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ABSTRACT

Most of the previous treatments of semiconductor lasers subject to optical feedback from
a phase-conjugate mirror (PCM) have assumed the PCM responds instantaneously. Furthermore,
the mechanism responsible for phase conjugation does not usually enter into the analysis. In this
paper are derived the time-dependent reflectivity from a PCM created through non-degenerate
four-wave mixing. The resulting laser dynamics are compared to the case of the ideal PCM, as a
function of PCM mirror interaction depth, distance to the PCM, and laser current. The
time-responsive PCM tends to suppress otherwise chaotic output and produces power pulses
whose frequency is tunable by varying laser current or PCM reflectivity.

Keywords: semiconductor laser, optical feedback, chaos, chaos control, pulses, tunable
frequency

1. INTRODUCTION

The effects of optical feedback from phase-conjugate reflectors has been attracting
considerable attention lately, due in part to the potential for creating ultrashort, mode-locked
pulses."2'3'4'6 Semiconductor lasers subject to PCF exhibit behavior which can differ radically
from the effects of COF. Some of these differences were reviewed for the case of a
single-longitudinal mode semiconductor laser.7 When the semiconductor laser oscillates in
multiple longitudinal modes, PCF obtained through four wave mixing can lead to mode locking
and short-pulse output.'

The theoretical modeling has generally assumed for simplicity that the phase-conjugate
mirror (PCM) responds instantaneously to the incident radiation. This assumption may often be
too restrictive experimentally, for example when the PCM is constructed from a Barium-Titanate
crystal or from an atomic vapor. Furthermore, the physical mechanism responsible for the PCM,
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generally four-wave mixing, is usually ignored in the simulations. The purpose of this paper is to
correct the above-mentioned deficiencies and to demonstrate the resulting dynamics of a laser
subject to feedback resulting from such a PCM. in particular, we show that such PCF can lead to
tunable frequency pulsed output, even though the laser current is constant.

2. MODELING

Earlier efforts to model PCF were done by simple modification of the model for COF.
This led to a limiting case, however. A conventional mirror has a relatively flat spectral
response, fast response time, and a ___________________________________________
thin interaction depth. A phase tm
conjugate mirror, by contrast, tends
to have a peaked frequency " '
response, a finite interaction depth ________ ____________
(hence the appellation "deep PCF") J (J
and may respond sluggishly In this 112SeT1 PCM
work we develop an improved j ___________
model for PCF, and show some
interesting results from simulations. 'J"
Fig. 1 shows the experimental Lext Lm
diagram and parameters of interest.

. Eigure 1 Experiment schematic showing equation
For an instantaneously )arameters

responding PCM, the simplest rate
equations for a semiconductor laser
subject to PCF are:

=LGIE12 (1)
dt q te

= 1(1 -ia)(G-y)E(t) +KE*(tt) (2)
dt 2

In Eqs. 1 and 2, N is the carrier number of the laser, I is the current, q the electron
charge, and ; is the carrier lifetime. E is the laser's complex electric field at the output facet. a
is the linewidth enhancement factor, (a =3). G is the gain which depends linearly on the carrier
number N, and y is the loss. ic is the feedback rate, a measure of the reflectivity of the
phase-conjugate mirror (PCM). The PCF term, as in the case of ordinary feedback, depends on
the field at one round trip earlier, time 'r. In contrast to COF, however, the field is conjugated by
the PCM. The equations are integrated in the weak-feedback regime, so multiple round trip
reflections could be safely neglected. The laser is assumed to operate in just one longitudinal
mode. The results shown in this paper are deterministic in nature, since no random-noise terms
are included.

Eq. 2 shows the idealized case where the feedback comes from an instantaneously
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responding PCM. The conjugated feedback term, E*(tr), gives the feedback from just one round
trip time t earlier. The starting point for a better PCF model is the standard expression for the
frequency-dependent reflectivity due to non-degenerate four wave mixing, given by Eqs. 3 and
4:

-i Ktan(P L)r ()= 3pan p - (iLk/2) tan (3 L)

)2Ak= Or
(4)

where K and 3 are proportional to and the pump E fields, and are functions of the frequency
mismatch between the pump and signal beams. Lm is the penetration depth, k is the
wave-number mismatch between the pump frequency and wi,, o is the frequency of peak
response for the PCM, is the permittivity of free space, r the relative permittivity (index of
refraction n = r)' and c is the speed of light. The equations are simplified if a parameter tm 111
Eq. 5 is defined. t is approximately the time it takes the light to penetrate the PCM. With this
definition, the phase conjugate reflectivity simplifies to Eq. 6.

- n tan(L) n Lm (5)
m

Ct tmr (w)=—
pcm t (o—)+i (6)

Eqs. 3 and 6 for the phase-conjugate reflectivity assume a monochromatic probe beam. Since
even a single-longitudinal mode semiconductor laser can have a linewidth as large as 100 MHz,
we need to integrate rm() over the probe laser linewidth. This can be expressed as a Fourier
integral, so that the phase-conjugate field becomes:

+00 * -i(—ca.,)(t-t) 7E = f 1pcm((0)4 (o-o0)e d
where A is the Fourier component of the probe, and o is the center frequency of the pump beam.
By doing a contour integration of this integral and applying the residue theorem, Eq. 8 results:

— (11ô0tm)(tt')

= fE*(tl_t)e
tm dt' (8)

where ô0 is the detuning between the monochromatic pump beam and the center frequency of the
probe, set to zero for this paper. Applying these results leads to the improvement of Eq. 2, the
original laser rate equation, to Eq. 9:
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— (t—1)

= !(1 -ia)(G--y)E(t)+5 rtE*(t1t)e tm dt' (9)
dt 2 t,nJ-co

Numerically, Eq. 9 is very inefficient to apply directly. That would require numerically
solving the feedback integral each numerical integration time step. Moreover, separating Eq. 9
into two separate equations, the standard method for reducing higher order differential equations
into a system of first order equations, leads to a numerical instability. Fortunately, we were able
to come up with a recursive definition for the feedback integral:

E(t) = E
*( t__t) e At + e (10)

where t is the size of an numerical integration time step. The first term is a rectangle
approximation for the most recent zt of the E integral (Eq. 8), and the second term recursively
gives everything previous.

3. DEEP PCF SIMULATION RESULTS

3.1 Overview

With a simulated system, the parameter space that can be searched is huge, as any
element in the equations can be varied. Physically, many parameters cannot by varied by turning
a knob in the laboratory (the value of a, for instance). We chose to vary the depth of the PCM
(tm, which can be varied by choice of PCM, physical size, or diameters of the pump beams9); the
field reflectivity of the PCM (r3); the external cavity length (L); and the laser current (I1L). All
of these parameters can be varied experimentally.

An important tool for searching the parameter space is the bifurcation diagram. The
bifurcation diagrams tell at a glance the state of the system for a range of bifurcation variable
values Where there are no bifurcation points, the system is stable. Where a single line exists the
system is period one, i.e. just one dominant frequency. Where there are two lines the system is
period two, etc. A filled-in area indicates very high order periodicity or chaos.'°

3.2 Depth of the PCM

First, we investigate the effect of PCM depth by changing the parameter ç. Thus we can
see how our improved rate equations differ from those of the usually-assumed ideal PCM. These
simulations were made with a current ratio of 111th= 1.05, and external cavity spacing
Lext = 10 cm. Fig. 2 shows a bifurcation diagram, with reflectivity as the bifurcation variable, for
the instantaneous PCM, that is t, = 0.0 ns. Also shown in Fig. 2 are the average power and the
standard deviation of the power. There is a one-to-one correspondence between the chaotic
regions in the bifurcation diagram and a large standard deviation, as expected.
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Figure 2 Bifurcation diagram (.'.) of the
laser power for = 10 cm as function of
PCM field reflectivity for the ideal PCM
(t1 = 0.0 ns). Also shown are the average
power ( ) and the standard deviation of
the power (—).

The PCM field reflectivity (r3) relates to the feedback rate i in Eqs. 2 and 9as:

2
(1 —r2) r3____ — (11)t. rin 2

where r2 is the field reflectivity of the laser output facet and r3 is the field reflectivity of the PCM.
'r is the round trip time inside the laser.

Fig. 3 shows the same system but with a deep mirror, penetration time tm =0.1 ns. This
deep PCM is relatively thin as compared to the relaxation oscillation period
(T — 11750 MHz 1.3 ns). For low feedback levels (r3 � 3%), the bifurcation diagrams are
similar. However, as the feedback level is increased above r3 > 4.5%, the deep mirror tends to
suppress the chaos to the point that the laser becomes nearly stable for r3 > 5%. This is easily
seen as the power standard deviation is nearly zero.
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Figure 3 Same as Fig. 2 but tm = 0.1 flS.

For Fig. 4, the depth of the mirror has been increased to tm = 0.4 ns. This is now
comparable to the relaxation-oscillation period (T 1/750 MHz 1.3 ns). There has been a great
suppression of the chaos. In the range of 1.7% <r3 <3.3% the laser shows periodic behavior.
For r3> 3.3% the laser operates stably.

0 2 4 6

Figure4 Same asFig.2butt=0.4ns.

This behavior can be understood by inspection of Eq. 9. Basically, the integral performs
a weighted averaging of the feedback. A greater tm smooths the feedback more, leading to less
chaos. Also, higher frequencies are attenuated more than lower frequencies, which would
explain the tendency for period-one behavior for the deep mirror.
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3.3 External cavity spacing

Changing the external cavity length can have profound effects on the dynamics of the
laser system. For Lext = 1, 10, 100 cm, Figs. 5, 2, and 6 respectively show that for the
instantaneous PCM case, the changes in cavity length completely change the bifurcation
diagrams. In general, as Lext increases the chaotic regions become larger and there is less
interruption by stable windows. This similar to ordinary feedback.6
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Figure 5 Same as Fig. 2 but = 1 cm.
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Figure 7 Same as Fig. 2 but tm = 0.4 ns and
Lext = 1 cm.

Figure 6 Same as Fig. 2 but = 100 cm.

8

E

0

0
0

r3 (%)

Figure 8 Same as Fig. 2 but tm = 0.4 fl5 and
Lext = 100 cm.

The behavior with external-cavity length is less pronounced for the deep mirror,
tm = 0.4 ns. Figs. 7,4, and 8 show, respectively, the bifurcation diagram for Lext = 1, 10, and
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roo cm. There is some tendency at weak feedback for there to be more chaos as Lext 15 increased,
but regardless of Lext, the chaos always ends at about r3 4%, and the envelopes of the
bifurcations points are similar. So while the external cavity length usually has a large effect on
the laser dynamics, for the case of the deep mirror it is a secondary effect. The dynamics are
dominated by the presence of the deep mirror. The instantaneous PCM dynamics tend to scale
with xt (in other words, r3-r, where 'r = external round trip time). The deep PCM dynamics tend
to scale with just i or r3.

3.4 Current effects

Figs. 9 and 10 show the bifurcation diagrams for the instantaneous and deep PCM's,
respectively, where IILh is the bifurcation variable. The average power values are identical, but
once again the deep PCM shows a great suppression of chaos. Above about "th= 2.3 the
instantaneous case (Fig. 9) shows a large amplitude (note the a is about 8 mW) period one
oscillation that was damped out in the deep PCM case (Fig. 10). This is discussed more with the
frequency effects in section 3.4.

Figure 9 Similar to Fig. 2 except that
current ratio "th is now the bifurcation
variable. r3=2.5%.

Figure 10 Same as Fig. 9 but tm = 0.4 flS.

3.5 Tunable Frequency

A search for regions of pulsed operation can be tedious. A brute-force method such as
viewing power verses time plots or doing Fourier transforms over a large parameter space is
costly both in terms of human and computer time. However, the task is simplified by making use
of the sampling performed in calculation of the bifurcation diagrams. The bifurcation diagrams
are constructed by recording the value of P (1E12, photon number) whenever N crosses the Nave
plane in the direction of decreasing N. Thus for simple periodic behavior, the sampling of P will
occur at nearly the same point in each cycle, and greater accuracy can be achieved by
interpolating between the points of just before the Nave plane and justafter. Thus if we record
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this sampling frequency, and compute its standard deviation (for little additional overhead), we
can use this variable in conjunction with the standard deviation power bifurcation diagram to
determine not only the presence of periodic behavior but also the frequency of oscillation. For
example, for period-one behavior, the power bifurcation diagram yields a single line with a large
standard deviation. The sampling variable frequency, however, gives the frequency of oscillation
when its standard deviation is small. Below in Fig. 1 1 is a typical picture seen for regions of
pulsed operation for the deep PCM, showing a frequency of 1 .3 GHz. Note the power of the
pulses goes all the way to zero.

Figure 11 1 .3 GHz pulsed operation.
tm = 0.4 ns, = 10 cm, r3 = 2.48 %.

Figs. 12 and 13 below show the sampling frequency verses feedback for an instantaneous
PCM and a deep PCM, respectively. The instantaneous PCM tends to show regions of periodic
behavior (small standard deviation of sampling frequency, and a line indicating period one
behavior on the power bifurcation diagram, Fig. 2). The equal frequency spacing of 1.5 GHz (the
external round-tip frequency) indicates a locking behavior between the relaxation oscillations and
the round trip frequency (lit = 1.5 GHz). Note that these frequency locking regions are absent
for the deep PCM, Fig. 13, yet another indicator that the deep PCM is dominating the dynamics
rather than the external cavity round trip frequency effects. Also, the instantaneous PCM shows
much higher frequencies (about 1 to 6 GHz) than the deep PCM (about 1 to 1.5 GHz). As
mentioned before, inspection of Eq. 9 shows that the deep PCM tends to filter out higher
frequencies.
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Both cases show linear frequency with r3 behavior. This linearity can be demonstrated by
assuming nearly stable operation with a small sinusoidal perturbation:

E = E + iE1 e Z(*)1 E >> E1ave ave

N = N + N e -scat N >> Nave 1 ave 1

The i coefficient is due to the 9Ø0 phase shift between N and E. Plugging these into Eq. 2 and
using a linear gain dependence on N (G = GN(N-No)) yields:

(12)

= -G + (aG0)2;

For the case of low feedback G0 0, so

GOEGN(N -N)-yave 0 (13)

Cs)

E1
(14)

The result, which also occurs for deep PCF by plugging Eqs. 11 into Eq. 9, is plotted in
Figs. 12 and 13. Even though the condition of a small oscillation is not held, surprisingly good
agreement between this theory and the pulsed regions is evident.
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Figure 13 Same as Fig. 12 but tm = 0.4 flS.
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Figure 12 Average sampling frequency (—)
as a function of feedback for tm = 0.0 flS,
Lext = 10 cm, and r3 = 2.48 %. Also shown
are the 0freq (—), and a theory fit (
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N

Figure 14 Average sampling frequency as a Figure 15 Same as Fig. 14 but tm = 0.4 flS.
function of current ()' o () fld
theory fit (-----). Parameters are tm = 0.0 fl5,

= 10 cm, and r3 = 2.48 %.

This apparently linear dependence of frequency on current was surprising, as the usual
expression for a laser without feedback gives the relaxation oscillation frequency as J(I-I,).
Making analytical progress with the rate equations with feedback is difficult (hence the
numerical integration!), however with some approximation this relation can be motivated.
Taking the small amplitude oscillation approximation of Eq. 11 in Eq. 1 yields

l(INaveG(NN)E2)
By using a linear P verses I relation Eave2 = r(I-Ith) (where r is the slope of the LI curve), Eq. 15
becomes:

1 1 N— — - G F (Nave -
N0))

+ GNF (Nave -N0) 'th -

For higher currents, I/Lw > 2.3, the instantaneous mirror (Figs. 9 and 14) once again shows
locking plateaus spaced by the round-trip frequency of 1.5 GHz. This indicates locking behavior
between the relaxation oscillation and round trip frequencies, absent for the deep PCM in Fig. 15.
The plots are not shown, but this locking behavior was also absent for greatly different external

round-trip frequencies (Lext= 1 cm and Lext = 100 cm).
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The verses I slopes from this equation were used in fitting the curves in Figs. 14 and 15. For
higher currents (IfL, � 2) the fits are good. As Eqs. 15 and 16 show, the I term would become
more dominate for larger currents.

4. Conclusion

A model for phase conjugate feedback due to non-degenerate four-wave mixing has been
derived. An efficient recursive definition was numerically implemented. It was found that the
deep PCM tends to suppress chaos and higher frequencies, when the penetration time tm becomes
comparable to the relaxation oscillation period. Locking between the relaxation oscillation and
the external round trip frequencies is absent with the deep PCM. It removes much of the external
cavity spacing dependence in the laser dynamics. Regions with good pulses were found, with the
frequency of the pulses being linearly tunable by varying the feedback level or the current. The
presence of phase-conjugate feedback changes the frequency dependence of the relaxation
oscillations for current from /I to I.
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