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The optimum conditions for optical beam steering by spatial phase modulation in nonlinear Kerr media are
obtained by use of the conservation laws of the nonlinear Schrddinger equation together with the moment
method. The operating conditions under which the deflection angle is largest and the deflected beam carries
the most energy in the form of a spatial soliton are determined. The analytical theory is applied to both planar
waveguides and bulk Kerr media. The analytical predictions are compared with numerical simulations for
the case of sinusoidal spatial phase modulation. Good agreement has been found between the analytical
results and computer simulations.

1. INTRODUCTION

In general there are three methods for optical beam
steering: mechanical, electrical, and all optical. Ow-
ing to various problems associated with the mechanical
methods, such as difficulties in speed, resolution, and
complex fabrication, considerable attention has been paid
to electrical and, especially, optical methods. It has been
predicted that electrical methods are likely to be lim-
ited to operation below 35 GHz because of fundamental
considerations such as transit, relaxation, and diffusion
times associated with the very-large-scale integrated
(VLSI) electronics.' For steering devices required for
operation at high speeds, optical steering methods play
a crucial role, since many nonlinear optical interactions
rely on virtual transitions in the material, resulting in
an almost instantaneous nonlinear response. Among
the variety of nonlinear mechanisms that can be used
in optical beam steering, the Kerr effect is invoked most
often.2 -

5 There are several advantages to using a Kerr
medium for optical beam steering. First, the response
time of the Kerr nonlinearity can be fast enough that
it can be used at switching speeds in excess of 1 THz.
Second, it is well known that the propagation of a laser
beam in a Kerr medium can be described by the nonlinear
Schrodinger equation (NLSE), which supports spatial soli-
tons in the one-dimensional case such as occurs in planar
waveguides. 6 Such spatial solitons can propagate over
long distances without spreading, since the nonlinear
Kerr effect can compensate for the diffraction-induced
beam spreading.

Several optical steering methods based on Kerr me-
dia have been proposed .2 -- Li et al.2 used an intense
pump pulse with a triangular spatial profile to generate a
temporal prism inside a nonlinear medium; the temporal
prism then deflected another beam passing it. 2 Another
two-beam technique uses cross-phase modulation from a

pump beam to alter the phase profile of a probe beam and
so induces a deflection. 3 Other authors have employed
single beams with asymmetric intensity profiles, result-
ing in self-bending on propagation. 4 Another technique
uses the properties of dark solitons for beam steering. 5

Recently Ryan and Agrawal6 proposed a new technique
that employs spatial phase modulation of a beam entering
a nonlinear media, and they showed that high-efficiency
beam steering is possible. In their method spatial phase
modulation splits the input beam into many subbeams
while the nonlinear medium shapes a particular subbeam
into a spatial soliton in such a way that most of the power
appears in a narrow beam whose direction can be con-
trolled by changes in the modulation parameters.

This paper is devoted to a detailed investigation of opti-
cal beam steering by means of spatial phase modulation.
Although the numerical simulations of Ref. 6 show effi-
cient beam steering for the situation in which the phase
is periodically modulated, it is not clear what phase pro-
file will lead to the best steering conditions from a prac-
tical standpoint. Furthermore, it is important to know
the conditions under which phase modulation becomes so
strong that it will destroy or hinder the formation of a spa-
tial soliton. Our main objective in this paper is to study
the conditions under which beam deflection is as large
as possible without destroying the soliton nature of beam
propagation in the nonlinear medium. We study beam
steering in both planar waveguides and bulk media by
considering diffraction in one and two transverse dimen-
sions, respectively. In contrast to the results of Ref. 6,
where computer simulations were used, we focus mainly
on obtaining analytical results, as they are quite valuable
in a practical system design. Numerical simulations are
used to validate the assumptions and the approximations
made in obtaining the analytical results. In Section 2
we describe the analytical approach based on the con-
servation laws associated with the NLSE. The method
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is applied to planar waveguides and bulk Kerr media in
Sections 3 and 4, respectively. Finally, the results are
summarized in Section 5.

2. CONSERVATION LAWS AND
THE VIRIAL THEOREM

Our analytical approach is based on the moment method
that makes use of conservation laws associated with the
NLSE. The symmetries and the conservation laws of the
NLSE have been studied by many authors.7 -10 In this
paper only three conservation laws are needed; they are
related to the conservation of the wave action M (equiva-
lent to the conservation of photon number), the transverse
momentum P, and the energy H (or the Hamiltonian of
the system). These conservation laws are found to be
quite useful in the context of beam steering. For ex-
ample, the conservation of momentum implies that the
beam trajectory, defined as the first moment of the trans-
verse coordinate with respect to the beam intensity (anal-
ogous to the center of mass of a mechanical system), is a
straight line for a phase-modulated beam. If most of the
beam energy is confined inside a newly formed soliton,
then this linear trajectory is close to that of the new soli-
ton. By using the laws of conservation of wave action
and momentum, one can calculate the deflection angle
analytically.

It is well known that the propagation of an intense laser
beam in a Kerr medium can be described by a NLSE that,
in a normalized form, can be written asS~"

+ (2A + 2A + IAI2A=0 (1)
Oz 2 aB2 y

where x and y are spatial transverse coordinates nor-
malized to the beam width wo, z is the propagation dis-
tance normalized to the diffraction length, Ld = kwo2, and
the amplitude A is normalized to (kwo)-'(no/n2)" 2. Here
k = 2rno/A is the wave number, A is the wavelength in
vacuum, n is the refractive index of the medium, and
n2 is the Kerr coefficient responsible for self-focusing of
the beam. The Lagrangian density corresponding to the
NLSE is12

L = 2 A* A A) _1 (- a 2 22 a + a A14)

(2)

The application of the Euler-Lagrange equation to the
Lagrangian density generates the NLSE given by Eq. (1).

The three conservation laws associated with the NLSE
and corresponding to the conservation of the wave action
M, the transverse momentum P, and the energy H (or
the Hamiltonian) can be obtained either from Noether's
theorem 7 10 or directly from Eq. (1). These laws are

M = IAI2 dDr,

P = 2 . (A*VTA - AVTA*)d Dr,2i |
1 i- 12 A14 )dD2J

(3)

where we use a compact notation so that Eqs. (3)-(5) can
be applied to an arbitrary number of transverse dimen-
sions. In particular, we can apply Eqs. (3)-(5) to one and
two transverse dimensions by setting the dimension pa-
rameter D = 1 and D = 2, respectively. The gradient
operator VT is defined in D dimensions with respect to
the radial vector r. In one dimension Irl = x, whereas
in two dimensions Irl = (X

2
+ y

2
)"

2 . The integration in
Eqs. (3)-(5) extends over the entire range of transverse
coordinates. The physical meaning of Eqs. (3)-(5) is that
the intensity-averaged quantities M, P, and H remain
constant (independent of z) even though the amplitude
A changes with z inside the nonlinear medium. In the
mechanical analogy M, P, and H stand for the mass, the
momentum, and the energy of a particle.

In the moment method7 the average value of a physical
quantity F(r) is defined as

f F(r)IAl2 dDr
(F(r)) =

f IA12dDr
(6)

From the standpoint of beam steering the first two mo-
ments (r) and (r2 ) are of most interest. As mentioned
above, the first moment (r) is analogous to the displace-
ment of the center of mass of a mechanical system and
indicates the location of the transverse region in which
most of the beam energy is likely to be confined in an
average sense. The second moment (r2 ) can be used to
calculate the root-mean-square (rms) beam width s, which
is a measure of the size of the area to which most of the
beam energy is confined. The rms width s is defined as

on2 = (r2) (r)2 (7)

The derivatives d(r)/dz and ds/dz can be used to yield
many qualitative features of beam steering in nonlinear
media without requiring an explicit solution of the NLSE.
The reason is that d(r)/dz is a measure of how much and
in what direction the input beam is deflected from the
original beam center, and ds/dz indicates how the beam
size changes with propagation. By using Eqs. (3)-(6) it
is easy to show that d(r)/dz = P/M, i.e., that the con-
served momentum determines the beam direction. That
the center of mass moves along a straight line as a conse-
quence of momentum conservation has also been noted in
Ref. 4. It is not possible to express do-/dz in terms of the
conserved quantities. However, the second derivative of
o- can be related to M, P, and H by a standard procedure,'2

a relation also known as the virial theorem.7 -10 The fi-
nal result is

d2o 2 ( p 2

where R is given by

R = f(1 - D/2)IAI4 dDr.

(8)

(9)

(4) It is interesting to note that R = 0 only when D = 2.
For other values of D, R does not vanish. Since R is not
a conserved quantity, the exact solution of Eq. (8) can be
obtained only when D = 2. In the next two sections we
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discuss one-dimensional (iD) and two-dimensional (2D)
cases separately. The D case is applicable mainly to
planar waveguides, while the 2D case is applicable to any
bulk Kerr medium.

3. BEAM STEERING IN PLANAR
WAVEGUIDES

In planar waveguides the optical beam diffracts in only
one transverse direction (denoted x) since it is confined in
the y direction through the higher refractive index of the
waveguide layer compared with that of the cladding lay-
ers. The input beam profile is assumed to be Gaussian
with a spatially modulated phase /O(x), so that

A(z = 0, x) = N exp(-x 2 /2)exp[i (x)], (10)

where the initial peak amplitude N is the usual soli-
ton order6 "13 and is related to the peak intensity Io as
N = kwo(n2 Io/no) /2 in the normalized units used here.
The use of Eq. (10) in Eqs. (3)-(5) with D = 1 allows us
to calculate the three conserved quantities M, P, and H.
These constants can then be used to calculate the varia-
tion of the first two moments (x) and (x2 ).

A. Beam Deflection and Soliton Condition
The extent of beam deflection is quantified by (x), a quan-
tity that represents the deviation of the beam from the
center of the input beam located at x = 0. As was dis-
cussed in Section 2, (x) evolves with z as

d P
d (x)= M o (11)

where the momentum is denoted as a scalar quantity
because it is always directed toward the x axis in the 1D
case. Since both P and M are conserved, the trajectory
of (x) from the original beam center (located at x = 0) is a
straight line making a deflection angle Odef = PIM with
respect to the z axis. Equations (4) and (10) give

It has been shown that the Hamiltonian H is bounded in
such a way'4"5 that the right-hand side of Eq. (8) can-
not be negative in the D case because the beam width
does not decrease to zero (there is no catastrophic self-
focusing). Hence the condition for forming a spatial soli-
ton is determined when we set the right-hand side of
Eq. (8) equal to zero. The same argument was used to
find the threshold value of soliton amplitude in birefrin-
gent optical fibers, with good agreement between the ana-
lytical results and numerical simulations.'6 Since H, M,
and P are constants, there is only one unknown quan-
tity, R, on the right-hand side of Eq. (8). Following the
method used in Ref. 16, we can estimate R by using the
Schwartz inequality under the assumption that the beam
energy is confined within a spatial region of a finite width
W. The result is given by

1 M 2

2 W (13)

By using inequality (13) in Eq. (8), we can write the soli-
ton condition d2o-2/dz2 = 0 as

1

N > (X- 2W-

X[ - 2(0def) 2 + f (d) exp(-x2)dx]. (14)

Equation (12) and inequality (14) constitute the main
analytical results of this section. They can be applied
to arbitrary phase profiles f (x). Before considering the
specific case of sinusoidal phase modulation, we consider
a linear phase tilt that is equivalent to placing a prism
in the beam path. The phase profile f (x) then takes the
following simple form:

qO(x) = 2 gpx, (15)

where p is a constant related to the amount of phase tilt.
The deflection is obtained from Eq. (12) and is given by

Odef= = f d exp(-x2)dx.
M ..f, j dx

Odef = 2lrp.
(12)

Equation (12) predicts how the beam center of an input
Gaussian beam is deflected as a result of spatial modu-
lation of the phase. A similar result can be obtained for
other intensity profiles. Since our analysis relies on the
conserved quantities (M, P, and H), which are obtained by
integrating over the beam profile [Eqs. (3)-(5)], the exact
beam shape is not important, and the results obtained
for a Gaussian beam apply qualitatively for other beam
profiles as well.

Practical applications of beam steering require that
phase modulation causes the beam to change only its di-
rection of propagation (or at least causes most of the beam
power to be switched to that direction) without a change
in the beam width and the beam power. The beam width
will not increase substantially only if the input beam
propagates as a spatial soliton after the phase modula-
tion. By using Eq. (8), we can find the condition under
which the spatial soliton can tolerate the perturbation.
If the right side of Eq. (8) is less than or equal to zero,
the rms beam width s can only decrease with propagation.

(16)

It is straightforward to show that a linear phase tilt has
no effect on soliton propagation except a change in the
propagation direction of the soliton. In fact, Li et al.

2

used an intense pump beam to generate a temporal prism
and to bend another beam. Although it is conceptually
simple to use a linear phase tilt, it may not be easy to
implement one in practice.

B. Analytical Results for Sinusoidal Phase Modulation
The interesting case from the standpoint of beam steer-
ing is that of periodic phase modulation, because such a
modulation can be easily applied in practice by use of a
phase grating.6 At the same time sinusoidal modulation
permits closed-form evaluation of the integrals appear-
ing in Eq. (12) and inequality (14), resulting in simple ex-
pressions for the steering angle and the soliton condition.
The functional form of the phase is given by

O(x) - 00 sin(27ppx + 3), (17)

where 00 is the amplitude of the modulation, p is the
spatial modulation frequency, and 8 is a constant phase
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shift. By substituting Eq. (17) into Eq. (10) and using
a standard Bessel-function expansion of the phase term
exp[ib(x)], one can see that the phase modulation breaks
an input beam into multiple subbeams propagating at
different angles17 (Raman-Nath scattering):

A(z = 0, x) = N exp(-X 2 /2) E Jm(¢bO)
m=-x

X exp[im(27rpx + 8)]. (18)

The initial amplitude of various subbeams is determined
through the modulation amplitude ko, while the steering
angles are determined by the modulation frequency p in
the linear regime. To understand the nonlinear propaga-
tion of multiple interacting beams in a Kerr medium, it is
useful to look at its analogy in the time domain provided,
for example, by the propagation of solitons in birefringent
optical fibers.'6 Just as the Kerr nonlinearity can negate
the modal dispersion between the fast and the slow modes
and fuse two subpulses propagating along the fast and the
slow axes of a birefringent fiber to form a single solitary
wave (so-called soliton trapping), the same nonlinearity
can also negate the spatial dispersion (or diffraction) be-
tween several subbeams. The physical meaning of this
analogy is that it is possible to divert power from var-
ious subbeams and form a single spatial soliton. From
the case of linear phase tilt, it is easy to see that each
subbeam propagates at an angle equal to 2-wmp.

We now proceed to calculate the deflection angle of the
beam center. By using Eqs. (12) and (17), we obtain a
simple analytical result

Odef = 2 rpoo cos 8 exp(-ir 2 p2 ). (19)

An important conclusion from Eq. (19) is that the deflec-
tion angle is largest for an optimum value opt of the
spatial modulation frequency. This feature is quite un-
derstandable physically. If the modulation frequency
is too high, it will tend to destroy the soliton. On
the other hand, beam deflection will be small for small
modulation frequencies, since the phase variation across
the beam is then relatively flat. This optimum value
of p is obtained by maximizing def and is given by
Popt = 2/27 = 0.225. It should be noted that optimal
value of p is a consequence of sinusoidal phase modu-
lation that requires a trade-off between two conditions:
(1) the maximum of the phase slope is at the center of the
incident beam, which demands high values of the spatial
frequency, and (ii) the sinusoidal function is still close to
the linear function within the beam size, which demands
low values of the spatial frequency p.

The soliton condition is obtained by using relation (14)
and becomes

N 2 > {1 + 4 2p2,o 2[1 + cos(28)exp(-4V 2 p2 )

- 2 cos2 8 exp(-2v 2p 2 )]}, (20)

where W >> 1 was assumed. This condition states that
the deflected beam can form a spatial soliton if N exceeds
a critical value determined by various modulation param-
eters. Equation (20) can be simplified for 2rp << 1 and
becomes

N2 > 1 [1 + 161 4p4 ,o 2(1 - cos2 8)].
vF2

(21)

Relations (19) and (21) indicate that it is always best to
choose 8 = 0 or i, since such values of 8 increase the de-
flection angle and decrease the input power required for
forming a spatial soliton. This is understandable physi-
cally, since = 0 or = ir means that the beam cen-
ter experiences a linear phase tilt when p is small. As
was mentioned above, a linear phase tilt causes the beam
to change direction without affecting the soliton mode of
propagation. Equation (19) and inequality (21) also sug-
gest that the larger modulation depths 0o are better for
beam steering. However, this is not the case, as is ex-
plained in Ref. 6. As is seen from Eq. (18), the amount
of power initially present in a subbeam depends criti-
cally on the modulation amplitude 00 through the fac-
tor Jn(ko). The ideal choice of modulation amplitude is
therefore ko = 2.405, the first zero of Jo, since in that
case phase modulation leaves no power in the central,
undeflected portion of the beam. For 8 = 0 (or vr) and
Popt = V,/2vr = 0.225, inequality (20) reduces to N 2 >
(1 + 0.8S0o2)/,[2). By using Oo = 2.405, one finds that a
spatial soliton with maximum deflection can be formed
when N exceeds 2.

C. Numerical Simulations
To verify the extent to which the analytical results are
applicable in practice, we solve Eq. (1) numerically with
the well-known split-step method.'3 Figure 1 shows the
propagation of an input Gaussian beam for six values of
the spatial frequencies in the range p equal to 0.1-0.3
by choosing oo = 2.405, 8 = 0, and N = 1 in Eq. (10).
The straight lines in Figs. 1(a)-1(f) show the trajectory
of the beam center (x) as predicted by Eq. (11). As pre-
dicted by Eq. (19), the deflection angle is largest when
p = V2/27r = 0.225, as shown in Fig. 1(c). The results of
the numerical simulation agree quite well with the ana-
lytical predictions. When the spatial frequency is small
(p < 0.2), the phase perturbation does not affect the for-
mation of the spatial soliton other than changing its di-
rection of propagation as shown in Figs. 1(a) and 1(b).
The absence of other subbeams indicates that energy from
these subbeams has been channeled into the main sub-
beam as a result of the spatial analog of soliton trapping.
When p becomes larger than 0.2, a small amount of en-
ergy begins to show up in the subbeams, which means
that the main subbeam intensity is not large enough to
hold all the subbeams together, as the case in Figs. 1(a)
and 1(b). At the same time the main beam is no longer
a spatial soliton, since the beam width increases as the
beam propagates along the Kerr medium. This broaden-
ing can be seen from Figs. 1(c)-1(f).

The validity of Eq. (19) for the deflection angle over
a wide range of values of the parameter p is evident
in Fig. 2, where the predicted dependence of 6

def on the
modulation frequencyp is compared with numerical simu-
lations. The predicted values of Odef are plotted as a con-
tinuous curve, while the results of computer simulations
are plotted as squares. The theory agrees exactly with
the computer simulations. To make the main subbeam
propagate as a spatial soliton for p > 0.2, more power
is needed. The extra power needed to compensate for
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Fig. 1. Propagation of beam intensity for various spatial modulation frequencies. (a) p = 0.1, (b) p = 0.15, (c) p = 0.20, (d)
P = Popt = 0.225, (e) p = 0.25, (f) p = 0.30. The other parameters are 00 = 2.405, 8 = 0, and N = 1.

the phase modulation can be calculated from inequality
(20). For example, for a spatial soliton to be formed when
p = 0.225, the initial amplitude N should be increased
from 1 to 1.63. Figures 3(a) and 3(b) compare the beam
propagation when N = 1 and N = 1.63. Clearly the de-
flected beam propagates as a fundamental soliton when
the input peak amplitude is increased from 1 to 1.63.
Therefore Eq. (19) and inequality (20) are quite accurate
in predicting the optimal choice of input beam parameters
when spatial phase modulation is used for beam steering.

4. BULK KERR MEDIA

An important difference between 1D and 2D beam steer-
ing is that the optical beam can collapse catastrophi-
cally in 2D, a feature that is well known in the theory
of self-focusing. 7 '10 However, catastrophic self-focusing

or beam collapse can be easily avoided in practice by
the choice of a medium length shorter than the critical
self-focusing distance. Thus with proper choice of the
medium length the beam-steering technique would work
well even in a bulk Kerr medium. Although there are
no stable soliton solutions of the NLSE in the 2D case,
the self-trapping condition is analogous to the iD case.
Mathematically, the 2D problem is easier to solve than
the iD case, since the unknown term R in Eq. (8) is ex-
actly zero, as can be seen by setting D = 2 in Eq. (9).
Therefore Eq. (8) can be solved exactly. As an illustra-
tion, consider the case of periodic phase modulation in
both transverse coordinates. The spatially modulated in-
put amplitude is then given by

A(z = 0, x, y) = N exp[-(x 2 + y2 )/2]

X exp[ik, sin(27rpix + 8,) + iO2 sin(2lrp2y + 82)], (22)
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Fig. 2. Dependence of deflection angle on modulation frequency
p. The solid curve and the data points (squares) are obtained
from the analytical theory and the computer simulations, respec-
tively.
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where pi and P2 are spatial frequencies in the two trans-
verse directions. By following a procedure similar to that
used in the D case, we find that the deflection angles in
the two directions are given by

Oi = 2irpi cos(3i)exp(-v 2p, 2), i=x,y. (23)

From Eq. (23) the optimum modulation frequency for
maximum beam deflection in either transverse direction
is just pi = \F/2v = 0.225. This decoupling of the x and
the y directions is due to the specific form of the input
field. As is seen from Eq. (22), the input field itself is
separable in x and y. The condition for self-trapping of
the optical beam is similar to inequality (20) and can be
written as

2
N2 = 2 + E (2irpi)2[1 + cos(26i)exp(-47r2 p2 )

- 2 cos2 8i exp(-27 2 p, 2 )], (24)

where we used the fact that M = ITN2 . It is well known
that M = 2 is the critical-power self-trapping of an un-
modulated beam in the 2D case.7 9 Equation (8) reduces
to N 2 = 2 and M = 2ir whenpl andp2 are set to zero. It
is important to note that Eq. (24) represents an exact solu-
tion of Eq. (8) that we obtained by setting the right-hand
side of Eq. (24) equal to zero (for the case of self-trapping).
This is quite different from the condition [inequality (20)]
that provides only an approximate lower bound. The dif-
ference is due to the vanishing of the quantity R, defined
by Eq. (9), in the 2D case. In practice the power required
for self-trapping need not be exact as given by Eq. (24);
in other words, it can be larger than the value given by

0.5 1.0
x 101

0.5 1.0
x 101

(b)
Fig. 3. Effect of input power on beam steering. (a) N = 1; the
soliton is destroyed by spatial phase modulation. (b) N = 1.61;
the deflected beam propagates as a fundamental spatial soliton.

Fig. 4. Simulated contour plots of beam intensity at a distance
z = 1.5 in bulk Kerr media for nine different values of the
modulation parameters. The center spot corresponds to the
undeflected output beam in the absence of any phase modulation.
The four spots at the corners are the deflected beams when
P = P2 = 0.225 and 8 and 2 are set to 0 orp. The other four
spots along the sides are the deflected beams when the phase
is modulated along only one transverse dimension. The other
parameters are 01 = 02 = 2.405 and N = X2-.
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are obtained from
lations, respective]

Fig. 6. Deflected
is changed from
P2 = 0, 02 = 0, 0q

....... ......... optimum value), depending on whether the phase is
modulated along x, y, or both axes.

To see the beam deflection in the transverse plane
(xy plane), we plot the input beam spot (the center one)
and the deflected beam spots in Fig. 4. All the deflected
beams start from the same input position (the center in
Fig. 4). Note that the deflected beams are overplotted
in Fig. 4; in fact they are the results of eight individ-
ual simulations, corresponding to eight different spatial

o modulations. The four spots at the corners are the de-
__ _ flected beams when p' = P2 = 0.225. One can control

their positions by changing the value of 81 or 2. The
other four spots along the sides are the deflected beams

0.1 0.2 0.3 0.4 0.5 when phase is modulated along only one transverse di-

p mension. The propagation distance is the same as that

Ice of deflection angle on modulation frequency of Fig. 1 (z = 1.5). The four central spots along the side
The solid curve and the data points (squares) lines are brighter than the four at the corners because the
the analytical theory and the computer simu- perturbation is weaker when phase is modulated along
ly. only one transverse direction. The main subbeam car-

ries less energy if the perturbation is stronger, since more
energy is diverted to other subbeams. The spot sizes of
the deflected beams are in fact smaller than that of the
input beam. This is not caused by self-focusing, since the
self-focusing distance is much longer that 1.5. The focus-
ing effect is caused by phase modulation and is similar to
that seen in Fig. 1 in the D case. After some energy
is diverted into multiple subbeams, the main subbeam is
compressed to conserve the total momentum.

To test the accuracy of Eq. (23), we plot the deflec-
tion angle obtained numerically as a function of the
modulation frequency pi in Fig. 5. It is obvious that an
optimum frequency exists and is 0.225, as predicted
analytically. Similar to the D case shown in Fig. 2,
Fig. 5 also shows excellent agreement between the the-
oretical predictions and computer simulations. Figure 6
shows how the beam is deflected when the modulation fre-
quency Pi is changed from 0.025 to 0.5. Since the spa-
tial modulation is applied only to the x axis, the beam
spots are deflected along the x axis. As the modulation
frequency p increases, the beam is reflected further to
the right. When pi is small, the beam width is almost a
constant. When p is larger than 0.2, the beam becomes

beam when the modulation frequency P1 broadened, and some energy goes to the other direction.
0.025 to 0.5. The other parameters are When p approaches 0.5, the subbeams become as strong
= 2.405, 81 = 0, and 82 = 0. as the main beam.

Eq. (24) as long as the medium is much shorter than the
self-focusing distance.

To study the usefulness of beam steering in bulk Kerr
media, we have performed a numerical simulation using
a computational grid of size 128 X 128 to represent the
input Gaussian beam in the two transverse dimensions.
The calculations were performed on a Cray supercom-
puter because of the three-dimensional nature of the
problem. Figure 4 shows the intensity contour plots for
nine choices of the modulation parameters obtained with
S1 = '02 = 2.405 and N = X2 (corresponding to M = 2v).
The nine cases correspond to various combinations of the
phases ( and 82) and spatial frequencies (pl and P2)-
In particular, 81 = 0 or S1 = p, depending on whether the
beam deflects to the right or the left; 62 = 0 or 8 =p,
depending on whether the beam deflects upward or down-
ward; and pi and P2 take values of 0 or 0.225 (the

5. CONCLUSIONS

The technique of optical beam steering by spatial phase
modulation and its optimization is discussed with an an-
alytical approach based on the conservation laws asso-
ciated with the NLSE. We use the moment method to
find the first two moments ((x) and (x2) in the 1D case),
which govern the deflection of the beam center and the
rms beam width, respectively. Even though our theory
is valid for an arbitrary form of spatial phase modula-
tion, we have considered mainly the case of sinusoidal
phase modulation. It is found that there is an optimal
spatial frequency for the sinusoidal phase modulation for
which the deflection is largest. In normalized units this
optimum value is p = 0.225. Since the transverse co-
ordinates in Eq. (1) are scaled with the beam width wo,
the optimum spatial frequency is 0.225/wo irrespective of
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other beam and medium parameters. For instance, the
optimum deflection angle Odef = 3.58 mrad when the laser
wavelength I = 1 am and wo = 10 ,um. In spite of the
relative small value of the deflection angle, the steering
resolution can be quite high. The reason is that diffrac-
tive effects are nearly canceled by the soliton nature of
the steered beam. The spatial resolution increases lin-
early as the increasing length of the nonlinear medium.
It is interesting to note that most of the beam power is
confined to a single modulation cycle under optimum op-
erating conditions. The moment method also allows us
to obtain the input beam power required for steering the
beam as a spatial soliton (D case) or as a self-trapped
beam (2D case). Surprisingly, whereas an exact expres-
sion can be obtained in the 2D case (bulk Kerr media),
only an approximate lower bound is found in the D case
(planar Kerr waveguides).

To verify the analytical predictions of the moment
method, we have performed numerical simulations in
both waveguide and bulk Kerr media by considering the
iD and 2D cases separately. Good agreement has been
found between the analytical theory and computer simu-
lations in both cases. An advantage of our analytical re-
sults is that they are exact in the 2D case. Usually it is
computationally expensive to simulate beam propagation
in bulk nonlinear media, making it difficult to explore
the multidimensional parameter space. Our analytical
results should prove useful in the design of optical sys-
tems that exploit nonlinear optics for beam steering and
make use of a bulk Kerr medium for this purpose.
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