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ABSTRACT

We experimentally measure the first-order spatio-temporal characteristics of filamentation and discover effects of the stripe width.
We use an analytic theory to explain and reproduce these results through an expression for the ifiament gain, in which contributions
of various mechanisms can clearly be seen. Through this model and computer simulations, we determine the stability boundaries of
the material parameters for which the device will not exhibit ifiamentary tendencies. We then propose a new method of controlling
filamentation using below-bandgap semiconductor nonilnearities. With simulations, we determine under what conditions this
imposed nonlinearity can counteract the carrier-induced self-focusing inside the active region.

Keywords: beam filanientation, broad-area lasers, dynamics, high-power lasers, laser stability, optical propagation in nonlinear
media, semiconductor lasers, spatio-temporal instabilities

1. INTRODUCTION

High-power lasers are useful in a myriad of applications such as laser surgery, optical data recording, free-space and fiber-optic
communications, remote sensing and environmental testing, wavelength conversion, industrial cutting and welding, and electro-optic
countermeasures. Semiconductor lasers are ideal for many of these applications for many reasons, such as compactness, durability,
high efficiency, integrability, and low cost due to mass producibility. For semiconductor lasers to achieve the power levels required
for many of these applications, several issues which limit the performance of such high-power devices must be resolved. In this
paper, we turn our attention to beam filamentation.

Due to saturation of the semiconductor medium, the spatial gain proffle can become distorted by a dip in the local carrier density
where the light is most intense. This dip in the carrier density, known as spatial hole burning, causes a local increase in the refractive
index, which leads to self-focusing of the light'. For broad-area gain regions, the light has no lateral confinement, so self-focusing
tendencies can break up the lateral mode proffle into multiple ifiaments. As with array architectures, this filamented beam cannot be
cleanly focused into a single spot, but rather spreads its power into multiple far-field lobes, thus limiting the useful output power of
the device.

As applications drive towards higher output powers, the ifiamentation issue has resurfaced in the context of amplifiers, which have a
lower tendency to filament due to lack of counterpropagating waves2. Recent studies have investigated the propagation5 and
initiation6 of filamentation in semiconductor amplifiers, but the analyses are primarily demonstrative with limited application to lasers.
Another group investigated spatio-temporal chaos in semiconductor lasers7 8 but the focus was on a demonstration of chaotic
behavior, unstable resonator analysis, and many-body effects.
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2. MEASURING BEAM FILAMENTATION

The samples used for the measurements9 were two sets of quantum-well lasers with 50 pm stripe widths, one set operating at
808 nm and the other at 980 nm. The linewidth-enhancement factors for these devices are known to be near a —4 (±1) for A1GaAs
lasers operating near 808 nm'°'3 and a = 2 (± 0.5) for InGaAs lasers operating near 980 nm'3'6. Light emitted from the devices
was imaged onto a photodiode array to display the near-field profile, from which the spatial information could be extracted. As the
injection current was varied, the devices displayed either a multiple-lobed ifiamentary pattern, noted by deep modulation and the
clarity of independent spatial lobes, or exhibited a varying spatial pattern consisting of several spatial frequencies, resulting in a
reduced modulation depth on our slow photodiode array. To ensure that the spatial data was extracted correctly, the injection current
was chosen such that the modulation depth of a given ifiamentation pattern was maximum. In this way, the pump level for which a
given spatial pattern dominates could be accurately determined.

In Fig. 1 , we plot the dominant filament spacing for the two sets of devices as a function of the pump level r defined as r =J/J,
where J is the injected current density and J is its value at threshold. The solid lines in Fig. 1 are fit to the experimentaldata from a
theoretical model as discussed in Section 3. Several trends are evident in Fig. 1 . First, the ifiament spacing decreases with
increasing pumping level, or more practically, more fflaments fit under the current stripe contact as the current is increased. Since
diffractive spreading becomes increasingly stronger as the filament width becomes smaller, this observation is a clear indication that
increasing the pumping level increases the severity of filamentation. The second trend shown in Fig. 1 is that the filament spacing is
smaller for larger values of the linewidth-enhancement factor a. This observation is indirect evidence that self-focusing induced by
spathi-hole burning is responsible for filarnentation. While it is well known that both pumping level and the linewidth-enliancement
factor contribute to the increased severity of filamentation, Fig. 1 shows that this increase is directly correlated with an increase in the
filament spacing.

To confirm the spatio-temporal nature of filamentation, one must make temporal or spectral measurements together with the spatial
measurements shown in Fig. 1. By splitting off a portion of the light before it was sent to the photodiode array, we measured the
spectral properties of the filamented beam. In this branch, the light was sent through astigmatic coffimation optics, an isolator, and
then finally imaged onto a fast photodiode, whose signal was sent to a microwave spectrum analyzer. Any temporal fluctuations in
the optical field inevitably lead to relaxation oscillations, resulting in a well-known peak at the relaxation-oscillation frequency rei.
However, our measurements show that another frequency was dominant in the intensity noise spectrum of the laser. We refer to this
frequency at the filamentation frequency L�fi1. Figure 2 shows the evolution of the relaxation-oscifiation and filamentation
frequencies as a function of the pump level for a 980 urn laser. The upper curve was fit to a function of the form As/r— 1 , where A
is a fitting parameter, while the lower curve was linearly fit to the experimental data by using the theoretical model discussed in

FIGURE 1. Measuied filament spacing as a function of pump level r = 'th for 980-nm (solid circles and squases) and 808-nm (empty circles)
semiconductor lasers with a 50-i.m stripe width. Solid lines are fitted using the theoretical model discussed in Section 3.
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FIGURE 2. Measured variation ofthe relaxalion-oscillation and filament frequencies, &id L1fj respectively, with then pump level r 'th for a 980-
nm laser. The curves are fitted using the theorelical models discussed in the text.

Section 3. The data indicate that spatial filamentation is accompanied by self-pulsing at a frequency in the 0.5-1 .0 GHz range. This
periodic modulation of the steady state is a result of the interplay between the nonlinear and diffractive effects that occur during
propagation within the semiconductor laser medium.

As discussed earlier, the near field of the laser does not always show well-separated and nearly identical filaments. In these regions,
the spectral data does not show a clear indication of flj (shown dashed in Fig. 2). The dashed region for 1 < r < 1 .5 is easily
understood by noting that the laser is close enough to threshold and its output power is low enough that a-induced self-focusing has
yet to produce filamentation. Near r = 1.6, the nonlinear effects become strong enough that the laser enters a self-pulsing regime in
which the optical intensity is also spatially modulated. As the pump current was increased beyond this range, the filament frequency
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FIGURE 3. Measured filament spacing as a function ofpump level r for 50-gm aixi 30-jim stripe-width lasers (a 2), and the theoretical prediction for
infinite stripe-width lasers (a = 2).
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re-emerged accompanied by another dominant spatial pattern (i.e. one more filament than was present in the fundamental pattern).
For this pumping range, the peak at the filament frequency was rather broad. The broad-band nature of the intensity-noise spectrum
suggests an underlying transition towards chaos. Further increase in pump indeed leads confirms this transition for r > 4. This
noise spectrum shows not only two broad peaks located at fl and afil but also another broad peak located at rei 2ffi1, lB

support of our hypothesis of a quasi-periodic route to chaos. Further increase in pump leads to a broadband, nearly featureless
spectrum, as expected in the chaotic domain. Since the laser is chaotic both spatially and temporally, we refer to this behavior as
spatio-temporal chaos.

The linear scaling needed for a quantitative fit to the model is attributed to the finite stripe width of our lasers. To test this hypothesis
further, we performed the same spatial measurements of the dominant ifiament spacing on a 980-nm laser from the same epitaxial
wafer as the other 980 nm lasers (a = 2),but with a narrower stripe width of 30 jim. The results are displayed in Fig. 3, along with
previous measurements of the 5O-.Lm-stripe lasers at 980 nm and theoretical predictions for a =2. From this figure, we see that the
effect of a frnite stripe width is to squeeze the ifiaments more tightly together the narrower the stripe, the more closely spaced the
filaments become. Figure 3 suggests that measurements on a laser with a wide enough current stripe (> 200 xm) should agree quite
well with the theoretical predictions both qualitatively and quantitatively,

3. MODELLING BEAM FILAMENTATION

In this paper, we will use two methods to model the semiconductor laser, one being an analytic approach, the other numerical. We
characterize the semiconductor laser with the following coupled, nonlinear equations

E 1 E i Ef ri . ai . 2 21.- +;-_. = -- + L T(1—ia)g(N)—--r 1n2k0 E + 2 Eb JEf, (1)

Eb 1 aEb i a2Eb ri . ai . 1— --. +;-t- =-;:r T(1—ia)g(N) ——i-- + m2kO(IEbI2 + 2IEI2)jEb, (2)

N(x,z,t) _ = J(x,z) _ BN — r'g(N)
IEl2 + IEbI2 ) . (3)at ax2 qd t1ff Ira)

where Ef and Eu, represent the forward and backward traveling waves of frequency Ci) respectively, N represents the carrier density,
and the field and carriers are coupled through the gain g(N) =a (N - No), where a is the gain cross-section and N0 is the transparency
value for the carrier density (g = 0 at N = No). Other parameters include the group velocity of the light travelling in the
semiconductor Vg, the mode propagation constant k = neffk0 where df S the effective (modal) index ofrefraction and k =co/c is the
free-space propagation constant, the internal loss o, the linewidth-enhancement factor a, the transverse confinement factor F, the
Kerr nonlinearity n2 = Fn2t + (1 — F)n2cI where n and 2clad the material Kerr coefficients of the active and cladding
layers respectively, the diffusion constant D, the injected current density J, the magnitude of the electron charge q, the active-layer
thickness d, the nonradiative lifetime 'r, and is the spontaneous-emission coefficient B. Our choice of axes has the x-axis (lateral)
parallel to the plane of the epitaxial layers, and perpendicular to the direction of the stripe contact, which is parallel to the z-axis
(axial).

Because the carrier population affects the index ofrefraction as well as the optical gain, the linewidth-enhancement factor a couples
changes in the gain to changes in the index of refraction. The a-parameter is one of the distinguishing aspects of semiconductor
lasers since for all other types oflasers, modification of the gain results in negligible changes in refractive index.

Equations (1)-(3) notonly account for the spatial variance of and coupling between counterpropagating waves and carriers, but also
include diffraction, carrier-induced index variations, free-carrier absorption, material gain, self-focusing (n2 > 0) or self-defocusing
(n2 < 0) through a Kerr-type nonlinearity, carrier injection, diffusion, gain saturation, and nonradiative, spontaneous, and stimulated
recombinations. The rest of our theoretical and computer modelling will be based on this set of equations.

Using Equations (1)-(3), we first create an analytic model'7 for the filament gain in which several approximations are made. First,
we consider an infmitely wide current stripe. This has the implications of not being able to predict effects due to the edges of the
current injection stripe, the ramifications of which we have already seen in comparison to the measurements. Second, to avoid
solving a complicated boundary-value problem, we assume that mirror losses are distributed throughout the cavity. We consider
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field propagation only in the forward direction by unfolding the Fabry-Perot cavity. The iniracavity field then satisfies a modified
version ofEqn. (1) where there is only one field, and aj is replaced by aav amt + ln(RjR)/2L. The equation for the carrier
distribution is modified to create an effective carrier lifetime t= (1I'c, + BN'.

Once the device reaches threshold in the steady-state regime, the carrier density becomes clamped at its threshold value, and thus the
gain becomes clamped at a value which exactly compensates for the cavity loss'8. Using this condition and the fact that our
assumption of an infinitely wide current stripe dictates that the carrier density be uniform in the x-direction, the threshold carrier
density under cw operation is given by Nth =N0 + cx /(ra). Using this expression and neglecting diffraction for an infinitely wide
current stripe, we can rewrite the field eqation in the steady state, using the mean-field approximation and replacing lEt2 by an
average value, to obtain the solution E = 'p/I exp(iz), where I is the intracavity mean-field intensity, and is the modification to the
propagation constant.

Using the steady-state forms for the field and carrier density, Eqn. (3) gives an expression that relates the intracavity intensity to the
injected current density. Since the intensity is negligible near threshold, we can readily determine the threshold current density
Jth qdNth/'r. Combining this with Eqn. (3) and defining a pump parameter r = J/J, we arrive at a solution for the intracavity
intensity in terms of the pumping level r as I =I(r— 1)/(1- NofNth) where I =Ir xil(Fat) is the saturation intensity.

Now, we examine the stability of these cw solutions to small perturbations. The steady-state solution is stable if small perturbations
decay with time, while their growth signifies that the cw solution is unstable. We follow the standard procedure for linear stability
analysis and linearize the modified Eqns. (1) and (3) in terms of small, perturbative parameters and n defined as
E = ['k/f + E(x, z, t)] exp(ifz) and N = Nth + n(x,z, t). Linearizing these equations in in and n, and using the steady-state solutions,
yields a set of two coupled linear equations which can be easily solved by using the Fourier method. Each Fourier component of
corresponds to a plane-wave perturbation of the form exp[i(kx +kz — flt)] where k is the spatial frequency of the perturbation, �
is its oscillation frequency, and k is the propagation constant to be determined by solving the linearized equations. Further, we note
that since E represents a complex field, it is determined be two independent variables, which can be amplitude and phase, real and
imaginary parts3, or complex conjugates'9. By examination of the linearized equations, the latter seems to be the best choice. By
eliminating the carrier density perturbation, we arrive at two coupled algebraic equations for and ii'. An equation for k yields the
only non-trivial solution, from which the filament gain can be extracted from the imaginary part k by using g =—2Im(k). The factor
of 2 is used to define power gain to obtain

I 12k2 k2 1
g=Re"\J.j[aCffG+2n2koI_ ] +G2 3

— G. (4)

where the effective value of the linewidth-enhancement factor has been defined as

a — 'rI(1 + I/I + D'ck)aff= , (5)
1 + af'r/(l + I/Is + D'rk)

and the saturated power gain is given by

G = rg(N) (L113)(l + I/Is + D'rk + a)
(6)

(1 + I/Is + D'rk)2 + (j)2
For filamentation to occur, the gain must exceed the cavity loss, making the perturbative Fourier components grow exponentially
with propagation, thereby destabifizing the cw solution. This is the origin of ifiamentation in semiconductor lasers. The spatial
frequency k of filamentation is related to the ifiament spacing 2ir/k,, while a non-zero value of the frequency f� implies that the
filaments are oscillating in time with a frequency = LQI/2ir.

Equation (4) describes the gain of the instabifity as a function of the filament spacing and oscifiation frequency, as well as the
linewidth-enhancement factor, nonlinear refractive index, and pumping level through the iniracavity intensity I. By comparing the
terms within the radical sign, we can draw several general conclusions. It is readily seen that the filament gain increases with the
linewidth-enhancement factor a, yet a highly saturated gain will reduce its effect. This feature can be understood by noting that as
the gain where the filament is located saturates, the regions surrounding the filament will experience more gain, thereby allowing the
surrounding regions to increase in intensity. A similarly combative effect is that of diffraction, as can be noted from the terms under

306

Downloaded from SPIE Digital Library on 06 Apr 2010 to 128.151.82.225. Terms of Use:  http://spiedl.org/terms



the radical. Moreover, the more closely spaced the ifiaments are, the larger effect diffraction will have. Thus, we can expect
diffraction to play a significant role in determining the ifiament spacing. Carrier diffusion plays a role similar to both diffraction and
gain saturation in that the carriers, which are responsible for the a-induced self-focusing, tend to disperse in such a way as to reduce
spatial modulations, thus reducing spatial index modulations directly. The nonlinear index n2 can have detrimental or beneficial
effects, depending on its sign. It has been shown that positive values of n2 will lead to ifiamentation through self-focusing, thus
enhancing the effect of the linewidth-enhancement factor°. However, note that a negative value of this parameter will help to combat
filamentation through self-defocusing, thus counteracting the carrier-induced self-focusing governed by the linewidth-enhancement
factor.

The instability gain given by Eqn. (4) is a complicated function of many variables. Although the surface in the spatio-temporal
domain is complicated, the key feature is that there is an absolute maximum. This maximum will shift in the space-time domain for
various parameter variations, namely the linewidth-enhancement factor a and the pump parameter r. For filamentation to occur, the
filament gain must exceed the cavity loss. What determines the filament spacing and frequency in a given laser? The answer to this
question is that the perturbation for which the gain is maximum would grow fastest and would dominate the growth process. This is
the method that was used to calculate the curves shown with the data in Figs. (1)-(3).

However, we have already seen in Fig. (3) that the stripe width, not included in our analytic model, plays an important role in
determining the properties of filamentation. We thus implement numerical simulations using Eqns. (1)-(3), (neglecting the time-
depencence in order to save computation time) while investigating the onset of ifiamentation. These equations are solved iteratively
using a split-step Fourier (or beam propagation) methed2' 22.23 We use the boundary conditions E(x,O) = s/Rj Eb(x,O) and
Eb(x,L) = iii: E(x,L) to relate the forward and backward propagating beams at the facets, where Ro and RL represent the facet
power reflectivities at z = 0 and z = L respectively. The iteration procedure is initiated by using a super-Gaussian lateral profile at
z= 0. The carrier density is calculated laterally for each step in the propagation using a tridiagonal matrix method. The lateral mode
profile changes initially during multiple round trips inside the laser cavity and settles down to a fixed shape after 1 5-25round trips if
a stable lateral mode exists for a given set of operating parameters. Our convergence criteria rest on comparing the changes in the
output power and the lateral mode width on successive round trips. If the lateral mode does not stabilize even after 100 round trips
and exhibits filamentary structure, the laser is quantified as "unstable" for that set of operating parameters.

For numerical purposes, it is useful to show results as a function of J/J, where J is constant over the stripe width w and zero
outside the stripe, and Jth is the threshold current density. Since the field is negligible below threshold, the last term in Eqn. (3) can
be neglected. However, J depends on the stripe width w because of carrier diffusion. For simplicity, we solve for the threshold
current density from Eqn. (3) by neglecting carrier diffusion and the time derivative. The result is J = (qdNth/'r) [1 + B'rNth],
where Nth N0 + (üj + aj)/(aF)with Oj= — ln(RoRjj/L can be obtained by equating the gain and losses of the system'8. This
simple model of threshold does not apply for narrow stripes ( 10 jim) which can yield device thresholds higher than the calculated
value (because of carrier diffusion), but it allows us to define a pump parameter r =J/Jth which is constant with respect to the stripe
width. This is equivalent to scaling the total injected current directly with the stripe width. The parameter values used for calculations
and simulations in the upcoming sections are appropriate for an A1GaAs semiconductor laser operating near 820 nm.

4. FILAMENTATLON CONTROL: a REDUCTION

Now that we have several theoretical tools with which to study tilamentation, it is prudent to first examine the parameter space for the
linewidth-enhancement factor since it is well known a plays an important role in destabilizing the lateral mode and producing
filamentation6'7 Using our analytic formalism of the filament gain, we can study how the gain maximum varies with the linewidth-
enhancement factor and the pumping level. Figure 4 displays plots of the peak gain as a function of r for various a. In this figure,
the dashed horizontal line represents the loss level which the ifiament gain must exceed in order for filamentation to dominate the
behavior of the laser. Several points are clear from this figure. First, for pumping levels just above threshold, no filamentation will
take place, as has been noted in practice. Second, and most importantly, there is a non-zero value for the linewidth-enhancement
factor below which the laser is stable even when pumped ten times above. From Eqn. (4), we can infer that this stability region
exists with a >0due to the spreading effects of diffraction, gain saturation, and carrier diffusion. The physics represented in Fig. 4
indicate that increasing either pumping or the linewidth-enhancement factor will increase the tendency for filamentation, as has also
been noted in practice. Note that combining this result with the data in Fig. 1 indicates that the decreased filament spacing is directly
linked to increased filament gain.
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FIGURE 5. Stable operation boundaries in the w-a plane. The curves are critical values of a for which the lateral mode becomes unstable at a given
stripe Width w for r =3 (solid curve), r = 6 (dashed curve), and r = 20 (dotted curve).

a=6

4

2 4 6 8 10

Pump Parameter, r

6

5

.5
3

E
2 a=2

1 a=1

0

FIGURE 4. Filament gain maxima (normalized to the cavity loss aay) vs. r for various a with n = 0. The dashed line represents the cavity loss which

the gain must exceed for the laser to exhibit lilamentation.

With the insight provided from our analytic model, it is now useful to turn to simulations and include the effect of the width of the
current stripe w for a more accurate prediction of the value of a below which ifiamentation can be avoided. Figure 5 shows the
regions of stable and unstable operations in the w-a plane for three different applied current densities. Several conclusions can be
drawn from Fig. 5. First, semiconductor lasers with any value of a are stable for narrow stripes ( 6 jim). Second, the Critical
width at which the device wifi operate stably depends on the level of pumping; increased levels of pumping reduce the critical width
at which a laser can operate stably. Third, for a given pump level, variations in a around typical device values (cx 2-5) do not
change this critical stripe width much, and this feature has been noted in practice for device fabrication. Fourth, for wide stripes, the
critical linewidth-enhancement factor below which the laser operates stably remains fairly constant, and is not affected much by
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different injected current densities, as predicted by the analytic model. We have verified numerically that this behavior persists for
stripes as wide as 250 pm. The key feature ofFig. 5 is that for values of the linewidth-enhancement factor below -O.5,the laser will
remain stable for very wide stripe widths at a pumping level as high as 20 times threshold. This stability region is due to the
mechanisms which fight against filamentation, namely diffraction, gain saturation, and diffusion.

5. FILAMENTATION CONTROL: a NEGATION

So far, we have predicted regions in the a-r parameter space where the laser will be free of filamentation. As alluded to earlier, the
effect of the nonlinear index of refraction can be beneficial or detrimental, depending on its sign. Gain saturation induces a local
increase in the refractive index due to the linewidth-enhancement factor, as can be seen from Eqns. (1) and (2). Through the Kerr
nonlinearity, this a-induced self-focusing can then be either enhanced by self-focusing (n2 >0) or reduced by self-defocusing
(n2 < 0). Using the analytic model of the filament gain, Figure 6 displays filament spacing for a laser with a =2 and a varying value
of n2 for several pumping levels. It is readily seen that the effects of a positive nonlinear index are similar to those caused by
increasing a: the filaments become more tightly spaced. The interesting behavior appears when n2 < 0. For small values, self-
defocusing has the same effect as reducing a by increasing the filament spacing. However, as the self-defocusing become stronger,
we notice that there is a transition to a large spacing, as seen in Fig. 6. The model predicts ifiament spacings >i mm, values which
are larger than typical stripe widths (-400 jim) ofbroad-area lasers. What the rapid rise in ifiament spacing indicates is that there can
only be one filament under the current stripe, hence unifiamented, single-lateral-mode behavior.

However, due to our assumption of an infinitely wide stripe, these results must be used with caution. In order to verify these results
while including the effect of the stripe width, we turn to the numerical model21. For a given stripe width w and a given pumping
level r = J,Jth, wevary n2 over the range —1-10 x 1012 cm2/W and find the critical boundary values of a beyond which the lateral
mode destabilizes. The results are plotted in the n2-a plane after slight averaging to remove the numerical noise associated with finite
step sizes. Figure 7 shows the stability region at two different pumping levels (r = 2.5 and 5) for a stripe width of 50 tm. For
r = 2.5, the main effect of the self-focusing nonlinearity is to increase the critical value of a from 0.5 to above 2 for
(1 — flIn2I > 8 x 10-12 cm2/W. At higher pumping levels (r = 5), the Critical value of a can exceed 2 for
(1 — F)1n21 > 5 x 10-12 cm2IW. However, a new qualitative feature appears showing that for large values of 1n21, the lateral mode can
become unstable even for small values of a. This can be understood by noting that a-induced and n2-induced changes in the mode
index are of opposite sign, and the two must be balanced for realizing stable operation of broad-area semiconductor lasers.

n2 (x1O' cm2/W)

FIGURE 6. Filament spacing as a function of n for various pumping levels r with a =2. The dashed portions of the curves indicate that the gain is less
than the cavity loss and that filamentation will not occur.
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FIGURE 7. Stable operation regions in the n-cz plane for a 5O-tm stripe-width laser operating (a) 2.5 times above threshold and (b) 5 tinies above
threshold. lbe boundaries of these regions mark the values of a for which the lateral mode becomes unstable at a given value of n.

l'o underscore the mode quality, Figs. 8(a) and 8(b) show the near-field and far-field profiles respectively for laser operation at 2.5
times above threshold when a = 1, and (1 — F)n2 = —5 x 10-12 cm2IW. For n2 = 0, the numerically simulated mode exhibits
filamentary structure. We can see from Fig. 8(a) that n2 has indeed suppressed the catastrophic self-focusing that leads to
filamentation. however, this a-induced self-focusing is not completely quenched as noted by the 'squeezing near the center of the
current stripe. The twin-lobed far-field profile shown in Fig. 8(b) is evidence of a curved wavefront, which is a typical feature of
such gain-guided devices'8. As the injected current is increased to 5 times above threshold, the device remains in the stable region
shown in Fig. 7(b). Ilowever, the effective index reduction in the self-defocusing layers has increased since it depends on n2 times
the mode intensity. Figures 8(c) and 8(d) display the near- and far-field profiles respectively for this case. Notice that n2 has
completely compensated for any a-induced self-focusing as evident by the flat.ness of the lateral mode profile over the width of the
current stripe. Another key point is that the far-field is single-lobed. Thus, n2 has also removed the astigmatic curvature that is
typically found in gain-guided semiconductor lasers. From a practical standpoint, Fig. 8 shows that as long as the device remains
within the stable region of operation, the lateral mode profile can be tailored by adjusting the injection current.
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-50 50

FIGURE 8. Normalized near-field (left column) and far-field (right column) profiles for a 5O-tm stripe-width laser operating 2.5 times above threshold
(upper row) and 5 times above threshold (lower row). In both cases a = 1 and "2 =—5 x iO2 cm2iW.

For high output powers, it is desirable to widen the stripe as much as possible. Figure 9 shows the stabifity regions for a 100-jim
stripe at r = 2.5 and 5. The qualitative behavior is similar to the 50-jim stripe case except that the stability region is reduced at a given
pumping level. This behavior can be understood by noting that the n2-induced index change becomes so large at high pumping
levels that it introduces its own set of instabilities which become severe for relatively wide stripes20. Correspondingly, we expect
this stability region to shrink as the stripe width is increased. From a design perspective, the optimum value of 2depends on both
the stripe width w and the pumping level for a given value of a.

A source for the negative intensity-dependent refractive index (n2 <0) can come from below-bandgap nonlinearities found by
designing a new pair of epitaxial layers, sandwiched between the active and cladding regions, for which the bandgap is close to but
less than the lasing wavelength. Even though these new layers would be transparent to the intracavity radiation due to their larger
bandgap energy, a large fraction (80-99%) of the lateral mode would reside in them and experience a nonlinear index change
resulting from the third-order susceptibility. Experimentally measured values of n2 for A1GaAs near the 0.8 p.m wavelength region
are in the range n2 = —4-8 x 10-42 cm2/W depending on the Al contentA 25 with similar values reported for InGaAsP near
1.5 pm2627.

How can one implement these numerical results for designing a laterally-stable device? In recent years, there have been several
reports of devices with values of a < 2. Using a mulUple-quanmni-well (MQW) structure with strained active regions, one group
was able to produce a laser with a measured value a = 1's. We propose to use a pair of self-defocusing layers of thickness -.0.1 jim
sandwiched between the MQW active region and the cladding layers. For example, to achieve a value of n2 =—5 x 1012 cm2/W, the
bandgap of the new layers should be larger than that of the active layers by 29 meV. This bandgap difference is large enough that it
should not affect carrier injection into the quantum wells significantly. In fact, a simple calculation for the density of states of such a
quantum well'8 shows that the carrier density in the active layers is large enough to sustain lasing. However, note that thermal
activation may induce carrier leakage, thereby increasing the device threshold.
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6. CONCLUSIONS

We experimentally tiieasiired the first-order spatio—temporal characteristics of fliarnenlatton and discovered effects of the stripe width.
We used an analytic theory to explain and reproduce these results through an expression for the filament gain. iii which contrihiilions
ol various mechanisms can clearly be seen. Both experiment and model showed that as the pumping level or linewidth-cnhanceinent
tactor is uicreascd. the filament gain is increased leading to a decrease in the filament spacing.

Ihrough this analytic theory and computer simulations, we determined the stability houndanes of for various stripe widths and
operating levels for which the device will not exhibit filamentary tendencies. It was also shown that there is a value for the linewidth-
enhancement factor below which the devices arc stable for wide stripe widths and high pumping levels. Unfortunately, the required
value of cx < 0.5 is too low to be realistic for current state-of-the-art semiconductor lasers. However, we should note that the
effective value of u is generally different than the material value of a°, and it may be possible to design a broad area laser such that
the cfkctivc ix is below the critical value. Such devices will be stable without Itlamentation. regardless of stripe width or uitectlon
current.
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We then proposed a new method of controlling ifiamentation using below-bandgap semiconductor nonlinearities occurring inside
new epitaxial layers. With simulations, we determine under what conditions this imposed nonlinearity can counteract the carrier-
induced self-focusing inside the active region. This nonlinearity can be used to stabilize the lateral mode by tailoring the bandgap
difference between the active and the new self-defocusing layers. We have suggested the design of such a laterally-stable broad-area
laser by using a strained MQW active region since a values are relatively low for such structures. Although our simulations
considered broad-area semiconductor lasers, qualitatively similar behavior is expected to occur for amplifier and MOPA devices.
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