, which is the reason why such SPM-phase-matched FWM
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is called modulation instability (MI) [55].

Equation 4.12 together with the gain pro�le provides the mathematical

explanation why MI ampli�es narrow sidebands far away from the pump

frequency in the normal GVD regime and broad sidebands close to the pump

frequency in the anomalous GVD regime, as shown by �gure 4.2. In the
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Figure 4.2: The MI gain as a function of frequency separation from the
pump frequency of 283 THz for two di�erent peak powers. The blue curve
has β2 = −8.56 ps2/km while β2 = 8.56 ps2/km for the red curve. The
nonlinear coe�cient is γ = 0.015 (m ·W)−1 and the higher-order dispersion
terms are β4 = −9.29 · 10−5 ps4/km and β6 = −9.79 · 10−10 ps6/km for both
curves.

normal dispersion regime β2 > 0, and both 2γP0 and β2Ω2 are positive, so the

phase-matching condition cannot be satis�ed for small frequency detunings.

Ω has to be large enough so that the higher-order terms, such as Ω4 and

Ω6 start to dominate the sum and can cancel the positive terms of equation

4.12. Thus, the gain sidebands will be further away from the pump frequency.

When Ω is large and terms like Ω4 dominate the sum, small variations in a
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large Ω lead to large changes in those dominating high-order terms, and the

phase-matched frequency band will thus be narrow. The normal GVD case is

shown in �gure 4.2 by the red curves, and both the narrowness and the large

frequency separation can be seen. Although spectrally �at supercontinua can

be generated through cascaded Raman scattering by using long pump pulses

in the normal dispersion regime [83, 84], anomalous pumping is more often

preferred because of the (usually) desirable e�ect of broadband MI [85].

For small frequency detunings the dominating contribution to the sum

in equation 4.12 comes from the second-order term involving β2. The GVD

parameter β2 is negative for anomalous dispersion, and in that case the sum

can cancel the positive 2γP0 term leading to phase-matching for small de-

tunings Ω. When the dominating contribution to the sum comes from the

second-order term, the value of the sum depends mostly on Ω2, so slight

changes in the small Ω will not change the sum considerably, which is why

the gain sidebands are broad. The anomalous GVD case is shown by the

blue curves of �gure 4.2. When Ω is small, the higher-order terms can be

neglected, and one can readily see that the gain peaks at Ω =
√

2γP0/|β2|

and has a peak value of gmax = 2γP0, as shown by �gure 4.2.

The preceeding treatment assumed that the pump beam and the modu-

lating signals are polarized along the same axis. When this is not the case,

coupled equations have to be used in the mathematical treatment. Although

the case of di�erent polarizations is not considered here, it is worth men-

tioning that MI similar to the anomalous GVD regime can be observed for
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a pump frequency at the normal GVD regime, if the modulating beam is

orthogonally polarized with respect to the pump beam. Such MI is referred

to as vector modulation instability [54].

When no initial modulation is present, noise takes the role of the pertur-

bation. In this case of spontaneous MI, the entire MI gain band of frequencies

will be ampli�ed. The ability of FWM to amplify noise is sometimes ben-

e�cial and sometimes undesirable. FWM can also amplify existing signals

instead of noise, which is why FWM is obviously harmful in WDM systems

because it might deplete signals at some channels and disturb other channels.

However, the power of FWM can also be harnessed for multiple applications

such as parametric oscillators, channel demultiplexing, wavelength conver-

sion, optical sampling, and high-speed optical switching [86]. The unwanted

e�ect of FWM on WDM systems can be drastically reduced by the clever

technique of dispersion management, where the �ber consists of di�erent seg-

ments such that each segment has a high GVD to cause high phase-mismatch,

but the GVD over the whole �ber averages to zero so that the detrimental

e�ects of GVD become minimal [54]. Usually the GVD parameter is made to

�ip its sign from one segment to another. Another way to reduce the e�ects

of FWM is to use unequal channel spacings so that the energy conservation

condition ω1 + ω2 = ω3 + ω4 is not easily satis�ed [87].

The role of FWM and MI in SC generation become very clear in the

long-pulse regime. MI causes the long pump pulse to break into a train of

narrower pulses because of the ampli�ed modulation. The forming pulses can
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then collide with each other, exchange energy, broaden the spectrum further,

and, most evidently, signi�cantly a�ect the temporal characteristics of the

signal. Some of the pulses adjust themselves to become solitons, which are

nonlinear pulses of certain shape. Solitons will be discussed in more detail

later on.

4.5 Stimulated Raman Scattering

The delayed nature of molecular and atomic response to external electric

�elds gives rise to the already mentioned e�ect known as Raman scattering

after its discoverer [88]. The quantum mechanical description of the phe-

nomenon is that it describes the interaction between a photon and an optical

phonon, a quantum of lattice vibration. Note that photons can just as well

interact with acoustic phonons, a phenomenon known as Brilloun scattering,

but this will not be considered here because of its negligible e�ect for broad

band signals and because Brilloun scattered light actually travels backwards

in �bers [55].

In Raman scattering, a photon scatters inelastically from a molecule and

transfers some of its energy to it causing the molecule to rise to a higher vibra-

tional state. The photon thus loses some of its energy and its frequency must

therefore decrease by an amount corresponding to the energy transferred to

the molecule. The resulting electromagnetic wave of lower frequency is called

the Stokes wave like in FWM. It is also possible for the molecule to release



CHAPTER 4. NONLINEAR EFFECTS IN FIBERS 56

some of its vibrational energy to a photon, which would result in an in-

crease in the frequency of the photon. The resulting wave is the anti-Stokes

wave. This kind of Raman scattering, however, is seldom observed because

it requires the simultaneous presence of a photon and a phonon of suitable

energies whereas the generation of a Stokes wave only requires a photon in a

medium.

Figure 4.3 shows the energy states in the quantum mechanical treatment

of Raman scattering. The Raman scattering process is treated quantum

Nonlinear Optics 5A5513 (2003) Lecture notes 2

that is to say, invariance under the (n+1)! possible permutations of the subscripts µ, α1, . . . , αn.
This principle is a consequence of the overall permutation symmetry, and applies in the low-
frequency limit of nonresonant media.

[4] Spatial symmetries, given by the point symmetry class of the medium. (Described in lecture 6.)

Conditions for observing nonlinear optical interactions

Loosely formulated, a nonlinear response between light and matter depends on one of two key
indgredients: either there is a resonance between the light wave and some natural oscillation mode
of the medium, or the light is sufficiently intense. Direct resonance can occur in isolated intervals
of the electromagnetic spectrum at
• ultraviolet and visible frequencies (1015 s−1) where the oscillator corresponds to an electronic

transition of the medium,
• infrared (1013 s−1), where the medium has vibrational modes, and
• the far infrared-microwave range (1011 s−1), where there are rotational modes. These interac-

tions are also called one-photon processes, and are schematically illustrated in Fig. 3.

|a〉

|b〉

h̄ω h̄ω

The one-photon transition.

Figure 3. Transition scheme of the one-photon process.

The lower frequency modes can be excited at optical frequencies (1015 s−1) through indirect reso-
nant processes in which the difference in frequencies and wave vectors of two light waves, called the
pump and Stokes wave, respectively, matches the frequency and wave vector of one of these lower
frequency modes. These three-frequency interactions are sometime called two-photon processes.
In the case where there “lower frequency” mode is an electronic transition or in the vibrational
range (in which case the Stokes frequency can be of the same order of magnitude as that of the
light wave), this process is called Raman scattering.

|a〉 (initial)

|c〉 (final)

|b〉

h̄ω1 h̄ω2

The Stokes Raman transition.

|a〉 (final)

|c〉 (initial)

|b〉

h̄ω1 h̄ω2

The Anti-Stokes Raman transition.

Figure 4. Transition schemes of stimulated Raman Scattering.

The stimulated Raman scattering is essentially a two-photon process in which one photon at ω1

is absorbed and one photon at ω2 is emitted, while the material makes a transition from the
initial state |a〉 to the final state |c〉, as shown in Fig. 4. Energy conservation requires the Raman
resonance frequency (electronic or vibrational) to satisfy ~Ωca = ~(ω1 − ω2), and hence we may
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Figure 4.3: Quantum mechanical description of Raman transitions. (After
ref. [2].)

mechanically by assuming that the initial photon is absorbed, the molecule

rises to a state of higher energy and then immediately transfers back to

another lower energy state by emitting a photon. The anti-Stokes wave

is generated similarly with the exception that the �nal energy state of the

molecule is actually lower than the initial one, as shown in �gure 4.3.

Raman scattering can occur sponteneously, but the case of most interest
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in �ber optics is the so called stimulated Raman scattering (SRS) in which the

presence of a Stokes wave seeds Raman scattering and the pump wave keeps

amplifying the Stokes wave [89]. The frequencies which are ampli�ed in the

presence of a pump wave of a certain wavelength depend on the vibrational

modes of the material in which the light propagates. The normalized Raman

gain pro�le for fused silica is shown in �gure 4.4, but there can be slight

deviations from this in �bers due to doping and impurities. The actual

unnormalized magnitude of Raman gain depends inversely on the wavelength

of the pump beam. The e�ect of SRS is included in the mathematical model
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Figure 4.4: The normalized Raman gain pro�le of fused silica. The maximum
gain occurs for a frequency shift of approximately 13.2 THz.

by the Raman response function hR(t), which is the delayed part of the

response function R(t) mentioned in section 4.2. The function describes the

time domain behavior of molecular vibrations, and the Raman gain is directly

proportional to the imaginary part of the Fourier transform of hR(t), the real

part being related to the so called parametric gain, which is then related to

FWM [85].
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The e�ect of Raman gain in SC generation is clear: it transfers energy

from higher frequencies to lower frequencies. This can happen for example

if two pulses with a suitable wavelength separation overlap in time and the

pulse with the shorter wavelength transfers some of its energy to the other

pulse. Short pulses may have a spectrum broader than the Raman gain

bandwidth, and in that case the pulse transfers some of its own energy to

lower frequencies upon propagation. This leads to red-shift of the pulse, and

in the case of solitons this kind of intrapulse Raman scattering is known

as soliton self-frequency shift [30]. The frequency shift per unit distance is

inversely proportional to the fourth power of the duration of the soliton,

which means that the red-shift can become very rapid for short solitons [55].

4.6 The Nonlinear Propagation Equation

The derivation of the propagation equation is mathematically somewhat cum-

bersome, and a good presentation of this is given in [55], but it is helpful

to state the main assumptions and simpli�cations made during the deriva-

tion of the propagation equation. First, polarization e�ects are neglected

and the electric �eld and the induced polarization are assumed to be par-

allel. Second, Brilloun scattering is neglected. Third, single-mode propaga-

tion is assumed. Note that this is not a numerical approximation since the

�bers can be made to support one mode only. Fourth, only relevant third-

order nonlinear e�ects are taken into account. THG is neglected because
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of phase-mismatch, second-order e�ects are neglected because of centrosym-

metry, and higher-order e�ects are neglected because of their minuscle con-

tribution. Fifth, the nonlinearity is taken into account by using �rst-order

perturbation theory, which means that the nonlinearity only a�ects the ef-

fective propagation constant β but not the modal �eld distribution F (x, y).

The e�ect of the nonlinearity on the e�ective refractive index is thus justi-

�ably assumed small. Sixth, the frequency-dependence of the nonlinearity

is taken into account through a linear approximation. Seventh, the electric

�eld in the frequency domain centered around the frequency ω0 is of the form

Ẽ(r, ω − ω0) = Ã(z, ω − ω0)F (x, y) exp(iβ0z), where Ã is a slowly-varying

function of z such that we can approximate

∂2Ẽ

∂z2
= F (x, y) exp(iβ0z)

(
∂2Ã

∂z2
+ 2iβ0

∂Ã

∂z
− β2

0Ã

)
(4.13)

≈ F (x, y) exp(iβ0z)

(
2iβ0

∂Ã

∂z
− β2

0Ã

)
. (4.14)

This approximation is called the slowly-evolving-wave approximation (SEWA)

and dictates that the envelope A is not the change considerably over a prop-

agation distance of one wavelength [90]. Note that this approximation is not

the same as the slowly-varying-envelope approximation and does not impose

limitations on how many optical cycles must lie under the envelope A. The

SEWA is still valid for pulses down to the single cycle regime [90].

Under the aforementioned assumptions and using the reatarded time co-
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ordinate T = t − β1z, equation 3.10 can be shown to lead to the following

equation for the amplitude A(z, T ):

∂A

∂z
+
α

2
A−

∑
k≥2

ik+1

k!
βk
∂kA

∂T k

= iγ

(
1 + iτshock

∂

∂T

)A ∞∫
−∞

R(T ′)|A(z, T − T ′)|2dT ′
 . (4.15)

The left hand side models the dispersive e�ects (βk) and possible losses (α).

Note that the losses in Eq. (4.15) are assumed constant across the whole

spectrum, but frequency-dependent losses could be introduced by allowing

the dispersion parameters (βk) to be complex numbers. The right hand side

of Eq. 4.15 contains the e�ects of optical nonlinearities. γ is the nonlinear

parameter and R(T ) is the response function that includes both the instan-

taneous electronic contribution and the delayed molecular response. It is

customary to use either a time-domain response function or the experimen-

tally determined Raman pro�le [91] to model the Raman nonlinearity. The

spectral Raman pro�le is essentially the Fourier trasform of the time-domain

Raman response function, a transfer function. We note that the linear Ra-

man approximation cannot be used to accurately model the propagation of

broadband optical pulses [92], and the full experimental Raman pro�le [91]

is used in this study. The frequency-dependence of the nonlinearity is taken
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into account with τshock. The nonlinear parameter γ is given by

γ =
ω0n2(ω0)

cAe�(ω0)
, (4.16)

where Ae� is the e�ective mode area de�ned as

Ae� =

(∫ ∫∞
−∞ |F (x, y)|2 dxdy

)2
∫ ∫∞
−∞ |F (x, y)|4 dxdy

. (4.17)

If the modal distribution is approximated by a Gaussian function as in equa-

tion 3.20, the e�ective mode area is simply Ae� = πw2.

Equation 4.15 is the aforementioned GNLSE, and it has been shown to

accurately model nonlinear broadband pulse propagation in optical �bers

down to the single-cycle regime. [19, 90]. The scalar equation is valid if

�ber birefringence can be neglected or if one assumes that the electric �eld

is polarized along one of the principal axes of the �ber. Unless special care

is taken, �bers are birefringent in practice both because of the material used

and because of random variations in the �ber core shape. However, in this

study polarization e�ects can be neglected simply by virtue of the short

length of the �bers considered here [55].

4.7 Solving the GNLSE Numerically

The GNLSE admits no general analytical solutions for arbitrary input �elds,

and numerical methods to solve the equation have to be used instead. Equa-
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tion 4.15 can be solved numerically by various �nite di�erence and Runge-

Kutta methods, but to this day the split-step Fourier method (SSFM) re-

mains as one of the most sophisticated ones [55]. The Runge-Kutta pro-

cedure can also be implemented in this method for improved accuracy, but

usually reducing the step size does the same in terms of increased accuracy

and computational time.

The starting point for the SSFS is to write the GNLSE in the following

operator form:
∂A

∂z
=
(
D̂ + N̂

)
A, (4.18)

where

D̂ = −α
2

+
∑
k≥2

ik+1

k!
βk

∂k

∂T k
(4.19)

is a di�erential operator accounting for losses and dispersion, and N̂ is a

nonlinear operator accounting for �ber nonlinearities and the e�ect of which

on A is de�ned by [55, 19]

N̂A = iγ

(
1 + iτshock

∂

∂T

)A ∞∫
−∞

R(T ′)|A(z, T − T ′)|2dT ′
 . (4.20)

Note that the operator N̂ is z- and A-dependent while D̂ is not.

The SSFM is practically a �nite di�erence method with respect to the

spatial variable z, and one is eventually interested in calculating the value

A(z + h, T ) when A(z, T ) is known. The formal exact solution of equation
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4.18 for A(z + h, T ) is given by

A(z + h, T ) = exp

 z+h∫
z

{
D̂ + N̂(z′)

]
dz′

A(z, T ). (4.21)

The integral of D̂ is trivially hD̂, but the integral of N̂ is more tricky because

of its dependence on z and unknown values of A between the interval [z, z+h].

The obvious way to deal with this is to make the step size h small enough such

that A is approximately constant in the interval [z, z + h] and the integral

can thus be approximated by the known value hN̂(z). A more sophisticated

approach �rst exploits this approximation to calculate A(z + h, T ) and then

uses this approximate value and the trapezoidal rule to approximate the

value of the integral. The iteration can then be continued to obtain better

approximations for A(z + h, T ). Using the iterative trapezoidal procedure

can reduce the computational time, but for simplicity it is not used in this

treatment, and we simply approximate

A(z + h, T ) ≈ exp
[
h
(
D̂ + N̂

)]
A(z, T ). (4.22)

For computational purposes, a further approximation of the exponential

exp
[
h
(
D̂ + N̂

)]
is needed. It relies on the Baker-Hausdor� formula for

two non-commutating operators â and b̂ [93]:

exp(â) exp(b̂) = exp

(
â+ b̂+

1

2
[â, b̂] +

1

12
[â− b̂, [â, b̂]] + . . .

)
, (4.23)
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where [â, b̂] = âb̂− b̂â is the commutator. Now using â = hD̂ and b̂ = hN̂ we

see that the dominating error term in the approximation

exp
[
h
(
D̂ + N̂

)]
≈ exp

(
hD̂
)

exp
(
hN̂
)

(4.24)

arises from the commutator [hD̂, hN̂ ] and is thus proportional to h2. By

applying the B-H formula twice one can verify (after some algebra) that an

even better approximation is given by

exp
[
h
(
D̂ + N̂

)]
≈ exp

(
h

2
D̂

)
exp

(
hN̂
)

exp

(
h

2
D̂

)
, (4.25)

because then the dominant error term is proportional to h3. The SSFM

using equation 4.25 is sometimes called the symmetrized SSFM due to the

symmetrical nature of the right hand side of the equation. The di�erence

between the ordinary SSFM and the symmetrized one is that in the ordinary

version nonlinear e�ects are taken into account between �ber segments of

length h and in the symmetrized version the same is done in the middle of

each segment [55].

Equation 4.20 gives N̂A, but for computational purposes N̂ can be solved

by simply dividing N̂A by A. The convolution and the time-derivative in the

resulting expression are easiest to calculate in the frequency domain and

everything else is suitably done in the time domain. The operator exp
(
h
2
D̂
)

is also trivial to calculate in the frequency domain where it is a mere complex

number. The Matlab implementation of the symmetrized SSFM is then
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relatively fast due to Matlab's excellent suitability for matrix and vector

operations and its highly optimized fast Fourier transform (FFT) algorithm

[94].
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Chapter 5

Solitons and Other Solutions of the GNLSE

The GNLSE can only be solved analytically in some special cases, such

as when it can be reduced to the ordinary nonlinear Schrödinger equation

(NLSE) [57]. The NLSE is the GNLSE in the absence of losses, delayed non-

linearities (Raman e�ects), optical shock e�ects, and third- and higher-order

dispersion:
∂A

∂z
+ i

β2
2

∂2A

∂T 2
= iγ|A|2A. (5.1)

It is evident that E. (5.1) is considerably simpler than Eq. (4.15). The

NLSE, though here written for the envelope of the electric �eld propagating

in a waveguide, also shows up in various di�erent contexts besides nonlinear

optics, such as Bose-Einstein condensates, water waves, and plasmas. Natu-

rally the physical meaning of the equation's parameters are di�erent depend-

ing on the context, but the mathematical form is the same. Because this

equation describes a variety of physical processes, a great deal of e�ort has

been put into developing methods to obtain analytical solutions to it. The
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inverse scattering transform is among the most well known methods [95], but

exact solutions can also be obtained for example by using Hirota's method

[96], the truncated Painlevé expansion method [97], the tanh-method [98],

and the more recent generally projective Riccati equation method, which is

capable of constructing a multitude of families of solutions [99]. Although

the NLSE does not always accurately describe broadband pulse propagation,

its analytical solutions do exist in nature.

Arguably the most important analytical solution to the NLSE is the fun-

damental soliton. Without going into details of how to solve Eq. (5.1) from

scratch, the soliton solution can be constructed by assuming a �eld envelope

of the form A(z, T ) = A0sech(T/T0)e
i(bz+ϕ) with real parameters and where

A0 is positive (without loss of generality, as there is a phase factor of eiϕ).

Using this ansatz in Eq. 5.1 and multiplying each side by −iA−10 e−i(bz+ϕ)

yields

bsech
(
T

T0

)
+

β2
2T 2

0

[
sech

(
T

T0

)
− 2sech3

(
T

T0

)]
= γA2

0sech
(
T

T0

)
. (5.2)

From Eq. 5.2 we can see that the parameters in the ansatz need to satisfy

b = −β2/(2T 2
0 ) and γA2

0T
2
0 = −β2 in order for the ansatz to be a solution

to Eq. (5.1). Two things can readily be inferred: the nonlinearity (γ) and

GVD (β2 < 0) need to have opposite signs for solitons to exist, and there

is a relation between the amplitude A0 and the soliton duration T0. The

fundamental soliton therefore has only one free parameter, which can be
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taken to be either the amplitude or the duration. Since seconds tend to be

an easier concept to graps than watts of optical power, it is generally the

duration that is speci�ed when discussing solitons [54, 57].

Solitons can be thought of as pulses for which SPM exactly cancels the ef-

fects of anomalous dispersion, and it is therefore easy to understand why they

need to have a speci�c shape and why the peak power is connected to its du-

ration. Temporally short solitons have a broad spectrum, and dispersion then

has an easier time stretching and chirping the pulse in the time domain. To

compensate for the more drastic dispersive e�ects, the nonlinearity-induced

SPM needs to be stronger, which then requires the pulse to have a higher

peak power. There are thus several requirements for solitons: the GVD pa-

rameter β2 needs to be constant across the spectrum, the nonlinearity γ must

have the opposite sign compared to β2, the soliton needs to have a speci�c

functional form, and the peak power needs to have a certain value determined

by the soliton's duration.

Because of all the di�erent requirements for solitons, it is remarkable that

they even exist in nature. What is even more remarkable, is that they are,

in fact, very robust against all kinds of perturbations. If any of the relevant

parameters γ, β2, A0, or T0 changes for whatever reason during the soliton's

propagation, it can re-adjust its amplitude A0 and T0 such that the soliton

condition γA2
0T

2
0 = −β2 continues to be satis�ed. A detailed argument for

this was given by Menyuk [100], but for the sake of convincing the reader we

will consider a simple example of a soliton suddenly losing some of its energy
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in a �ber. First we note that the energy of a soliton (in our normalization)

is given by 2A2
0T0 = 2P0T0, where P0 = A2

0 is the peak power. If the power

P0 of a soliton abruptly decreases, the nonlinear e�ects will not be able to

compensate for the dispersion anymore and |γP0T
2
0 | < | − β2|. Dispersion

then stretches the pulse and its peak power decreases further. The energy

stays constant if there are no more losses present, but the pulse continues

to stretch in time. Through stretching in time, the pulse can increase the

product P0T
2
0 while keeping the product P0T0, or energy, constant. At some

later stage the soliton condition γP0T
2
0 = −β2 can then be ful�lled again.

The pulse then has a chance to stabilize into a soliton of longer duration.

For most optical materials the nonlinear parameter γ > 0, which means

that solitons require anomalous dispersion: β2 < 0. The soliton condition

can then be written as

N =

√
γP0T 2

0

|β2|
= 1. (5.3)

This unitless quantity N is closely related to the other analytical solutions

of the NLSE, and as was seen above, the fundamental soliton has N =

1. Doubling the soliton order by suitably increasing the soliton's duration

and/or peak power and using this as an input to the system described by

the NLSE leads to a pulse that periodically (with respect to the distance

z) regains its original shape. The temporal and spectral pro�le of such a

second-order soliton both oscillate with z. A third-order soliton with N = 3

experiences similar periodic behavior with a di�erent period and di�erent
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temporal and spectral pro�les.

Whereas the fundamental soliton is robust against perturbations, higher-

order solitons are highly unstable in the presence of Raman-scattering and

optical shock e�ects, and even the inclusion of third-order dispersion can,

depending on its magnitude, cause an N th order soliton to break into N

fundamental solitons [55]. This is called soliton �ssion and highlights the

meaning of the soliton order N . Because of the instabilities, no higher-order

solitons can be observed in optical �bers over long distances unless their

propagation is described by the NLSE with only second-order dispersion and

Kerr-e�ect present. Even in that case, solitons of su�ciently high orders tend

to undergo soliton �ssion and break down to their constituents due to noisy

input conditions. Figure 5.1 shows the evolution of a second-order soliton in

the anomalously dispersive �ber of Fig. 4.2 modeled using (a) the GNLSE

and (b) NLSE. The NLSE would predict incorrect behavior of the system

and the respective �gure shows the ideal periodic evolution of a second-order

soliton.

In certain cases (i.e. for long pulses that are not too intense) the GNLSE

can be reduced to the simpler NLSE equation while retaining the ability

to accurately model the physics of pulse propagation [55]. Indeed, solitons

of second and third orders were observed in the same experiment that was

at the same time the �rst demonstration of the fundamental soliton in an

optical �ber [32]. Thus, even if higher-order solitons are unstable, they are
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Figure 5.1: The evolution of a second-order soliton with slight input noise
simulated using a) the GNSLE and b) the NLSE. The NLSE predicts incor-
rect, seemingly periodic behavior. In reality the pulse would break into two
solitons as shown in a). The solitons are labeled S1 and S2.

not mere mathematical curiosities but real phenomena that can occur in

optical �bers. Fundamental and higher-order solitons are also not the only

analytical solutions to the NLSE. The solutions discussed above all have the

property of being sech-shaped a certain points during their evolution and

evolving periodically with respect to propagation distance [101]. There are

also solutions that are periodic in time but not in space [102], solutions that

are periodic in both [57], and solutions that are periodic in neither time nor

space [103]. These other types of more exotic analytical solutions of the NLSE

have also been observed experimentally in optical �bers, among them dark

solitons [104], Akhmediev breathers [105], the Peregrine soliton [106], and

the Kuznetsov-Ma soliton [107]. Fiber optics is not the only platform where

the NLSE is used to model a phenomenon, and soliton solutions can also be
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demonstrated in other systems. In fact, the �rst documented experimental

observation of a fundamental soliton was for a water wave in a Scottish canal

in 1834 [108], and since then the Peregrine soliton as well as others have also

been demonstrated in a water tank [109].

Although fundamental solitons are generally robust, they can and do

change their parameters in the presence of perturbations. The di�erent terms

in the GNLSE [Eq. (4.15)] modify various aspects of solitons compared to

the ideal solutions of the simpler NLSE [Eq. (5.1)]. Among the simplest

perturbations is linear loss: α > 0 in Eq. (4.15). Loss causes the soliton

to continuously readjust as it is losing energy, and such dissipative solitons

have been extensively studied in various contexts. Another perturbation

with somewhat intuitive consequences is third- and higher-order dispersion.

Third-order and other odd-order dispersion terms distort the soliton shape

asymmetrically [110] while the even-order dispersive terms contribute a sym-

metric change in their shape. Depending on their sign and relative magni-

tude, higher-order dispersive terms can also introduce a spectral region of

normal dispersion where β2 > 0 and solitons cannot exist. This can lead to

the emission of dispersive waves [111]. Dispersive wave emission is also called

dispersive radiation, soliton radiation, and optical Cherenkov radiation, and

it means the process in which a pulse emits a blue-shifted dispersive wave in

the normal dispersion regime while adjusting itself to become a soliton.

Losses and dispersive e�ects are the linear e�ects that can a�ect the

evolution dynamics of the soliton. The nonlinear e�ects also have interesting
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consequences in the context of solitons. The Raman e�ect, as described by

the delayed part of the response function R(T ) in Eq. (4.15), leads to energy

transfer from short wavelengths to longer ones. For solitons this means that

the short-wavelength side (blue side) of its spectrum is losing energy while the

long-wavelength side (red side) is gaining it upon propagation. The Raman

e�ect therefore manifests as an e�ective red shift of the whole spectrum. This

is the soliton self-frequency shift phenomenon [30]. The rate of the SSFS is

proportional to 1/T 4
0 where T0 is the duration of the soliton, which means

that SSFS becomes very e�cient for short pulses and plays little role for very

long pulses.

The optical shock e�ects are described by the time scale τshock ≈ 1/ω0 in

Eq. (4.15). Essentially they describe the frequency-dependence of the non-

linear parameter γ. The main physical origin of this frequency-dependence

is the dependency of the e�ective mode area on the wavelength. Assume,

for simplicity, that the response function R(T ) in the convolution integral of

Eq. (4.15) only consists of the instantaneous delta function part related to

the Kerr e�ect, and neglect everything except for the shock term in Eq. (4.15)

:
∂A(z, T )

∂z
= −γτshock

∂

∂T

[
A(z, T )|A(z, T )|2

]
(5.4)

It can easily be seen that (for γτshock > 0) the shock term contributes an

increase to |A| upon propagation in the parts where |A| decreases with respect

to time. This means that the shock term causes the amplitude of a pulse
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to increase in its trailing edge and decrease in its leading edge. This would

eventually lead to the formation of an envelope that has an abrupt drop in

amplitude with respect to time in its trailing edge, an optical shock wave

[54].

5.1 Solitons in Fiber Ampli�ers

None of the phenomena described above that a�ect soliton evolution dy-

namics have the ability to signi�cantly enhance the nonlinear e�ects. Group

velocity dispersion plays a role in determining the relation between a soli-

ton's peak power and its duration and higher-order dispersion induces slight

changes to the soliton spectrum and in the time domain. Optical shock ef-

fects distort the spectrum of an ideal soliton with some contribution to spec-

tral broadening, whereas Raman scattering shifts the whole soliton spectrum

continuously to longer wavelengths. While the red shift can be drastic, it

generally does not broaden the spectrum. The e�ect of losses is to gradually

decrease the total energy of the soliton, and if the soliton is able to keep up

with this, its duration has to increase for it to remain a soliton. An increase

in duration translates to a narrower spectrum for unchirped pulses such as

solitons.

The fact that linear losses increase the duration and decrease the spectral

extent of solitons begs the question: what would happen if the loss param-

eter α were to �ip its sign? An obvious answer would be that the solitons
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must decrease in duration and grow in amplitude, which would naturally en-

hance nonlinearities. Negative loss naturally corresponds to gain, and gain

can be realized in �bers through doping them with rare-earth metals and

pumping them with suitable wavelengths [55]. The rare-earth metal required

depends on the wavelength band of operation, with erbium being by far the

most common due to its ability to provide gain around the 1.55 µm telecom

window [112, 113]. Solitons experiencing gain were �rst studied for their po-

tential applications in communication systems. Dispersion and nonlinearities

would cancel each other out in a soliton communication link, which means

that �ber losses would then become the limiting factor for long-haul systems.

Therefore, the solitons would need to be periodically ampli�ed.

In the presence of gain, the soliton has to adjust to its increasing en-

ergy, which can change the dynamics more drastically than loss, especially

if the gain is high. The early research on solitons in �ber ampli�ers focused

solely on potential applications in optical communication systems and most

of the computational studies neglected possibly signi�cant e�ects, such as

Raman scattering and optical shock e�ects [114, 115, 116, 117, 118, 119].

However, Raman could be expected to play a major role in shaping the evo-

lution dynamics of solitons in �ber ampli�ers. This is because solitons that

gain energy must decrease their duration and increase their peak power to

remain solitons, and as their duration decreases, the Raman induced SSFS

becomes more and more e�cient. Following [3], this section consists of a

thorough study on what happens to a soliton in an erbium-doped �ber am-
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pli�er (EDFA) using the full GNLSE including Raman gain and optical shock

e�ects.

We consider a single EDFA and study the evolution of femtosecond pulses

in it. The launched pulses have less energy than that required to form a

soliton of the same duration. The ampli�er then �rst ampli�es the pulse into

a soliton and even further, and multiple cascaded fundamental solitons are

created at di�erent distances within the ampli�er. Each of them separates

from the main input pulse because of SSFS that moves them outside the gain

bandwidth of the ampli�er. Multiple fundamental solitons can also form in

passive �bers through modulation instability (long pulses) or soliton �ssion

(short pulses), and both of these processes lead to simultaneous generation

of solitons of di�erent powers and durations [19]. The �ber ampli�er allows

for the generation of multiple cascaded solitons of nearly the same widths

and peak powers, without requiring modulation instability or soliton �ssion.

To study the evolution of short optical pulses inside an EDFA, we rewrite

the GNLSE of Eq. (4.15) in the frequency domain to account for the frequency-

dependent ampli�er gain. Equation (4.15) then takes the following form in

the frequency domain:

∂Ã

∂z
− i[β(ω)− β(ω0)− β1(ω − ω0)]Ã

=
g(ω)

2
Ã+ iγ(ω)F

{
A

∫ +∞

−∞
R(T ′)|A(z, T − T ′)|2dT ′

}
(ω), (5.5)

where F is the Fourier transform operator, Ã(z, ω) = F{A(z, t)} is the
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Fourier transform of the complex pulse envelope A(z, t), β(ω) is the prop-

agation constant of the optical mode, β1 = dβ/dω calculated at the car-

rier frequency ω0 of the pulse, and T = t − β1z is the time measured

in a frame moving with the input pulse group velocity. The nonlinear

e�ects are included through the parameter γ(ω) and a response function

R(t) = (1 − fR)δ(t) + fRhR(t) that includes the Kerr nonlinearity through

the Dirac delta function and Raman nonlinearity through the commonly used

form of the Raman response function hR(T ) for silica with fR = 0.18 [54].

The frequency-dependent ampli�er gain G(z, ω) = eg(ω)z is taken to be nearly

�at over the ampli�er bandwidth Ω and is included using a super-Gaussian

pro�le:

G(ω) = (G0 − 1) exp

[
−
(

(ω − ω0)

Ω/2

)4
]

+ 1, (5.6)

where G0 is the maximum gain of the ampli�er. Losses have been neglected

here since they are compensated for by the gain, but they could trivially be

lumped together with the gain parameter.

Eq. (5.5) is solved numerically with the split-step Fourier method for a

20-m-long EDFA with its zero-dispersion wavelength at 1490 nm. Its gain

spectrum is centered at 1550 nm (λ0 = 2πc/ω0 = 1550 nm) and it has a 40-

nm gain bandwidth [Ω/(2π) = 5 THz], all typical values for EDFAs used in

telecommunications. The dispersion parameters around the center frequency

ω0 are β2 = −5.68 ps2/km and β3 = 0.13 ps3/km at 1550 nm. The nonlinear

parameter has the form γ(ω) = γ0ω/ω0, where γ0 = γ(ω0) = 2 W−1/km.
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Note that γ is not constant across the whole spectrum and therefore has the

optical shock e�ects incorporated into it. The amplitude of the input pulse

has the form A(0, T ) =
√
P0 sech(T/T0) with T0 = 50 fs (full width at half

maximum 88 fs). Its peak power P0 is chosen such that the input soliton

order is N = T0
√
γ0P0/|β2| = 0.7, resulting in a peak power of 500 W. The

peak gain G0 of the EDFA is speci�ed in units of dB/m and is varied between

0 and 4 dB/m.

Figure 5.2 shows the temporal evolution of the 88 fs pulse over 20 m

for G0 = 1, 2, and 4 dB/m (normalized to the initial pulse amplitude).

For G0 = 1 dB/m, the central part of the input pulse forms a fundamental

soliton (N = 1) after 3 m of propagation, and its spectrum begins to red-

shift because of the SSFS [54], resulting in bending of the soliton trajectory

owing to a reduction in its speed relative to the input pulse. The SSFS

is e�cient for the soliton because its width is a fraction of the input pulse

width. Ampli�cation of this soliton stops after its spectrum moves out of

the ampli�er bandwidth, but the pulse remnants at the original temporal

location continue to be ampli�ed as seen in Fig. 5.2(a). We even see the

formation of a second soliton at a distance of about 15 m. Indeed, for a

higher gain of G0 = 2 dB/m in Fig. 5.2(b) we observe multiple cascaded

solitons form at di�erent distances, and their trajectories bend toward the

right because of SSFS. Each soliton also sheds some energy in the form of a

dispersive wave (DW), as seen in Fig. 5.2(b). The situation becomes much

more complex in Fig. 5.2(c) where the ampli�er gain is increased to 4 dB/m.
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Figure 5.2: Temporal evolution of an 88 fs pulse over 20 m of active �ber
for (a) G0 = 1, (b) 2, and (c) 4 dB/m. Bent trajectories show cascaded red-
shifted solitons forming at di�erent propagation distances inside the �ber
ampli�er. After [3].



CHAPTER 5. SOLITONS AND OTHER SOLUTIONS OF THE GNLSE 80

A large number of cascaded solitons emerge, together with their DWs that

travel at di�erent speeds and occasionally collide with the solitons.
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Figure 5.3: Spectral [(a) and (c)] and temporal [(b) and (d)] evolution under
the conditions of Fig. 1 with G0 = 3 dB/m. The temporal FWHM is 88 fs
in [(a) and (b)] and 880 fs in [(c) and (d)] . The ZDW of the �ber is marked
by a black line, and the dashed lines show the gain band. The input soliton
order is 0.7 for both cases. After [3].

One may wonder how the pulse spectrum evolves inside a �ber ampli�er

and how the input pulse duration a�ects the evolution. Figure 5.3 shows the

spectral and temporal evolutions for two di�erent input pulse durations for

an ampli�er with a gain of 3 dB/m. Figures 5.3(a) and 5.3(b) clearly show
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the red-shifted spectral bands of the �rst two solitons formed at distances

of approximately 2 and 6 m. Beyond that several solitons emerge in rapid

succession so that their spectra overlap. At the ampli�er output, a kind

of SC is formed with two broad bands on each side of the input spectrum.

The band on the red side belongs to multiple fundamental solitons, and

the one on the blue side to the corresponding DWs. It is noteworthy that,

unlike in conventional SC generation, the spectral broadening here is not

based on soliton �ssion because the pulse energy never reaches the level that

can support even a second-order soliton. Instead, the spectral broadening

is solely due to SSFS, DW generation, soliton collisions, and interactions

between DWs and solitons.

In the extreme, soliton interactions can lead to the generation of ab-

normally red-shifted rogue solitons [120, 121, 122]. Figs. 5.3(c) and 5.3(d)

show signs of such a rogue wave being generated after 15 m of propagation.

The rogue wave subsequently passes through a train of trailing edge solitons

obeying optical Newton's cradle dynamics and gaining more energy from the

weaker solitons [123]. The scattering of the previously generated DWs o� the

moving refractive index barriers associated with the intense rogue solitons

then causes the DWs to blue-shift further, as seen after 17 m of propagation.

Soliton-DW interactions can also a�ect the soliton trajectories and therefore

mediate soliton collisions [124]. However, such collisions are less common

here than in conventional SC generation, which might be bene�cial in terms

of coherence and control over the evolution dynamics.
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The active �ber succeeds in inhibiting soliton collisions because all the

leading edge solitons emerge from nearly identical surroundings but at di�er-

ent points in space and time. Because of SSFS, the solitons' group velocities

are such that they help preserve the existing temporal gaps between them.

Second, the solitons become surrounded by DWs on both sides, and the e�ect

of one DW on the trajectory of a soliton will be at least partially negated

by that of another DW on the other side of the soliton. These e�ects can be

seen in Figs. 5.2 and 5.3 where we have numerous solitons with nearly paral-

lel trajectories in a sea of DWs, and soliton collisions occur mostly between

leading edge and trailing edge solitons.

It is clear from Figs. 5.2 and 5.3 that a single optical pulse propagating

inside an optical ampli�er can produce a cascade of ultrashort fundamental

solitons, whose wavelengths are di�erent at the ampli�er output because each

soliton forms at a di�erent distance before experiencing the SSFS through

intrapulse Raman scattering. The dynamics of these solitons exhibit rich

behavior because of the simultaneous presence of a DW associated with each

soliton and the possibility of collisions between two solitons or between a soli-

ton and a DW. The number of solitons created can be controlled by varying

the rate of ampli�cation and the length over which pulse ampli�cation occurs.

As an example, we study the case in which the optical gain exists only

over the �rst few meters, i.e., an active section is followed by a passive �ber

section. Figure 5.4 shows the temporal and spectral evolutions in two cases

with G0 = 3 dB/m. The gain is turned o� after 2.5 m in the top row but after
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Figure 5.4: Spectral [(a) and (d)] and temporal [(c) and (f)] evolution when
the �ber is active over 2.5 m (top row) and 7.5 m (bottom row). The ZDW
of the �ber is marked by a black line, and the vertical dashed lines show the
gain band. The soliton order N of the pulse remnants is shown in parts (b)
and (e). After [3].

7 m in the bottom row. As seen in the �gure, only a single soliton forms in the

low-gain case. The soliton decelerates even in the passive section and moves

slower compared to the pulse remnants because of the SSFS [57]. A DW

also appears because of energy transfer from the soliton at a phase-matched

frequency during the process of spectral shifting [see parts (a) and (c)]. Since

both the DW and the soliton spectra are distinct from the spectrum of input

pulse, we can approximately calculate the soliton order by �tting a hyperbolic
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secant to the pulse remnants. The results are shown in Fig. 5.4(b), where we

see that N exceeds 1 in the active section but drops to well below 1 in the

passive section. In contrast, if the gain is kept on for a longer distance (parts

d to f), the remnants continue to be ampli�ed causing a second fundamental

soliton to be generated at about 7.5 m, as seen in Figs. 5.4(d) and 5.4(f). The

corresponding soliton order of the pulse remnants is shown in Fig. 5.4(e).

It should be clear by now that the number of fundamental solitons at the

ampli�er output depends heavily on the total gain G0 of the ampli�er. Figure

5.5 shows the number of solitons formed at the end of a 20-meter-long �ber

ampli�er (no passive section) as a function of G0 for two di�erent widths

of the input pulse. The solitons were counted manually from the evolution

traces such as the ones shown in Fig. 5.2. In order for a pulse to be counted

as a soliton, it was required that the soliton had started to separate itself

from its surroundings and that its spectrum had begun to red-shift. Hence,

we interpret Fig. 5.2(a) as showing only one soliton, as the formation of the

other soliton amidst the pump remnants is not quite complete yet. Figure

5.2(b) shows six solitons, all of which are clearly red-shifting and moving

slower with respect to the background.

As expected, Fig. 5.5 shows that the number of solitons at the ampli�er

output increases with the total gain. For low gains (G0 < 22 dB), a low-

energy input pulse forms a soliton within few meters as N approaches 1

and then retains its soliton nature by reshaping itself to become shorter to

account for the lack of initial energy. This phenomenon of adiabatic soliton
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ampli�er as a function of total gain for two input pulses of di�erent widths
launched with N = 0.7. After [3].

compression is well known [114, 119]. It should be stressed that energy for

the soliton comes mostly from the central region of the input pulse. After

a certain gain threshold that depends on the input pulse duration, the gain

is large enough to amplify and reshape the pulse remnants (mostly pulse

wings) into another soliton, after the �rst soliton has moved away because

of its slowing down through the SSFS. This process repeats, and G0 is

increased even more solitons are formed. The leading portion of the input

pulse accounts for the formation of most solitons (see Figs. 5.2 and 5.3). This

is because the SSFS-induced deceleration causes each soliton to lag behind

and overlap with the trailing portion. As the solitons slow down, they deplete

the trailing edge through nonlinear interactions that transfer energy to the

solitons. As a result, remaining pulse energy becomes heavily concentrated

near the leading edge [see Figs. 5.3(b) and 5.3(d)].

Figure 5.5 shows that the number of solitons ns at the ampli�er output
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also depends on the width of input pulses. For short pulses (T0 = 50 fs),

ns increases almost linearly with ln(G0), or exponentially with G0. This de-

pendence becomes superlinear (or super-exponential) for wider pulses with

T0 = 500 fs. One can understand this feature as follows. For wider pulses

the energy is more spread in time. Therefore, it takes a longer distance for a

soliton formed near the leading edge of the pulse to reach its trailing edge. If

the gain is large enough, the trailing edge of the input pulse can have enough

time to create a soliton before it is consumed by the decelerating soliton. By

the time the soliton from the leading edge reaches the newly formed trailing-

edge soliton, their frequency separation is too large for the two solitons to

collide and interact nonlinearly. As a result, both solitons survive and sepa-

rate from the input pulse. The solitons formed in the trailing region of the

long input pulse are responsible for the superlinear behavior seen in Fig. 5.5.

The solitons forming in the trailing edge start red-shifting and lagging be-

hind, and during this process they gain energy from the non-solitonic trailing

edge pulse remnants through the Raman e�ect. The trailing edge solitons

have a group velocity closer to the pulse remnants and therefore nonlinear

interactions between these solitons and the trailing edge pulse remnants take

place over longer propagation distances, making the energy transfer to the

solitons more e�cient. As the trailing edge pulse remnants lose energy to the

solitons, there is less energy left to form more solitons through gain, and the

growth of the number of solitons with increasing total �ber gain saturates

back to linear when the total gain is greater than 50 dB, as can be seen in



CHAPTER 5. SOLITONS AND OTHER SOLUTIONS OF THE GNLSE 87

Fig. 5.5. The larger number of trailing edge solitons for longer pulses is also

evident in the di�erences between the short pulse temporal evolution shown

in Fig. 5.3(b) and the longe pulse evolution shown in 5.3(d). Few trailing

edge solitons can be seen in Fig. 5.3(b), whereas they are plentiful in 5.3(d)

and many of them survive the collisions between leading edge solitons, as can

be seen between the 5 m and 15 m marks in Fig. 5.3(d).

The total gain also a�ects the spectral extent of the output. To study the

e�ect of gain on the output spectrum, we de�ne the spectral range Sr as the

di�erence between the largest and smallest frequencies for which the spectral

power is 50 dB below the maximum value. Note that this de�nition allows

for gaps in the spectrum and should not be thought of as the bandwidth of

the output spectrum. Figure 5.6 shows how Sr at di�erent distances of the

active �ber depends on the total gain G0 for the same two di�erent pulse

durations used in Fig. 5.5.

One can identify several di�erent regions in Fig. 5.6. The spectral range

is below 20 THz in the blue region where the pulse evolves to form a fun-

damental soliton that slowly red-shifts through the SSFS. The transition to

the teal/green region of Fig. 5.6(a) indicates the emission of a blue-shifted

DW that increases Sr to nearly 50 THz (or 400 nm). For example for 60 dB

total gain the DW is emitted around 2.5 m, as seen in Fig. 5.3(a). Hence

there is an abrupt change in the spectral range around 2.5 m. When the

gain is su�cient, the �rst soliton continues to be ampli�ed before it leaves

the gain window all the way up to the point where it needs to readjust by
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Figure 5.6: Spectral range (color coded) as a function of propagation distance
and total gain for input pulses with (a) T0 = 50 and (b) 500 fs (N = 0.7
in both cases). Di�erent nonlinear processes responsible for spectral changes
are indicated. After [3].

shedding o� a DW. Further propagation gradually extends Sr because the

SSFS increases the frequency separation between the DW and the soliton.

Indeed, Sr is close to 70 THz in the yellow region in Fig. 5.6.

For the short-pulse case shown in part (a) a second smaller abrupt change

occurs when the gain is high enough (red region forG0 > 40 dB). The physical

reason for this change is related to re�ection of a DW from the moving index

boundary created by a decelerating soliton formed later. As is well known,

such temporal re�ections cause the DW to blue-shift further [125, 126] and

eventually extend the spectral range to beyond 100 THz. This is also visible

in Figs. 5.3(a) and 5.3(b) where a blue-shifted new DW component appears

after 15 m. The same physical processes occur in the case of longer pulses

shown in Fig. 5.6(b) with some di�erences. First, the increase in the spectral



CHAPTER 5. SOLITONS AND OTHER SOLUTIONS OF THE GNLSE 89

extent is more gradual after the �rst DW generation. It can be attributed

to interactions between two or more solitons and between a soliton and a

DW, as can be seen in Figs. 5.3(c) and 5.3(d). Second, extension to the

red side can also happen through the formation of an abnormally red-shifted

soliton (an example of an optical rogue wave) because of in-phase collisions

of solitons [120, 121, 122].

To conclude this section, the propagation of short optical pulses (width

< 1 ps) inside �ber ampli�ers was investigated. The input pulses had less

energy than what is required to form a soliton of equal duration. It was

shown that the ampli�cation leads to a cascade of independent fundamental

solitons that appear at the ampli�er output as temporally separated solitons

of di�erent wavelengths. The cascading process has its origin in the SSFS

that red-shifts the spectrum of solitons while also slowing them down. The

associated spectral broadening was attributed to soliton interactions and DW

generation. The leading portion of the input pulse was shown to be responsi-

ble for the generation of the vast majority of solitons for ultrashort pulses but

the trailing part was also found to generate solitons for wider input pulses.

It was also found that the number of solitons at the �ber output depends

not only on the total gain but also on the width of the input pulse. Even

though the EDFA here had a 40-nm gain bandwidth, the results are more

general and should apply to all �ber ampli�ers, as long as the dispersion

is anomalous within the gain bandwidth. The results are interesting from a

fundamental perspective but they also point to a potential application. Tem-
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porally separated pulses of di�erent wavelengths are often required in practice

for applications in areas such as optical coherence tomography (OCT) [127],

spectroscopy [128], and multi-spectral imaging [129]. The results show that a

�ber ampli�er can be used to produce such pulses. Moreover, relative delays

and wavelengths of di�erent pulses are controllable through the length and

gain of the ampli�er and the width and peak power of the input pulse.
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Chapter 6

Supercontinuum Generation

6.1 Overview

The broad spectra observed in the previous section in the context of solitons

in �ber ampli�ers are an example of a supercontinuum: a broad spectrum

sculpted from a narrower input spectrum through optical nonlinearities. The

discovery of supercontinuum is credited to Alfano and Shapiro [10, 11, 12]

who observed spectral broadening spanning the visible range from 400 nm to

700 nm in a crystal. They explained their �ndings in terms of the third-order

nonlinear optical processes of self-phase modulation and four-wave mixing.

For the �rst few years since its discovery, only bulk materials were used

to generate supercontinua and the application for it was Raman absorption

spectroscopy [14].

Due to di�raction in bulk media, supercontinuum generation generally

happens over a small spatial region at the focus of an intense laser beam.

Waveguides allow for both tighter con�nement of light as well as longer in-
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teraction distances, and would therefore be ideal candidates for a SC plat-

form. The �rst experiments of a waveguide based SC were done by Lin and

Stolen in 1976 [13] who observed SC generation in an optical �ber pumped

in the normal dispersion regime. The spectral broadening in waveguides was

attributed to Raman scattering, SPM, XPM, and FWM [130, 131, 132]. Sub-

sequent studies with pump wavelengths at 1310 nm and 1550 nm were able to

recognize the major role of soliton propagation, SSFS [30], and the breakup

of pulses through soliton �ssion [133, 134, 135, 136, 137, 138].

After the �rst demonstrations of supercontinuum generation around the

1550 nm range, it attracted considerable attention due to its potential ap-

plications in telecommunications and speci�cally in wavelength division mul-

tiplexing [15, 139, 140]. These studies were crucial in establishing a link

between the input pulse wavelength and the dispersion pro�le of the �ber.

After the invention of the photonic crystal �ber [17], an extreme example of

the e�ects of �ber dispersion on SC dynamics was provided by Ranka et al.

through an experimental demonstration of SC generation in this novel �ber

[18].

Photonic crystal �bers allow for very widely tunable dispersion properties

as well as high con�nement of light due to their small cores and high refrac-

tive index contrast between the core area and the cladding, making them

ideal for supercontinuum generation. Since the �rst demonstration, super-

continuum generation in photonic crystal �bers has been studied extensively

[19]. Supercontinuum generation in �bers can be roughly divided into two
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regimes: the long pulse regime and the short pulse regime, where the long

pulse regime is understood to cover CW SC generation [85]. In the anomalous

dispersion regime the corresponding evolution dynamics are initially domi-

nated by soliton �ssion for short pulses and MI for longer pulses. The e�ect

of MI is to break a longer pulse into a train of pulses that evolve into solitons.

Soliton dynamics play an important role in both regimes because the gen-

erated fundamental solitons experience subsequent changes in their spectra

and contribute signi�cantly to the spectral broadening and other relevant SC

characteristics

The short-pulse regime covers the situations where the input pulse du-

ration is of the order of tens to hundreds of femtoseconds [19]. The actual

distinction between the short- and long-pulse regimes depends also on �ber

and laser parameters. When the input pulse spectrum lies mostly in the

normal dispersion regime, the initial spectral broadening in the short-pulse

regime is caused by SPM. In the anomalous dispersion regime the initial pulse

roughly corresponds to a higher-order soliton, and were it only for GVD and

SPM, a higher-order soliton would evolve in a periodic manner [57]. However,

the perturbations in the form of shock e�ects, higher-order dispersion, and

Raman scattering will cause the N th order soliton to undergo soliton �ssion

and break into N or fewer fundamental solitons (see �gure 6.1). In practice,

the amount of fundamental solitons created will only be equal to N if N is

su�ciently small. Otherwise some of the energy of the initial pulse will be

transferred to dispersive waves. The more energy the dispersive waves get,
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the less there is left for solitons, and consequently fewer fundamental solitons

will be formed.

Figure 6.1: Temporal and spectral evolution of a 200 fs, 1.6 kW sech-pulse in
a �ber with γ = 0.015 (m·W)-1, β2 = −8.56 ps2/km, β3 = 6.87·10−2 ps3/km,
and β4 = −9.29 · 10−5 ps4/km. The �gures in the left column are on linear
scale and the color axis has been cut at 500 W for clarity. The spectral
evolution is color coded in a logarithmic scale. The two brightest solitons
have been labeled S1 and S2 in the temporal trace. The soliton and DW
parts of the spectral trace have been labeled by S and DW, respectively.

Figure 6.1 shows the temporal and spectral evolution of a 200 fs sech-pulse

of 1.6 kW peak power. The soliton order is approximately 6.0077. Note that

most of the energy has been transferred to the two brightest solitons S1 and

S2 after 70 centimeters of propagation. Four smaller peaks are clearly visible,

but their solitonic nature is not as obvious. Besides soliton �ssion, also other
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relevant phenomena can be seen in �gure 6.1.

One of the most notable features is that the two most powerful solitons,

especially the most intense one labeled S1, have curved trajectories in the

time domain. This means that upon propagation, the solitons start deceler-

ating lagging more and more behind. It is caused by the combined e�ects

of anomalous dispersion mentioned in section 3.4.1 and intrapulse Raman

scattering in the form of SSFS mentioned in section 4.5. The brighter soli-

tons have longer wavelengths than other remains of the initial pulse, which

is why anomalous dispersion causes them to lag behind in the �rst place.

SSFS causes the solitons to red-shift more, which in turn causes the solitons

to decelerate. Hence the curved trajectory. Because solitons of higher peak

power must have shorter durations and the rate of the SSFS is inversely pro-

portional to the fourth power of the duration, higher peak power means more

red-shift and more lag. The red-shift of the most intense soliton can also be

seen in the spectral trace of �gure 6.1.

Another feature that can be seen in both spectral and temporal traces

is the emission of dispersive waves. The DW generated right after 20 cm of

propagation is clearly visible, and the spectral trace shows it around 365 THz.

It can be seen that the DW lags behind the most intense soliton although

it should, according to the chromatic dispersion pro�le, move faster than

the soliton. This is known as soliton trapping, and it can also occur for

pairs of solitons, as was the case in the �rst experimental observation of

the phenomenon [141]. The explanation is that the intense soliton causes
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the DW to experience a higher refractive index due to XPM (see section

4.3), and it cannot move past the soliton. Because the DW and the soliton

overlap temporally and propagate at similar velocities, they can interact

and exchange energy with each other. Indeed, it has been shown [142, 143]

that XPM and FWM can cause the DW to blue-shift and that the soliton

experiences red-shift that is greater than what can be explained by the SSFS

alone [125]. This cross-talk between a soliton and a DW can contribute

signi�cantly to the spectral broadening, and the usage of tapered �bers can

enhance it even further [144].

The long-pulse regime refers to SC generation using pico- and nanosecond

input pulses and CW lasers. Both in the anomalous and the normal disper-

sion regimes the initially dominating nonlinear process is FWM (see section

4.4). The pump beam provides ampli�cation for those sidebands that satisfy

the phase-matching condition to a certain degree.

Figure 6.2 shows the evolution of a SC generated using a picosecond input

pulse, the central frequency of which lies in the anomalous GVD regime. The

peak power is the same as in the short pulse case shown in �gure 6.1, so the

picosecond pulse has �ve times more energy than the 200 fs pulse. Yet the

spectral broadening starts at a later stage (around 45 cm) and builds up

slower than in the short pulse case. The spectrum at the �ber output is also

�atter and broader.

The e�ect of MI can be clearly seen in both the temporal and spectral

traces of �gure 6.2. The �rst-order sidebands become visible after 40 cm
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Figure 6.2: Temporal and spectral evolution of a 1 ps, 1.6 kW pulse. The
left �gures are on linear scale and the color axis has been cut at 5 kW for
clarity. The spectral evolution is plotted using a logarithmic scale.

of propagation and the higher-order sidebands after 50 centimeters. The

time domain manifestation of these sidebands can be seen as the sinusoidal

modulation of the pulse. The modulation deepends with the formation of

additional sidebands and a train of pulses is formed. The pulses then start

experiencing intrapulse Raman scattering and can form solitons, the curved

trajectories of which can be seen in the temporal trace. After 60 centimeters

of propagation, soliton dynamics start to play an increasingly important role

in the evolution.

Because the initially dominating process for long-pulse regime SC gener-

ation is MI and the sidebands grow from noise, long-pulse regime SC could
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be expected to be highly sensitive to the initial noise. The output spectra,

such as the one in Fig. 6.2 would look very di�erent, had the input noise been

something else. The input noise in that simulation was nothing but quantum

shot noise, which is the fundamental noise limit or the lowest possible noise

possible - even in the ideal case. This noise cannot be controlled, which means

that the output spectra would �uctuate considerably from one realization to

another, simulated or done in the laboratory. The soliton �ssion process,

on the other hand, is a lot more robust to input perturbation, as it is not

induced by noise like MI. A vast range of important applications of supercon-

tinuum require both high shot-to-shot stability and a wide spectrum. Due to

the di�erent nonlinear phenomena responsible for the spectral broadening,

supercontinua generated with short pulses have superior stability properties,

whereas longer pulses generally lead to wider and �atter spectra since it is

easier to achieve higher energies with them. This leads to a tradeo� between

stability and wide spectra.

6.2 Dual-Wavelength Pumping

It has been demonstrated [145] that there exists an optimal CW pump co-

herence to generate the widest SC spectra, meaning that total temporal

coherence is undesirable in terms of spectral width. Incoherence translates

to random variations in the amplitude and phase of the CW, creating peaks

and valleys in the intensity. These peaks and valleys are clearly desirable,
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but incoherence by de�nition means uncontrollable variations that propa-

gate to the output in an unpredictable manner. To get the best of both

worlds in terms of spectral width and stability in SC generation, it would

seem bene�cial if these peaks and valleys could be induced in a controllable

manner, if a long pulse could be divided into shorter sub-pulses at will. Such

a bundle of shorter pulses would surely have properties of a short pulse but

also possibly retain some of the desirable properties of long pulses. A feasi-

ble means to achieve something like this would be to amplitude-modulate a

long pulse at a desired modulation frequency. In the spectral domain such

modulation would show as two sidebands on both sides of the main pulse

or CW spectrum. As discussed in section 4.4, a long pulse or a CW in the

anomalous dispersion regime can provide gain for sidebands leading to MI,

the main mechanism responsible for SC generation in the long pulse regime.

However, in the case of an amplitude-modulated signal, the MI process would

be seeded as there would already be optical power withing the gain bands.

MI would then amplify a signal instead of noise, leading to more controlled

SC generation. Such MI induced by amplitude modulation was suggested by

Hasegawa in the 1980's and used to create a train of solitons [146].

As of 2018, the fastest amplitude modulators are based on hybrid plas-

monics and cannot reach modulation frequencies beyond 100 GHz [147]. Fur-

thermore, modulation depth becomes severely compromised above 50 GHz.

The state-of-the-art modulators are even worse for other frequency ranges

such as the 2 µm range [148] that has been proposed as a promising candi-
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date for next generation communication systems. A more versatile way to

create modulated signals is to simply use dual-wavelength pumping, or dual

pumping for short. Two CWs of di�erent frequencies interfere destructively

at certain points in time and constructively inbetween, leading to a beating

intensity pattern. The relative amplitude and polarization of the two interfer-

ing CW beams determines the modulation depth, with equal amplitudes and

same polarization leading to the largest modulation depth. Dual pumping in

the anomalous dispersion regime has been studied both experimentally and

theoretically [149, 150] and wide SC spectra have been demonstrated using

this technique [151].

In the usual and most-studied cases the pump is in the anomalous disper-

sion regime and the other copropagating pump acts as a seed for MI leading

to an enhancement of nonlinearities and hence wider SC spectra. However,

pumping in the normal dispersion regime is known to lead to stabler su-

percontinua. We now demonstrate numerically dual pumping in the normal

dispersion regime and show that this con�guration is stable enough to pro-

duce frequency combs, which are essentially discrete supercontinua that are

periodic in the time domain. Similarly, a signal that is periodic in the time

domain always has a comb-like spectrum. The term comb is used loosely in

the sense that we are interpreting a single spectral peak as a comb. Such

a single-frequency spectrum belongs to a sinusoidal CW, which is obviously

periodic.

Frequency combs are useful because they provide a means to measure op-
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tical frequencies with electronic components by linking optical frequencies to

microwave frequencies [152]. They have many applications in diverse techno-

logical areas such as precision metrology [153, 154], optical communications

[155], and pulse-train generation [156]. Because any periodic signal is a comb

in the frequency domain, a simple example of a frequency comb is given by

a laser operating in pulsed mode. However, large separations of comb lines

cannot be achieved utilizing only mode locked lasers, as the line separation is

the inverse of the repetition rate which in turn is determined by the optical

path length of the cavity. Such frequency combs then also lack tunability.

The train of solitons demonstrated by Hasegawa is an example of a time-

periodic signal with a comb-like spectrum [146]. By tuning the modulation

frequency, the repetition rate and hence the comb spacing could be changed

at will. Chernikov et al. used two CW pumps at slightly di�erent wavelengths

in the anomalous-dispersion regime of optical �bers and generated a train of

solitons with a 114 GHz repetition rate [157]. The same methods can also

be employed in ring cavities with pulsed lasers [158] or CW [159], and ring

cavities can generate pulse trains with repetition rates exceeding 500 GHz

[160]. Microring resonators continue to attract considerable attention as fre-

quency comb generators [161, 162] but other methods continue to be studied

to achieve larger comb spacings for certain applications [163, 164, 165].

Though dual pumping in the anomalous regime is bene�cial in terms

of spectral broadening due to induced MI, the anomalous dispersion regime,

the emerging pulses have a tendency to evolve into solitons. Slight deviations
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from one soliton to another cause the solitons to have slightly di�erent peak

powers and hence di�erent durations, and hence undergo SSFS at di�erent

rates [30]. The solitons will then eventually collide with one another in a

phase-sensitive manner [120] and small variations devolve into a high degree

of temporal incoherence leading to a supercontinuum instead of a frequency

comb. This approach still works if the �ber is short enough or the powers low

enough so that the periodic structure can be retained until the �ber output.

Generation of pulse trains with repetition rates ranging from 1.5 THz to an

impressive 3.4 THz have been demonstrated [166].

Solitons cannot exist in the normal dispersion regime in conventional sil-

ica �bers in which γ > 0. The spectral broadening in the normal dispersion

regime is based on SPM and optical wave breaking [167] instead of noise-

sensitive MI and soliton formation but nevertheless supercontinua can be

and have been demonstrated in normally dispersive �bers [168, 169]. Optical

wave breaking refers to FWM between the pulse's or CWs original frequency

components and the components generated through SPM. As we will see,

optical wave breaking plays an even more important role for a dual wave-

length pump in the normal dispersion regime [170, 4]. Dual pumping with a

zero-dispersion wavelength between the two pump frequencies has also been

studied [171].

Since most applications of frequency combs do not require them to be

a train of solitons in the time domain, anomalous dispersion has no clear

advantage over normal dispersion other than possibly broader spectra. The
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advantages of normal dispersion, however, are clear: increased robustness

due to the absence of Raman shifting solitons and noise-sensitive modulation

instability. Normal dispersion has also been shown to lead to better spectral

�atness in SC generation [172]. In this section we demonstrate that dual

pumping can be used in the normal dispersion regime of a PCF to generate

tunable frequency combs with �at spectral properties and large frequency

separations between the comb lines. Di�erent values of the relevant parame-

ters are considered through extensive numerical simulations and their e�ect

on the output is determined. Raman e�ects are included, unlike in most pre-

vious studies [170], and we discuss the conditions under which Raman e�ects

are important.

The GNLSE of Eq. (4.15) is solved numerically with a dual-wavelength

input. The dispersion is curve shown in Fig. 6.3. Both pumps lie in the

normal dispersion regime and the zero dispersion wavelength is 1133 nm.

Losses are ignored by setting α = 0. The nonlinear parameter is γ =

15 W/km and the shock time scale is τs = 0.563 fs, corresponding to 1/ω0

with λ0 = 1060 nm. The dual-pump input comes from two CW lasers, one

at the frequency ν0 = c/λ0 with λ0 = 1060 nm, and another at a higher

frequency ν0 + νm. The corresponding input �eld can be written as

A(0, T ) =

√
P0√

1 + x

[
1 +
√
x exp (−2iπνmT )

]
, (6.1)

where P0 is the total pump power and x is the ratio of the power at the
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Figure 6.3: Group velocity dispersion β2 as a function of optical frequency.
The circle denotes the lower frequency pump at 1060 nm. The zero-dispersion
wavelength of the PCF is 1133 nm. After [4].
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higher frequency CW pump to that of the lower frequency CW pump. In

the simulations x is varied from 0 to 1, P0 from 1 W to 300 W, and νm

from 25 GHz to 1 THz. It should be noted that although the simulations

have been done for CW initial conditions, the results are applicable to pulses

longer than a nanosecond since the numerical time window is 40 ps wide.

Experimental veri�cation of the results will require such pulsed lasers to

realize peak power levels near 100 W.

We �rst consider the case of two pumps 100 W each separated by 350 GHz

(P0 = 200 W, x = 1, and νm = 350 GHz). Figure 6.4 shows the evolution

of this dual-pump signal over a 5-meter PCF by showing the optical spectra

and temporal pro�le at certain locations in the �ber chosen to highlight the

importance of optical wave breaking (OWB) in the comb-formation process.

Initially at z = 0, the spectrum consists of two spectral lines. In the time

domain, we see a sinusoidal pattern resulting from beating of the two CW

pumps. From Eq. (6.1), these sinusoidal power variations have the form

P (0, T ) = |A(0, T )|2 = P0

[
1 +

2
√
x

1 + x
cos(2πνmT )

]
. (6.2)

The modulation depth dm = 2
√
x/(1 + x) has its maximum value of 1 for

x = 1, the case shown in Figure 6.4. We will see later that reduced values of

dm for x 6= 1 a�ect the comb evolution signi�cantly.

The crucial role of OWB in separating two regimes of evolution in the con-

text of single-pulse supercontinuum generation in normally dispersive �ber
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Figure 6.4: Spectral (left) and temporal (right) evolution of a dual-pump
signal in the normal dispersion regime over 5 m of PCF. The spectrum scale
is logarithmic over a 50-dB range. The dashed horizontal lines show the
−50 dB level for the spectra and the zero level for the temporal intensity
plotted on a linear scale. Parameter values for the two CW pumps are are
P0 = 200 W, x = 1, and νm = 350 GHz. After [4].
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was pointed out by Finot et al. [172]. More recently, Fatome et al. showed

that a double shock is formed in the dual-pumping con�guration at the ini-

tial modulation minima and that optical undular bores can be observed after

such a double shock [170]. Similar double-shock formation can be seen in

Figure 6.4. At a distance of 3.5 m, a frequency comb has been formed but

its width is limited to about 10 THz. The temporal trace shows that the

double shock has not yet occurred at 3.5 m but has taken place at a distance

of 4 m, as evident by the sharp dips at the location of intensity minima. At

a distance of 4.25 m, intense temporal peaks are formed at the shock posi-

tions because of the simultaneous presence of multiple frequency components.

These components mix nonlinearly to produce new frequency components,

and this four-wave mixing then manifests itself as the spectral side lobes that

emerge after the double shock formation. As the spectrum before the shock

formation is a comb, the emerging side lobes consist of discrete frequencies

that contribute to the width of the comb. This can clearly be seen in �gure

6.4 at a distance of 5 meters, where the frequency comb has a bandwidth of

about 25 THz.

As the double-shock formation takes place at the initial modulation min-

ima of the dual-pump signal, the initial modulation depth dm could be ex-

pected to have an e�ect on the shock formation and on the resulting frequency

comb. Figure 6.5 shows the evolution under conditions identical to that of

Figure 6.4 except for unequal pump powers such that x = 0.1 and dm = 0.575.

A direct comparison of the two �gures shows the drastic impact on the comb
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Figure 6.5: Same as �gure 6.4 but for unequal pump powers such that x = 0.1
The total pump power is the same in both cases. After [4].
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generation when the modulation depth is decreased even if the modulation

remains very signi�cant. A comb is still produced through SPM but its width

is smaller by a factor of about 2. At a distance of 3.75 m, modulation depth

is somewhat reduced in the time domain. For longer distances, OWB takes

place, and the edges of adjacent pulses collide with one another. However,

the temporal intensity slope of the colliding edges is smaller, which leads to

both suppressed spectral broadening and smaller temporal peak powers for

the forming intensity peaks. The resulting frequency comb at a distance of 5

meters is signi�cantly narrower compared to the case of equal-power pumps

shown in Figure 6.4. Clearly, deeper initial modulation helps create broader

frequency combs.

Figures 6.4 and 6.5 both show more and more spectral broadening with

increasing propagation distance. One may ask whether ultrawide frequency

combs can be produced by simply increasing the PCF length. The answer

is negative for several reasons. First, too long of a propagation distance

will be detrimental because of the ampli�cation of noise through four-wave

mixing. Second, Raman scattering may begin to impact the quality of fre-

quency combs. Third, �ber losses, although neglected here, could limit the

performance for long �bers. To study how the comb width depends on var-

ious input parameters, a large number of numerical simulations was carried

out. They were used to calculate the comb width de�ned as the bandwidth

containing 99.98% of the total spectral power such that only 0.01% of the

total power lies on each side of this frequency band. We also checked that
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Figure 6.6: Comb bandwidth (color encoded) as a function of the ratio of
pump powers and propagation distance. The input parameters are P0 =
200 W and νm = 700 GHz. After [4].

the spectra can indeed be considered frequency combs and were not ordinary

supercontinua by verifying that at least 99.99% of the total spectral power

was concentrated at the discrete comb frequencies.

Figure 6.6 shows the numerically calculated comb bandwidth as a function

of propagation distance and pump-power ratio x using P0 = 200 W and

νm = 700 GHz. For a given value of x, spectral broadening starts immediately

and is fairly linear up to a certain distance, after which intense broadening
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occurs over a short distance. The initial linear broadening is consistent with

SPM-induced spectral broadening [54], and the abrupt sudden broadening

can be explained in terms of OWB. The features seen in the �gure also

bear considerable resemblance to the observations on spectral broadening of

a single pulsed pump in Ref. [172] in which abrupt spectral broadening was

also explained in terms of OWB. In the case studied here, the ratio of the

pump powers plays a role analogous to that of the peak power of the pulse.

The total pump power is known to have a signi�cant e�ect on supercon-

tinuum generation, where it sets the order of soliton for pulses propagating

in the anomalous dispersion regime of an optical �ber. We thus expect the

total pump power P0 to in�uence frequency comb generation in the normal

dispersion regime of the PCF. In the case of a single pulse, it is custom-

ary to characterize the relative importance of dispersion and nonlinearity

through the use of the dispersion length LD = T 2
0 /|β2| and the nonlinear

length LNL = 1/(γP0), where T0 is a measure of pulse duration and P0 is

the pulse's peak power. In the dual-pumping con�guration here, the total

pump power P0 and the period of sinusoidal modulations, T0 = 1/νm play

the role of the corresponding two parameters. For the input parameters used

in Figures 2�4, the nonlinear length is always smaller than the dispersion

length, usually by orders of magnitude. Thus, the nonlinear e�ects dominate

over the dispersive e�ects, similar to the case of supercontinuum generation.

Furthermore, for a dual-pump input signal one might expect dispersion to be

less of an issue than for a single pulse, as every frequency component of the
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electric �eld is present in every time slot that has a duration of the input pe-

riod, and the average power over a period stays almost constant throughout

propagation. One might then expect that nonlinear power transfer between

di�erent frequencies can continue occurring throughout the evolution of a

dual-pump signal. Thus, instead of exploring the evolution dynamics as a

function of propagation distance in meters, it is more intuitive to normalize

the distance as ξ = z/LNL using the nonlinear length.

Figure 6.7 shows the comb bandwidth as a function of ξ and pump power

P0. The comb width increases quite monotonically with respect to both of

these parameters. What is noteworthy is that, although to achieve a spe-

ci�c comb width a certain power level is required, low initial powers cannot

be compensated for by making the �ber longer. Furthermore, for low pump

powers and longer propagation distances Raman scattering is able to transfer

a signi�cant portion of the initial power at the pump frequencies to a con-

tinuum at lower frequencies. Since low input powers create narrow combs,

higher-order dispersion plays no role in the comb formation, and other than

the Raman-induced power transfer, the evolution of a low-power dual-pump

signal is very similar to that observed in Ref. [150].

Not all nonlinear power-transfer mechanisms contribute to the forma-

tion of a frequency comb. Spontaneous Raman scattering is responsible for

transferring power from the pump frequencies to a broader band of lower fre-

quencies [54]. Such a transfer of power is obviously detrimental in the context

of frequency comb generation. The emergence of a continuum decreases the
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Figure 6.7: Comb bandwidth (color encoded) as a function of total pump
power and propagation distance. The input parameters are x = 1 and νm =
700 GHz. Spectra that did not qualify as frequency combs have been left out
(lower right corner). After [4].
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Figure 6.8: Evolution of a dual-pump signal over 100 m meters with (black
lines) and without (red lines) including the Raman e�ect. Pump parameters
are P0 = 5 W, x = 1, and νm = 300 GHz. The scale for spectra is logarithmic
ranging from −60 to 0 dB. The e�ect of Raman scattering is negligible in
this case. After [4].

contrast between the comb and the background. Furthermore, because power

is being transferred away from the pump frequencies, the strength of bene-

�cial nonlinear e�ects decreases as well. Thus, Raman scattering could be

detrimental even when the comb spectrum is narrow enough such that the

peak of the Raman gain lies outside of the comb bandwidth.
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To study the e�ect of Raman scattering on the comb formation, we

performed simulations with the Raman contribution turned o� by setting

R(T ′) = δ(T ′) in Eq. 4.15. Figure 6.8 shows the evolution of a 5 W dual-

pump signal over 100 meters both with (black) and without (red) the Raman

e�ect. It is obvious that the e�ect of Raman scattering is negligible for this

speci�c set of pump parameters. In numerical simulations, a Raman peak

was observed when the Raman e�ect was included, but its spectral power

was below −70 dB at 13.2 THz below the lower pump frequency. Similar

behavior was observed for many other pump powers and frequency separa-

tions. Only when the total pump power exceeded 200 W, Raman scattering

played a slightly more signi�cant role. As an example, Figure 6.9 shows evo-

lution over 5 m of PCF using the parameter values P0 = 200 W, x = 1, and

νm = 700 GHz.

In this case, the maximum comb width is reached at a propagation dis-

tance of 2.5 meters, and before that the e�ect of Raman scattering on the

spectral and temporal evolution is almost completely negligible. For larger

propagation distances, the spectra and the temporal intensity pro�les start

to di�er more. In particular, the comb spectrum becomes asymmetric with

slightly more power at red-shifted frequencies. This is expected since high-

frequency components pump the low-frequency components through stimu-

lated Raman scattering.

The comb spectrum after 5 meters of propagation also appears slightly

broader when Raman scattering is included. However, it should be kept in
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Figure 6.9: Same as �gure 6.8 but with P0 = 200 W, x = 1, and νm =
700 GHz. After [4].
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mind that the spectra are normalized. The apparent broadening is due to a

Raman-induced power transfer from the pump frequencies and nearby side-

bands to a continuum of frequencies. Even though the Raman-ampli�ed band

stays well below the −70 dB level compared to the pump frequencies, this

power transfer is enough to lower the central frequency peaks with respect

to the peaks at the comb edge thus making the normalized spectrum appear

wider. By examining the unnormalized spectra, we found that the spectrum

was actually broader when Raman scattering was not included. We thus

conclude that in the dual-pumping con�guration in the normal dispersion

regime of a �ber the e�ect of Raman scattering is either negligible or slightly

detrimental. This is a noteworthy di�erence between comb generation and

supercontinuum generation. In the context of supercontinuum generation in

normally dispersive �ber, Raman scattering is an important physical phe-

nomenon that helps extend the continuum towards lower frequencies. In

comb generation, however, Raman scattering does not contribute to the comb

width even when the Raman gain band overlaps with the comb.

Numerical simulations showed that tunable frequency combs can be gen-

erated by launching two CW pumps at slightly di�erent wavelengths into a

normally dispersive optical �ber. The dual-pump con�guration produces a

periodic sinusoidal modulation and allows tuning of the comb spacing from

tens of gigahertz into the terahertz regime. The presented results show that

the relative powers of the two pumps play a critical role, and widest frequency

combs form when the two pumps are launched with the same power. The
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reason behind this is related to the phenomenon of optical wave breaking

known to occur in the case of normal dispersion.

In order to quantify the usefulness of the proposed scheme, we studied

the dependence of the comb bandwidth on several important input param-

eters such as the total power, relative powers, and frequency separation of

the two pumps and the length of the �ber employed. The depth of sinusoidal

modulation produced by beating of the two pumps was shown to have a cru-

cial e�ect on comb width, with deeper modulation enabling broader combs.

This was interpreted and explained through the crucial role of optical wave

breaking in SPM-induced spectral broadening. Unlike the case of supercon-

tinuum generation, Raman scattering was found to have a negligible or even

a slightly detrimental e�ect on comb generation. This is in sharp contrast

to the case of supercontinuum generation where Raman scattering plays an

essential role. In addition to explaining the relative importance of di�erent

physical phenomena on frequency comb generation, the �ndings also create

a link between work done on the propagation of a single pulse and the evolu-

tion of dual-pump signals in the normal dispersion regime of highly nonlinear

�bers.
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Chapter 7

Dual Pumping in Dispersion-Decreasing

Fibers

The dispersion of a PCF can be made to change along its length either during

the manufacturing process or by tapering it afterwards. SC generation has

been studied in both kinds of dispersion-varying �bers [173]. Typically the

�ber is pumped in the anomalous-dispersion regime, and the magnitude of

the dispersion parameter β2, de�ned as β2 = d2β/dω2 where β(ω) is the

modal propagation constant at frequency ω, is made to decrease along �ber's

length. Such �bers are referred to as dispersion-decreasing �bers (DDFs).

The bene�cial e�ect of decreasing |β2| on the spectral width of an optical

pulse is evident in the context of solitons, as decreasing |β2| causes them to

compress temporally, which broadens their spectrum and also causes them

to red-shift faster through the Raman e�ect [30, 54]. In practice, tapering a

�ber will also decrease its core size leading to broader SC spectra simply due

to enhanced nonlinearities [173, 174].

Noise-seeded modulation instability leads to incoherent supercontinua
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[175] but a modulated input in the long pulse regime results in better co-

herence properties [176]. SC and frequency comb generation using dual-

wavelength pumping has been explored in numerous studies [177, 178, 151,

179, 4, 180]. The dual-pump con�guration can have signi�cant advantages

over single-CW pumping. Demircan et al. [181] considered two pulses on

opposite sides of the zero-dispersion wavelength. The solitonic input pulse

created a moving temporal refractive-index barrier for the other pulse prop-

agating in the normal dispersion regime. The other pulse then scattered

o� this barrier and created new spectral components in a quasi-continuous

manner, leading to a very broad and relatively �at SC spectrum.

Following [5], in this section we explain the origin of the blue components

during SC generation in DDFs. This explains previous experimental results

on enhanced blue side spectral broadening [173] as well as our recent observa-

tions about longitudinally varying dispersion being bene�cial for dual-pump

SC generation but detrimental for a single CW pump [182]. The origin of

the blue components then brings us to an important result: a connection

between dispersive wave emission and the more general phenomenon of tem-

poral re�ection [126]. Dual pumping creates an amplitude-modulated input

signal, which evolves nonlinearly into a train of fundamental solitons that

are then compressed temporally by decreasing |β2|. While adiabatic soliton

compression due to varying dispersion extends the spectrum to the red side,

here we show that the blue side of the spectrum is also signi�cantly a�ected

through multiple re�ections of the pump remnants at the soliton-induced
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index barriers. In previous studies, scattering of DW's o� solitons led to

spectral broadening only under carefully crafted input conditions [181, 183].

In contrast, the approach presented here allows temporal re�ections to occur

spontaneously, with little sensitivity to the input conditions. Furthermore,

the periodic nature of the emerging soliton train e�ectively creates tempo-

ral waveguides for the blue frequency components, and the waves can keep

re�ecting and remain partially trapped between two adjacent solitons. This

wave-trapping phenomenon continues to be a topic of contemporary research

[184].

Again, we use Eq. (4.15) to model the propagation of the dual pump

input. For a DDF, in general, all dispersion parameters βn are functions

of z. Here the higher-order dispersive terms as well as the nonlinearity are

kept constant while β2 changes linearly with z. Equation (4.15) is solved

numerically using the split-step Fourier method [54].

The input consists of two CW's of equal power and di�erent frequencies

centered around ν0 = ω0/(2π) = c0/λ0, where c0 is the vacuum speed of light

and λ0 = 1.06 µm. Quantum shot-noise is also included by adding one photon

with random phase per mode [19]. The frequency separation ∆ν between

the two pumps is varied from 25 GHz to 1 THz. The nonlinear parameter

is γ = 91.6 (Wkm)−1 at the center frequency ω0. β2 at ω0 increases linearly

from −8.56 to 5 ps2/km over the 150 m length of the �ber. The dispersion

curve at the �ber's input end is shown in Fig. 7.1.

The nonlinear response function, R(t) = 0.82δ(t) + 0.18hR(t), includes
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both the delayed Raman response hR and the instantaneous [54] Kerr-type

electronic response. The convolution integral on the right-hand side of Eq. (4.15)

is done in the frequency domain where the Raman contribution is modeled

through the full experimental Raman spectrum of silica [91]. Self-steepening

is governed by the shock time scale τs = 0.563 fs. The �ber lengths consid-

ered were 150 meters or less, and since losses for PCF's of such lengths can

be less than 0.15 dB [185], they were ignored for simplicity by setting α = 0.

Figure 7.2 shows the temporal and spectral evolution of a dual-pump

input inside a DDF (frequency separation ∆ν = 400 GHz). The total input

power of 1 W corresponds to a peak power of only 2 W at the location of

each temporal peak. The input acts as a train of cosine-shaped pulses with

a full width at half-maximum of 1.25 ps. During the �rst 20 meters, the

pulses compress temporally as they undergo self-phase modulation (SPM).

The central peak of each individual pulse then starts adjusting to become a

fundamental soliton. During these stages the spectrum is still comb-like.

Once solitons are formed, SSFS starts red-shifting them. Moreover, the

red-shift is accelerated compared to a �ber with constant dispersion due to a

decrease in |β2| along the �ber length. This is because of soliton compression

making the solitons more intense and shorter in time. The rate of SSFS scales

inversely with the fourth power of soliton duration [54] and thus the red-shift

becomes greatly enhanced. Since the input power is too low for modulation

instability to amplify the shot noise to observable levels, the �rst stages of

signal evolution are governed solely by the SPM phenomenon.
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Figure 7.2: Temporal (a) and spectral (b) evolutions of a dual-pump input
inside a DDF. (a) shows the square root of the intensity on a linear scale in√
W, and (b) shows the normalized spectral intensity in decibels. The two

pumps are separated in frequency by 400 GHz and their total power is 1 W.
The dashed black line shows the distance at which β2 = 0 at the pumps'
center wavelength. Double arrows mark locations of temporal re�ections in
(a) together with the corresponding wavelengths in (b). The solid black
line in (b) shows the theoretical prediction of the temporal re�ection model
discussed in the text. The dashed line shows the zero-dispersion wavelength.
After [5].
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Until each soliton has decelerated enough to temporally overlap with the

remnants of the neighboring pulse, each pulse follows single-pulse evolution

dynamics. After 65 meters of propagation, the pump remnants of the adja-

cent pulse see a moving refractive-index barrier caused by solitons, resulting

in temporal re�ections that create new frequency components between 970

and 980 nm [126]. Most of the pump remnants pass through this index barrier

and undergo further temporal re�ections creating new spectral components

�rst between 990 nm and 1.02 µm, then 1.02 µm and 1.025 µm, and �nally

between 1.03 µm and 1.04 µm (after 130 m of propagation).

In a recent study by Plansinis et al. [126] temporal re�ections, occurring

because of an abrupt temporal change in the refractive index, were studied

and the spectral shift of the re�ected light was predicted analytically using

the conservation of photon momentum during the re�ection process. In their

theory, the frequency ω of re�ected light is obtained from

∆β1(ω − ω0) +
∑
n≥2

βn

n!
(ω − ω0)

n = 0, (7.1)

where the Taylor expansion has been done around the incident frequency ω0

and ∆β1 = β1(ω0) − 1/VB, VB being the velocity of the moving refractive

index barrier. The trivial solution ω = ω0 corresponds to the incident wave,

and the other solution, if it exists, provides the frequency of the re�ected

wave.

In the case studied here, the intense narrow solitons act as the moving
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refractive-index barriers. Therefore, the barrier velocity VB is the inverse of

the �rst-order dispersion coe�cient β1(ωs), where ωs is the soliton's center

frequency. By virtue of the retarded time coordinate used, β1(ω0) = 0, and

the di�erence ∆β1 in Eq. (7.1) reduces to ∆β1 = −β1(ωs). To determine

the value of β1(ωs), the curved trajectory of a soliton in Fig. 7.2(a) was

traced and a polynomial spline was �tted to it, expressing the location Tp

of the soliton peak as a function of z. The derivative dTp/dz then yields

β1(ωs). Knowing β1(ωs), ωs was calculated and checked that it agreed with

the spectral peak of the solitons. The calculated β1(ωs) was then used to

determine the wavelength of the re�ected wave when the pump remnants

centered around 1.06 µm re�ect o� the solitonic index barrier. The solid

black line in Fig. 7.2(b) shows the predictions for the re�ected wavelength

based on Eq. (7.1). As seen in this �gure, the theoretical predictions agree

quite well with the numerical results.

By looking at Fig. 7.2(b) we note that the input spectrum has broadened

considerably at a distance of 65 m (just before the �rst re�ection), forming

a frequency comb spanning from 1.02 µm to 1.12 µm through dual-pump

enhanced SPM [4]. Since there is a band of (discrete) frequencies that can

re�ect o� the solitonic index barriers, the re�ected frequencies also form

bands around the theoretically predicted curve (solid black line). The width

and position of these bands depend on the width of the incident band, the

dispersion, and the central wavelength of the solitons [through β1(ωs)], as

evident from Eq. (7.1). Furthermore, the theory of Ref. [126] does not account
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for nonlinearities, which a�ect the propagation constants of both the incident

and re�ected waves (owing to the Kerr e�ect). In addition, the nonlinear

e�ects are expected to be di�erent in magnitude for the incident and re�ected

waves, as the latter is much weaker than the former one.

Figure 7.3: Temporal (a) and spectral (b) evolutions of a dual-pump input
under conditions identical to those in Fig. 7.2 except that the dispersion is
kept constant along the PCF length. After [5].

To clarify the drastic e�ects of temporal re�ections on the blue side of

the output spectra, simulations were also performed in constant dispersion

�bers with the same dispersion curve shown in Fig. 7.1 for all z. Figure 7.3

shows the temporal and spectral evolutions of the same input signal in this

case and should be compared with Fig. 7.2 where dispersion varies along

the �ber length. It is remarkable how narrow the output spectrum is in

Fig. 7.3(b) when compared to that in Fig. 7.2(b). The additional spectral

broadening in Fig. 7.2(b) has two sources: On the red side, it is due to soliton

compression and enhanced SSFS of the narrower solitons. In contrast, on the
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blue side, spectral broadening is due to the formation of blue-shifted spectral

bands resulting from temporal re�ections. Note that there is no visible DW

emission in either case, and all the blue-shifted components that are present

in Fig. 7.2(b) but not in Fig. 7.3(b) are solely due to temporal re�ections of

the pump remnants o� the solitons.

The absence of a DW in Fig. 7.3 is, at �rst, somewhat puzzling since such

waves are often generated when solitons form. On further investigation, it

becomes evident that the reason behind the lack of temporal re�ections in

Fig. 7.3(b) is related to the shape of the dispersion curve, which causes Eq.

(7.1) to have only one solution ω = ω0, such that no solution exists for a

re�ected wave. Since no temporal re�ections can occur, all pump remnants

incident on a solitonic index barrier simply pass through it (temporal refrac-

tion), without a signi�cant change in their frequencies [126]. This behavior

is due to the presence of dispersion terms beyond the third order in the

simulations.

To clarify this issue further, additional numerical simulations were carried

out. Figure 7.4 shows the temporal and spectral evolutions under conditions

identical to those in Fig. 7.3, except that the value of β2 at the pump's center

wavelength was −2.684 ps2/km rather than −8.56 ps2/km like in Fig. 7.3.

This value of β2 corresponds to its value in Fig. 7.2 at a distance of 65 m,

which is the location of the �rst temporal re�ection. As in Fig. 7.3, the input

beating signal reshapes to form a periodic train of solitons, but unlike in Fig.

7.3, now each soliton emits a DW soon after its formation at a distance of
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30 m.

Figure 7.4: Temporal (a) and spectral (b) evolutions under conditions iden-
tical to those in Fig. 7.3 except that the value of β2 at the pump-center
wavelength was changed to −2.684 ps2/km. After [5].

The wavelength of a DW can be calculated from the phase-matching

condition [54]:

∑
n≥2

βn

n!
(ω − ω0)

n − (ω − ω0)/vg − γP0 = 0, (7.2)

where P0 is the soliton's peak power and vg its group velocity. In practice, the

nonlinear term is often small compared to the others and can be neglected

to yield the linear phase-matching condition. When γP0 = 0, equation (7.2)

is exactly identical to the temporal re�ection equation (7.1) when VB = vg

because ∆β1 = −1/vg in that situation. When the moving refractive-index

boundary is caused by solitons of group velocity vg, the condition VB = vg is

automatically satis�ed, and Eq. (7.1) becomes Eq. (7.2) with γP0 = 0. This
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indicates that DW emission is a special case of a temporal re�ection process.

Thus, DW emission in Fig. 7.4 and the formation of blue-shifted components

in Fig. 7.2 through a temporal re�ection are the same phenomenon. The

di�erence can be understood as follows. In Fig. 7.2 the pump remnants

meet and interact with the solitons after they have left the original pulse

and slowed down considerably through the SSFS. In contrast, in Fig. 7.4 the

pump remnants on the trailing side of each soliton re�ect o� that soliton itself

as it slows down. In other words, DW generation is a kind of �temporal self-

re�ection�, where the temporal refractive-index boundary is caused by the

formation of a soliton in a pulse's central region, and the trailing parts of the

same input pulse re�ect o� this soliton, changing their frequency as required

by the process of temporal re�ection. Small di�erences in the wavelengths of

the blue components in Figures 7.2(b) and 7.4(b) can be attributed to slight

di�erences in the solitons' group velocities and peak powers in the two cases.

Interpreting DW emission as a special case of temporal re�ection also

explains the lack of DW's in Fig. 7.3. As mentioned earlier, the shape of the

dispersion curve in the case of Fig. 7.3 is such that Eq. (7.1) admits only

one solution (ω = ω0), and hence no temporal re�ections can occur. As the

same equation in the form of Eq. (7.2) governs DW emission, no such waves

are generated either. All pump remnants initially present during soliton

formation at a distance of 20 m simply pass through the solitons without

re�ecting o� them.

It was shown how temporal re�ections are a key spectral broadening pro-
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cess when two or more closely spaced pulses are transmitted through an

optical �ber. Spectral broadening was enhanced considerably in the case

of a DDF and attributed the broadening on the blue side to temporal re-

�ections from a moving refractive-index boundary created by the solitons.

The recently developed theory of Ref. [126] was able predict the re�ected

frequency bands in the numerical simulations. Importantly, DW genera-

tion can be interpreted as a special case of temporal re�ection, in which the

spectral components that re�ect o� the temporal index boundary have the

same or nearly the same frequency as the soliton that produces the temporal

boundary, hence connecting temporal re�ections to a wider range of physical

systems.

7.1 Higher-Order Dispersive E�ects

As seen above, DW emission requires the inclusion of dispersive terms be-

yond the second order. These dispersive terms also act as perturbations to

solitons, as do optical shock e�ects and Raman scattering. The dispersion

parameters βn in Eq. (4.15) can be easily tailored through proper design of

the refractive index pro�le, which in the case of photonic crystal �bers means

appropriately choosing the size and spacing of the air holes surrounding the

core. The only limitations regarding the structure of silica-based photonic

crystal �bers are associated with manufacturing precision. In general, dif-

ferent photonic crystal �ber structures would also lead to di�erent nonlinear
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coe�cients for the �bers. However, since it is the relative strength of disper-

sion and nonlinearity that determines the propagation of light, it is assumed

here that the nonlinear parameter is constant while β2 changes linearly along

the �ber. It should also be noted that ultra-�at highly anomalous dispersion

pro�les can be achieved over a wide wavelength range with novel designs

[186]. The TOD and other higher-order dispersion terms play a relatively

minor role for such �bers.

Higher-order dispersive terms were present in the simulations discussed

above and it is not easy to pinpoint their e�ects by looking at the simulations

alone. Following Ref. [6], we can gain a better understanding of their e�ects

in a DDF by turning them o� altogether and simulating a �ber with only

β2. Figure 7.5 shows the evolution of a dual-pump signal when β2 increases

linearly from −10 to 0 ps2/km over 100 m. The nonlinear parameter is

γ = 0.0916 (Wm)−1. The power of both pumps is 1 W, they are separated

by 800 GHz and centered around 1060 nm. The two traces on top show

changes in the pulse width and peak powers over the 100 m length of the

�ber. The initial sinusoidal pattern gradually reshapes into a train of solitons

whose width decreases and peak power increases continuously until the pulse

becomes less than 3 optical cycles long and the numerical model itself starts

to breaks down. The spectrum of the resulting pulse train is in the form of

a frequency comb whose bandwidth is inversely proportional to the width of

the solitons and exceeds 100 THz.

The compression dynamics in Fig. 7.5 have interesting features. The
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initial sinusoidal pattern with a period of 1.25 ps evolves into a pulse train

within the �rst 10 m such that individual pulses are about 200 fs wide (full

width at half maximum, FWHM). These soliton-like pulses then broaden with

further propagation before being compressed a second time. This process

repeats a few times but the pulse duration keeps a downward trend while

exhibiting transient oscillations. During the �rst 50 m or so the beat input

displays a form of Fermi-Pasta-Ulam-Tsingou recurrence perturbed by the

changing dispersion and evolves essentially like a breather before the intensity

peaks become solitons. The simulation shown in Fig. 7.5 does not include

third-order dispersion but breathers are sensitive to all kinds of asymmetric

perturbations, such as Raman scattering, which can [187] and will [188] turn

the breather into a train of solitons. The subsequent evolution of the solitons

is a�ected by two mechanisms. First, varying �ber dispersion forces them to

compress. Second, at the same time, their speed is reduced as their spectrum

red shifts because of SSFS (leading to bending of the trajectories in Figure

7.5). The individual solitons grow in intensity because of the increasing β2,

but also because they feed o� the darker regions (energy in the low-intensity

parts) when they shift in time and overlap temporally with them. This mode

of energy transfer to the solitons is evident in Fig. 7.5, where the regions

between the neighboring solitons become darker as the solitons slow down

and pass through these regions. This energy transfer perturbs the solitons,

causing their widths and peak powers to oscillate around their respective

trends (decreasing duration, increasing peak power). One way to look at the
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evolution of the beating input signal is to interpret the duration and peak

power oscillations as a manifestation of the gradually disappearing breather

nature whereas the general trend of decreasing duration and increasing power

can be considered to represent soliton compression.

The GNLSE model given in Eq. (4.15) accurately describes pulse propa-

gation down to the single-cycle regime [90, 19], and here the three-cycle point

is used as the cuto� for the validity of the GNLSE model. The distance at

which the solitons in Fig. 7.5 have compressed to three optical cycles in dura-

tion (about 10 fs) is approximately 98 meters, and this has been indicated by

the vertical dashed lines in Fig. 7.5. The important takeaway from Fig. 7.5

is that the initial beating intensity pattern with a period of 1.25 ps (corre-

sponding to 800 GHz) could ideally be reshaped into a train of solitons that

are only three optical cycles long. The input FWHM of the cosine-shaped

pulses is 625 fs, implying that the compression factor is larger than 50.

The power of both pumps in Fig. 7.5 was 1 W, but other average powers

yield similar results as long as the energy contained within each beat period

is comparable to the energy of a soliton of similar or shorter duration than

the beat period. The energy within each period is 1.25 pJ for a 800 GHz

repetition rate signal with an average power of 1 W. A soliton with such

energy would have a duration (FWHM) of 308 fs given the parameters at the

�ber input [nonlinear parameter of γ = 0.0916 (Wm)−1 and the initial GVD

of β2 = −10 ps2/km], which means that each beat period has enough energy

to reshape into one soliton by compressing slightly. Decreasing the input
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power weakens the nonlinear e�ects and thus the formation of temporally

separated solitons takes longer. Their formation is also a�ected by how the

GVD parameter β2 changes since β2 determines the relation between the

solitons' duration and energy. Lower input powers could be at least partially

compensated for by changing the input end value of β2.

When the average power is increased, two solitons can form within each

period and two soliton trains with di�erent group velocities are formed. The

more intense soliton train red shifts faster and feeds o� the weaker train

through Raman-induced power transfer every time the trains overlap tem-

porally. The weaker soliton train eventually disappears after all the power

has been transferred to the other train. The result is a more intense train of

solitons that are also shorter in duration as dictated by the soliton condition.

The solitons in the remaining train are not uniform and di�er slightly in peak

power and duration due to them having undergone noise- and phase-sensitive

soliton interactions [120]. Some solitons in the train then move faster than

others and the pulse train loses its periodicity. Even higher average powers

lead to more solitons per period, as each beat pulse breaks into multiple soli-

tons. The dynamics become more and more chaotic with increasing power,

and periodicity is lost faster. A similar loss of periodicity can be observed

for very high repetition rates (input pump separations), such as 2 THz. The

input power should be increased approximately quadratically with the input

pump separation to maintain the required amount of energy for a soliton

within each beat period, which makes the forming short solitons susceptible
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to slight di�erences in their durations and peak powers due to noise. Again

these di�erences eventually break the periodicity of the pulse train. The spec-

tra of these THz-range repetition rate pulse trains could be Raman shifted

by nearly an octave in the simulations but their periodicity and quality de-

terioated signi�cantly. There are general trade-o�s between repetition rate,

output wavelength, pulse duration, and the quality of the generated pulse

train. The simulations indicate that the limitations are fundamental as the

pulse train quality degradation was caused by shot-noise.

The simulation shown in Fig. 7.5 includes all the relevant e�ects that

would be present in reality, with the exception of higher-order dispersion

and losses. The �ber was assumed to be lossless and to have perfectly �at

dispersion (constant β2) over all wavelengths at any given point of the �ber.

Therefore, Fig. 7.5 represents the best case scenario in terms of how short

the solitons can become: Under ideal conditions pulse durations of three

optical cycles or less could be achieved. Several di�erent e�ects might prevent

such drastic compression shown in Fig. 7.5 in practice, but the extent of

compression is not limited by GVD, intrapulse Raman scattering, or optical

shock e�ects. Losses would cause the peak power P0 of the forming solitons to

be smaller, which in turn would lead to larger soliton durations T0 such that

the soliton condition of γP0T
2
0 /β2(z) = 1 continues to be satis�ed. However,

at the end of the �ber GVD is zero (β2 = 0), and the soliton condition can

only be satis�ed for in�nitely narrow solitons no matter what the peak power

might be. Compensation for losses through decreasing dispersion (increasing
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β2) to keep the soliton duration unchanged upon propagation in lossy �bers

has been demonstrated in the past [189]. Decreasing dispersion even faster

than in Fig. 1 would be required to compensate for any possible �ber losses.

However, TOD could be expected to change the compression dynamics more

drastically than losses because it a�ects solitons in at least three di�erent

ways: it leads to dispersive-wave emission, it asymmetrically distorts the

shape of a soliton, and it makes β2 frequency-dependent.

The �rst thing to note is that the sign of TOD plays an important role

in the evolution of a short solitons undergoing intrapulse Raman scattering.

The SSFS causes the soliton spectrum to red shift, and it is the sign of β3

that then determines whether the soliton will experience a larger or smaller

β2 as a consequence. Since soliton compression is based on increasing β2 from

an initially negative value through dispersion engineering, any TOD-induced

change to β2 will a�ect the compression of solitons. The presence of TOD

also introduces a spectral region of normal dispersion in which solitons cannot

exist but also guarantees the existence of a spectral region of anomalous

dispersion even when β2 > 0 at the pump frequency. The signs of β2 and

β3 determine whether the normal dispersion regime is on the red or the blue

side of the soliton. The frequency at which GVD changes sign is given by

ωZDW = ω0 − β2/β3 where β2 and β3 are evaluated at the central frequency

ω0. The wavelength corresponding to ωZDW is the ZDW. When β2 is a linear
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function of distance z we have

β2(ω0) = βin2 + (βout2 − βin2 )
z

L
(7.3)

where L is the length of the �ber and βin2 and βout2 are the input and output

values of β2 at ω0, respectively. Consequently the ZDW becomes a function

of z through

ωZDW = ω0 −
βin2
β3
− (βout2 − βin2 )

z

β3L
. (7.4)

To illustrate the e�ects of TOD in a DDF, Fig. 7.6 shows the evolution

in a �ber where β2 changes from −10 ps2/km to 5 ps2/km over 150 meters

and where β3 = −0.03 ps3/km. Note that the rate of change of β2 with z is

the same as for the �ber in Fig. 7.5 and the ZDW coincides with the pump

center wavelength at exactly 100 meters just like in Fig. 7.5.

The evolution of the dual-pump shown in Fig. 7.6 di�ers from that of

Fig. 7.5. The most noticeable di�erence between the two cases is that the

pulses do not become in�nitely narrow when β3 6= 0 and the minimum pulse

duration in Fig. 7.6 is approximately 180 fs. The formation of few-cycle pulses

would require a very broad pulse spectrum and since the pulses are solitons

this spectrum would have to lie in the anomalous dispersion regime. When

β3 6= 0 and the ZDW approaches the soliton spectrum, the tail of the pulse

spectrum will eventually end up in the normal dispersion regime thus limiting

the spectral extent and consequently the pulse duration of the solitons. The

�rst e�ects can be observed after 80 m of propagation when the ZDW starts



CHAPTER 7. DUAL PUMPING IN DISPERSION-DECREASING FIBERS139

to touch the tail of the soliton spectrum and power is transferred from the

solitons to a dispersive wave on the red side of the ZDW. The moving ZDW

gradually puts more and more energy to the normal dispersion regime and

the soliton peak powers start to decrease. The ZDW crosses the center of the

soliton spectrum around 110 m and after this the solitons cease to exist and

disperse into a chaotic-looking yet nearly-periodic pattern of interfering waves

in the normal dispersion regime. After this point it is no longer meaningful to

talk about soliton peak powers or durations or consider the intensity pro�le

a train of pulses.

In the example shown in Fig. 7.6 the frequency slope of β2 was negative

(β3 < 0) and hence the normal dispersion regime was on the red side of the

pump. Solitons have a tendency to try to stay away from the ZDW and

remain in the anomalous regime, which can be seen in the spectrum of Fig.

7.6 where the spectral trajectory of the soliton bends slightly downwards

between 90 m and 110 m and the solitons blue shift. The blue shift is

always accompanied by signi�cant transfer of energy to the red side of the

ZDW to conserve total energy. Normally solitons, especially short ones,

have a tendency to red shift upon propagation because of intrapulse Raman

scattering. This raises the question whether having the ZDW approach the

soliton spectrum from the blue side instead would help the solitons remain in

the anomalous regime for longer distances. Figure 7.7 shows the evolution of

a 800 GHz dual-pump in a �ber with β3 = 0.03 ps3/km. Other than the �ber

length and the TOD, the �ber is similar to the ones in Figs. 7.5 and 7.6 and
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again the ZDW is at the pump center at 100 m. Note that the temporal trace

in Fig. 7.7 is now in the reference frame of the solitons instead of moving at

the group velocity at the pump frequency.

The evolution of the soliton power and duration is similar to that of Fig.

7.6 but the solitons last longer and the spectral evolution looks very di�erent.

The ZDW is now on the blue side of the solitons and the ZDW approaching

the soliton spectrum greatly enhances the natural SSFS pushing the soliton

spectrum all the way to 1.25 µm from the initial 1.06 µm. Still, the moving

ZDW eventually overtakes the soliton spectrum and in the end the pulses

end up in the normal dispersion regime and disperse. The minimum soliton

duration is 125 fs around 185 m.

To understand quantitatively the impact of β3, a large number of numer-

ical simulations was carried out for di�erent DDF designs. Figure 7.8 shows

the color-coded duration of solitons (range 0�250 fs) for β3 values varying

from −0.1 to 0.1 ps3/km along the x axis and di�erent values of β2(L) at

the end of a 200-m-long �ber with β2(0) = −10 ps2/km. In each case, β3

is kept constant along the �ber. The four plots shows the soliton widths at

distances of (a) 80, (b) 120, (c) 160, and (d) 200 m.

If the solitons forming from the beating input signal are able to keep up

with the gradually changing GVD parameter β2, then larger �nal values of

β2 leads to shorter solitons. The general trend in Fig. 7.8 is that increasing

the �nal value of β2 makes the output pulses shorter, which means that

solitons are mostly able to keep up with the longitudinally changing GVD,



CHAPTER 7. DUAL PUMPING IN DISPERSION-DECREASING FIBERS141

even when GVD becomes normal near the �ber end. This is also corroborated

by Figs. 7.5 where pulse duration has a downward linear trend approaching

zero with decaying transient oscillations. The transient oscillations die out

by the end of a 200-meter-long �ber when the �nal value of β2 is larger than

−5 ps2/km, as seen in Fig. 7.8. The temporal compression continues even

after the oscillations disappear.

The e�ects of TOD are clearly visible in Fig. 7.8. Larger values of |β3|

hinder pulse compression, whereas smaller values lead to shorter pulses at

shorter distances. The explanation for this lies in how β3 a�ects the β2 that

the soliton experiences and in the Raman e�ect that causes the soliton spec-

trum to red shift through SSFS with propagation. The TOD parameter is

given by β3 = dβ2(ω)/dω evaluated at the central frequency ω0. Negative

values of β3 thus mean that β2 decreases with optical frequency and hence in-

creases with wavelength. SSFS then causes the solitons to experience a larger

GVD parameter β2 (i.e. smaller |β2| since β2 stays negative) compared to the

initial pump center frequency. Negative values of β3 together with SSFS im-

ply that β2 at the solitons' central frequency increases (from negative values

towards zero) even faster than β2 at the pump center frequency, thus causing

the solitons to compress rapidly. The opposite occurs for positive values of

β3. As seen in Fig. 7.5, solitons could be compressed down the three optical

cycles in the absence of TOD, but in practice pulse compression is limited

by it. We note that �bers with β3 = 0 can also be manufactured (so-called

dispersion-�attened �bers); pulse compression would be limited by fourth-
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order dispersion. There is no way to make the group-velocity dispersion

completely �at across the whole soliton spectrum and pulse compression will

always be limited by higher-order dispersion.

It is evident from Fig. 7.8 that soliton trains with pulse widths < 100 fs

can be achieved with many di�erent parameter combinations. Even a 100-

meter �ber can be long enough to produce such an ultrashort pulse train

if β2 of the DDF increases rapidly enough with distance [see Fig. 7.8(b)].

Both negative and positive values of β3 work, and two di�erent sets of �ber

parameters can lead to very similar-looking pulse trains. Figure 7.9 shows

portions of two pulse trains generated using two di�erent �bers with the

same input. Both �bers have the same GVD at the input end but their

lengths and �nal values of β2 are di�erent. Their TOD parameters are equal

in magnitude but opposite in sign. The solitons generated in each �ber are

nearly identical: their energies and pulse durations are within 2% of one

another. The only notable di�erence is that the pulses in the �ber with

β3 > 0 (Fiber A) exhibit a small bump near the trailing end. The di�erences

between the pulse trains are subtle in the time domain but become quite

evident in the spectral domain to which we turn in the next section.

Before moving on to the spectral domain, it should be reiterated that

dispersion orders higher than three were neglected altogether. Whereas ac-

curately modeling the dispersion of a real �ber over a large spectral range

would require the inclusion of fourth- (4OD) and higher-order dispersion, the

key point here is not the actual shape of the dispersion pro�le but that that a
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non-solitonic normal dispersion spectral region that changes along the length

of the �ber will limit the spectral extent and hence the duration of the form-

ing solitons and also push them towards longer or shorter wavelengths. The

existence of such a region of normal dispersion is always guaranteed when the

highest order of dispersion is odd, but a positive 4OD parameter β4 would

also guarantee a normally dispersive regime that would repel solitons. On

the other hand, a negative β4 would just perturb the shape of the solitons

symmetrically [190]. It is worth mentioning, however, that the inclusion of

4OD and/or higher-order dispersion makes it possible to have two ZDWs ap-

proach the soliton spectrum from both the red and the blue side, and such

a narrowing of the anomalous spectral regime might be useful in controlling

the soliton shape or trapping the solitons more robustly within a narrow part

of the spectrum. Furthermore, it was demonstrated that �at dispersion leads

to the shortest pulses, and 4OD and higher-order dispersion can make the

dispersion locally �at for certain wavelengths even in the presence of TOD,

which might have practical implications for few-cycle soliton train generation

using a dual-pump input.

7.2 The Central Wavelength of the Frequency

Comb

The output spectrum of any periodic ultrashort pulse train generated through

dual-pumping is in the form of a frequency comb whose comb lines are sepa-
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rated by the initial spacing between the frequencies of the two input pumps.

Figure 7.10 shows the spectra corresponding to the two identical-looking

pulse trains shown in Fig. 7.9. The spectra resemble mirror images of one

another because of the opposite signs of the TOD parameter β3. The soliton

part of the spectrum (dominant peak) of �ber A is centered at 1086.1 nm,

while that of �ber B is at 1067.5 nm, a di�erence of 18.6 nm (4.81 THz). As

a reminder, the input center wavelength of the two pumps is at 1060 nm.

The central frequency at each point in the �ber is determined by several

processes. The �rst one is SSFS which causes the solitons to red shift. The

second one is the tendency of solitons to stay away from the ZDW in the

spectral domain [191], and a moving ZDW can manifest as an e�ective push

for the soliton spectrum. Depending on whether this push comes from the

red side or the blue side, it can respectively hinder or enhance the red shift

(See Figs. 7.6 and 7.7, respectively). For β3 > 0 we have ωZDW > ω0, and

ωZDW approaches ω0 from the blue side, enhancing the red shift and pushing

the solitons further into the red. When β3 < 0, ωZDW approaches ω0 from

the red side and SSFS is thus hindered. This is the reason the spectrum out

of �ber A in Fig. 7.10 is more red shifted than that of �ber B.

If βout2 > 0, ωZDW always surpasses ω0 no matter how fast or slow its rate

of change. The rate of change is proportional to 1/β3 as seen in Eq. (7.4),

which means that when β3 is close to zero, ωZDW changes rapidly with dis-

tance z. Based on this argument, it seems likely that solitons could be pushed

towards even longer wavelengths by making β3 smaller while keeping it pos-
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itive. Figure 7.11 shows the central wavelength of the pulse trains generated

through dual-pumping at distances of 80 m, 120 m, 160 m, and 200 m under

conditions identical to those of Fig. 7.8 as a function of βout2 and β3. The ini-

tially forming solitons are wide at �rst and, as a result, red shifts of < 5 nm

occur up to a distance of 50 m. Much larger shifts occur at distances beyond

100 m, especially for large values of βout2 for which adiabatic soliton com-

pression kicks in and makes the solitons shorter thus enhancing their SSFS.

The largest red shifts occur in the regime where βout2 > 0 and β3 is small

but positive. The soliton central frequency can be red shifted by more than

25% to 1.35 nm before ωZDW moves beyond the soliton central frequency and

disperses the solitons.

These results demonstrate that the technique of dual-wavelength pump-

ing can be used to generate soliton pulse trains at ultrahigh-repetition rates

(up to 1 THz or more) and that the solitons could be compressed tempo-

rally inside a dispersion-decreasing �ber down to the few-cycle regime (pulse

widths as short as 10 fs at wavelengths near 1 µm). The repetition rate

used here was 800 GHz, but since it is set by the frequency separation of

two CW pumps, it can be tuned over a wide range by choosing the input

pump wavelengths suitably. It was further pointed out that the soliton com-

pression is limited by higher-order dispersion with small values of the GVD

slope β3 = dβ2/dω leading to shortest pulses. It was also shown that third-

order dispersion is crucial in determining the output wavelength of the pulses.

Small positive values of the GVD slope lead to the largest red shifts and the
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longest output wavelengths. Sub-100 fs solitonic pulses with a wavelength

anywhere between 1060 nm and 1350 nm could be achieved in the simula-

tions, making dual-wavelength pumped optical �bers a versatile platform for

generating femtosecond pulses at high-repetition rates that have a variety of

applications ranging from biomedical imaging to the manipulation of motion

of individual molecules.

The spectral features of the generated pulse trains are also remarkable.

The results clearly show that the dual-pumping scheme is capable of generat-

ing frequency combs that extend over 50 THz and whose center frequency is

tunable over 60 THz in the vicinity of 1150 nm. Moreover, the comb spacing

in itself can be tuned over a wide range (∼0.1 to ∼1 THz or even higher at

the expense of the quality of the comb) by choosing the pump wavelengths

suitably. As a �nal remark, the same technique should work for generat-

ing optical frequency combs from the visible to mid-infrared region using

di�erent �ber designs and materials.
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Figure 7.5: The temporal (middle) and spectral (bottom) evolution of a dual-
pump signal over 100 meters of a DDF with β2 increasing from −10 ps2/km
to 0 ps2/km. The gray intensity scales are logarithmic. The top two traces
show the duration (thick blue) and peak power (thin red) of the forming
pulses as a function of distance. The vertical black dashed lines indicate the
distance at which the soliton width has been reduced to three optical cycles.
After [6].
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Figure 7.6: The evolution of a 800 GHz dual-pump signal in a �ber in which
β2 grows from −10 ps2/km to 5 ps2/km along its 150 m length. Third-order
dispersion is β3 = −0.03 ps2/km. After [6].
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Figure 7.7: The evolution of a 800 GHz dual-pump signal in a �ber in which
β2 grows from −10 ps2/km to 10 ps2/km along its 200 m length. Third-order
dispersion is β3 = 0.03 ps3/km. Unlike in Figs. 7.5 and 7.6, the temporal
frame of reference is now with respect to the solitons, as their trajectories
would look heavily curved in the pump frame of reference. After [6].
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Figure 7.8: The mean duration (FWHM, color coded) of the forming solitons
after a) 80 m, b) 120 m, c) 160 m, and d) 200 m of propagation as a function
of β3 and the �nal value of β2. The initial value of β2 at the input end
of 200-meter-long �ber is −10 ps2/km. The striped areas in the upper left
corners are regions where the pulses have lost their solitonic nature by virtue
of having transferred energy to the normal dispersion regime. After [6].
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Figure 7.9: Comparison of pulse trains generated with the same dual-pump
input in two di�erent �bers. Fiber A is 100 m long and its GVD increases
linearly from −10 ps2/km to 0 over this length with β3 = 0.05 ps3/km.
Fiber B is 97 m long but its GVD increases from −10 to −2.725 ps2/km
with β3 = −0.05 ps3/km. The total input power is 2 W and initial pump
separation is 800 GHz. The two traces on the right show the pulse around
T = 0 showing how closely their shapes match. After [6].
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Figure 7.10: Spectra of the two pulse trains shown in Fig. 7.9 at the output
of �bers A and B. After [6].
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Figure 7.11: The central wavelengths λsoliton of the forming solitons for the
parameters used in Fig. 7.8 after a) 80 m, b) 120 m, c) 160 m, and d) 200 m
of propagation. The striped regions indicate that the pulses have lost their
solitonic nature and have dispersed. The upper colorbar is for the top row
and the lower one for the bottom row; note the di�erent scales. After [6].
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