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Abstract

A novel analytic method for analyzing hybrid DFB structures containing
multiple linear and nonlinear sections is presented. The technique is illustrated
by considering uniform and phase-shifted nonlinear devices that play the roles
of an amplifier, a filter and an all-optical switch simultaneously.
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1. Introduction

Distributed feedback (DFB) devices represent one of the most important
components in modern photonics design, with applications in the diverse areas
of filtering, switching and amplification. In the early 1 970s, DFB structures were
extensively used as both linear bandpass filters and reflectors in the emerging

technology of integrated optics and photonics. Following the pioneering work of
Kogelnik,1'2 a number of semi-analytical and numerical methods for analyzing
nonuniform DFB devices were developed.34 Nonuniform and segmented DFB
design, in turn, allowed the synthesis of an arbitrary response of bandpass or
reflective filters.

It was recognized early that DFB structures could be successfully utilized
in the design of semiconductor laser sources.25 In fact, the /4-shifted
configuration, probably one of the best known DFB structures, led to the
realization of a stable, single-mode, integrated laser source.56 Recently, a
similar type of high-Q structure has been used to design extremely narrowband
tunable filters.78

The extraordinary transmissive properties of DFB structures fabricated in
a nonlinear medium have been analyzed extensively by now.9-11 Nonlinear
DFB devices exhibit true bistable switching in the OW operating regime,9 and a
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complex dynamical behavior in the pulsed regime.11 In addition to the expected
switching behavior, detailed transient studies have revealed the phenomena of
slow energy transport through a new kind of solitons, often referred to as the

Bragg Recently, we have shown that a properly designed high-
resonance nonlinear DFB device exhibits switching at unusually low intensity
levels.12 Keeping in mind the recent progress in the fabrication of highly
nonlinear optical polymers,13'14 it is not difficult to predict an increasing
importance of nonlinear DFB devices, especially for use in constructing
ultrafast, all-optical, low-intensity switches.

While several relatively simple methods exist for analyzing the linear
DFB structures, the nonlinear DFB structures often require complicated
numerical simulations. The design of more complex, nonuniform and hybrid
(linear/nonlinear) DFB structures, represents even a greater analytical
challenge. In this paper we show that if an almost-periodic structure (DFB
device with slowly varying nonuniformities) is divided into a set of strictly
periodic (linear or nonlinear) segments, it is possible to obtain an analytic
solution for the entire device. The effect of loss or gain can be incorporated into
the linear segments, but not in nonlinear segments, since no known analytic
solution exists for a lossy nonlinear DFB structure.

2. Generalized transfer matrix method

Consider the nonuniform DFB structure shown in Fig. 1. We assume
uniformity in the transverse (x-y) direction, essentially reducing the treatment of
the device to a one-dimensional transmission problem. The DFB structure can

incorporate a slowly varying taper, a chirping of the grating period, and multiple
phase-shifts along the z-direction. In addition, we allow the entire device or
parts of it to have a nonuniform nonlinearity described by an effective nonlinear
index n2(z). The refractive index of such device can be written as

n(z) = n0 + \n(z)cos(2irz/A + ) + n2(z)IE(z)12, (1)

where n0 represents the linear index of the device, An(z) is the amplitude of

periodic perturbation, IE(z)12 represents the intradevice optical intensity, and A

is period of linear perturbation.
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Figure 1 . Nonuniform hybrid DFB structure consisting of multiple linear (LIN)
and nonlinear (NL) sections. Dashed vertical lines indicate the location of
phase shifts. Solid curve shows axial variation of nearly periodic An(z).

By adopting the standard coupled-mode approximations made for
describing the propagation of radiation in a DFB structure, one can obtain the
generalized set of CW coupledmode equations:

t. = iK(z)Eexp[—2iEf3(z)z cI(z)] ÷ iy(z)[IE+(2 + 21E_12]E+ + g(z)E , (2a)

= i,c(z)E+exp[2i/3(z)z C2(z)] iy(z)[2E42 + IE+12}E g(z)E . (2b)

In these equations, the optical field is separated into its forward and backward

propagating components as E(z) = E(z)e' + E(z)e. The parameter
ic(z) = irM(z)/2 defines the linear coupling strength. The nonlinear parameter

7, responsible for self and crossphase modulations, is defined as
y(z) = nn2(z)I). The parameter iJ3 defines the detuning from the Bragg
frequency J3 = 2ir/A and is given by iJ3 = f3— f3• Finally, g(z) accounts for gain
(or loss) within the structure.

A general solution of the coupled-mode equations (2) has to be found
numerically, since no known analytic solution exists for arbitrary parameters
ic(z), Ef3(z), y(z) and g(z). Only in special cases (uniform and linear or uniform
and lossless nonlinear structures) is it possible to obtain simple and elegant
solutions that can be used to construct an approximate solution for a general,
nonuniform DFB structure. In the case of a linear, uniform DFB structure
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(y(z) = 0 and K, g and constants along the z axis ) the solutions of the Eqs.
(2) can be written in the form4:

IE+(O)1 _ IF;i 21 [E+(L)1 3
LE_oi

—

LF21 Fj LEL]'
( )

where L is the device length and the transfer matrix elements are given by:

F;1 = [coshcuL) — isinh(L)]exp(i2Aii) (4a)

*2 = F21 = sinhCuL)ex(..i2LV3L..c�) (4b)

= IcoshCuL) + (/3 — ig) sinh(iL)1exp(—i2/3L).
(4c)

L ILL J

The parameter t is defined by /12 = K2 — (/3 — ig)2. In the case of an almost

periodic, nonuniform device, we divide the structure into a set of strictly periodic

segments (Fig. 1). The total transmission of the device is obtained by simply
multiplying the submatrices that correspond to each uniform segment.

When a nonlinearity is present, we must distinguish between the cases of
a lossless and a lossy DFB device.9 It has been shown earlier that an exact
analytic solution in the form of Jacobian elliptic functions exists only for the case
of a lossless uniform device. To obtain such a solution, it is necessary to
separate the amplitude and phase of the counterpropagating field components
by using E = A±(z)exp(±iØ±(z)). By substituting this form into Eqs. (2), it is
possible to construct a forward-flux equation12:

ç = (;i)2l(I - T) - [(Kt)G - (LI3L + 2(1- T)l)]2 P(l), (5)

where

G = ,cLJl(L)(l(L) — T)cosW + [ttf3L + 2(1(L) — T)JI(L),

P(z)=2/3z+Ø+(z)—Ø(z)—.

40/SPIE Vol. 2399

Downloaded from SPIE Digital Library on 06 Apr 2010 to 128.151.82.225. Terms of Use:  http://spiedl.org/terms



The normalized forward flux is given by I = A/A, the transmitted flux is defined
by T = I - A /A, while the critical intensity, used in normalization, is given by

A = 4A/(3irn2L). The solutions of Eq. (5) have different forms throughout the

detuning region, dictated by the boundary conditions at the output of the
device.12 In the vicinity of the Bragg frequency (i. = 0), one can write the
solution as:

1(z) = l + (12 I3)1Sfl(Z)J , (6)

whe re sn(z) = sn{sn'[u(l(L));k] — 4z/gL; k}, g = [(li l3)(l2 — 14)]' and

k2 (i, —l2)(l3 —14)g2. The parameters I, are the zeros of the quartic polynomial

P(l) appearing in Eq. (5) and can be interpreted as the turning points of a
particle moving in the potential well12 P(l). In a way analogous to the linear F
matrix method, it is now possible to divide the nonuniform, lossless nonlinear
device into a set of uniform, nonlinear DFB sections and find the corresponding
analytic solutions similar to the one given by Eq. (6). Furthermore, the method
can be combined with the conventional F-matrix method to analyze a hybrid
(linear or nonlinear) structure as well. This procedure allows us to incorporate
gain or loss within the device and still maintain an analytical approach with a
reasonable degree of accuracy

3. Nonuniform passive nonlinear DFB device

We first illustrate this method for uniform and phase-shifted nonlinear
DFB devices. Fig. 2a shows the change in the transmittivity of a uniform
nonlinear DFB structure as the input intensity 'IN is increased from 1 0-6 (dashed

curve) to 1 (solid curve). The nonlinearity-induced changes in the photonic
band structure eventually lead to full transparency at the Bragg wavelength for
'IN = 1. Fig. 2b shows the transmittivity of a nonlinear DFB device two A14 phase
shifts occurring at z = L/3 and z2 = 2L/3. As we increase the input intensity from

'IN = 1 0-6 (dashed curve) to 'IN = 0.1 (solid curve), each transmission peak shifts

by approximately twice its own width. The highly resonant nature of this
structure requires considerably lower input intensities to significantly change
the transmission characteristics and perform up- or down-switching at the
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designed frequency. Notice the different widths of the transmission peaks as the

input intensity is increased.
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Figure 2. Transmittivity of (a) a uniform nonlinear DFB structure and (b) a
multiple phase-shifted nonlinear DFB structure. In both cases the dashed
curves show the lowintensity transmittivity of the structure.

4. Hybrid nonuniform passive DFB device

Consider a nonlinear DFB strUcture that has a linear DFB section of
length EL inserted and centered at L. Fig. 3 shows the intradevice forward
intensity for a fixed output in two different cases in which the linear DFB section

is O.2L long and is centered (a) at L = O.7L and (b) at L=O.2L. In the first case,
when the linear section is placed close to the device output, the intradevice
intensity profile (thin solid curve) does not differ much from the intensity profile
of a fully nonlinear device (thick solid curve). The average intensity close to the
output is relatively low and the accumulated nonlinear shift does not change the

solution appreciably. In contrast, by placing the linear section close to the input

of the device, the optical field is changed dramatically (thick dashed curve),
since the average intensity is an order of magnitude higher in this case. As a
consequence, the transmittivity of the device decreases significantly, making the
structure almost an opaque one.
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Figure 3. Intensity variation in nonlinear DFB structure with a linear DFB section
inserted at O.7L (thin solid curve) and O.2L (dashed curve). The thick solid curve
shows for comparison the case of a uniform nonlinear device.
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Figure 4. Effect of the linear region on (c) the transmittivity and (d) axial intensity

profile for two hybrid /4-shifted DFB structures. Thick and thin solid curves
correspond to structures a and b, respectively. Dashed curves correspond to the
case of a uniform device.
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The position of the linear section is even more important for the phase
shifted structures shown in Figs. 4a and 4b. The internal intensity of this device
peaks at the phaseshift position z = L/2. By positioning the linear section close

to the phase-shifting region (Fig. 4a), one expects to change the transmittivity of
the device shown in Fig. 4c. However the thick solid curve shows that the
change is much more dramatic if the linear section encompasses the phase-
shifting region itself. In this case, the bistable behavior of the DFB structure
nearly disappears. The central phase-shifting region plays the role of a variable
phase-retarding plate controlled by the field intensity at the center of the device.
When the phase-shifting region is linear, this feature is removed, thus
destroying low-intensity switching capabilities of the device.

5. Hybrid nonuniform active device

Consider the phase-shifted linear DFB structure shown in Fig. 5 with two
active (gain) regions centered at Z and L-Z. The active regions are
deliberately placed away from the phase-shifting region in order to allow for an

eventual nonlinearity at the center of the device. The threshold characteristics of
such a device are plotted in Fig. 5 for different center positions and lengths of
the active regions. We are primarily interested in the amplification and filtering

properties of the device. Fig. 6 shows the transmission gain when the device is

operated as both an amplifier and a narrowband filter, achieving the signal gain
of "50 dB before it eventually starts to lase.

I
0.1

0.00.1 02 0.3 0.4

Figure 5. Threshold characteristics of an active XJ4-shifted DFB device with gain

in the shaded regions. The threshold gain depends on both the location and the
width of the gain section.

44 / SPIE Vol. 2399

Downloaded from SPIE Digital Library on 06 Apr 2010 to 128.151.82.225. Terms of Use:  http://spiedl.org/terms



(.)

C
(50
C0
U)
U)

E
U)
C.
(5
I-.

U

i
1(tO.2

Figure 6. (a) The transmission characteristic of a X/4-shifted DFB optical
amplifier. Dashed curve corresponds to an unpumped device. (b) Blow up of the
central peak for several values of gain.

A much more interesting behavior is obtained when we introduce the
nonlinearity in the center of the device, thus combining the three functions in
one DFB structure: amplification, filtering, and switching. There are at least two

practical configurations that can be accurately described by this model. One is a

multi-segment DFB semiconductor amplifier with at least three injection
contacts. Gain regions shown in Fig. 5 correspond to two contacts that provide
injection current that is higher than the transparency current, but lower than the
threshold current. The central, nonlinear region corresponds to a third contact
that provides the pumping just above the material transparency. High field
intensity in this region leads to a gain saturation, which in turn results in high
nonlinear index such that n2 exceed 10-11 cm2/W in GaAs material.1516 Even if

we bias the central section at exactly the transparency level, the carrier heating

can lead to high index nonlinearities.1718 The second, more complicated
configuration would be a planar waveguide structure with the alternating gain
and nonlinear sections. However its fabrication would be a rather involved
process requiring the integration of two dissimilar materials on same substrate

(silica/non Ii near polymer/silica).
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Fig. 7a shows the transmission of such a device for different gain and
input intensity levels. It is important to notice that increased gain not only
increases the intensity level of the signal, but also alters the width of the

hysteresis, thus fundamentally altering its switching properties. The inputoutput
characteristics shown in Fig. 7b emphasize this point. For a fixed detuning
(wavelength) the upswitching intensity level is almost halved and the
hysteresis width is quadrupled by increasing the device gain to about a gTH/2.
Finally, Fig. 8 shows the effect of asymmetric pumping of this device. The shown

characteristics vary relatively little as we alternatively turn off and on the
injection currents in each gain region, maintaining the total device gain constant
in the process.

Figure 7. (a) Spectral transmission characteristics of the device from Fig. 5 with
the inclusion of nonlinearity in the passive sections for gL = 0 (thick dashed
curve), 0.2 (thin dashed curve), and 0.4 (thick solid curve). The thin solid curve
shows for comparison the expected behavior for a passive linear device. (b)
Comparison of bistable input-output characteristics for gL = 0 and 0.4.
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Figure 8. Bistable input-output characteristic of the hybrid DFB device of Fig. 7.

Dashed curve corresponds to symmetrical pumping (equal gain in each active
section), while the solid curves indicate variations due to asymmetric pumping
(gain in only one of the active sections).

6. Conclusion

We have demonstrated a novel method for analyzing hybrid
(linear/nonlinear). DFB optical structures. The method can be described as an

approximate, analytic, single-sweep technique that requires comparatively low
computational effort. We have illustrated the use of thIs technique in a design of
DFB device that plays simultaneous role of highly discriminative filter, optical
amplifier and all-optical switch. It is shown that even a highly localized optical
nonlinearity plays an important role in switching performance of a phase-shifted
DFB device.
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