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Time-transformation approach to pulse propagation in nonlinear dispersive media:
Inclusion of delayed Raman nonlinearity
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We extend our time-transformation technique to include the delayed Raman response and use it to study
propagation of ultrashort, few-cycle, optical pulses inside a dispersive nonlinear medium. Our technique deals
directly with the electric field associated with an optical pulse and can be applied to pulses of arbitrary widths,
as it does not make use of the slowly varying envelope approximation. We apply it to optical pulses containing
several optical cycles and launched such that they form a third-order optical soliton. We vary the number of
optical cycles within the pulse from 1 to 10 and study how the features such as soliton fission, intrapulse Raman
scattering, and dispersive-wave generation depend on pulse width and soliton order. We find that for a fixed
soliton order, the Raman-induced frequency shift becomes smaller, while the fraction of energy transferred to
the dispersive wave increases, as pulse width is reduced. In the special case of a single-cycle pulse, the most
dominant effect is self-steepening and it leads to dramatically different features in both the shape and spectrum
of output pulses.
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I. INTRODUCTION

The propagation of optical pulses inside nonlinear disper-
sive media such as optical fibers has been studied extensively
over the last 20 years [1]. Such studies are not only relevant
for designing optical-fiber communication systems [2], but
they also have led to an entirely new field of supercontinuum
generation with diverse applications [3]. With the development
of ultrafast laser technology, optical pulses as short as 10 fs
have become available commercially. Even attosecond pulses
have been generated in recent years [4] with applications in
a variety of fields [5]. For example, ultrashort pulses serve as
a useful tool to resolve the ultrafast dynamics and are widely
used in the field of ultrafast science [6]. An important question
is how ultrashort pulses containing a single or a few optical
cycles evolve inside a nonlinear dispersive medium.

As the width of an optical pulse becomes comparable to an
optical cycle, the use of the nonlinear Schrödinger equation
(NLSE) becomes questionable because the slowly varying
envelope approximation is likely to break down in this region
[1]. For this reason, the finite-difference time-domain (FDTD)
method that solves Maxwell’s equations directly is often used
for ultrashort pulses [7,8]. However, the FDTD approach is
limited to relatively short propagation distances (typically
<1 mm) because it requires a step size that is a small fraction of
the optical wavelength. In our recent work [9–11], we proposed
an approach that deals directly with the electric field in the
time domain, but does not suffer from this limitation. In our
approach, the propagation of an optical pulse is implemented
through a time transformation of the electric field. Dispersive
effects can also be included in our time-transformation model,
and its predictions agree fully with those of the NLSE [10] and
the FDTD methods [11].

*Corresponding author: yuzhe.xiao@rochester.edu

In our previous work [9–11], we focused on a Kerr medium
and assumed that it responds instantaneously to the electric
field. The nonlinear response of a medium to light generally has
two parts. The first part comes from the response of electrons
occurring on a time scale of under 1 fs. The other part, known
as intrapulse Raman scattering [1], results from the response
of molecules that is delayed by about 60 fs in the case of silica
fibers. When pulse width becomes shorter than 100 fs, this
delayed nonlinear response cannot be ignored.

In this paper, we extend our time-transformation approach
to include the delayed nonlinear Raman response and apply
it to study propagation of few-cycle optical pulses (as short
as 1 fs) inside a dispersive nonlinear medium such as a silica
waveguide. In Sec. II, we discuss how to include the delayed
Raman response in our approach. We apply it in Sec. III
for studying propagation of a short pulse, containing more
than 10 optical cycles and launched to form a third-order
soliton inside a silica waveguide, and confirm that our theory
correctly predicts the nonlinear phenomena such as soliton
fission, Raman-induced frequency shift, and dispersive-wave
generation. In Sec. IV, we vary the number of optical cycles
in the range of 1 to 10 and study how such nonlinear
phenomena depend on the pulse width. As expected, the
Raman-induced frequency shift decreases as the pulse gets
narrower. More interestingly, a larger fraction of input pulse
energy is transferred to the blue side of the input spectrum in
the form of a dispersive wave. The case of single-cycle pulses
is discussed in more details in Sec. V, where we show that the
effects of self-steepening become dominant for such ultrashort
pulses.

II. TIME-TRANSFORMATION APPROACH

As we discussed in our earlier work, the solution of
Maxwell’s equations (in a linear medium in the form of
a waveguide so that transverse variations are irrelevant)
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can be written in an integral form under some reasonable
assumptions [12],

Eout(t) =
∫ ∞

−∞
h(t,t ′)Ein(t ′)dt ′, (1)

where Ein and Eout are the input and output electric fields
associated with the pulse and h(t,t ′) is the impulse response
function of the dielectric medium. Somewhat surprisingly,
this relation can be applied to a nonlinear dielectric medium
using a nonlinear transformation in the time domain [9–11].
In this approach, we include the delay of each temporal slice
of the electric field inside the nonlinear medium through a
temporal mapping that we refer to as time transformation. In
Refs. [9–11], we applied this concept to a medium exhibiting
the Kerr-type instantaneous nonlinearity. The central issue
in this paper is whether the time-transformation technique
can be used when the medium’s nonlinear response is not
instantaneous and is delayed by a duration that may exceed
the pulse width itself. It turns out that the time-transformation
model remains valid even when the delayed nonlinear response
is considered because the simple picture of mapping each input
slice to a corresponding output slice continues to hold. The
only difference is that the refractive index now depends on
light intensity in a delayed fashion.

To be more specific, we assume the following functional
form for the medium’s nonlinear response [1]:

R(t) = (1 − fR)δ(t) + fRhR(t), (2)

where the first term accounts for the electronic response
(Kerr type) and hR(t) represents the delayed Raman response
function of molecules with a fractional contribution fR . If we
relate the refractive index of the medium to R(t) as

n(t) = n0 + n2

∫ t

−∞
R(t − t ′)I (t ′)dt ′, (3)

where n0 is the linear part of the refractive index, n2 is the
nonlinear coefficient, and I (t) is the intensity, we obtain

n(t) = n0 + n2

[
(1 − fR)I (t) + fR

∫ t

−∞
hR(t − t ′)I (t ′)dt ′

]
.

(4)

In the time-transformation approach, the transit time of a
temporal slice located at t ′ is given by t1 = n(t ′)L/c, where L

is the medium length and c is the speed of light in vacuum. It
follows from the form of Eq. (4) that the transit time consists
of three parts and can be written as

t1 = n(t ′)L/c = TLinear + TKerr + TRaman. (5)

The first part of the transit time, TLinear = n0L/c, comes from
the linear part of the refractive index and provides the dominant
contribution. The nonlinear part of the transit time has two
contributions related to the instantaneous and delayed part of
the nonlinearity. These are given by

TKerr = (n2L/c)(1 − fR)I (t ′), (6)

and

TRaman = n2fR

L

c

∫ t ′

−∞
hR(t ′ − t ′′)I (t ′′)dt ′′. (7)

Equation (5) represents the nonlinear transformation (or
mapping) of the time t ′ of a temporal slice time to a new
time t1. We use this transformation in Eq. (1) and write this
equation as

Eout(t) =
∫ ∞

−∞
h(t − t1)E′(t1)J (t1)dt1, (8)

where E′(t1) = Ein(t ′), and the Jacobian of the transformation
is given by

J (t1) = dt ′/dt1 = (1 + dTKerr/dt ′ + dTRaman/dt ′)−1. (9)

The important point to note is that our time transformation
allows us to write Eq. (8) in the form of a convolution.
As a result, we can perform the integral numerically in the
frequency domain using the convolution theorem, provided
we know the functional form of the impulse response function
h(t). As we discussed in Ref. [10], the Fourier transform of
h(t) is given by

h̃(ω) = exp[iβ(ω)L], (10)

where β(ω) is the propagation constant, defined as β(ω) =
n0(ω)ω/c. Thus, the dispersion nature of the medium is
contained fully in its impulse response function h(t).

In the following numerical calculations, the dispersive
effects are considered by expanding the propagation constant
β(ω) in a Taylor series around the carrier frequency ω0 of the
pulse and retaining terms up to third order in ω − ω0:

β(ω) ≈ β0 + β1(ω − ω0) + β2

2
(ω − ω0)2 + β3

6
(ω − ω0)3,

(11)
where β0 = n0(ω0)ω0/c, and β1, β2, and β3 are the first-,
second-, and third-order dispersion parameters, respectively.
For few-cycle pulses, it may be necessary to include other
higher-order dispersion terms or even to use the Lorentz
model to account for dispersion fully. In this work, we include
dispersion only up to third order to emphasis the role of delayed
Raman response. The inclusion of higher-order terms does not
affect our conclusions.

Note that we made an implicit assumption in writing the
expressions for TKerr and TRaman, namely, that the pulse shape
does not change considerably over the propagation length
L. Since pulse shape generally does not change much over
distances that are a small fraction of the dispersion length,
Eq. (8) needs to be solved in a stepwise fashion by dividing the
medium length into multiple sections, similar to the split-step
Fourier method used for solving the NLSE [1].

III. COMPARISON WITH THE NLSE APPROACH

Before we consider single- or few-cycle pulses, we apply
our approach to a relatively wide optical pulse containing more
than 10 cycles and compare the results with those obtained
using the generalized NLSE. More specifically, we consider
the propagation of a third-order soliton and assume that the
input electric field is given by

Ein(t) = Re[
√

I0sech(t/T0)e−iω0t ], (12)

where we choose the carrier frequency ω0/2π = 200 THz,
corresponding to an input wavelength of 1.5 μm. We set
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FIG. 1. (Color online) Evolution of temporal and spectral profiles
over three dispersion lengths when an input pulse with T0 = 30 fs
forms a third-order soliton. The intensities are plotted using a
normalized 50 dB color scale.

T0 = 30 fs to ensure that the input pulse has more than 10
cycles and let it propagate in the anomalous-dispersion region
(β2 < 0) of a silica waveguide, where an optical soliton can
form. The peak intensity I0 of the pulse is chosen so that it
corresponds to a third-order soliton [1]: N = (β0n2I0LD)1/2 =
3, where LD = T 2

0 /|β2| is the dispersion length. Third-order
dispersion is also included using δ3 = β3/(6T0|β2|) = 0.06,
a typical value for silica waveguides. The Raman effect is
included using the functional form of the Raman response
function in Ref. [13].

Figure 1 shows the evolutions of temporal and spectral
intensities over three dispersion lengths using our time-
transformation approach. We repeated the same calculation by
solving the generalized NLSE and the results were identical
in all respects. The fission of third-order soliton occurs near
z = 0.5LD in both cases, and the original soliton splits into
three parts. Most of the energy goes into a much narrower
Raman soliton that travels slower than the original pulse
as its spectrum shifts continuously toward the red side (the
broad peak on the left side). Some energy is also shed in
the form of a dispersive wave at a frequency on the blue
side of the input pulse spectrum (vertical line on the right
side). The location of the blue-shifted peak agrees with the
phase-matching condition associated with the generation of a
dispersive wave [1]. The important point to stress is that our
approach reproduces all known features and agrees completely
with the NLSE results. In the next section, we consider pulses
as short as a single optical cycle and discuss how the evolution
of such pulses depends on their temporal duration.

IV. PROPAGATION OF FEW-CYCLE PULSES

As seen in the preceding section, propagation of short
optical pulses inside a dispersive nonlinear medium exhibits
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FIG. 2. (Color online) Comparison of pulse shapes and spectra at
z = 3LD as T0 is reduced from 20 to 1 fs. The input pulse corresponds
to a third-order soliton in all cases.

rich dynamics through phenomena such as soliton fission,
generation of dispersive wave, and four-wave mixing [14,15].
The question is what would happen if the pulse duration is
reduced until the input pulse contains only a single optical
cycle. To answer this question, we carried out a series of
simulations by reducing T0 in Eq. (12) from 20 fs (5 optical
cycles) down to 1 fs (single cycle). We kept the same relative
strengths of nonlinearity and dispersion so that a third-order
soliton is formed in all cases. Figure 2 shows how the temporal
shapes (top) and spectra (bottom) at a distance of z = 3LD

change as pulses become shorter. As seen there, multiple
changes occur, including a decrease in the Raman-induced
frequency shift and an increase in energy of the dispersive
wave, when T0 is reduced from 20 to 2 fs. When T0 is further
decreased down to 1 fs, the output pulse exhibits even more
drastic features. We discuss all such changes in what follows.

A. Intrapulse Raman scattering

As see in Fig. 2, for all pulse widths, a large fraction of input
energy appears in a Raman soliton that travels slower than the
input pulse because its spectrum has been shifted considerably
toward the red side of the original spectrum. This change can
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FIG. 3. (Color online) Changes in the Raman-induced frequency
shift as T0 is reduced from 20 to 1 fs for a fixed soliton order N . For
the same value of T0, pulses with a higher soliton order have larger
frequency shifts.

be expected since the Raman response time of about 60 fs for
silica fibers is considerably larger than the pulse width. As the
pulse becomes narrower, the influence of the delayed Raman
response gets smaller. As a consequence, the Raman-induced
frequency shift decreases for narrower pulses, which in return
decreases the difference between the group velocities of the
Raman soliton and rest of the pulse. The spectral shift of
the Raman soliton decreases almost linearly until T0 = 10 fs.
When T0 becomes smaller than this value, one cannot even see
a clear spectral peak for the Raman soliton because it does not
separate enough from the input spectrum.

To obtain the correct magnitude of the Raman-induced
frequency shift as a function of pulse width T0, we targeted
the Raman soliton in the temporal domain, where a clear
intensity peak is seen down to T0 = 1 fs. By taking the Fourier
transform of only this part of the pulse, we were able to deduce
the spectral shift of the Raman soliton. Figure 3 shows the
Raman-induced frequency shift as a function of T0 for soliton
orders of N = 2, 3, and 4. In these calculations, we increased
the peak intensity of the input pulse to correspond to different
soliton order, while keeping other parameters (n2, β2, and β3)
unchanged. It is expected that pulses with a larger N value
would have a larger Raman-induced frequency shift because
of their higher peak powers. As seen in Fig. 3, the amount of
Raman-induced frequency shift decreases monotonically with
decreasing T0 for all three values of N . This is opposite to
what is observed for pulses wider than the Raman response
time of 60 fs, for which the Raman-induced frequency shift is
known to scale as T −4

0 [1]. This qualitative difference between
the short and long pulses is a manifestation of the fact that
intrapulse Raman scattering is not an instantaneous nonlinear
process and its response is delayed by about 60 fs in the case
of silica glass.

B. Dispersive-wave generation

A significant feature of Fig. 2 is that as T0 is reduced from 20
to 2 fs, more and more of the input pulse energy is transferred
to a dispersive wave at a blue-shifted wavelength. This feature
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FIG. 4. (Color online) Energy of the dispersive wave as a function
of T0 for N = 2, 3, and 4. The drop for T0 < 2 fs is related to the
development of rapid temporal oscillations.

was also observed in Ref. [15], which focused on a pulse
longer than 10 fs. Here we find that it persists for pulses as
short as a single optical cycle. This feature is most clearly seen
in the spectral domain in Fig. 2. To find the energy of this
spectral peak, we integrated the spectral power density over
the frequency range 1 < (ν − ν0)T0 < 3 for different orders
of solitons (N = 2, 3, and 4) with T0 in the range of 1–20 fs.
The results are shown in Fig. 4.

As see in Fig. 4, a higher-order soliton transfers more of
its input energy into a dispersive wave. This feature agrees
with the previous findings and is expected if we recall that
a dispersive wave is generated by the perturbation of an
optical soliton by the third-order dispersive effect. However,
more interesting is the observation that for a given value of
N , more energy can be transferred to a dispersive wave by
reducing the input pulse width. One can see in Fig. 4 that more
and more energy is transferred to the dispersive wave as T0

decreases. However, the situation changes when T0 is reduced
to below 2 fs. Further investigation shows that this change is
related to the impact of self-steepening. As the pulse width
decreases, although the Raman response becomes weaker, the
impact of the self-steepening effect governed by the parameter
s = (ω0T0)−1 becomes stronger. For example, the value of s

is only 0.04 for 20 fs pulses, but it approaches 0.8 for T0 = 1
fs at a carrier frequency of 200 THz. It turns out that when s

exceeds 0.5, self-steepening leads to drastic changes in both
the shape and the spectrum of optical pulses. Such changes
are apparent in Fig. 2 when one compares the curves for
T0 = 1 and 2 fs. Since a pulse with T0 = 1 fs contains only a
single optical cycle, we focus on single-cycle pulses in the next
section.

V. PROPAGATION OF SINGLE-CYCLE PULSES

As seen in Fig. 2, the temporal and spectral features change
drastically when T0 is reduced from 2 to 1 fs. In the temporal
domain, the distinction between the original pulse, the Raman
soliton, and the dispersive wave disappears, and we see a single
dominant peak with a long tail exhibiting rapid oscillations.
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FIG. 5. (Color online) Electric field at a distance of 3LD when a third-order soliton is excited using input pulse with T0 = 1 fs. The input
electric field is shown for comparison by dotted green curves.

The pulse spectrum becomes very asymmetric and develops
many new frequency components both on the red side of
the original carrier frequency peak and on the blue side of
the dispersive-wave peak. In this section, we focus on these
new features occurring when the input pulse contains a single
optical cycle.

For single-cycle pulses, the concept of pulse envelope
begins to lose its meaning. For this reason, we plot the actual
electric field associated with the pulse. This is straightforward
in our time-transformation approach since it deals directly
with the electric field. Figure 5 shows the output electric field
(solid red curve) at z = 3LD for a single-cycle input pulse,
together with the input electric field (dotted green curve).
As seen there, the electric field for t < 5T0 appears to be a
stretched version of the original electric field with reduced
amplitude. However, for t > 5T0, the behavior of the electric
field becomes quite complicated and shows an oscillatory
feature. These oscillations result from a beating between
the frequency components near the input carrier frequency
and those associated with the blue-shifted dispersive wave.
They also occur for multicycle pulses, but their amplitude is
negligibly small.

To understand this phenomenon more clearly, we show in
Fig. 6 a spectrogram of the pulse exhibiting temporal and
spectral features simultaneously. We employed a Gaussian-
shaped sampling window function W (t,τ ) to obtain spectral
information for different temporal slices and calculated the
spectrogram using

S(ω,τ ) =
∣∣∣∣
∫ ∞

−∞
W (t,τ )E(t)eiωtdt

∣∣∣∣
2

. (13)

We clearly see two spectral peaks, corresponding to spectral
components around the carrier frequency and the frequency of
the generated dispersive wave. Since these two peaks overlap in
time, they interfere and produce temporal fringes in the time
domain. A winglike structure is generated because the two
spectral peaks fall on opposite sides of the zero-dispersion
wavelength. This spectrogram explains the behavior of the
electric field in Fig. 5. For example, for t < 5T0, only one
spectral peak occurs that is slightly red shifted because of
intrapulse Raman scattering. After this point, multiple spectral
components coexist together, and it is the beating among them
that leads to distortion of the electric field and rapid oscillations
in the pulse tail.

The spectrogram helps us in understanding the origin of
rapid oscillations in the pulse temporal profile. However, one

question still remains: what mechanism is responsible for the
generation of such drastic changes in the electric field of single-
cycle pulses? The answer turns out to be the self-steepening
effect. As the pulse width is reduced, the relative strength of
dispersion scales accordingly, since we employ the normalized
versions of β2 and β3 in our study. The nonlinearity strength
is also fixed because the soliton order N does not change.
The only effect that is magnified for single-cycle pulses is
the self-steepening effect. Indeed, the normalized parameter
s takes a relatively large value of 0.8 for single-cycle pulses.
To confirm that indeed self-steepening is behind the drastic
changes, we repeated the simulation for single-cycle pulses by
setting s = 0 so that self-steepening is absent, while keeping
both the Kerr and Raman nonlinearity. The resulting pulse
shape and spectrum are plotted by the dashed red curves in
Fig. 7. For direct comparison, the solid blue curves show our
results when everything is included and dotted green curves
show the input pulse.

As seen in Fig. 7, when self-steepening is absent (s = 0),
we see clearly three separate regions in the temporal domain
that correspond to the residual input pulse near t = 0, a
Raman soliton near t = 10T0, and a dispersive wave near
t = 30T0. In the spectral domain, one can also clearly see

N
or

m
al

iz
ed

 fr
eq

ue
nc

y 
( 

ν−
ν 0)T

0

Normalized time t/T
0

 

 

−10 0 10 20 30 40 50
−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

FIG. 6. (Color online) Spectrogram at z = 3LD for the T0 = 1 fs
case shown in Fig. 5. The intensity is plotted on a linear color scale.
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the corresponding spectral components. In particular, we see
the red-shifted Raman soliton peak and a blue-shifted peak
that corresponds to the dispersive wave. However, when
self-steepening is present (s = 0.8), both the temporal and
spectral intensity profiles change dramatically. In particular,
in the time domain, the pulse exhibits a single dominant peak,
together with an oscillatory tail that extends over a range
exceeding 70T0. The peak amplitude is reduced considerably
because a large fraction of the input pulse energy is now
contained in the long oscillatory tail. This is also evident
in the spectral domain, where the blue-shifted peak that
corresponds to the dispersive wave is much broader with
an asymmetric tail. We stress that third-order dispersion also

plays an important role in generating the oscillating pulse tail.
Indeed, oscillations disappear if we repeat this calculation with
β3 = 0.

VI. CONCLUDING REMARKS

In conclusion, we have extended our time-transformation
technique to include the delayed Raman response and used
it to study the propagation of ultrashort, few-cycle, optical
pulses. Our technique deals directly with the electric field
associated with an optical pulse and can be applied to pulses
of arbitrary widths, as it does not make use of the slowly
varying envelope approximation. We first apply this technique
to a pulse containing more than 10 optical cycles and show that
our approach reproduces the results obtained by solving the
NLSE numerically. We then vary the width parameter T0 from
1 to 20 fs and study how the features such as soliton fission,
intrapulse Raman scattering, and dispersive-wave generation
depend on pulse width and soliton order. We find that for a
pulse with fixed soliton order, the Raman-induced frequency
shift becomes smaller as pulse width decreases, while the
fraction of energy transferred to the dispersive wave increases
as pulse width is reduced. For the special case of a single-cycle
pulse, the most dominant effect is self-steepening and leads to
dramatically different features in both the pulse shape and
pulse spectrum.

In this study, we applied the time-transformation method
to pulses propagating inside optical waveguides, for which the
spatial dependence of the waveguide mode does not change
with propagation. Diffraction has to be considered in the case
of bulk optical media. In this situation, one can apply the time-
transformation method using the well-known angular spectrum
approach [16].
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