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Abstract . We study numerically the effects of local-field corrections originat-
ing from near dipole-dipole interactions on the dynamics of a single mode,
inhomogeneously broadened laser . Our analysis is based on a set of generalized
Maxwell-Bloch equations in which the inhomogeneous nature of gain broadening
is accounted for by introducing two new dynamical variables and a single
parameter that governs the extent of inhomogeneous broadening . Our results
show that local-field effects occurring in a dense gain medium reduce the range
of continuous wave operation and lead to instabilities and chaos at much lower
pumping levels .

1 . Introduction
Considerable attention has recently focused on the effects of local-field

corrections in the dynamical response of two-level systems [1, 2] . Local-field
corrections result from the interaction of neighbouring dipoles in a dense medium,
referred to as near dipole-dipole (NDD) interaction . They become important
whenever the atomic density is high enough that many atoms lie within a volume
),3 , where A is the resonance wavelength . The inclusion of NDD effects leads to
many interesting phenomena such as intrinsic optical bistability, [3], self-phase
modulation in self-induced transparency [4], linear and nonlinear spectral shifts
[1, 5], propagational effects in nonlinear media [6], novel inversion and ultrafast
switching effects [7], and statistical effects in superfluorescence and spontaneous
emission [8]. However, the atomic medium has been assumed to be homogeneously
broadened in previous work . In many cases of practical interest, the atomic medium
is inhomogeneously broadened . If such an atomic medium is also dense, one needs
to include NDD effects within the formalism of an inhomogeneously broadened,
two-level system. Such an analysis has not yet been carried out . A perturbative
procedure which treats the effects of inhomogeneous broadening in the Bloch-
Maxwell formulation by the introduction of new dynamical variables was introduced
earlier [9] . The procedure has the advantage that the integro-differential Maxwell-
Bloch equations for an inhomogeneously broadened system are reduced to a
hierarchy of ordinary coupled differential equations [9] . This approach was recently
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formulated to include NDD effects [10] . The equations, apart from NDD
contributions, were used to analyse the utility of the line width enhancement
factor for semiconductor laser amplifiers operating in the subpicosecond time
domain [11] .

In this paper we study, for the first time to our knowledge, the dynamics of an
inhomogeneously broadened, dense, atomic medium by considering the underlying
Bloch-Maxwell equations. To simplify the analysis, we follow the approach, first
used by Graham and Cho [9], and extended to include NDD contributions [10],
in which the integro-differential Maxwell-Bloch equations are reduced to a set
of ordinary differential equations by introducing new dynamical variables . Such an
approximation is found to be reasonable for a study of the onset of instabilities and
chaos. We focus specifically on an inhomogeneously broadened laser oscillating in
a single mode and study the threshold value of the pumping level at which the steady
state becomes unstable . Our results show that the NDD effects reduce the instability
threshold considerably .

2 . Generalized Maxwell-Bloch equations
We review, here, briefly, the development of the Maxwell-Bloch formulation

for inhomogeneously broadened two-level systems, which includes NDD effects
[10] . In the slowly varying enveloped and mean-field approximation, the
Maxwell-Bloch equations for an inhomogeneously broadened, two-level atom can
be written as

dE _

dt - KE + ig~; p(k)

dP = - [YT + i(w - WL)]P - 2
ELI'

dw _

	

iµ
dt

	

YL(W - wth)

	

(ELP P*EL) + A

(1)

(2)

(3)

where EL is the slowly-varying amplitude of the optical field, g represents the
atom-field coupling, w is the transition frequency and COL is the laser frequency, µ
is the dipole moment, p is the off-diagonal element of the density matrix, the
inversion w = p11 - P22 is related to the diagonal elements of the density matrix, A
is the pumping rate, and K, YT, and YL are the cavity decay rate, the dipole decay rate,
and the inversion decay rate, respectively . Here, p and w are assumed to be
wave-vector, k, dependent .

Inhomogeneous broadening is included in equations (1)-(3) through the sum
over w which varies from atom to atom . It is useful to introduce 6 =- (w - wo)/YT
where wo is a reference frequency normally taken with respect to the gain peak, and
write [10]

1

	

f°°
V E p(k) = Nt

f
P(S) D(b) dS = NN(P),

	

(4)

where V is the volume of material, D(8) is the distribution function over momentum
states and angled brackets denote an average with respect to it . The NDD effects
are included in equation (1)-(3) by eliminating the local field EL in equations (2)
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and (3) in terms of the electric field E appearing in equation (1) . The two are related
by [2]

EL =E + 23ot (P),

	

(5)

where Nt is the total dipole number density . The relation (5) is often called the
local-field correction and is known to induce linear and nonlinear spectral shifts in
dense media [1, 5]. It forms the basis for Clausius-Mossotti relations in condensed
matter physics .

To obtain the macroscopic Maxwell-Bloch equations, we follow the approach of
Graham and Cho [9] and define average inversion and polarization as

*~ = (cu) and p = (p) .

	

(6)

By introducing the Rabi frequency 0=µE/h, equations (1)-(3) can be written as

where ,d = (c )o - (00/YT is the detuning parameter and we have introduced the pump
parameter r, and written the NDD interaction strength as s,

2µzNt

	

A
E=

	

, r=-+wth .

	

(10)
3EOri YL

Also, we have used g =Ntµg/h in equation (7) . These equations are not closed
because of the presence of (i6p) in equation (8) . In fact, the presence of this term
leads to an infinite hierarchy . To the lowest order, this hierarchy can be truncated
by defining two new dynamical variables S and U through

'4 ZS = (i6p) and $'U = ( Sco), (11)

where the dimensionless parameter 'X3 is yet to be determined . By using equation
(1)-(3), S and U are found to satisfy

dS _
dt

	

YT(1+id)S+YT(p-po)+WU+CPU,

	

(12)

where

dU
dt
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YL(U - Uth) - (QS* + SO*) - 2a(p*S + pS*),

po = ((1 - 62/$ 2)P) •

Here, Ut h is the equilibrium value and is non-zero only if the distribution is
intrinsically asymmetric [10,11] . The set of five equations, equations (7)-(9), (12),
and (13), can be closed by choosing 3 2 such that po = 0, i .e .,

$2 = (62P)l( ( P) .

	

(15)

dQ
_ - KQ + ikp (7)d

p
dt

_
YT(1 + id)p - yT(i8p) -

2
#' - iep*/' (8)

dI _
=

	

- ~) + i(QP* - S~*p),YL(rdt
(9)
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The crucial assumption of Graham and Cho is that, to the first approximation, $ 2

can be treated as a constant by replacing p in equation (15) by its steady-state value .
Then 32 can be treated as an inhomogeneous broadening parameter since 32 = 0 for
homogeneous broadening and increases as the gain medium becomes more and more
inhomogeneously broadened . Physically, $2 is a measure of the spread of the atomic
population over the inhomogeneous distribution [10,11] . In the next section we
solve the above set of five equations numerically to investigate the stability of the
steady-state solution .

3 . Laser instabilities and chaos
For the purpose of numerical simulations, we define a normalized time i = YTt

and write equations (7)-(9), (12), and (13) in the form

dQ

	

x

	

ig"
dt

	

YT

	

K

dp =
- (1 + id)p - $2S -

iQ
~YY -

to
p*',

	

(17)dT

	

2YT

	

YT

d =
YL

(r - ~Y') +1 (f2p* - Q*p),

	

(18 )
YT

	

YT

dS
=-(1+id)S+p+

1
U(Q+2ep),

	

(19)
di

	

2 YT

dU = - YL
(U - Uth ) -1(QS* + SQ*) -

2E
(p*S + pS*) .

	

(20)
dT

	

YT

	

YT

	

YT

These equations are solved numerically by taking YL = YT, the collisional dephasing
regime, and K = 2 . 8 YT (bad-cavity case) together with g = K . Such conditions could
be controlled in a dense gas or metal vapour by adjusting the density and the loaded
cavity Q. The pump parameter r is varied in the range 1-50, and is a measure of the

7

rth

5

4
0.0

Figure 1 . Illustration of the behaviour of instability threshold r th as a function of the NDD
parameter e for various values of detuning d. Curves a, b, and c are for values of d equal
to 0, +0-1, and -0-1, respectively . All parameters are scaled in terms of the
homogeneous width VT .
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ratio of the pumping rate to the spontaneous emission rate, equation (10) . The steady
state becomes unstable at a threshold value rt h of r . The instability threshold rth
depends on the parameters $2, E and A . Consider first the case of a laser oscillating
at the gain peak so that d = 0 . For $2 = 0, we recover the results obtained for a
homogeneously broadened gain medium, where the threshold for instability occurs
at rth = 44. Figure 1 shows the variation of rth as a function of the NDD parameter
E for a value of $2 equal to 2, and values for d above and below resonance . In terms
of our choice of scaling in equations (16)-(20), E is a measure of the NDD strength
in units of the homogeneous line width determined by YT . Typically, for µ - 1 Debye
and YT - 108 S -

1, a value e = 0 . 1 corresponds to a density Nt - 1015 CM-3 , which, for
optical wavelengths, gives approximately 100 atoms, on average, within a cubic
wavelength. Obviously, the instability threshold decreases as 132 increases . It also
decreases as the NDD parameter c increases . Thus, the main effect of NDD
interaction is to lower the instability threshold for both homogeneously and

0

(b)

3

Figure 2. Effect of E on the laser instabilities at the threshold value r th = 7 . (a) E = 0
(b) e = 0 .4. All parameters are scaled in terms of YT .
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30
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Figure 3 . Power spectrum for the case r = 7 and E=0-4 . They axis represents the logio of
the absolute value of the Fourier transform of p . All parameters are scaled in
terms of YT .
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inhomogeneously broadened atomic media, although we find that in the former case,
the effect of a is not so drastic . For homogeneously broadened systems, saturation
of the threshold occurs at r,h = 42 for e = 0 . 2. The decrease can be quite substantial
(by a factor of 1 .7) in an inhomogeneously broadened medium . The effect of
detuning on the instability threshold is also shown in figure 1 . The effect of detuning
is to further lower threshold. In a dense medium however, the behaviour is markedly
different depending upon the detuning .

When r exceeds rah the laser output becomes chaotic following a period-doubling
or quasi-periodic route . Figure 2 shows the phase diagram (in *' - I pI space) for
r = 7, 32 = 2, d = 0, and e = 0 (figure 2 (a)) and e = 0 . 4 (figure 2 (b)) . The chaotic
nature of the laser output for s # 0 is evident . It is important to note that the
laser would operate continuously at this pumping level if the NDD effects were
absent. The chaotic output is solely due to the NDD interaction in dense media for
the operating conditions shown in figure 2 . Figure 3 shows the power spectrum
corresponding to the chaotic attractor which appears in figure 2 . The asymmetry seen
in figure 3 has its origin in NDD interaction since the power spectrum is symmetric
when e = 0. This is due to frequency renormalization of atoms in a dense medium .
Thus, even when d = 0, there is an inversion-dependent term that acts like a
detuning term in equation (17) which gives rise to asymmetry of the power
spectrum .

4 . Conclusions
In conclusion, we have studied the effects of local field corrections on the

dynamics of a single-mode, inhomogeneously broadened laser system . The local
field effects that arise due to near dipole-dipole interactions in a dense medium are
found to reduce the range of continuous wave operation and lead to instabilities and
chaos at much lower pumping levels . It is noted, however, that Meziane [12] has
obtained a better matching of the dynamical evolution of equations (16)-(17), under
conditions of self-pulsing, with Casperson's experimental and numerical results [13]
by replacing the parameter 13 with an intensity-dependent saturable parameter .
Qualitative results are obtained from the original equations, as compared with
numerical integration of the modified equations, and the conditions which lower the
threshold of instability are not expected to change . We have sought, in this paper,
to examine the effects of NDD on the equations (16)-(20) which were obtained
self-consistently .
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