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ABSTRACT

Phase-conjugate feedback affects a laser in ways which are fundamentally different than conventional
feedback. Notably, when the laser oscillates in more than one longitudinal mode, phase-conjugate feedback initiates
a novel mode-coupling mechanism which can even lead to mode locking behavior. This paper explores these mode-
coupling effects and also summarizes the similarities and differences between the two types of feedback.

1. INTRODUCTION

The study of phase-conjugate feedback (PCF) into lasers has been experiencing significant interest
recently.° The self-aligning nature of PCF makes coupling back into the laser generally easier than with
conventional optical feedback (COF), which usually occurs due to unwanted reflections from various system
components or from the end faces of an optical fiber. Of course, the creation of a phase-conjugate mirror (PCM) is
certainly more difficult than a conventional mirror, but several experimental setups have been demonstrated. Perhaps
the simplest is the use of the self-pumped photorefractive crystaL34'9' Also demonstrated is a PCM based on
degenerate four-wave mixing (FWM) in atomic 10 The use of non-degenerate FWM allows the
possibility of a detuning between the probe and conjugate signal, a situation which doesn't exist in COF. The
significance of detuning in PCF has been studied theoretically but not experimentally to our knowledge.1'7

Mode locking of lasers, and in particular of semiconductor lasers, continues to generate intense interest due
to such potential uses as the source of ultrashort optical pulses in a soliton communication 2

Semiconductor lasers have been mode-locked actively,13 passively,14 and through hybrid schemes.15 In active
mode locking, for instance, the gain or loss of the laser is modulated at the round-trip frequency of the laser. In a
frequency-domain analysis of mode locking, the active modulation serves to directly couple each longitudinal mode
to its two nearest neighbors. Therefore, this type of modulator is usually referred to as a double-sideband
modulator)6 Without the modulator, the laser is of course not mode-locked, because the beat frequencies between
various modes are unequal due to mode pulling and pushing effects, and because spontaneous emission and other
noise sources tend to make the phases of individual modes wander independently. The active modulator induces beat-
frequency locking and phase locking, even overcoming the effects of noise, and thereby creates short pulses.

We show theoretically in this paper that it is possible to achieve both frequency locking and phase locking
in a multi-longitudinal mode laser through the use of phase-conjugate feedback (PCF), provided four-wave mixing
(FWM) is used to generate PCF. We are considering only the case where the feedback represents a small
perturbation to the laser; i.e. the output facet of the solitary laser is not antireflection-coated (the weak-feedback
regime). We also point out that COF will in general not lead to phase and frequency locking among the modes.
The primary reason is that the different modes, although coupled intrinsically through the laser medium, are only
self-coupled by an ordinary reflection; that is, upon reflection, each mode only couples back onto itself and not
directly to any other mode. Some of the effects of COF on multi-longitudinal mode lasers have been recently
reported.17

In section 2 we introduce the model and summarize some of the major differences between PCF and COF.
In section 3 we investigate PCF conditions which give rise to AM mode locking in the laser. In section 4 we
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consider situations in which PCF forces FM laser operation, and in section 5we present conclusions and areas of
future work.

2. MODEL

The material used for the phase-conjugate mirror (PCM) is assumed to be a highly nonlinear medium with
an essentially instantaneous response. The PCM is pumped by a narrow linewidth laser operating at frequency co1,.
The phase-conjugate signal is created by a non-degenerate FWM process, so that when a frequency coj is incident on
the PCM, the conjugate signal is shifted to o = 2o —

co. This frequency shift stands in contrast to the case of
COF. Moreover, the conjugate signal will return directly to the laser, due to the self-aligning nature of the PCF. In
summarizing the differences between COF and PCF, we will first limit ourselves to a laser oscillating in only a
single longitudinal mode. In this case the rate equation for the complex, slowly varying amplitude of the laser
mode can be written as

dEl . 1 .- = (1 — la)(GL _ ) E + + F + icE (t—'r) exp[—2i&(t —)J, (1)

where a is the linewidth enhancement factor (a =3), GL is the gain which depends linearly on the carrier density, t,
is the photon lifetime ('ri, = 1 .4 ps), and F is a Langevin noise term to account for random spontaneous emission.
contains the nonlinear gain contribution. The last term in Eq. 1 accounts for PCF. This field component is delayed
by the external cavity roundtrip time 'c ('r = 0.67 ns for external cavity length of 10 cm), and it appears as the
complex conjugate due to the action of the PCM. The strength of the feedback is denoted by the feedback rate ic.
The exponential term accounts for any additional phase delay caused by a small detuning 6 of the pump laser
frequency from the optimum frequency.

The equation for the carrier number remains unchanged by PCF and is given as usual as

=--GP (2)dt q te
where N is the carrier number, I is the injection current, q is the electronic charge, te is the carrier lifetime ('cc 2
ns), and P is the photon number. P is related to the complex field by E = exp(—i4), where 4 is the instantaneous
phase of the mode.

2.1 Comparison of PCF and COF: Analytical Theory

We now summarize the similarities and differences between PCF and COF. When the solitary laser
oscillates in a single mode, considerable analytical progress can be made for both COF'8'19 and PCF 6,7, as long
as the feedback level is relatively weak. One striking difference between the two cases concerns the presence of phase
locking solutions. Specifically, in the case of PCF with no detuning (ö =0), the laser phase becomes locked to a
value given by

2 + 1)PCM + tair4a') = 2mic, (3)

where is the (slowly-varying) steady-state phase, m is an integer, and a' =a/(1+cP5),18 where P represents a
saturation photon number and E is a measure of the nonlinear gain strength. In contrast, for normal feedback the
steady-state phase remains arbitrary, as in the case for no feedback. It was previously predicted from linearized theory
6 that the pinning or locking of the laser phase would lead to a laser lineshape consisting of a spike at low
frequencies (since the long-time behavior of the phase is locked), superimposed on a broader pedestal (since
spontaneous emission still causes the short-time behavior of the phase to wander). This was confirmed by numerical
simulations in reference 7.
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A second obvious difference between PCF and COF in the weak feedback regime concerns the dependence
on feedback phase, usually expressed as coyr, the product of the solitary laser frequency and the external roundtrip
time. For COF the laser is very sensitive to the precise value of the feedback phase. The threshold gain is either
increased or decreased, the laser frequency can be shifted either positively or negatively, and the laser line is either
broadened or narrowed depending on the exact value of feedback phase. In contrast, for a single-mode laser with PCF
and zero detuning, the feedback phase does not enter into the equations, making the results independent of feedback
phase.

When small detuning (' 100 MHz) is present, which of course has no analog in COF, the laser possesses
the ability to adjust its frequency to cancel out the detuning. A detuning arises when the PCM pump frequency awj
+ is shifted by a small amount 6 from the solitary laser frequency w. The conjugate signal frequency which
returns to the laser is then shifted to o — 8. (Note that a self-pumped PCM necessarily operates with zero
detuning.) For very weak levels of feedback, the detuning prevents the phase-locking condition from being satisfied;
rather, the laser frequency remains close to the solitary laser frequency but oscillates at 2 due to four-wave mixing
induced inside the laser. As the feedback strength increases, the feedback-induced frequency shift begins to cancel out
the detuning, causing the laser to oscillate at a slower rate. Eventually the detuning becomes small enough that it
falls inside the injection-locking bandwidth, and the laser frequency locks and phase locks to the PCM pump
frequency.

2.2 Comparison of PCF and COF: Chaotic Regime

For both COF and PCF, once the feedback level goes above a certain point, the laser tends to go unstable
and with increasing feedback, the laser follows a well-known route to chaos. We note that the levels of feedback for
which this occurs are still in the weak feedback regime, that is, multiple reflections in the external cavity may still
be safely neglected. When the unstable regime has been entered, analytical solutions become increasingly difficult to
find. Numerical simulations then become particularly powerful for investigating the laser behavior in the chaotic
regime. Two parameters which affect COF and PCF differently are the external cavity length LXt, and the linewidth
enhancement factor a.

A significant relationship useful for characterizing the chaotic regime is the reciprocal of the external
roundtrip time ((1) compared to the laser relaxation-oscillation frequency yR. For long external cavities, when yR
> c_i, COF and PCF cause similar behavior. Notably, once the laser makes a transition to chaos, it is unlikely to
return to a stable or periodic state as the feedback level continues to increase. In the short cavity limit, on the other
hand, chaotic behavior is interrupted by regions of non-chaotic operation. However, this effect is much less
significant for PCF. For COF, the chaotic regions become thinner and thinner as the external cavity length is
reduced, eventually effectively disappearing altogether.2° But for PCF, the chaotic regions remain prominent for
similarly short external cavities. An additional fundamental difference concerns the region between chaotic attractors.
For COF, these regions consist of fixed-point solutions, but for PCF the regions between chaos consist of periodic
or quasi-periodic behavior.

The effect of the linewidth enhancement factor a also has a dramatic on COF. In particular, as the value of
a is lowered, the chaotic regions become much thinner, similar to the effect of reducing Lt.7 The dependence of
chaos on a can be understood by noting that larger values of a imply larger phase changes associated with the
feedback. Indeed, chaos is found to disappear for a =0. For a given value of a, the laser becomes more chaotic in
the case of PCF compared with COF. For example, a comparison of the bifurcation diagrams for PCF and COF
when a = 1.5 and Lext = 10 cm shows that whereas chaos has almost disappeared in the case of COF, it dominates
the dynamics in the case of PCF. This difference is attributed to the fact that PCF tends to lock the laser phase
(which changes because of a), and thus can destabilize the laser even for relatively small values of a.

In general, for PCF and COF with similar parameters, the dynamics are more complex for PCF.
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3. PCF IN MULTI-LONGITUDINALMODE LASERS: AM MODE LOCKING

This section and the next consider PCF into a multimode laser. In addition to the PCM requirements
mentioned in section 2, we also assume that the PCM has a broadband response, at least with respect to the
longitudinal mode spacing of the solitary laser. When light from a multi-longitudinal-mode laser interacts with such
a PCM based on four-wave mixing, a novel mode-coupling mechanism is realized when the PCM-pump laser is
tuned correctly. Specifically, the mode at o' becomes shifted in frequency to 2o., —o after reflection from the
PCM. In order for the returned signal to couple into the laser, the frequency must coincide very nearly with one of
the longitudinal-mode frequencies. This can only occur only if (i) O nearly coincides with one of the longitudinal
modes or if (ii) o lies nearly in the middle of the two neighboring modes. In either case, the rate equation for thej-
th longitudinal mode can be generalized from Eq. 1 to be

IW• 1 * 'V

...L ( _ ia)(GL,j ) Ej + j + Fj + exp[—2i8(t —
)J. (4)

'Vp

The nonlinear gain term j is now generalized to contain both self and cross saturation as well as intramodal four-
wave mixing. These terms arise from spatial and spectral hole burning and carrier heating. The explicit form of
can be found in reference 17. Note that E now depends explicitly on the time-delayed field of one other longitudinal
mode, namely the mode at 2o —

coj.
Since each field rate equation now depends on one other mode, the action of

the PCM might be called a type of single-sideband modulator, in contrast to ordinary active modulators.

The presence of mode locking can be studied in the usual way by considering the so-called reduced phases
defined by

'Pi = (2o — Oj—l — co+i)t + (2 —
j—l — 4+i). (5)

Mode locking corresponds to 'P going to a constant for all j. We note for completeness that the total laser output
power is proportional to

2

T ° 'Jexp(—i4j)exp(--iwjt)
. (6)

J

Thus the total output power of any multimode laser contains evidence of the longitudinal mode beating, even if a
detector is not fast enough to respond to these oscillations. All multimode lasers are not mode-locked, of course,
because the coj's are not equally spaced and the phases are fluctuating randomly. The high-frequency oscillations tend
to wash out in this case, so that the total power reduces to P's' =' Z P, which contains only slowly-varying
oscillations. When the 'f' as defined above are forced to become constant, the laser is both phase and frequency
locked and is said to be mode locked. Generally, when the 'P go to a multiple of 2ic, then the laser is AM mode-
locked; when the 'Pj go to an odd multiple of it, the laser emits an FM wave.

By numerically integrating Eqs. 2 and 4, we can investigate when mode locking occurs. The numerical
integration technique is based on a fourth-order Runge-Kutta algorithm. The strength of the PCF, or equivalently
the reflectivity of the PCM, is conveniently characterized in terms of a dimensionless feedback parameter icr. For
simplicity we assume the reflectivity to be frequency independent, so that icris the same for all the modes. For icr
values between 0 and 10, we are in the weak-feedback regime. The laser behavior in the presence of PCF is
generally quite complicated and the allowed parameter space is rather large. In order to facilitate the discovery of
regimes where mode locking occurs, we employ the use of bifurcation diagrams, which allow immediate
identification of stable, periodic, or chaotic regimes.19 Generally, the bifurcation diagrams are constructed with the
noise sources turned off, so that only deterministic rather than stochastic dynamics are involved. When the number
of modes becomes large, however, we find it necessary to turn the noise sources on, in order to prevent modes from
decaying to zero and not participating in the mode-locking behavior.
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We have investigated the effect of PCF on lasers with 3, 4, 5, and 6 modes. In all cases stable regimes of
mode locking are found. For simplicity, when the number of modes is odd, we assume the PCM pump frequency to
be near the central mode; when the number of modes is even, we take the PCM pump to lie between the two central
modes. In the three-mode case, 'P2 is constant and equal to zero for a range of 0.6 < ic'r < 2.0, indicating AM mode
locking. The mode locked pulses are stable even in the presence of spontaneous-emission noise.

A representative bifurcation diagram for the slowly-varying total power vs. icr is shown in Figure 1 for the
4-mode case. Also shown on the bifurcation diagram is the total standard deviation (square root of the sum of the
two variances) of the 'P's ('P2 and P3 for four modes), with and without the presence of noise. The PCM pump
laser frequency is tuned exactly between the two central modes (modes 2 and 3). This explicitly couples modes 2 and
3 together and modes 1 and 4 together. The relative injection current is LJ = 1.4. The nonlinear gain terms are
adjusted so that the modes are weakly coupled; i.e. with no feedback, all modes oscillate simultaneously with a
certain power distribution rather than in the bistable fashion which is characteristic of strong coupling.21 In these
simulations of AM mode locking, the intrinsic FWM terms are neglected.

The bifurcation diagram indicates that the laser in the presence of PCF exhibits complex dynamical
behavior. For different values of icr, the laser exhibits quasi-periodicity, period-doubling bifurcations, and chaos. Of
particular interest is the region corresponding to ict values between about 1 .6 and 2.4. In this region the average
power output is relatively well-behaved, exhibiting small-amplitude quasi-periodic behavior. However, over this
entire region, the total standard deviation of the two 'P values is practically zero without noise and about irIlOeven
with noise; that is, the 'P's are constant in this.range and the laser is mode locked. Interestingly, the 'P values are
nearly constant even in the feedback range 0.8 <icr < 1.6, although the modes exhibit a somewhat complicated
(period 4) quasi-periodic behavior. The best mode locking, however, occurs in the range: 1.6 <icr <2.4. Several
points need to be made regarding the mode locking.

4,—\

icc
Figure 1. Bifurcation diagram of the slowly-varying total power vs. icr. Also shown are the total standard
deviations of the reduced phases without noise (-------)andwith noise ( ).

1. Usually mode-locked solutions are restricted such that the mode amplitudes as well as the reduced phases are
constant. In the presence of PCF, the mode amplitudes are rarely constant, even in the single mode case, yet this
only weakly affects the purity of the mode-locked pulses, as shown below.
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2. Not only are the mode amplitudes not constant but their behavior can be rather complex, as indicated by the
bifurcation diagram in the ict range from 1 to 2.4. Although the bifurcation diagram shows only total power, the
individual mode powers behave in a similar fashion. For ic'r =1.3, for example, the slowly-varying laser output is
quasi-periodic with a period-4 behavior, yet the phases are locked to a very good degree, the total standard deviation
being about O.2ic.

3. We find empirically that in each case, it is the jjnof the 'P's, rather than the constant 'P values themselves,
that approach a multiple of 2ic for AM mode locking.

As can be seen from Eq. 5, the fact that both 'f'2 and 'P are constant implies that all three beat frequencies are the
same. Moreover, 'I'2 + 'P3 (42 — 4i) —( — 43) = 0 in the locked region which is somewhat different than the
usual phase condition for AM mode locking. In Fig. 2 we show the mode locked pulses themselves, with the noise
sources turned on. The quasi-periodic behavior of the mode amplitudes mentioned above is responsible for the slow
variation of the pulse heights. This variation occurs at a frequency of about 3 GHz and is close to the relaxation-
oscillation frequency of the solitary laser. The spontaneous-emission noise has a minimal effect. Also shown in
Fig. 2 is a zoomed-in version of the mode-locked pulses. The pulses are spaced, as usual, by the laser roundtrip
time, or the reciprocal of the longitudinal mode spacing [9.3 psec = (107 GHz)1]. A simulation time-step of 0.1-ps
allows the well-known secondary maxima to be clearly discernible.

We have also found mode locking to occur for five modes and six modes, although the proper mode
coupling becomes more difficult as the number of modes grows. Representative pulse trains, showing both low and
high resolution, are shown for both the five and six-mode cases, in Fig. 3 and 4, respectively. Note that in each
case, there are the expected M-2 secondary maxima, where M is the number of modes.

60

J40
2O0

0
161

Time (ns)

162

Figure 2. (a) Representative mode-locked pulse train for ict = 2.0. The intensity modulation is discussed in the
text. (b) A zoomed-in version reveals the spacing between pulses as well as the secondary pulse structure.

718/SPIE Vol. 2399

Downloaded from SPIE Digital Library on 06 Apr 2010 to 128.151.82.225. Terms of Use:  http://spiedl.org/terms



I
130

0
250.3

Figure 3. Mode locked pulse train
threshold and icr = 1.0.
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(a) and individual pulses (b) for a five-mode laser operating at 60% above

Time (ns)

Figure 4. Mode locked pulse train (a) and individual pulses (b) for a six-mode laser operating at 60% above threshold
andicr=4.9.
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Why does PCF lead to mode locking? A possible interpretation is that PCF provides a frequency shift
which can counteract the mode-pulling and pushing (frequency shifts induced by nonlinear gain) which ordinarily
render the various beat frequencies unequal. For very weak feedback, the PCF-induced frequency shift is too small to
accomplish the locking. Beyond a certain feedback strength, however, locking occurs over a wide region. At large
values of feedback, mode locking is lost because of the onset of chaos.

We comment briefly on the assumption of an extremely fast responding PCM. In reality, of course, any
material has a finite response time, leading to a frequency-dependent response. However, our assumption is
reasonably valid as long as the PCM bandwidth is much larger than the longitudinal mode spacing. In our
simulations we assumed a mode spacing of about 100 GHz, which is a typical value for solitary semiconductor
lasers. For this case, a semiconductor laser amplifier could provide frequency-independent PCF, since its bandwidth
has been measured to be greater than 1 THz. More generally, a PCM based on a Kerr-type nonlinearity would have
an adequately wide bandwidth. Alternatively, in order to use a PCM with a smaller bandwidth, one could construct
an external cavity laser, with any desired longitudinal mode spacing and number of modes.

4. FM LASER OPERATION

A contrasting solution to the mode-locking equations exists when the reduced phases achieve an odd
multiple of it instead of a multiple of 2ir. The alternate solution has been deemed the FM laser operation, as the
optical wave appears to be a type of frequency-modulated signal. This time-domain signal usually changes too
rapidly to be detected, so one often looks for evidence of the FM operation in the frequency domain. The simplest
frequency-domain solution corresponds to the mode amplitudes being related as Bessel functions.22'16

Under certain circumstances, the mode amplitudes of semiconductor lasers have been shown to be closely
related to the FM Bessel function solution.23 This can be explained by invoking intramodal four-wave mixing,
which provides a phase-sensitive coupling mechanism among the modes. Simulations employing the four-wave
mixing coupling have demonstrated laser operation which approximates the FM solution.24

Our numerical model also includes the effects of intramodal four-wave mixing, which have been neglected
for the AM mode locking solutions. However, we find that when we include the effects of the four-wave mixing,
PCF can then force the laser to emit a pure FM wave, with the corresponding reduced phase becoming locked to a
value of it. Figure 5 shows the relative phase with and without noise for a three-mode laser operating at 60% above
threshold, for a PCF value of icr = 2.0. When the noise sources are turned on, the reduced phase obtains a slow
modulation in addition to the high-frequency oscillation. The slow modulation disappears when noise is absent. In
either case, the mean value of the reduced phase is ic, although the phase oscillates periodically about this value.

An advantage of the computer simulations is that high-frequency oscillations can be detected. Also the
reduced phases can be ascertained directly, so that the FM laser operation can be seen directly rather than inferred. An
example of the emitted FM wave is shown in Figure 6, with again both low and high resolution time traces. We
expect for a pure FM wave that the total power will not oscillate between 0 and a maximum value, as in the AM
locking case. Rather, because of the phase relationships among the modes, cancellation occurs so that the total
power remains relatively constant. The high-resolution power trajectory gives the appearance of the so-called
frequency-swept operation.

5. CONCLUSIONS

Phase-conjugate feedback can lead to a wide variety of dynamics in semiconductor lasers, similar to
conventional optical feedback. But there are clear differences between the two types of feedback, and these differences
have been summarized in this paper. We have also shown that, in stark contrast to conventional feedback, phase-
conjugate feedback can couple the longitudinal modes of the laser in such a way that mode-locked pulses are emitted.
Finally, we have also demonstrated that phase-conjugate feedback, in conjuction with intrinsic four-wave mixing
coupling, can force the laser into FM operation.
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Figure 5. Reduced phase with noise (-------)and without noise ( ) for three-mode laser operating at 60% above
threshold and icr =2.
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Figure 6. FM wave emitted by three-mode laser operating at 60% above threshold and icr =4. A close-up version
of 0.5 ns is also shown.

SPIE Vol. 2399 / 721

55 56 57 58 59

40

0L1
40.0

lili ''

41.6

Downloaded from SPIE Digital Library on 06 Apr 2010 to 128.151.82.225. Terms of Use:  http://spiedl.org/terms



6. ACKNOWLEDGMENTS

The research of GPA is supported by the US Army Research Office. GRG acknowledges the support of a
NATO travel grant (CRG 941327).

7. REFERENCES

1 . G. H. M. Tartwijk, H. J. C. van der Linden, and D. Lenstra, "Theory of a diode laser with phase-conjugate
feedback," Opt. Lett. 17, 1590-1592, Nov. 15, 1992.
2. M. Ohtsu, I. Koshiishi, and Y. Teramachi, "A semiconductor laser as a stable phase conjugate mirror for
linewidth reduction of another semiconductor laser," Jap. J. Appi. Phys., 29, L2060-L2062, Nov. 1990.
3. S. Mailhot and N. McCarthy, "Influence of phase conjugate optical feedback on the emission properties of
visible low-power diode lasers," Can. J. Phys., vol. 71, 429-433, 1993.
4. T. Shimura, M. Tamura, and K. Kuroda, "Injection locking and mode switching of a diode laser with a double
phase-conjugate mirror," Opt. Lett., 18, 1645-1647, 1993.
5. 0. P. Agrawal and J.T. Klaus, "Effect of phase-conjugate feedback on semiconductor laser dynamics," Opt. Lett.,
16, 1325-1327, Sept. 1, 1991.

6. G.P. Agrawal and G.R. Gray, "Effect of phase-conjugate feedback on the noise characteristics of semiconductor
lasers," Phys. Rev. A 46, 5890-5898, Nov. 1, 1992.

7. G.R. Gray, D. Huang, and G.P. Agrawal, "Chaotic dynamics of semiconductor lasers with phase-cOnjugate
feedback," Phys. Rev. A 49, 2096-2105, March 1994.

8. L.N. Langley and K.A. Shore, "Effect of phase-conjugate optical feedback on the intensity noise in laser diodes,"
Opt. Lett. 18, 1432-1434, Sept. 1, 1993.
9. M.W. Wright, J.G. Mclnerney and C. Wu, "Injection locking characteristics of semiconductor lasers in double
phase conjugate mirror geometry," Electron. Lett. 29, 1183-1 185, June 24, 1993.; M.W. Wright and J.G.
Mclnerney, "Injection locking semiconductor lasers with phase conjugate feedback," Opt. Comm. 110, 689-698,
Sept. 1994.

10. N. Cyr, M. Breton, M. Tetu, and S. Theriault, "Laser-diode frequency control by resonant phase-conjugate
reflection from an atomic vapor," Opt. Lett. 16, 1298-1300, Sept. 1991.
1 1 . M. Cronin-Golomb, K.Y. Lau, and A. Yariv, Opt. Lett. 11, 455, 1986.
12. G. P. Agrawal, Fiber-Optic Communication Systems, New York: Wiley, 1992.
13. J. E. Bowers, P. A. Morton, A. Mar, and S. W. Corzine, IEEE J. Quantum Electron. QE-25, 1426 (1989).
14. Y. K. Chen, M. C. Wu, T. Tanbun-Ek, R. A. Logan, and M. A. Chin, Appi. Phys. Leu. 58, 1253 (1991).
15. P. J. Delfyett, C. H. Lee, L. T. Florez, N. G. Stoffel, T. J. Gmitter, N. C. Andreadakis, G. A. Alphonse, and
J. C. Connoly, Opt. Lett. 15, 1371 (1990).
16. A. Siegman, Lasers, Mill Valley: University Science Books, 1986.
17. A.T. Ryan, G.P. Agrawal, G.R. Gray, and E.C. Gage, "Optical-feedback-induced chaos and its control in
multimode semiconductorlasers," IEEE J. Quantum Electron. 30, 668-679, 1994.
18. A. Ritter and H. Haug, J. Opt. Soc. Am. B 10, 130 (1993).

19. J. Mork, B. Tromborg, and J. Mark, IEEEJ. Quantum Electron. 28, 93 (1992).
20. J. Helms and K. Petermann, "Simple analytic expression for the stable operation range of laser diodes with
optical feedback," IEEE J. Quantum Electron. 26, 833-836, 1990.
21. G.R. Gray and R. Roy, "Bistability and mode hopping in semiconductor lasers," J. Op. Soc. Am. B8, 632-
638, 1991.
22. S.E. Harris and O.P. McDuff, "Theory of FM laser oscillation," IEEE J. Quantum Electron. QE-1, 245-262,
1965.
23. L.F. Tiemeijer, P.1. Kuindersma, PJ.A. Thijs, and G.L.J. Rikken, "Passive FM locking in InGaAsP
semiconductor lasers," IEEE J. Quantum Electron. 25, 1385-1392, June 1989; S.R. Chinn and E.A. Swanson,
"Passive FM locking and pulse generation from 980-nm strained-quantum-well Fabry-Perot lasers," Phot. Tech.
Lett.
24. W.M. Yee and K.A. Shore, "Multimode analysis of self locked FM operation in laser diodes," LEE Proceed. J,
140, 21-25, 1993.

722 / SPIE Vol. 2399

Downloaded from SPIE Digital Library on 06 Apr 2010 to 128.151.82.225. Terms of Use:  http://spiedl.org/terms


