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Introduction

• Optical waveguides confine light spatially to a central region through total

internal reflection (TIR).

• Space-time duality noted in the 1960s suggests that a temporal analog of

spatial waveguides may exist.

P. Tournois, C. R. Acad. Sci. 258, 3839–3842 (1964);

S. A. Akhmanov et al., Sov. Phys. JETP 28, 748–757 (1969).

• Such waveguides make use of temporal TIR occurring at the boundary of

two dispersive media with different refractive indices.

• Concept of space-time duality has found many applications in recent years.

• Temporal imaging, first discussed in 1989, is one obvious example.

B. H. Kolner and M. Nazarathy, Opt. Lett. 14, 630–632 (1989);

R. Salem et al., Adv. Opt. Photon. 5, 274–317 (2013).



What is Space–Time Duality?
• It results from a mathematical equivalence between paraxial-beam

diffraction and dispersive pulse broadening.

• Diffraction in one transverse dimension is governed by

∂A
∂ z

− i
2k

∂ 2A
∂x2 = 0.

• Temporal evolution in a dispersive medium is governed by

∂A
∂ z

+
iβ2

2
∂ 2A
∂ t2 = 0.

• Slit-diffraction problem is identical to a pulse propagation problem.

• The only difference is that β2 can be positive or negative.

• Many results from diffraction theory can be used for pulses.



Temporal Reflection and Refraction

• Reflection and refraction of optical

beams at a spatial boundary are well-

known phenomena.

• What is the temporal analog of these

two optical phenomena?

• What happens when an optical pulse arrives at a temporal boundary across

which refractive index changes suddenly?

• At a spatial boundary, frequency is preserved but momentum can change.

• At a temporal boundary, momentum is preserved but frequency can change.

• A change in angle at a spatial interface translates into a change in the

frequency of incident light.



Reflection at a Moving Boundary

• Both the pulse and temporal boundary travel forward at different speeds.

• It is convenient to work in a moving frame at which the boundary is sta-

tionary (t = T − z/VB).

• Momentum (or the wave number) is then conserved in the moving frame.



Simple Model of Pulse Propagation

• Let us assume that an optical pulse is propagating inside a waveguide with

the dispersion relation β (ω).

• Temporal discontinuity at t = TB is incorporated by using

β (ω) = β0+∆β1(ω −ω0)+
β2

2
(ω −ω0)

2+βBH(t −TB).

• ∆β1 = β1−1/VB is pulse’s relative speed relative to the temporal boundary

located at t = TB; H(x) is the Heaviside function.

• If refractive index changes by ∆n for t > TB, we can use βB = k0∆n, where

k0 = 2π/λ .

• The dispersion relation can be used to investigate changes in pulse’s shape

and spectrum occurring when the pulse arrives at the boundary.



Numerical Simulations

• Slowly varying envelope of the pulse satisfies

∂A
∂ z

+∆β1
∂A
∂ t

+
iβ2

2
∂ 2A
∂ t2 = iβBH(t −TB)A.

• Numerical results are for Gaussian pulses using A(0, t) = A0 exp(−t2/2T 2
0 )

with T0 = 1 ps. Temporal boundary is located at TB = 5 ps.

• Other parameters: ∆β1 = 0.1 ps/m, β2 = 5 ps2/km, and βB = 0.5 m−1.

• Using βB = k0∆n, this value corresponds to an index change of only

∆n = 2×10−7 at a wavelength near 1 µm.

• Temporal evolution of the pulse shows a clear evidence of both the reflection

and refraction at the boundary.

• Spectrum shows the spectral shifts associated with reflection and refraction.



Temporal Reflection and Refraction

Plansinis et al., PRL 115, 183901 (2015).



Total Internal Reflection

• Total internal reflection (TIR) occurs in the spatial case when an optical

beam enters from the high-index side to the low-index side (∆n < 0).

• The condition for TIR is obtained from Snell’s law: θ > θc, where sinθc =

(n+∆n)/n.

• In the case of temporal TIR, the condition is related to frequency shifts.

• One way to find the condition for TIR is to see when the spectral shift of

the transmitted pulse becomes unphysical:

ωt = ω0+
∆β1

β2

(√
1− 2βBβ2

(∆β1)2 −1

)
.

• This condition is clearly 2βBβ2 > (∆β1)
2. Temporal TIR occurs only if βB

and β2 have the same signs.



Temporal TIR
• Temporal TIR is not restricted to the situation ∆n < 0.

• Using βB = k0∆n, we can write the condition for TIR as

β2∆n > (∆β1)
2/2k0.

• When ∆n> 0, the pulse needs to propagate in the normal-dispersion region.

• In contrast, the pulse must propagate in the anomalous-dispersion region

when ∆n < 0.

• This freedom is a consequence of the fact that dispersion term can be

positive or negative whereas the diffraction term has only one sign.

• The requirement ∆n > (∆β1)
2/(2k0β2) can be satisfied in practice even

for a relatively small change in the refractive index across the boundary

(∆n < 10−5).



TIR of Gaussian Pulses

Plansinis et al., PRL 115, 183901 (2015).

• Index change was large enough (∆n ∼ 10−6) to satisfy the TIR condition.

• Entire pulse energy gets reflected at the temporal boundary

• Spectrum shifted toward the red side during TIR if ∆n > 0.



Temporal Waveguides

• TIR can be used to make temporal

waveguides that trap optical pulses.

• Two temporal boundaries are needed.

• Refractive index of the central region

can be lower or higher.

• This technique has the potential of creating pulses that remain confined to

a time window.

• A pulse is trapped inside the waveguide if it undergoes TIR at both temporal

boundaries.

• Temporal waveguide support modes just as spatial waveguides do.



Temporal Waveguide Modes

• In view of the space–time duality, a temporal waveguide should have modes

whose shape does not change during propagation.

• This is indeed the case with the major difference that a spectral shift occurs

in the temporal case.

• Assuming A(z, t) = M(t)ei(Kz−Ωt), the spectral shift is found to be

Ω =−∆β1/β2 and the mode shape is governed by

d2M
dt2 +

2
β2

[
K +

1
2

β2Ω
2−βB

]
M = 0.

• This equation can be used to find an eigenvalue equation in the form

2Ω0TB = mπ + tan−1
(

Ω1

Ω0

)
+ tan−1

(
Ω2

Ω0

)
.



Symmetric Temporal Waveguides

• A symmetric waveguide is designed to have the same refractive index

change at the two temporal boundaries.

• In this case, the eigenvalue equation takes a much simpler form

Ω1 = Ω0 tan(Ω0TB+mπ/2),

Ω
2
0 = 2(K −βB0)/β2+Ω

2,

Ω
2
1 = 2(βB1−K)/β2−Ω

2.

• Introducing a dimensionless parameter as V = TB
√

Ω2
0+Ω2

1, the waveguide

supports m modes when V < (m+1)π/2.

• A temporal waveguide supports only the fundamental m = 0 mode if it is

designed such that V < π/2.



Temporal Waveguide Modes

Plansinis et al., JOSA B 33, 1112 (2016).

• Modes of a temporal waveguide can be found analytically.

• The number of modes depends on V = 2
√

k0∆nT 2
B /β2.

• Figure shows the first 3 modes for a 20-ps wide waveguide with V = 55.



Single-Mode Waveguides
T0 = 2.5 ps T0 = 5 ps

Plansinis et al., JOSA B 33, 1112 (2016).



Multimode Waveguides

• A 1-ps Gaussian pulse trapped inside a

10-ps wide waveguide: βB = 5.6 m−1,

∆β1 = 66.7 ps/km, β2 = 50 ps2/km

• Pulse undergoes TIR and its spectrum

shifts after each reflection.

• Pulse broadening eventually creates dis-

tortions and pulse excites multiple wave-

guide modes (V = 26.8).

• This approach can work when the propa-

gation length is a fraction of the disper-

sion length (z < LD).



Temporal Talbot effect

• Spatial waveguides exhibit self-imaging

and power splitting owing to multi-

mode interference.

• This is related to the Talbot effect,

studied first in 1836 with diffraction

gratings.

• Temporal analog of this phenomenon

is the temporal Talbot effect.

• Figure shows self-imaging and pulse

splitting inside a temporal waveguide.
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Experimental Considerations
• Experimental realization of temporal waveguides requires two moving bound-

aries. Two techniques can be used for this purpose.

• A microwave signal can be used to create refractive index changes inside

an electro-optic modulator.

• Cross-phase modulation can be employed inside a nonlinear waveguide

through an intense pump pulse.

• The spreading of pump pulse can be controlled if pump wavelength lies

near the zero-dispersion wavelength of an optical fiber.

• The width of the pump pulse controls the temporal window inside which

refractive index is enhanced through the Kerr nonlinearity.

• Numerical simulations show that shorter probe pulses can be confined

within a temporal window realized using super-Gaussian pump pulses.



XPM-induced Multimode Waveguide

• Super-Gaussian 20-ps pump pulse with 10 W peak power (β2 = 0).

• Gaussian 8-ps probe pulse with 3 nm wavelength shift (β2 =−10 ps2/km).

• (left) Shapes of input pump and probe pulses compared.

• (middle) Temporal evolution of probe pulse over 4 km of optical fiber.

• (right) Spectral evolution of the same probe pulse over 4 km.



XPM-induced Single-Mode Waveguides

• Super-Gaussian 10-ps pump pulse with 1 W peak power (β2 = 0).

• Gaussian 8-ps probe pulse moving at the same speed (β2 =−30 ps2/km).

• (left) Shapes of input pump and probe pulses compared.

• (middle) Temporal evolution of probe pulse over 4 km of optical fiber.

• (right) Spectral evolution of the same probe pulse over 4 km.



Conclusions

• Space–time duality is a simple concept with many applications.

• It can be used for temporal imaging and for making time microscopes.

• Temporal equivalent of total internal reflection occurs for optical pulses at

a moving temporal boundary.

• In the temporal case, frequency shifts play the role of angles.

• We have identified conditions under which an optical pulse can be confined

within a temporal waveguide.

• Modes of such waveguides were found analytically and a single-mode con-

dition was identified.

• A pump–probe configuration can be used to make such waveguides through

the nonlinear phenomenon of cross-phase modulation.


