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Abstract

Optical pulse propagation through a fiber is governed by the nonlinear Schrödinger equation. In

most cases when the system is not dissipative, using the variational method can help reduce this

partial differential equation that governs the pulse propagation into many ordinary differential

equations. This reduction makes it easier to study the changes in pulse parameters and hence

easier to study the pulse propagation through the fiber. However for dissipative system this method

cannot be used. In a communication systems with high bit rates ( > 40 Gb/s) when ultrashort soli-

tons are used as optical bits of information, the communication system becomes dissipative due to

intra pulse Raman scattering in the fiber. In such a case, the system becomes non Hamiltonian and

variational method cannot be used for such systems. We show that the moment method remains

valid for both dissipative and non-dissipative systems and hence can be used to study the pulse

propagation in both high and low bit rate systems. In particular we apply this method to study the

effect of amplifier noise on the pulse parameters and analytically calculate the timing jitter due to

the amplifiers that are used periodically to compensate the fiber losses.

Amplifiers used in soliton communications systems restore the soliton energy, but also add

amplified spontaneous emission noise. This noise affects the soliton evolution along the fiber

link limiting the total transmission distance by reducing the signal to noise ratio of the system.

The amplifier induced noise also fluctuate the amplitude, frequency and position of the pulse thus

causing timing jitter in the system that lead to increased bit error. We use the moment method to

calculate the timing jitter at the end of the system and show using this method that several different

techniques can help reduce the timing jitter at the end of the system.

For systems using bit rates < 40 Gb/s the timing jitter is mainly due to Gordon–Haus effect

which has its origin in amplified spontaneous emission-induced frequency fluctuations. By apply-
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ABSTRACT vi

ing the moment method to such systems we show that dispersion compensation techniques can

reduce timing jitter. However, at higher bit rates for which the pulse width becomes shorter than

5 ps, the Raman jitter induced by intra pulse Raman scattering in the fiber is likely to become the

most limiting factor. For such a system we show that using parametric amplifiers instead of fiber

amplifiers can reduce timing jitter. We apply the moment method not only to soliton systems but

also to non-soliton systems and show that these techniques work for both the systems.
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Chapter 1

Introduction

Optical communications systems use near-infrared lightwave pulses in optical fibers as carrier

of information from one place to another. The basic components of an optical communications

systems are an optical transmitter which converts electrical signal into optical signal and launches

it into the optical fiber, an optical fiber cable and a receiver that converts the optical signal received

into an electrical signal [1]. In order to compensate for fiber losses for long distance transmission,

optical amplifiers are used periodically after every 80–100 km along the fiber link. These amplifiers

compensate for fiber losses by amplifying the signal, thus enabling the signal to be transmitted

over long distances. The system performance is characterized by bit-error rate (BER) which is

the average probability of incorrect bit identification. In order to have a low BER, which means

a better system performance, it is essential that the optical signals are carried over long distances

with minimum distortions.

1.1 Historic Overview of Optical communications Systems

The idea of optical waves for communications was faced with two main problems in the early

1960s. The first problem was the availability of a suitable source of such waves. Secondly, the

need for a suitable medium of transmission delayed the progress. In 1970 the availability of GaAs

semiconductor lasers and low loss silica fibers that can guide the optical waves over long distances

solved both the problems. An optical communication system based on a single mode fiber trans-

mitted 2 Gb/s over 40 km in 1981 [2]. Since then, the communication technology has shown rapid

1
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progress. In just 20 years the bit rates have increased to 40 Gb/s and more. Moreover the use of

wavelength-division-multiplexing (WDM) technique has revolutionized and increased the capacity

of modern optical communication systems to beyond 1 Tb/s.

1.2 Group Velocity Dispersion

In a single-mode fiber, the group velocity associated with the fundamental mode is frequency

dependent. Hence, different spectral components of an optical pulse travel at slightly different

group velocities, a phenomenon known as the group-velocity dispersion (GVD). When the optical

pulse is transmitted through a single mode fiber, different spectral components of the pulse disperse

during propagation and do not arrive simultaneously at the output, causing the pulse to broaden.

The extent of this broadening is governed by the GVD coefficient, β2, related to the dispersion

parameter of the fiber D as D =�(2πc=λ2
)β2, where c is the speed of light and λ is the wavelength

of the lightwave. The time delay ∆T due to GVD should be less than the bit slot TB = 1=B, where

B is the bit rate, which means B∆T < 1. For a single-mode fiber of length L, the time delay is

given by ∆T = LD∆λ [1], where ∆λ is the range of wavelengths emitted by the optical source.

As a result, BLjDj∆λ < 1 gives the limitation on the bit rate due to GVD in the fiber. Also while

using amplifiers at regular intervals, GVD can also cause increased timing jitter in the system, thus

leading to system degradation. To increase the bit rate, the pulse spread due to GVD should be

kept small. The pulse spread due to GVD can be avoided when the fiber dispersion is close to zero.

However, if the dispersion is close to zero, four-wave mixing (FWM) interactions can cause severe

distortion to the signal when amplifiers are used.

1.3 Fiber Nonlinearity

The refractive index of silica is power dependent, and the nonlinear contribution become important

at high power levels. The effect of such nonlinear refraction is to produce a nonlinear phase shift

that is dependent on the input power of the optical pulse. The time dependence of the input power

of the pulse causes the nonlinear phase shift to vary with time, resulting in frequency chirping,

which means that the carrier frequency of the input pulse changes with time. The time dependence
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of the carrier frequency of the pulse in turn affects the pulse shape through GVD. Hence the power

dependence of the refractive index can be a limiting factor for the optical communication systems.

Since the nonlinear phase shift responsible for the effects is induced by the optical field itself,

the nonlinear phenomenon responsible for this limitation is referred to as self-phase modulation

(SPM). SPM can lead to considerable spectral broadening of pulses propagating inside an optical

fiber.

1.4 Dispersion-Managed Solitons

In 1972, Zakharov and Shabat [3] and later Hasegawa and Tappert [4] showed that a wave envelope

propagating in an ideal optical fiber with GVD and nonlinearity has a solitary wave solution, called

the ‘soliton’ when dispersion in the fiber is anomalous (β2 < 0). An optical soliton is produced by

the balance between nonlinear SPM effect and the GVD effect and thus suffers no distortion due

to GVD or SPM and maintains its shape along the fiber. However in the presence of fiber losses,

the pulse starts losing energy and the pulse width increases. In such a case one needs to use optical

amplifiers to reshape the pulse and restore its energy. An important issue for such periodically

amplified systems is the amplifier spacing LA between the amplifiers. In order to keep the cost

minimum, the amplifier spacing should be as large as possible. Typically for a non-soliton system

it is 80-100 km. In the case of soliton system the spacing should be smaller than the dispersion

length LD = T 2
0 =β2 where T0 is the pulse width. This is because, when the amplifier amplifies the

soliton energy to the input level, the soliton is perturbed and adjusts its width in the fiber section

following the amplifier by shedding a part of its energy as dispersive waves.

In order to reduce the dispersive waves, one has to reduce the amplifier spacing so that the

soliton is not perturbed much. For systems that use bit rates more than 10 Gb/s, it becomes dif-

ficult to realize the condition LA << LD in practice. The solution to this problem is dispersion-

management. One such dispersion management scheme that helps relax this condition is achieved

by using dispersion-decreasing fibers (DDFs) [5]. DDFs are designed such that the GVD decreases

along the fiber and counteracts the decreased nonlinearity experienced by the soliton affected by

fiber losses. This can solve the problem of achieving the amplifier spacing condition. But the

average GVD of the entire link is often relatively large. For reducing timing jitter, a low average



CHAPTER 1. INTRODUCTION 4

dispersion is desirable. Dispersion maps that consist of alternating GVD fibers can help reduce

the average GVD of the entire fiber link while keeping the GVD in each section large to avoid

the FWM effects. This approach can also help in achieving an amplifier spacing of 80 to 100 km.

In such a system the pulse width and shape of optical pulses evolve periodically. The pulse thus

gets back its original shape and width after each map period and is called the dispersion-managed

soliton (DMS).

1.5 Goal of the Thesis

Optical amplifiers are used to solve the problem of fiber losses, and GVD can be reduced on aver-

age by using dispersion management. However another factor that can limit the communications

system is the SPM phenomenon. The effects of SPM cannot be treated alone as the GVD and the

SPM effects act on the optical pulse simultaneously. In order to give a mathematical description

of both the effects, one needs to use the nonlinear Schrödinger (NLS) equation which governs

the propagation of optical pulses through a fiber in the presence of fiber losses, dispersion and

nonlinearity. The NLS equation is a nonlinear partial differential equation. In the case of constant

dispersion fibers, Zakharov and Shabat succeeded in solving the NLS equation by using the inverse

scattering method [6] and demonstrated that the solution to the equation is a solitary wave, called

soliton, when the dispersion is anomalous [3].

When the dispersion changes sign periodically like in the dispersion management case, the NLS

equation has to be solved numerically. The variational approach can be used to give approximate

analytical results that agree well with numerical simulations [7]– [10]. The variational approach is

based on the observation that in the absence of nonlinearity in the fiber, a chirped Gaussian pulse

maintains its shape during propagation although its amplitude, width and chirp changes. In the

case of dispersion-managed soliton, the nonlinear effects are weak locally in each fiber section

compared to the dispersive effects. Hence a Gaussian shaped pulse launched into such a fiber will

maintain its shape while its amplitude, width, chirp and the phase all vary along the fiber. For such

a system, variations in the pulse parameters can be studied using the variational approach, thus en-

abling a better system design. With all the improvements provided by the dispersion-management

technique, the bit rates have now increased to 40 Gb/s or more, leading to the use of ultrashort
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solitons. For such a system, higher-order dispersion effects and intrapulse Raman scattering (IRS)

cannot be neglected. Even though dispersion effects can be handled using a variational approach,

this method cannot be used to account for intrapulse Raman scattering because the Lagrangian

density needed for it does not exist due to the dissipative nature of the Raman effect. Thus the

variational approach fails if the system becomes non-Hamiltonian.

It becomes neccessary to use a different method that will work for both dissipative and non

dissipative systems. The moment method first introduced by Vlasov [11] can be used for this

purpose. The goal of this thesis is to use the moment method for studying dispersion-managed

lightwave systems. We use this method in particular to study the effects of amplifier noise in the

system, to calculate the timing jitter induced by the amplifier noise at the end of the system, and to

study the extent of system degradation caused by the timing jitter. We apply this method to both

soliton and non-soliton systems. We also describe the techniques that can help reduce timing jitter,

and using the moment method we show that these techniques are effective for both soliton and

non-soliton systems.

1.6 Outline of the Thesis

Chapter 2 gives an introduction of the basic mathematical description of light propagation in optical

fibers. It shows how starting from Maxwell’s equations, the nonlinear Schrödinger (NLS) equation

that governs the propagation of optical pulses through an optical fiber can be derived. The later part

of the chapter gives the solution of the NLS equation and describes various numerical techniques

that can be used to solve this equation.

Chapter 3 describes the variational approach and its application to a non-dissipative system (op-

erating at a bit rate < 40 Gb/s). For two different pulse shapes we derive the variational equations

that describe the evolution of the pulse parameters along the fiber. The later part of the chapter

provides a detailed description of intrapulse Raman scattering (IRS) and shows why a variational

approach cannot be used to describe this effect.

Chapter 4 describes the moment method and shows how the moment method can be used to

study the pulse evolution along the fiber in the presence of IRS. The results shown are general

and can be used for any given pulse shape. The application of this method for two different pulse
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shapes is discussed in the final part of this chapter.

Chapter 5 gives details on amplifier noise and shows the results obtained using the moment

method to calculate the bit error rate (BER) of a system using amplifiers at regular intervals. The

BER of the system is related to the the signal to noise ratio (SNR) of the system and hence describes

the system performance.

Chapter 6 gives the analytical results obtained using the moment method to calculate the

Gordon-Haus timing jitter in both soliton and non soliton systems. In the later part of this chapter

we consider the Gordon-Haus timing jitter in systems when two or more amplifiers are used within

one map period.

Chapter 7 considers the effects of IRS and third order dispersion on timing jitter. Using the

moment method we calculate the total timing jitter including Raman jitter and Gordon-Haus jitter

for both soliton and nonsoliton systems. We show that timing jitter in this case is mainly due to

Raman jitter and it limits the system to lengths below 500 km. We also include the numerical

simulations conducted to verify the results obtained by the moment method and show that they

agree very well.

Chapter 8 discusses various techniques that can be used to reduce timing jitter in a system.

First we consider dispersion compensation and show using the moment method that this technique

works for soliton and non-soliton systems and we also show that there is an optimum compensation

for which the system works better. Secondly, we consider using parametric amplifiers instead of

erbium doped fiber amplifiers (EDFAs). In this case we show that both Gordon-Haus jitter and

Raman jitter are reduced for both soliton and nonsoliton systems. Finally we show using numerical

simulations that by replacing EDFAs with parametric amplifiers indeed reduces both Raman and

Gordon-Haus timing jitters. The results obtained by numerical simulation agrees well with the

results obtained using the moment method.

Chapter 9 summarizes the main results of this thesis and should be useful for a quick review of

the results.



Chapter 2

Nonlinear Schrödinger Equation

Optical communication systems use the phenomenon of total internal reflection for guiding optical

pulses in optical fibers. The propagation of light through such a dielectric waveguide can be de-

scribed using Maxwell’s equations for electromagnetic waves. The propagation of electromagnetic

fields in any medium whose electric and magnetic field vectors are given by E and H and their

corresponding flux densities are given by D and B , respectively, is governed by the following four

Maxwell’s equations:

∇ �E = �
∂B
∂t

; (2.1)

∇ �H = J +
∂D
∂t

; (2.2)

∇ �D = ρ f ; (2.3)

∇ �B = 0: (2.4)

where the volume density for free current, J and the volume density for free charge ρ f represent

the sources for the electromagnetic field. The flux densities are related to the field vectors by

D = ε0E +P ; (2.5)

B = µ0H +M ; (2.6)

where ε0 is the vacuum permittivity, µ0 is the vacuum permeability, P is the induced electric

polarization vector and M is the induced magnetic polarization vector. Once the total electric

and magnetic response of the medium is known, all electromagnetic phenomena can be explained

7
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using Maxwell’s equations (2.1)–(2.4) together with the constitutive relations (2.5) and (2.6). Since

fibers are source free and nonmagnetic, ρ f = 0, J = 0 and M = 0. Hence Eqs. (2.1)–(2.6) reduces

to

∇ �E = �
∂B
∂t

; (2.7)

∇ �H =
∂D
∂t

; (2.8)

∇ �D = 0; (2.9)

∇ �B = 0; (2.10)

D = ε0E +P ; (2.11)

B = µ0H : (2.12)

Taking the curl of Eq. (2.7) and using Eq. (2.12) we get

∇ � ∇ �E =�µ0
∂
∂t
(∇ �H ): (2.13)

Using Eqs. (2.8) and (2.11) in Eq. (2.13) we find

∇ � ∇ �E =�
1
c2

∂2E
∂t2 �µ0

∂2P
∂t2 ; (2.14)

where c is the speed of light in vacuum and is given by 1=c2
= µ0ε0. Using ∇ � ∇ �E = ∇ (∇ �

E)� ∇ 2E and ∇ �D = ε∇ �E = 0, we can write Eq. (2.14) as

∇ 2E �
1
c2

∂2E
∂t2 = µ0

∂2P
∂t2 ; (2.15)

The induced polarization P (r; t) can be written as

P (r; t) = PL(r; t)+PNL(r; t) (2.16)

where PL is the linear part and is related to the electric field E as

PL(r; t) = ε0

Z ∞

�∞
χ(1)(t� t

0

)E(r; t)dt; (2.17)

and PNL is the nonlinear part and is related to the electric field E as

PNL(r; t) = ε0

Z Z Z ∞

�∞
χ(3)(t� t1; t� t2; t� t3)

...�E(r; t1)E(r; t2)E(r; t3)dt1dt2dt3; (2.18)
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where χ(1) and χ(3) are the first and third order susceptibilities. The second order susceptibility is

not considered because it vanishes due the molecular symmetry of silica glass. Hence Eq. (2.15)

becomes

∇ 2E �
1
c2

∂2E
∂t2 = µ0

∂2PL

∂t2 +µ0
∂2PNL

∂t2 : (2.19)

In order solve Eq. (2.19) first we assume that the nonlinear induced polarization PNL is a small

perturbation to PL, secondly, the optical field maintains its polarization along the fiber length and

finally the optical field is quasi-monochromatic, i.e., the pulse spectrum, centered at ω0, has a

spectral width ∆ω such that ∆ω=ω0 << 1. Using the slowly varying envelope approximation, the

electric field can be written as

E =
1
2
bx[E(r; t)exp(�iω0t)+ c:c]; (2.20)

where bx is the polarization unit vector, and E(r; t) is a slowly varying function of time. The

polarization PL and PNL can also be expressed similarly as

PL =
1
2
bx[PL(r; t)exp(�iω0t)+ c:c]; (2.21)

PNL =
1
2
bx[PNL(r; t)exp(�iω0t)+ c:c]; (2.22)

Substituting Eqs. (2.20) and (2.21) into Eq. (2.17) we can find that the amplitude of the linear part

of induced polarization given by

PL(r; t) = ε0

Z ∞

�∞
χ(1)xx (t� t

0

)E(r; t
0

)exp[�iω0(t� t
0

)]dt
0

;

=
ε0

2π

Z ∞

�∞
χ̃(1)xx (ω)Ẽ(r;ω�ω0)exp[�i(ω�ω0)t]dω; (2.23)

where Ẽ(r;ω) is the Fourier transform of E(r; t) and is defined as

Ẽ(r;ω) =

Z ∞

�∞
E(r; t)exp[iωt]dt (2.24)

Similarly the amplitude of the nonlinear part of the induced polarization can be found from Eq. (2.18)

to be

PNL(r; t) = ε0

Z Z Z ∞

�∞
χ(3)(t� t1; t� t2; t� t3)

...�E(r; t1)E(r; t2)E(r; t3)dt1dt2dt3; (2.25)

where the
... show that the multiplication between the E and χ(3) is for the respective time co-

ordinates.
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Assuming that the nonlinear response in the fiber is instantaneous, the Eq. (2.25) can be sim-

plified by using χ(3)(t� t1; t� t2; t� t3) = χ(3)δ(t� t1)δ(t� t2)δ(t� t3) to give

PNL = ε0χ(3)
...�E(r; t)E(r; t)E(r; t): (2.26)

This assumption will not be valid when pulse width is smaller than 1 ps due to the contribution of

molecular vibrations (the Raman effect) to χ(3). This contribution and its effect will be considered

at the end of the next chapter when intrapulse Raman scattering is discussed. This condition is

valid for pulse widths > 1 ps because for silica fibers the Raman response occurs on a time scale

of 60�70 fs. Substituting Eqs. (2.20) and (2.22) into Eq. (2.26) we get two terms, one oscillating

at ω0 and another term oscillating at 3ω0. The term oscillating at 3ω0 requires phase matching and

is generally negligible in optical fibers. Hence the PNL can be written as

PNL =
3
4

ε0χ(3)xxxxE(r; t)jE(r; t)j2

= ε0εNLE(r; t); (2.27)

where εNL =(3=4)χ(3)xxxxjE(r; t)j2. Due to the presence of the intensity in the term PNL (εNL ∝ jE(r; t)j2),

Eq. (2.19) is nonlinear and is difficult to solve. Hence we treat εNL as a constant by treating PNL as

a perturbation. It is then easier to work in the Fourier domain in order to obtain a wave equation

for E(r; t).

Using Eqs. (2.24), (2.23) and (2.27) we can write Eqs. (2.20)–(2.22) as

E =
bx

4π

Z ∞

�∞
[Ẽ(r;ω�ω0)exp(�iωt)+ c:c]dω; (2.28)

PL =
bx

4π
ε0

Z ∞

�∞
[χ̃(1)xx (ω)Ẽ(r;ω�ω0)exp(�iωt)+ c:c]dω; (2.29)

PNL =
bx

4π
ε0εNL

Z ∞

�∞
[Ẽ(r;ω�ω0)exp(�iωt)+ c:c]dω; (2.30)

From Eq. (2.28)

∇ 2E =
bx

4π

Z ∞

�∞
[∇ 2Ẽ(r;ω�ω0)exp(�iωt)+ c:c]dω; (2.31)

∂2E
∂t2 = �

bx
4π

Z ∞

�∞
ω2

[Ẽ(r;ω�ω0)exp(�iωt)+ c:c]dω: (2.32)

Differentiating Eq. (2.29) twice w.r.t t we get

∂2PL

∂t2 =�
bx

4π
ε0

Z ∞

�∞
ω2

[χ̃(1)xx (ω)Ẽ(r;ω�ω0)exp(�iωt)+ c:c]dω: (2.33)
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Similarly from Eq. (2.30) we get

∂2PNL

∂t2 =�
bx

4π
ε0εNL

Z ∞

�∞
ω2

[Ẽ(r;ω�ω0)exp(�iωt)+ c:c]dω; (2.34)

Substituting Eqs. (2.31)–(2.34) in Eq. (2.19) we can show that E(r; t) satisfies the Helmoltz equa-

tion

∇ 2Ẽ + k2
0ε(ω)Ẽ = 0; (2.35)

where ε(ω) = 1+ χ̃(1)xx (ω)+ εNL is the dielectric constant, k0 = ω=c and the relation µ0ε0 = 1=c2

was used. The refractive index and absorption coefficient are related to the dielectric constant and

can be written in the form

ñ = n+n2jEj2 α̃ = α +α2jEj2; (2.36)

respectively. Using the relations, (ñ+ iα̃=2k0)
2
= ε(ω) = 1+ χ̃(1)xx (ω)+ εNL and εNL = (3=4)χ(3)xxxx

jE(r; t)j2 we get

ñ� α̃2
=(4k2

0)+ iñα̃=k0 = 1+ χ̃(1)xx (ω)+(3=4)χ(3)xxxxjEj2

(n+
iα
2k0

)
2
+[2nn2�

αα2

2k2
0

+ i(n2
α
k0

+n
α2

k0
)]jEj2 = 1+ χ̃(1)xx (ω)+(3=4)χ(3)xxxxjEj2 (2.37)

From Eq. (2.37) we can write

n(ω) = 1+
1
2

Re[χ̃(1)(ω)] α(ω) =
k0

n
Im[χ̃(1)(ω)]; (2.38)

n2(ω) =
3

8n
Re[χ(3)(ω)] α2(ω) =

3k0

4n
Im[χ(3)(ω)]: (2.39)

Eq. (2.35) can be solved using the method of separation of variables where we assume a solution

of the form

Ẽ(r;ω�ω0) = F(x;y)Ã(z;ω�ω0)exp(iβ0z) (2.40)

where Ã(z;ω) is a slowly varying function of z and β0 is the wave number to be determined.

Substituting this solution into Eq. (2.35) and rearranging we get the following two equation for

F(x;y) and Ã(z;ω):

∂2F
∂x2 +

∂2F
∂y2 +[ε(ω)k2

0� β̃2
]F = 0 (2.41)

2iβ0
∂Ã
∂z

+(β̃2�β2
0)Ã = 0 (2.42)
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Since Ã(z;ω) is a slowly varying function of z we have neglected the second derivative with respect

to z in the above equation.

It is easier to solve Eq. (2.41) in the cylindrical co-ordinates. So using the relations

F(x;y) = f (ρ)exp(�imφ)
∂2F
∂x2 +

∂2F
∂y2 =

∂2F
∂ρ2 +

1
ρ2

∂F
∂ρ

+
1
ρ2

∂2F
∂φ2 ;

we can write Eq. (2.41) in cylindrical co-ordinates as

d2 f
dρ2 +

1
ρ

d f
dρ

+

�
ε(ω)k2

0� β̃2�
m2

ρ2

�
f = 0: (2.43)

The dielectric constant ε(ω) can be approximated as ε(ω) = (n+∆n)2 � n2
+2n∆n in Eq. (2.43),

where ∆n = n2jEj2 + iα̃=2k0 is a small perturbation. Hence Eq. (2.43) can be written as

d2 f
dρ2 +

1
ρ

d f
dρ

+

�
n2k2

0� β̃2�
m2

ρ
+2n∆nk2

0

�
f = 0: (2.44)

This equation can be solved using perturbation method. When ∆n = 0, Eq. (2.44) reduces to the

well-known differential equations for Bessel functions. For a fiber of core radius a that has a

refractive index n = n1 but takes the value n = n
0

2 outside the core (ρ> a), the general solution for

Eq. (2.44) inside the core can be written as

f (ρ) =C1Jm(κρ)+C2Nm(κρ); (2.45)

where Jm is the Bessel function, Nm is the Neumann function, and

κ = (n2
1k2

0� β̃2
)

1=2
: (2.46)

The constants C1 and C2 can be found using the appropriate boundary conditions. Nm has a singu-

larity at ρ = 0 and hence for a physical solution C2 = 0. Thus F(ρ;φ) = Jm(κρ)exp(�imφ), for

ρ < a and in the cladding region (ρ > a), the solution F(ρ;φ) = Km(γρ)exp(�imφ) where Km is

modified Bessel function and γ= (β̃2� n
02
2 k2

0)
1=2. Using the same method, the magnetic compo-

nent H̃z can be found. The boundary condition that the tangential components of Ẽ(r; t) and H̃(r; t)

be continuous at ρ = a can be used to find β̃.

We now include the effect of ∆n in Eq. (2.44). In the first-order perturbation theory, ∆n does

not affect F(ρ;φ). However β̃ becomes

β̃
0

= β̃+∆β; (2.47)
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where

∆β=
k0

R R
ρ∆njF(ρ;φ)j2dρdφR R
ρjF(ρ;φ)j2dρdφ

: (2.48)

This completes the formal solution of Eq. (2.41) to the first-order in perturbation ∆n. Next in

order to complete the calculation of the electric field E(r; t), we need to solve Eq. (2.42) for the

slowly varying pulse envelope. Using Eq. (2.47) we can approximate β̃02�β2
0 in Eq. (2.42) by

2β0(β̃
0

�β0). Eq. (2.42) can then be written as

∂Ã
∂z

= i[β̃(ω)+∆β�β0]Ã: (2.49)

This equation shows that as the pulse propagates along the fiber each spectral component within the

pulse envelope acquires a phase shift whose magnitude is both frequency and intensity dependent.

Expanding β̃(ω) in a Fourier series about the carrier frequency ω0 we get

β̃(ω) = β0 +(ω�ω0)β1+
1
2
(ω�ω0)

2β2 +
1
6
(ω�ω0)

3β3 + � � � ; (2.50)

where

βm =

 
dmβ̃
dωm

!
ω=ω0

(m = 1;2; : : :): (2.51)

The cubic and higher order terms in the expansion in Eq. (2.50) are negligible if the spectral width

∆ω<< ω0. Substituting Eq. (2.50) in Eq. (2.49) and taking the inverse Fourier transform by using

A(z; t) =
1

2π

Z ∞

�∞
Ã(z;ω�ω0)exp[�i(ω�ω0)t]dω; (2.52)

Eq. (2.49) can be written as

∂A
∂z

=�β1
∂A
∂t
�

iβ2

2
∂2A
∂t2 + i∆βA: (2.53)

The term with ∆β includes the effect of fiber loss and nonlinearity. Using ∆n = n2jEj2+ iα̃=2k0

in Eq. (2.48) and substituting for ∆β in Eq. (2.53) we get

∂A
∂z

+β1
∂A
∂t

+
iβ2

2
∂2A
∂t2 +

α
2

A = iγjAj2A; (2.54)

where the nonlinearity parameter γ is defined as

γ=
n2ω0

cAe f f
: (2.55)
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The parameter Ae f f is known as the effective core area and is defined as

Ae f f =
(
R R

ρ∆njF(ρ;φ)j2dρdφ)2R R
ρjF(ρ;φ)j4dρdφ

: (2.56)

The parameter Ae f f depends on the fiber parameters such as the core radius and core-cladding

index difference and its evaluation requires the use of the function F(ρ;φ). Using a transformation,

t
0

= t�β1z, into Eq. (2.54) we get

∂A
∂z

+
iβ2

2
∂2A

∂t 02
+

α
2

A = iγjAj2A: (2.57)

The above equation describes the propagation of picoseconds optical pulse in single-mode fibers.

It is often referred to as the nonlinear Schrödinger equation. It includes the effects of fiber losses

through α, GVD through β2 and fiber nonlinearity through γ. The GVD parameter β2 can be

positive or negative. In the anomalous dispersion regime β2 < 0 and the fiber can support optical

solitons.

2.1 Solutions of the nonlinear Schrödinger equation

The mathematical description of solitons employs the NLS equation satisfied by the pulse envelope

A(z; t) in the presence of GVD and SPM. In order to discuss the solution to this equation in a simple

way consider that the fiber is lossless (α = 0). Hence normalizing Eq. (2.57) using

τ =
t
0

T0
; ζ =

z
LD

; U =
A
p

P0
; (2.58)

where T0 is a measure of the pulse width, P0 is the peak power of the pulse and LD = T 2
0 =β2 is the

dispersion length, it takes the form

i
∂U
∂ζ
�

s
2

∂2U

∂τ02
+N2jU j2U = 0; (2.59)

where s = sgn(β2) = +1 or �1, depending on whether β2 is positive (normal GVD) or negative

(anomalous GVD). The parameter N is then defined as

N2
= γP0LD = γP0T 2

0 =jβ2j: (2.60)

It is useful to introduce another length scale called the nonlinear length, LNL = 1=γP0. The disper-

sion length LD and the nonlinear length LNL provide the length scales over which the dispersive
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or nonlinear effects become important for pulse evolution along the fiber length L. When the fiber

length L is such that L << LNL and L << LD, neither dispersive nor nonlinear effects play a signif-

icant role during pulse propagation. When the fiber length L is such that L<< LNL and L� LD, the

pulse evolution is governed by GVD and nonlinear effects play a minor role. This can happen for

short pulses or pulses with peak power P0 << 1 W. When the fiber length L is such that L << LD

and L � LNL, the pulse evolution is governed by SPM and dispersive effects play a minor role.

This can happen for relatively wide pulses with a peak power P0 � 1 W. When the fiber length is

comparable to LD and LNL, dispersion and nonlinearity act together as the pulse propagates along

the fiber.

2.1.1 Standard Soliton pulse

The NLS equation is a nonlinear partial differential equation that cannot be solved analytically

except for some specific cases in which the inverse scattering method [3] can be used to solve the

NLS equation. Numerical approach is often employed for understanding the nonlinear effects in

optical fibers. The details of the inverse scattering method are discussed in many books devoted to

solitons [12]– [15]. The main result can be summarized as follows. When an input pulse having

an amplitude

U(0; t) = N sech(t); (2.61)

is launched into a fiber that has anomalous GVD, its shape remains unchanged during propagation

when N = 1 but follows a periodic pattern for integer values of N > 1 such that the input shape is

recovered at ζ = mπ=2, where m is an integer. An optical soliton whose pulse parameters satisfy

the condition N = 1 is called the fundamental soliton. Pulses corresponding to other integer values

of N are called higher-order solitons and the parameter N represents the order of the soliton. Only

a fundamental soliton maintains its shape during propagation inside the optical fibers.

The solution of the NLS that corresponds to the fundamental soliton can be obtained by solving

Eq. (2.59) directly, without recourse to inverse scattering method. Using the fact that N = 1 for

fundamental solitons and that in the anomalous dispersion regime β2 is negative, Eq. (2.59) can be

written as

i
∂U
∂ζ

+
1
2

∂2U

∂τ02
+ jU j2U = 0; (2.62)
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The approach consists of assuming that there exits a solution of the form

U(ζ;τ) =V (τ)exp[iφ(ζ)]; (2.63)

to Eq. (2.62), where V must be independent of ζ to represent fundamental soliton that maintains

its shape during propagation. The phase φdepends on ζ but is assumed to be independent of time.

Substituting Eq. (2.63) into Eq. (2.62) and rearranging we obtain

dφ
dζ

=
1
V

�
1
2

∂2V
∂τ2 +V 3

�
= K; (2.64)

where K is a constant. From Eq. (2.64) we can write the phase φ= Kζ. The function V (τ) is then

found to satisfy the nonlinear differential equation

d2V
dτ2 = 2V (K�V 2

): (2.65)

Multiplying Eq. (2.65) by 2(dV=dτ) and integrating over τ,

(dV=dτ)2
= 2KV 2�V 4

+C; (2.66)

where C is a constant of integration. Using the boundary condition that both V and dV=dτ should

vanish as jτj ! ∞ for pulses, C is found to be 0. The constant K is found to be 1=2 using the

condition that at the soliton peak τ = 0, V = 1 and dV=dτ = 0. Using these values for the constants

and integrating Eq. (2.66) we obtain V (τ) = sech(τ). Using this in Eq. (2.63) we can write

U(ζ;τ) = sech(τ)exp(iζ=2); (2.67)

Eq. (2.67) represents the well-known “sech” solution for the fundamental soliton. It shows that the

input pulse acquires a phase shift of ζ=2 as it propagates inside the fiber, but its amplitude remains

unchanged. In essence, the effects of fiber dispersion are exactly compensated for by the fiber

nonlinearity when the input pulse has a “sech” shape and its width and peak power are related as

given by Eq. (2.60) with N = 1. This is true only if the fiber losses are negligible. In the presence

of loss and/or amplification, the soliton may be perturbed and using the variational or perturbation

method the approximate soliton solution is given by

U(z; t) = asech

�
t�T

τ

�
exp[iφ� iΩ(t�T )� iC(t�T )

2
=2τ2

]; (2.68)

where the amplitude a, phase φ, frequency Ω, time delay T , chirp C and width τ all are functions

of z.
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2.1.2 Chirped Gaussian Pulse

When nonlinear effects play a minor role, and the pulse propagation is governed mainly by GVD,

the last term in Eq. (2.62) can be neglected. However we cannot use the dimensionless parameters

ζ and τ in Eq. (2.62) because the pulse width and the shape in general can vary along the fiber

length. Hence Eq. (2.62) is written in physical units as

i
∂U
∂z

=
β2

2
∂2U
∂t2 : (2.69)

Eq. (2.69) has the same form as a free particle equation and can be solved by using the Fourier

method. If Ũ(z;ω) is the Fourier transform of U(z; t) such that

Ũ(z;ω) =

Z ∞

�∞
U(z; t)exp[iωt]dt; (2.70)

then it satisfies an ordinary differential equation

i
∂Ũ
∂z

=�
β2

2
ω2Ũ ; (2.71)

whose solution is given by

Ũ(z;ω) = Ũ(0;ω)exp(
i
2

β2ω2z): (2.72)

Taking the inverse Fourier transform we obtain

U(z; t) =
1

2π

Z ∞

�∞
Ũ(0;ω)exp[

i
2

β2ω2z� iωt]dt; (2.73)

Eq. (2.73) shows that GVD changes the phase of each spectral component of the pulse by an

amount that depends on the frequency and the propagated distance. Even though such a phase

change does not affect the pulse spectrum, it can modify the pulse shape.

Consider that the pulse shape U(0; t) is given by a chirped Gaussian pulse of form

U(0; t) = exp

�
�
(1+ iC)

2
t2

τ2
0

�
; (2.74)

where C is the chirp parameter and τ0 is the initial pulse width. Using Eq. (2.74) in Eq. (2.70) we

get

Ũ(0;ω) =

�
2πτ20

1+ iC

�1=2

exp

�
�

ω2τ2
0

2(1+ iC)

�
: (2.75)
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Substituting Ũ(0;ω) from Eq. (2.75) in Eq. (2.73) and carrying out the integration we get

U(z; t) =
τ0

[τ2
0� iβ2z(1+ iC)]1=2

exp

�
�

(1+ iC)t2

2[τ2
0� iβ2z(1+ iC)]

�
: (2.76)

Thus a chirped Gaussian pulse maintains its shape during propagation, however its width changes

due to GVD. The width of such a pulse after propagating a distance z is related to the initial width

τ0 by

τ
τ0

=

"�
1+

Cβ2z

τ2
0

�2

+

�
β2z

τ2
0

�2
#1=2

: (2.77)

The above equation shows that the broadening depends on relative signs of the GVD parameter β2

and the chirp parameter C. When β2C> 0 the pulse broadens monotonically while when β2C< 0, it

goes through an initial narrowing stage and then increases with distance. When the pulse is initially

chirped and the condition β2C < 0 is satisfied, the dispersion induced chirp is in the opposite

direction leading to an initial pulse narrowing. The minimum pulse width occurs at

zmin =
C

1+C2 LD (2.78)

and has the value

τmin =
τ0

(1+C2)1=2
: (2.79)

Chirped Gaussian pulses are used in describing dispersion managed solitons in dispersion maps

that consist of the alternating GVD fibers [9]. The use of such maps lowers the average GVD of

the entire link while keeping the GVD of each section large enough that the FWM and TOD

effects remain negligible. In such a system, the GVD parameter takes values β2a and β2n in the

anomalous and normal sections of lengths la and ln. The map period Lm is then given by la + ln.

The properties of DM solitons will depend on several map parameters. If the map period is a

fraction of the nonlinear length, the nonlinear effects are relatively small, and the pulse evolves in

a linear fashion over one map period. On a longer length scale, solitons can still form if the SPM

effects are balanced by the average dispersion. As a result solitons can survive even though not

only peak power but also the width and shape of such solitons oscillate periodically. For such a

case the nonlinear term can no longer can be neglected. Hence the pulse propagation is governed

by

i
∂U
∂z
�

β2(z)
2

∂2U
∂t2 +γ(z)jU j2U = 0; (2.80)
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Eq. (2.80) cannot be solved easily since both β2 and γ vary with z and the nonlinear effects are

non zero. Often numerical techniques are used to solve such an equation. Numerical simulations

show that a nearly periodic solution can often be found by adjusting input pulse parameters such

as the pulse width, chirp and peak power. The pulse shape of DM soliton can then in general be

represented by a chirped Gaussian of the form

U(z; t) = aexp[iφ� iΩ(t�T )� (1+ iC)(t�T )
2
=2τ2

]: (2.81)

Several approximate analytical approaches can be used to get further physical insights. A common

approach makes use of the variational method [7]–[10]. Another approach expands the solution to

Eq. (2.80) in terms of a complete set of Hermite-Gauss functions that are solutions of the linear

problem [16]. A third approach solves an integral equation derived in the spectral domain using

perturbation theory [17]–[19]. We focus on the variational method in the next chapter.

2.2 Numerical Methods

The numerical techniques used to study pulse propagation in optical fibers can be classified into

two broad categories known as the finite difference methods and the pseudo spectral methods. One

example of the pseudo spectral methods is the split-step fourier method [20]–[22]. A numerical ap-

proach is often necessary to understand the nonlinear effects in optical fibers. Hence understanding

these numerical methods becomes essential [23].

2.2.1 Split-Step Fourier Method

The propagation equation Eq. (2.80) describes the effects of the dispersion in a linear medium and

the nonlinear effects that arise due to fiber nonlinearities. Hence rewriting Eq. (2.80) in terms of

the linear and nonlinear operators,
∂A
∂z

= (bD+ bN)A; (2.82)

where bD is the differential operator that describes the effects of dispersion and bN accounts for fiber

nonlinearity. These operators are given by

bD = �
iβ2

2
∂2

∂t2 +
β3

6
∂3

∂t3 (2.83)
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bN = iγjAj2 (2.84)

In general, dispersion and nonlinearity act together along the length of the fiber. The split-step

Fourier method obtains an approximate solution by assuming that in propagating through the op-

tical fiber over a small distance h, the dispersive and nonlinear effects can be considered to act

independently. More specifically, propagation from z to z+h is carried out in two steps. In the first

step, the nonlinearity acts alone, and bD = 0 in Eq. (2.82). In the second step, dispersion acts alone

and bN = 0 in Eq. (2.82). The effect of dispersion is then found by taking the Fourier transform of

the equation. The accuracy of the split-step Fourier method can be improved by keeping the step

size h small.

2.2.2 Finite-Difference Methods

An inherent fundamental approximation in the derivation of the NLS equation is the slowly varying

envelope approximation. In order to relax this approximation finite-difference methods are used in

place of the split-step Fourier method. Another approximation used in deriving the NLS equation

is that there is no backward propagating waves. Such problems require the simultaneous consider-

ing of both forward and backward propagating waves. Also in order to consider the birefringence

effects of the fiber one needs to consider the vector nature of the electromagnetic fields. For the

case of linear medium the algorithms that solve the Maxwell equations Eqs. (2.7)–(2.10) directly

in the time domain by using finite-difference methods have been developed for many years [24]–

[28]. However in 1992, such algorithms were extended to the case of nonlinear media [29]–[33].

In particular this method was used to study pulse propagation in optical fibers in [29]–[31]. Con-

ceptually , the main difference between the finite-difference time-domain method and split-step

Fourier method is that the former deals with all electromagnetic components. The finite-difference

time-domain method is certainly more accurate since it solves the Maxwell equations directly with

a minimum number of approximations. However it is more time consuming than the split-step

Fourier method. It may be necessary to use this method for ultrashort pulses whose width is less

than 10 fs. However in most applications of nonlinear fiber optics, pulses are much wider than 10

fs and using the split-step Fourier method provides reasonably accurate solution in such cases.
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2.3 Chapter Summary

Pulse propagation in optical fibers is governed by the NLS equation. In this chapter we have

derived the NLS equation that governs the propagation of optical pulses in optical fibers from

the Maxwell’s equations. We gave the analytical solutions to this equation for two specific cases

and discussed the properties of these solutions. We showed that standard solitons can maintain

their pulse shape and width during propagation in the optical fibers if their pulse energy is chosen

appropriately. When nonlinear effects can be neglected, we showed that the solution to the NLS

equation is given by a chirped Gaussian function. We also showed that such a solution does not

maintain its pulse width during propagation. However the evolution of their pulse width and chirp

can be found analytically. We also presented various numerical methods that can be used to study

the propagation of pulses through optical fibers.



Chapter 3

Variational Method and its limitations

As discussed in Chapter 2, pulse propagation in a nonlinear dispersive medium such as silica fibers

is governed by the NLS equation. In the case of single-mode fibers that allow the propagation of a

single electromagnetic-wave mode, the NLS equation can be written as [1]

i
∂A
∂z
�

β2

2
∂2A
∂t2 +γjAj2A =�

iα
2

A; (3.1)

where A(z; t) is the slowly varying amplitude of the pulse envelope, α accounts for fiber losses,

β2 is the GVD coefficient, and γ is the nonlinear parameter responsible for SPM. In a constant

dispersion fiber, the GVD coefficient β2;γ and α are all constant throughout the fiber. The NLS

equation can be solved in that case by the inverse scattering method if α = 0 [3] and the solution

to the NLS equation in the case of anomalous dispersion can be found to be of the form shown

in Eq. (2.67). Such a solution is called the fundamental soliton and maintains its pulse shape and

width as it propagates along the fiber. However, in the presence of fiber losses the pulse begins to

spread due to GVD.

In the absence of nonlinearity, the accumulated dispersion over the length of the fiber can be

compensated at the receiver end. This is not the case in the presence of nonlinear effects. Also

when amplifiers are used to compensate for fiber losses the GVD can lead to increased timing

jitter in the system. A simple solution is provided by dispersion-management. Dispersion maps

that consists of alternating GVD fibers can help reduce the average GVD. However β2;γ and α are

now periodic functions of z because of their different values in two or more fiber sections used to

form a dispersion map. Solving the NLS then becomes complicated. Analytical calculations for

22
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such a case is possible using a variational approach. In this approach, one assumes that the pulse

propagates with a self-similar shape. With this assumption, the optical system is described by the

averaged Lagrangian density which is the action functional. The corresponding Euler-Lagrange

equations that describe the evolution of pulse parameters can be then derived by equating the

variational derivative of the action functional to zero. The variational approach hence offers a

simple approximate analytical method of solving the NLS equation. The variational method can

be used to study a variety of problems in DM systems and the results agree reasonably well with

numerical simulations [7]– [10]. The variational method can be used for conservative systems

even when the coefficients are explicitly coordinate dependent. However, the variational approach

cannot be used for dissipative systems.

3.1 Variational analysis of pulse propagation in non-dissipative

systems

It is useful to eliminate the last term in Eq. (3.1) with the transformation

A(z; t) = B(z; t)exp

�
�

1
2

Z z

0
α(z)dz

�
: (3.2)

Eq. (3.1) then takes the form

i
∂B
∂z
�

β2

2
∂2B
∂t2 +γjBj2B = 0; (3.3)

where the power variations along the DM fiber link are included through a periodically varying

nonlinear parameter γ= γ exp[�
R z

0 α(z)dz]. In general Eq. (3.3) is solved numerically to study the

performance of DM systems. However considerable insights into the design of DM systems can

be gained using the variational method. One can posit a Lagrangian density of the form

K =
i
2

�
B�

∂B
∂z
�B

∂B�

∂z

�
+

1
2

 
β2

����∂B
∂t

����2 +γjBj4
!
: (3.4)

and using the Euler-Lagrange equations

∂
∂t

�
∂K
∂qt

�
+

∂
∂z

�
∂K
∂qz

�
�

∂K
∂q

= 0; (3.5)
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where the generalized coordinate q is B�, qt is ∂B�

∂t and qz is ∂B�

∂z , one can reproduce Eq. (3.3).

The averaged Lagrangian density L is defined as L =
R ∞
�∞ K(t;q(z))dt. Then the reduced Euler-

lagrangian density can be written as

d
dz

�
∂L
∂qz

�
�

∂L
∂q

= 0; (3.6)

where q are the pulse parameters that depend on z. For further calculations one needs to use a pulse

shape.

3.1.1 Fundamental Soliton

A well-known solution to the NLS equation in a lossless, anomalous-dispersion, fiber is the fun-

damental soliton. But in the presence of loss and/or amplification, the fundamental soliton is

perturbed. Hence we first consider a perturbed fundamental soliton for the pulse shape. The pulse

shape is then given by

B(z; t) = asech

�
t�T

τ

�
exp[iφ� iΩ(t�T )� iC(t�T )

2
=2τ2

]; (3.7)

where the amplitude a, phase φ, frequency Ω, time delay T , chirp C and width τ all are functions

of z. Normally, soliton pulses are unchirped. As an extension, we allow for a chirp on the input

pulse that is small enough that the soliton shape does not change even though its width can change.

Using Eq. (3.7) in Eq. (3.4) we can find the Lagrangian density. In order to calculate the first

term in the Lagrangian density we take the derivative of the pulse shape from Eq. (3.7) with respect

to z and we get

∂B
∂z

= asech

�
t�T

τ

�
exp[iφ� iΩ(t�T )� iC(t�T )

2
=2τ2

]�
i
∂φ
∂z
� i(t�T )

∂Ω
∂z

+ iΩ
∂T
∂z

+ i
C(t�T )

τ2

∂T
∂z
� i

(t�T )
2

2τ2

∂C
∂z

+ iC
(t�T )

2

τ3

∂τ
∂z

�
+

a
τ

∂T
∂z

sech

�
t�T

τ

�
tanh

�
t�T

τ

�
; (3.8)

and from Eq. (3.7)

B�
∂B
∂z

=

�
i
∂φ
∂z
� i(t�T )

∂Ω
∂z

+ iΩ
∂T
∂z

+ i
C(t�T )

τ2

∂T
∂z
� i

(t�T )
2

2τ2

∂C
∂z

+ iC
(t�T )

2

τ3

∂τ
∂z

�
a2 sech2

�
t�T

τ

�
+

a2

τ
∂T
∂z

sech2
�

t�T
τ

�
tanh

�
t�T

τ

�
: (3.9)
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Subtracting the complex conjugate of Eq. (3.9) from Eq. (3.9) we can write the first term in the

Lagrangian density as

i
2

�
B�

∂B
∂z
�B

∂B�

∂z

�
=

�
�

∂φ
∂z

+(t�T )
∂Ω
∂z
�Ω

∂T
∂z
�

C(t�T )

τ2

∂T
∂z

+
(t�T )

2

2τ2

∂C
∂z
�C

(t�T )
2

τ3

∂τ
∂z

�
�

a2 sech2
�

t�T
τ

�
: (3.10)

Now to find the second term in the Lagrangian density, we take the derivative of Eq. (3.7) with

respect to t to find that

∂B
∂t

= �
�

a
τ

sech

�
t�T

τ

�
tanh

�
t�T

τ

�
+asech

�
t�T

τ

��
�iΩ� iC(t�T )=τ2��

exp[iφ� iΩ(t�T )� iC(t�T )
2
=2τ2

]: (3.11)

Hence the second term of the lagrangian density can now be written from Eqs. (3.11) and (3.7) as

1
2

 
β2

����∂B
∂t

����2 +γjBj4
!

=

"
β2

τ2 tanh2
�

t�T
τ

�
+β2

�
Ω+C

(t�T )

τ2

�2

+γa2sech2
�

t�T
τ

�#
a2

2
sech2

�
t�T

τ

�
: (3.12)

From Eqs. (3.10) and (3.12) the total Lagrangian density is given by

K = a2sech2
�

t�T
τ

��
�

∂φ
∂z

+(t�T )
∂Ω
∂z
�Ω

∂T
∂z
�

C(t�T )

τ2

∂T
∂z

+
(t�T )

2

2τ2

∂C
∂z
�C

(t�T )
2

τ3

∂τ
∂z

�
+

a2

2
sech2

�
t�T

τ

�"
β2

τ2 tanh2
�

t�T
τ

�
+β2

�
Ω+C

(t�T )

τ2

�2

+γa2sech2
�

t�T
τ

�#
:(3.13)

Integrating the Lagrangian density K in Eq. (3.13) over t from �∞ to ∞, we can find the averaged

Lagrangian density. All integrals can be evaluated analytically with the help of Table 3.1.1. The

final result is

L = E

�
�

dφ
dz
�Ω

dT
dz

+
π2

12

�
1
2

dC
dz
�

C
τ

dτ
dz

��
+

β2E
2

�
1

3τ2

�
1+

π2

4
C2
�
+Ω2

�
+

γE2

6τ
; (3.14)

where E =
R ∞
�∞ a2sech2

�
t�T

τ
�

dt = 2a2τ is the energy of the pulse.

The evolution of various pulse parameters along the fiber can be found by applying Eq. (3.6)

to Eq. (3.14). The resulting equations are called the variational equations. When q = φ we get the

variational equation for the pulse energy E as

dE
dz

= 0: (3.15)
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f (x) 1 x x2 tanh2
(x) sech2

(x)
R ∞
�∞ f (x) sech2

(x)dx 2 0 π2=6 2=3 4=3

Table 3.1: Integration table to find the Lagrangian given by Eq. (3.14)

If q = Ω we get the equation for time delay T

dT
dz

= β2Ω; (3.16)

if q = T we get frequency equation
dΩ
dz

= 0; (3.17)

when q =C we get the equation for pulse width

dτ
dz

=
β2C

τ
; (3.18)

when q = τ we get the equation for variation in chirp

dC
dz

=
β2

τ2

�
4
π2 +C2

�
+β2Ω2

+
2γE
π2τ

: (3.19)

The evolution of phase of the pulse can be found by using q = E in Eq. (3.6) to be

dφ
dz

=
β2

3τ2 +
5γE
12τ

; (3.20)

These variational equations show how the pulse parameters change over the fiber length and

hence give insight into the pulse propagation along the fiber. The energy equation can be easily

integrated over the fiber length. If the initial pulse has zero frequency shift, Ω(0) = 0, then it will

remain zero in the absence of amplifier noise. Since the temporal position, depends only on the

frequency shift, the temporal position also remains constant in the absence of amplifier noise. The

phase equation can be ignored as it is not coupled to the other parameters. Thus one needs to solve

coupled equation that describe the pulse width and chirp which reduces to

dτ
dz

=
β2C

τ
; (3.21)

dC
dz

=
β2

τ2

�
4
π2 +C2

�
+

2γE
π2τ

: (3.22)
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For a fundamental soliton that is unchirped (C = 0), in the absence of effective fiber losses due to

distributed amplification, we find from the variational equations that the energy E and pulse width

τ remain constant along the fiber. Also, E and τ are not independent but related to each other by

the soliton condition given in Eq. (2.60). The peak power of the solitons is related to the soliton

energy E = 2P0τ. Using this relation, in Eq. (2.60) we find that E = 2jβ2j=γτ for fundamental

solitons. Eqs. (3.21) and (3.22) show that initially unchirped soliton maintains both its chirp and

pulse width while propagating in an anomalous GVD fiber as expected.

3.1.2 Gaussian pulse

Next consider the case of a DM soliton that can be represented by a chirped-Gaussian shape pulse

of the form

B(z; t) = aexp[iφ� iΩ(t�T )� (1+ iC)(t�T )
2
=2τ2

]: (3.23)

Using such a pulse shape in Eq. (3.4), the Lagrangian density can be found in the case of Gaussian

pulses. In order to find the first term of the Lagrangian density, we take the derivative of Eq. (3.23)

with respect to z and get

∂B
∂z

= aexp[iφ� iΩ(t�T )� (1+ iC)(t�T )
2
=2τ2

]

�
i
∂φ
∂z
� i(t�T )

∂Ω
∂z

+ iΩ
∂T
∂z

+(1+ iC)
(t�T )

τ2

∂T
∂z
� i

(t�T )
2

2τ2

∂C
∂z

+(1+ iC)
(t�T )

2

τ3

∂τ
∂z

�
: (3.24)

Using Eqs. (3.23) and (3.24) we find

B�
∂B
∂z

= aexp[�(t�T )
2
=τ2

]

�
i
∂φ
∂z
� i(t�T )

∂Ω
∂z

+

�
iΩ+(1+ iC)

(t�T )

τ2

�
∂T
∂z

�i
(t�T )

2

2τ2

∂C
∂z

+(1+ iC)
(t�T )

2

τ3

∂τ
∂z

�
: (3.25)

Subtracting the complex conjugate of Eq. (3.24) from Eq. (3.25) we get the first term of the La-

grangian density to be

i
2

�
B�

∂B
∂z
�B

∂B�

∂z

�
=

�
�

∂φ
∂z

+(t�T )
∂Ω
∂z
�
�

Ω+C
(t�T )

τ2

�
∂T
∂z

+ i
(t�T )

2

2τ2

∂C
∂z

+(1� iC)
(t�T )

2

τ3

∂τ
∂z

�
a2 exp[�(t�T )

2
=τ2

]: (3.26)
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f (x) 1 x x2 exp(�x2
)

R ∞
�∞ f (x) exp(�x2

)dx
p

π 0
p

π=2
p

π=2

Table 3.2: Integration table to find the Lagrangian given by Eq. (3.30)

Now to calculate the second term of the Lagrangian density we take the derivative of Eq. (3.23)

with respect to t and find

∂B
∂t

= aexp[iφ� iΩ(t�T )� (1+ iC)(t�T )
2
=2τ2

]

�
�iΩ� (1+ iC)(t�T )=τ2�

; (3.27)

Using Eqs. (3.23) and (3.27) we can write the second term of the Lagrangian density as

1
2

 
β2

����∂B
∂t

����2 +γjBj4
!

=
β2a2

2
exp[�

(t�T )
2

τ2 ]

"
(t�T )

2

τ4 +

�
Ω+C

(t�T )

τ2

�2
#

+
γ
2

a4 exp[�
2(t�T )

2

τ2 ]: (3.28)

From Eqs (3.26) and (3.28) the total Lagrangian density can be written as

K = a2 exp[�(t�T )
2
=τ2

]

�
�

∂φ
∂z

+(t�T )
∂Ω
∂z
�
�

Ω+C
(t�T )

τ2

�
∂T
∂z

+
(t�T )

2

2τ2

∂C
∂z
�C

(t�T )
2

τ3

∂τ
∂z

�
+

a2

2
exp[�(t�T )

2
=τ2

]

"
β2

 
(t�T )

2

τ4 +

�
Ω+C

(t�T )

τ2

�2
!
+γa2 exp[�

(t�T )
2

τ2 ]

#
: (3.29)

Integrating Eq (3.32) over t from �∞ to ∞ we find the averaged Lagrangian density. The integral

can again be performed analytically with the help of Table 3.1.2. The final result is

L = E

�
�

dφ
dz
�Ω

dT
dz

+

�
1
4

dC
dz
�

C
2τ

dτ
dz

��
+

β2E
4τ2 (1+C2

)+β2EΩ2
=2+

γE2

(8π)1=2τ
; (3.30)

where the pulse energy in this case is given by E =
R ∞
�∞ a2 exp[� (t�T )2

τ2 ]dt =
p

πa2τ.

Applying Eq. (3.6) to Eq. (3.30) we can find the evolution of various pulse parameters. First

the equation for energy can be found by using q = φ in Eq. (3.6) and can be written as

dE
dz

= 0: (3.31)

When q = Ω we get the equation for time delay T

dT
dz

= β2Ω; (3.32)
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if q = T we get frequency equation
dΩ
dz

= 0; (3.33)

when q =C we get the equation for pulse width

dτ
dz

=
β2C

τ
; (3.34)

and when q = τ we get the equation for variation in chirp

dC
dz

=
β2

τ2 (1+C2
)+β2Ω2

+
2γE
p

8πτ
; (3.35)

and the phase evolution can then be found again by using q = E in Eq. (3.6) to be

dφ
dz

=
β2

2τ2 +
5γE

25=2π1=2τ
; (3.36)

Similar to the fundamental soliton case, we can ignore the energy and phase equations. In

the absence of Raman Scattering, the frequency remains constant and hence the temporal position

equation is integrable and the coupled equations for τ and C can be written as

dτ
dz

=
β2C

τ
; (3.37)

dC
dz

=
β2

τ2 (1+C2
)+

2γE
p

8πτ
: (3.38)

In the absence of nonlinearity, the ratio (1+C2
)=τ2 is related to the spectral width of the pulse

which remains constant in a linear medium. For such a case the Eqs. (3.37) and (3.38) can now be

solved analytically and have the following general solution:

τ2
(z) = τ2

(0)+2
Z z

0
β2(z)C(z)dz; C(z) =C(0)+

1+C2
(0)

τ2(0)

Z z

0
β2(z)dz: (3.39)

Integrating over two sections of the dispersion map, the value of pulse width and chirp at the end

of the first map period Lm are given by

τ(Lm) = τ(0)[(1+C(0)d)2
+d2

]
1=2

; C(Lm) =C(0)+(1+C2
(0))d; (3.40)

where d = βavLm=τ2
(0) and βav is the average GVD value. When β2 = 0, both the pulse width and

chirp return to the input values at the end of each map period. If the average dispersion is non-zero,

then the pulse does not evolve periodically. If the input peak power is so large that the nonlinear-

ity cannot be neglected, the pulse parameters do not return to their input values even for perfect
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GVD compensation. However one can find periodic solutions of these equations numerically by

imposing the periodic boundary conditions τ(Lm) = τ(0) and C(Lm) =C(0) which ensure that the

pulse recovers its initial shape at the end of each map period. Such pulses propagate through the

dispersion managed link in a periodic fashion and are called dispersion-managed solitons.

Thus a combination of the variational method with direct numerical simulations can form an

efficient approach to many problems in fiber communications. However the use of the variational

method is limited to systems that conserve energy. However in the presence of higher-order non-

linear effects such as intrapulse Raman scattering which can cause dissipation in the system and so

writing a Lagrangian for such systems is not possible. Thus the variational method cannot be used

to study such systems and one has to revert to other approximate methods.

3.2 Intrapulse Raman Scattering

It was discovered in 1985 numerically [34] that the spectrum of an ultra short optical pulse can shift

toward longer wavelengths (a “red” shift) when the pulse propagates in the anomalous-dispersion

regime of an optical fiber. Such a spectral shift was observed in a 1986 experiment [35] by using a

stabilized, mode-locked laser capable of emitting pulses shorter than 1 ps. It was called the soliton

self-frequency shift (SSFS) because pulses whose spectrum was red-shifted were propagating as

solitons inside the optical fiber used in the experiment. In fact, Gordon used a perturbation the-

ory of solitons for predicting the magnitude of the spectral shift and its dependence on the pulse

and fiber parameters [36]. Physically, the spectral shift is attributed to the intrapulse Raman scat-

tering (IRS), a phenomenon in which high-frequency components of an optical pulse pump the

low-frequency components of the same pulse, thereby transferring energy to the red side through

stimulated Raman scattering [37]– [40].

In order to understand the phenomenon of IRS better we have to go to the derivation of the NLS

equation in chapter 2. Eq. (2.57) should be modified for ultrashort optical pulses whose width

is � 5 ps. The spectral width of such pulses becomes comparable to the carrier frequency and

several approximations made in the derivation of Eq. (2.57) become questionable. Furthermore,

the spectrum of such short pulses is wide enough that the Raman gain in the fiber can amplify

their low-frequency components by transferring energy from high-frequency components of the
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same pulse, leading to the IRS that causes the pulse spectrum to shift toward the red side as the

pulse propagates inside the fiber. The physical origin of this effect is related to the retarded nature

of nonlinear response. While deriving Eq. (2.57) from Eq. (2.19), we made the assumption that

the nonlinear response of the fiber is instantaneous. Using this we modified Eq. (2.26) to give

Eq. (2.27), by using χ(3)(t� t1; t� t2; t� t3) = δ(t� t1)δ(t� t2)δ(t� t3). This approximation is no

longer valid.

Delayed nonlinear effects can be included by assuming the following functional form for the

third-order susceptibility,

χ(3)(t� t1; t� t2; t� t3) = χ(3)R(t� t1)δ(t� t2)δ(t� t3) (3.41)

where R(t � t1) is the nonlinear response function normalized similar to the delta function as
R ∞
�∞ R(t)dt = 1. Substituting this form for χ(3) in Eq. (2.25) and carrying out the two integrals

over the delta functions, we can write the nonlinear polarization as

PNL = ε0χ(3)E(r; t)
Z t

�∞
R(t� t1)jE(r; t1)j2dt1; (3.42)

where it is assumed that the electric field and the induced polarization vectors point along the

same direction. The upper limit of integration extends only up to t because the response function

R(t� t1) must be zero for t1 > t to ensure causality. Now using Eqs. (3.42), (2.28) and (2.29) we

can rewrite Eq. (2.35) as

∇ 2Ẽ + n2
(ω)k2

0Ẽ =�ik0α +χ(3)k2
0

Z Z ∞

�∞
R̃(ω�ω1)

� Ẽ(ω1;z)Ẽ(ω2;z)Ẽ(ω1 +ω2�ω;z)dω1dω2; (3.43)

where R̃(ω) is the Fourier transform of R(t). As before, we can treat the terms on the right hand

side of Eq. (3.43) as a small perturbation and obtain the modal distribution by the same method

used in chapter 2. Using the slowly varying amplitude A(z; t) as in Eq. (2.40) we can get the

following equation for ultrashort pulses inside the fiber [52]:

∂A
∂z

+
α
2

A+β1
∂A
∂t

+
iβ2

2
∂2A
∂t2 �

β3

6
∂3A
∂t3

= iγ
�

1+
i

ω0

∂
∂t

��
A(z; t)

Z ∞

�∞
R(t

0

)jA(z; t� t
0

)j2dt
0

�
; (3.44)
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where γ is the nonlinear parameter defined in Eq. (2.55) and ω0 is the center frequency of the pulse

spectrum. The time derivative appearing on the right hand side of Eq. (3.44) includes the self

steeping effect, shock formation at the pulse edge and IRS.

The response function R(t) should include both the electronic and vibrational (Raman) contri-

butions. Assuming that the electronic contribution is nearly instantaneous, the functional form of

R(t) can be written as [41]–[45]

R(t) = (1� fR)δ(t)+ fRhR(t); (3.45)

where fR represents the fractional contribution of the delayed Raman response to the nonlinear

polarization. The Raman response function hR(t) is responsible for the Raman gain. For pulses

shorter than 5 ps we can use the Taylor-series expansion to jA(z; t� t
0

j2 such that

jA(z; t� t
0

)j2 � jA(z; t)j2� t
0 ∂
∂t
jA(z; t)j2: (3.46)

This approximation is valid if the pulse envelope evolves slowly along the fiber. Defining the first

moment of the nonlinear response function as

TR =

Z ∞

�∞
thR(t)dt; (3.47)

and using that
R ∞
�∞ R(t) = 1 along with Eq. (3.46) in Eq. (3.44) we get

∂A
∂z

+
α
2

A+β1
∂A
∂t

+
iβ2

2
∂2A
∂t2 �

β3

6
∂3A
∂t3 = iγ

�
jAj2A+

i
ω0

∂
∂t
(jAj2A)�TRA

∂jAj2

∂t

�
: (3.48)

Once again using the transformation t
0

= t�β1z, we can write Eq. (3.48) as

∂A
∂z

+
α
2

A+
iβ2

2
∂2A

∂t 02
�

β3

6
∂3A

∂t 03
= iγ

�
jAj2A+

i
ω0

∂
∂t 0

(jAj2A)�TRA
∂jAj2

∂t 0

�
: (3.49)

Now using the transformation in Eq. (3.2) we can eliminate the loss term and for the sake of

simplicity dropping the prime on t we can write Eq. (3.49) as

∂B
∂z

+
iβ2

2
∂2B
∂t2 �

β3

6
∂3B
∂t3 = iγjBj2B�

γ
ω0

∂
∂t
(jBj2B)� iγTRB

∂jBj2

∂t
: (3.50)

The term proportional to β3 governs the effects of third-order dispersion and becomes important

for ultra short pulses. The term proportional to ω�1
0 is responsible for self-steepening and shock

formation and is important for pulses shorter than a few fs. The last term proportional to TR is
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responsible for intrapulse Raman scattering and is related to the slope of the Raman gain spectrum

of the material of the fiber and takes a value of 3 fs for a pulse propagating at 1:55µm in standard

silica fiber. All three parameters are negligible for pulses whose width, τ � 1 ps but they become

appreciable for femtosecond pulses. As an example consider a 30 fs (full width at half maximum

of 50 fs) propagating at λ = 1:55 µm, whose carrier frequency ω0 is given by 2πc=λ. For such a

system the self steepening coefficient, ω�1
0 = 0:8 fs while Raman scattering coefficient TR is 3 fs.

Hence the self-steepening term can be neglected for pulses whose width is larger than 30 fs but the

term responsible for intrapulse Raman scattering is still important.

3.3 Chapter Summary

As seen before the IRS can lead to a shift in the soliton frequency. This Raman-induced frequency

shift (RIFS) is negligible for pulse width larger than 10 ps but becomes of considerable importance

for short solitons (τ(0)< 1ps). The RIFS leads to considerable changes in the evolution of solitons

as it modifies the gain and dispersion experienced by solitons. When the spectral shift becomes

large that it cannot be compensated, the soliton moves out of the gain window of the amplifiers

thus loosing all its energy. For ultrashort solitons, including the IRS and third-order dispersion, the

NLS equation given in Eq. (3.49) can be written as

∂A
∂z

+
α
2

A+
iβ2

2
∂2A
∂t2 �

β3

6
∂3A
∂t3 = iγjAj2A+�iγTRA

∂jAj2

∂t
: (3.51)

In the presence of IRS, the system becomes dissipative and writing a Lagrangian density for such a

system is not possible. Hence the variational method cannot be used to study the effects of IRS on

pulse propagation in a fiber. To study the IRS in solitons, soliton perturbation theory can be used.

However for ultrashort pulses, the IRS is no longer small enough to be treated as a perturbation.

Also from a physical standpoint, it is hard to see why the spectral red shift of ultrashort pulses

should require the formation of solitons. The IRS phenomenon should occur for any optical pulse,

irrespective of whether it propagates in the normal- or anomalous-dispersion regime of an optical

fiber. It should also be affected by the frequency chirp, if the input pulse is chirped. In effect,

although the variational approach works well for conservative systems, it fails in the presence of

Raman scattering in the fiber. Hence a more generalized theory that will work for both dissipative
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and non-dissipative systems has to be used in order to study the pulse propagation in the case

of systems using ultrashort pulses. In the next chapter we use the moment method to develop a

general theory to study the pulse propagation in optical fibers.



Chapter 4

The Moment Method

The Moment method was developed as early as 1971 [11] and has been used to calculate timing

jitter in DM systems [56]. This method provides simple analytic theory for studying the evolution

of the pulse parameters thus helping to gain insights into pulse propagation. Since this method

does not require a Lagrangian, this method can be used for both dissipative and non dissipative

systems.

4.1 Definition of the Moments

The basic idea of the Moment method is to treat the optical pulse like a particle [11] whose energy

E, position T , and the frequency Ω are defined as

E =

Z ∞

�∞
jBj2dt; (4.1)

T =
1
E

Z ∞

�∞
tjBj2dt; (4.2)

Ω =
i

2E

Z ∞

�∞

�
B�

∂B
∂t
�B

∂B�

∂t

�
dt; (4.3)

where B is related to the envelope of the pulse, A launched into the fiber by the transformation

shown in Eq. (3.2). The root mean square (RMS) width of such a pulse is defined as

σ2
=

1
E

Z ∞

�∞
(t�T )

2jBj2dt: (4.4)

The actual pulse width is related to the RMS width by a constant factor that depends on the pulse

shape. We introduce one more moment related to the chirp of the pulse by the same constant factor

35
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using the definition

C̃ =
i

2E

Z ∞

�∞
(t�T )

�
B�

∂B
∂t
�B

∂B�

∂t

�
dt: (4.5)

Evidently, the evolution of these pulse parameters depend on the evolution of the pulse itself in the

fiber which is governed by the NLS equation Eq. (3.50) in the case of ultra short pulses. To find

the evolution of these pulse parameters we use Eqs. (4.1)– (4.5) along with Eq. (3.50).

4.1.1 Energy Evolution

First consider the evolution of the pulse energy. To find that we differentiate Eq. (4.1) with respect

to z and get
dE
dz

=

Z ∞

�∞

�
B�

∂B
∂z

+B
∂B�

∂z

�
dt: (4.6)

Using Eq. (3.48) we find that

∂B
∂z

=�i
β2

2
∂2B
∂t2 +

β3

6
∂3B
∂t3 �

γ
ω0

∂
∂t
(jBj2B)� iγTRB

∂jBj2

∂t
+ iγjBj2B: (4.7)

Hence we can write

B�
∂B
∂z

= �i
β2

2
B�

∂2B
∂t2 +

β3

6
B�

∂3B
∂t3 �B�

γ
ω0

∂
∂t
(jBj2B)� iγTRjBj2

∂jBj2

∂t
+ iγjBj4; (4.8)

B
∂B�

∂z
= i

β2

2
B

∂2B�

∂t2 +
β3

6
B

∂3B�

∂t3 �B
γ

ω0

∂
∂t
(jBj2B�)+ iγTRjBj2

∂jBj2

∂t
� iγjBj4: (4.9)

Adding Eqs. (4.8) and (4.9) and substituting in Eq. (4.6) we get

dE
dz

=

Z ∞

�∞
i
β2

2

�
B

∂2B�

∂t2 �B�
∂2B
∂t2

�
dt +

Z ∞

�∞

β3

6

�
B�

∂3B
∂t3 +B

∂3B�

∂t3

�
dt

�
γ

ω0

Z ∞

�∞

�
B�

∂
∂t
(jBj2B)+B

∂
∂t
(jBj2B�)

�
dt: (4.10)

Consider the first integral in Eq. (4.10). Leaving out the coefficients it is given by

Z ∞

�∞

�
B

∂2B�

∂t2 �B�
∂2B
∂t2

�
dt =

Z ∞

�∞
B

∂2B�

∂t2 dt�
Z ∞

�∞
B�

∂2B
∂t2 dt: (4.11)

Integrating by parts we find that

Z ∞

�∞

�
B

∂2B�

∂t2 �B�
∂2B
∂t2

�
dt = B

∂B�

∂t

����∞
�∞
�
Z ∞

�∞

���� ∂B
∂t2

����2 dt�B�
∂B
∂t

����∞
�∞

+

Z ∞

�∞

���� ∂B
∂t2

����2 dt: (4.12)
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The second and the fourth term in Eq. (4.12) cancel each other and since B(z; t) is the pulse enve-

lope and hence at t !∞ the field must vanish which means as t !∞, B(z; t) and ∂B
∂t exponentially

tend to zero. Using these conditions in Eq. (4.12) we get
Z ∞

�∞

�
B

∂2B�

∂t2 �B�
∂2B
∂t2

�
dt = 0: (4.13)

Now considering the second integral in Eq. (4.10) given by

Z ∞

�∞

�
B�

∂3B
∂t3 +B

∂3B�

∂t3

�
dt =

Z ∞

�∞
B�

∂3B
∂t3 dt +

Z ∞

�∞
B

∂3B�

∂t3 dt: (4.14)

Performing the integration by parts we get
Z ∞

�∞

�
B�

∂3B
∂t3 +B

∂3B�

∂t3

�
dt = B�

∂2B
∂t2

����∞
�∞
�
Z ∞

�∞

∂B
∂t

∂2B�

∂t2 dt + B
∂2B�

∂t2

����∞
�∞
�
Z ∞

�∞

∂B�

∂t
∂2B
∂t2 dt:

(4.15)

The first and the third terms equal 0 since B and B� vanish at the limits. Hence we have
Z ∞

�∞

�
B�

∂3B
∂t3 +B

∂3B�

∂t3

�
dt =�

Z ∞

�∞

�
∂B
∂t

∂2B�

∂t2 +
∂B�

∂t
∂2B
∂t2

�
dt: (4.16)

Integrating again by parts

Z ∞

�∞

�
B�

∂3B
∂t3 +B

∂3B�

∂t3

�
dt = �

Z ∞

�∞

�
∂B
∂t

∂2B�

∂t2 +
∂B�

∂t
∂2B
∂t2

�
dt;

= �
����∂B

∂t

����2 +Z ∞

�∞

∂B�

∂t
∂2B
∂t2 dt�

����∂B
∂t

����2 +Z ∞

�∞

∂B
∂t

∂2B�

∂t2 dt;

=

Z ∞

�∞

�
∂B
∂t

∂2B�

∂t2 +
∂B�

∂t
∂2B
∂t2

�
dt: (4.17)

From Eqs. (4.16) and (4.17) we can conclude
Z ∞

�∞

�
B�

∂3B
∂t3 +B

∂3B�

∂t3

�
dt = 0: (4.18)

Expanding the final integral in Eq. (4.10) we get
Z ∞

�∞

�
B�

∂
∂t
(jBj2B)+B

∂
∂t
(jBj2B�)

�
dt =

Z ∞

�∞

�
jBj2

∂jBj2

∂t
+B�jBj2

∂B
∂t

+ jBj2
∂jBj2

∂t
+BjBj2

∂B�

∂t

�
dt;

= 3
Z ∞

�∞
jBj2

∂jBj2

∂t
dt: (4.19)

Integrating Eq. (4.19) by parts we get
Z ∞

�∞
jBj2

∂jBj2

∂t
dt = jBj4j∞

�∞�
Z ∞

�∞
jBj2

∂jBj2

∂t
dt: (4.20)
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The first term in Eq. (4.20) goes to zero at the limits. Hence we can write

Z ∞

�∞
jBj2

∂jBj2

∂t
dt =�

Z ∞

�∞
jBj2

∂jBj2

∂t
dt = 0: (4.21)

Substituting Eqs. (4.13), (4.18) and (4.21) in Eq. (4.10) we find the evolution of pulse energy along

the fiber is given by
dE
dz

= 0: (4.22)

Eq. (4.22) shows that the pulse energy remains constant when the pulse propagates along the fiber

just as in a losses fiber. This is because the power losses are included in the nonlinear parameter γ,

while making the transformation in Eq. (3.2).

4.1.2 Evolution of Pulse Position

Next we find the evolution of the pulse position along the fiber. Differentiating Eq. (4.2) with

respect to z we get
dT
dz

=
1
E

Z ∞

�∞
t

�
B�

∂B
∂z

+B
∂B�

∂z

�
dt: (4.23)

Adding Eqs. (4.8) and (4.9) and substituting in Eq. (4.23) we get

dT
dz

=
iβ2

2E

Z ∞

�∞
t

�
B

∂2B�

∂t2 �B�
∂2B
∂t2

�
dt +

β3

6E

Z ∞

�∞
t

�
B�

∂3B
∂t3 +B

∂3B�

∂t3

�
dt

�
γ

ω0E

Z ∞

�∞
t

�
B�

∂
∂t
(BjBj2)+B

∂
∂t
(B�jBj2)

�
dt: (4.24)

Considering the first integral we can do the integration by parts and get

Z ∞

�∞
t

�
B

∂2B�

∂t2 �B�
∂2B
∂t2

�
dt = tB

∂B�

∂t

����∞
�∞
�
Z ∞

�∞

∂B�

∂t
∂(tB)

∂t
dt� tB�

∂B
∂t

����∞
�∞

+

Z ∞

�∞

∂B
∂t

∂(tB�)
∂t

dt:

(4.25)

The first and third terms vanish at the limits and hence we have

Z ∞

�∞
t

�
B

∂2B�

∂t2 �B�
∂2B
∂t2

�
dt =

Z ∞

�∞

�
∂B
∂t

∂(tB�)
∂t

�
∂B�

∂t
∂(tB)

∂t

�
dt;

=

Z ∞

�∞

 
t

����∂B
∂t

����2 +B�
∂B
∂t
� t

����∂B
∂t

����2�B
∂B�

∂t

!
dt;

=

Z ∞

�∞

�
B�

∂B
∂t
�B

∂B�

∂t

�
dt: (4.26)
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From the definition of frequency in Eq (4.3) we can write Eq. (4.26) as
Z ∞

�∞
t

�
B

∂2B�

∂t2 �B�
∂2B
∂t2

�
dt =�2iEΩ: (4.27)

Now consider the second term in Eq. (4.24) given by
Z ∞

�∞
t

�
B�

∂3B
∂t3 +B

∂3B�

∂t3

�
dt = tB�

∂2B
∂t2

����∞
�∞
�
Z ∞

�∞

∂2B
∂t2

∂(tB�)
∂t

dt+tB
∂2B�

∂t2

����∞
�∞
�
Z ∞

�∞

∂2B�

∂t2

∂(tB)
∂t

dt:

(4.28)

The first and third terms vanish at the limits. Hence Eq. (4.28) can be written as
Z ∞

�∞
t

�
B�

∂3B
∂t3 +B

∂3B�

∂t3

�
dt = �

Z ∞

�∞

�
t
∂2B
∂t2

∂B�

∂t
+B�

∂2B
∂t2 + t

∂2B�

∂t2

∂B
∂t

+B
∂2B�

∂t2

�
dt:

= �
Z ∞

�∞
t

�
∂2B
∂t2

∂B�

∂t
+

∂2B�

∂t2

∂B
∂t

�
dt�

Z ∞

∞

�
B�

∂2B
∂t2 +B

∂2B�

∂t2

�
dt:(4.29)

Now consider the first term on the right hand side of Eq. (4.29).

�
Z ∞

�∞
t

�
∂2B
∂t2

∂B�

∂t
+

∂2B�

∂t2

∂B
∂t

�
dt = �t

����∂B
∂t

����2
�����
∞

�∞

+

Z ∞

�∞

∂B
∂t

�
∂B�

∂t
+ t

∂2B�

∂t2

�
dt

�t

����∂B
∂t

����2
�����
∞

�∞

+

Z ∞

�∞

∂B�

∂t

�
∂B
∂t

+ t
∂2B
∂t2

�
dt: (4.30)

The first and third terms go to zero at the limits. Rearranging the remaining terms we get

�2
Z ∞

�∞
t

�
∂B
∂t

∂2B�

∂t2 +
∂B�

∂t
∂2B
∂t2

�
dt = 2

Z ∞

�∞

����∂B
∂t

����2 dt;

Z ∞

�∞
t

�
∂B
∂t

∂2B�

∂t2 +
∂B�

∂t
∂2B
∂t2

�
dt = �

Z ∞

�∞

����∂B
∂t

����2 dt: (4.31)

Next consider the second term on the right hand side of Eq. (4.29).

�
Z ∞

∞

�
B�

∂2B
∂t2 +B

∂2B�

∂t2

�
dt = �B�

∂B
∂t

����∞
�∞

+

Z ∞

�∞

����∂B
∂t

����2� B
∂B�

∂t

����∞
�∞

+

Z ∞

�∞

����∂B
∂t

����2 dt;

= 2
Z ∞

�∞

����∂B
∂t

����2 dt: (4.32)

Substituting Eqs (4.31) and (4.32) into Eq. (4.29) we get

Z ∞

�∞
t

�
B�

∂3B
∂t3 +B

∂3B�

∂t3

�
dt = 3

Z ∞

�∞

����∂B
∂t

����2 dt: (4.33)

Now consider the final integral in Eq. (4.24). From Eq. (4.19) we can write
Z ∞

�∞
t

�
B�

∂
∂t
(BjBj2)+B

∂
∂t
(B�jBj2)

�
dt = 3

Z ∞

�∞
tjBj2

∂jBj2

∂t
dt: (4.34)



CHAPTER 4. THE MOMENT METHOD 40

Integrating Eq. (4.34) by parts we get

Z ∞

�∞
tjBj2

∂jBj2

∂t
dt = tjBj4j∞

�∞�
Z ∞

�∞
jBj2

�
t
∂jBj2

∂t
+ jBj2

�
dt;

Z ∞

�∞
tjBj2

∂jBj2

∂t
dt = �1=2

Z ∞

�∞
jBj4dt: (4.35)

Substituting Eqs (4.27), (4.33), (4.34) and Eq. (4.35) into Eq. (4.24) we can find that the evolution

of pulse position along the fiber is given by

dT
dz

= β2Ω+
β3

2E

Z ∞

�∞

����∂B
∂t

����2 dt +
3γ

2ω0E

Z ∞

�∞
jBj4dt: (4.36)

Eq.(4.36) shows that the pulse position is affected by any frequency shift due to GVD and also

because of TOD. In the absence of amplifiers, this shift in the position is deterministic.

4.1.3 Evolution of Frequency Shift

Next we find the evolution of frequency, Ω along the fiber. Differentiating Eq. (4.3) with respect

to z we get
dΩ
dz

=
i

2E

Z ∞

�∞

�
∂
∂z

�
B�

∂B
∂t

�
�

∂
∂z

�
B

∂B�

∂t

��
dt: (4.37)

Now consider
∂
∂z

�
B�

∂B
∂t

�
= B�

∂2B
∂z∂t

+
∂B�

∂z
∂B
∂t

: (4.38)

From Eq. (4.7) we can write

∂2B
∂z∂t

= �i
β2

2
∂3B
∂t3 +

β3

6
∂4B
∂t4 � iγTR

∂B
∂t

∂jBj2

∂t
� iγTRB

∂2jBj2

∂t2

�
γ

ω0

∂
∂t2 (jBj

2B)+ iγB
∂jBj2

∂t
+ iγjBj2

∂B
∂t

; (4.39)

B�
∂2B
∂z∂t

= �i
β2

2
B�

∂3B
∂t3 +

β3

6
B�

∂4B
∂t4 � iγTRB�

∂B
∂t

∂jBj2

∂t
� iγTRjBj2

∂2jBj2

∂t2

�
γ

ω0
B�

∂2

∂t2 (jBj
2B)+ iγjBj2

∂jBj2

∂t
+ iγjBj2B�

∂B
∂t

; (4.40)

∂B�

∂z
∂B
∂t

= i
β2

2
∂2B�

∂t2

∂B
∂t

+
β3

6
∂3B�

∂t3

∂B
∂t

+ iγTRB�
∂jBj2

∂t
∂B
∂t
� iγjBj2B�

∂B
∂t

�
γ

ω0

∂
∂t
(jBj2B�)

∂B
∂t

: (4.41)
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Adding Eqs. (4.40) and (4.41) and substituting into Eq. (4.38) we find

∂
∂z

�
B�

∂B
∂t

�
= i

β2

2

�
∂2B�

∂t2

∂B
∂t
�B�

∂3B
∂t3

�
+

β3

6

�
B�

∂4B
∂t4 +

∂3B�

∂t3

∂B
∂t

�
� iγTRjBj2

∂2jBj2

∂t2

+iγjBj2
∂jBj2

∂t
�

γ
ω0

�
B�

∂2

∂t2 (jBj
2B)+

∂
∂t
(jBj2B�)

∂B
∂t

�
: (4.42)

Hence we can write

∂
∂z

�
B

∂B�

∂t

�
= �i

β2

2

�
∂2B
∂t2

∂B�

∂t
�B

∂3B�

∂t3

�
+

β3

6

�
B

∂4B�

∂t4 +
∂3B
∂t3

∂B�

∂t

�
+ iγTRjBj2

∂2jBj2

∂t2

�iγjBj2
∂jBj2

∂t
�

γ
ω0

�
B

∂2

∂t2 (jBj
2B�)+

∂
∂t
(jBj2B)

∂B�

∂t

�
: (4.43)

Using Eqs. (4.42) and (4.43) in Eq. (4.37) we can find the evolution of frequency along the fiber to

be

dΩ
dz

=
i

2E

Z ∞

�∞
i
β2

2

��
∂2B�

∂t2

∂B
∂t

+
∂2B
∂t2

∂B�

∂t

�
�
�

B
∂3B�

∂t3 +B�
∂3B
∂t3

��
dt

+
i

2E

Z ∞

�∞

β3

6

��
B�

∂4B
∂t4 �B

∂4B�

∂t4

�
+

�
∂3B�

∂t3

∂B
∂t
�

∂3B
∂t3

∂B�

∂t

��
dt

�
iγ

2Eω0

Z ∞

�∞
jBj2

�
B�

∂2B
∂t2 �B

∂2B�

∂t2

�
dt�

3iγ
2Eω0

Z ∞

�∞

∂jBj2

∂t

�
B�

∂B
∂t
�B

∂B�

∂t

�
dt

+
γ
E

TR

Z ∞

�∞
jBj2

∂2jBj2

∂t2 dt�
γ
E

Z ∞

�∞
jBj2

∂jBj2

∂t
dt: (4.44)

In order to calculate dΩ=dz we evaluate one by one the integrals on the right hand side of the

Eq. (4.44). First consider the integration by parts of the first term in Eq. (4.44) given by

Z ∞

�∞

�
∂2B�

∂t2

∂B
∂t

+
∂2B
∂t2

∂B�

∂t

�
dt =

����∂B
∂t

����2
�����
∞

�∞

�
Z ∞

�∞

∂B�

∂t
∂2B
∂t2 dt +

����∂B
∂t

����2
�����
∞

�∞

�
Z ∞

�∞

∂B
∂t

∂2B�

∂t2 dt:

= �
Z ∞

�∞

�
∂2B�

∂t2

∂B
∂t

+
∂2B
∂t2

∂B�

∂t

�
dt;

Z ∞

�∞

�
∂2B�

∂t2

∂B
∂t

+
∂2B
∂t2

∂B�

∂t

�
dt = 0: (4.45)

From Eq. (4.18) we know that the second term in Eq. (4.44) vanishes. Now consider the third term

in Eq. (4.44). Performing the integration by parts we get

Z ∞

�∞

�
B�

∂4B
∂t4 �B

∂4B�

∂t4

�
dt = B�

∂3B
∂t3

����∞
�∞
�
Z ∞

�∞

∂B�

∂t
∂3B
∂t3 dt� B

∂3B�

∂t3

����∞
�∞

+

Z ∞

�∞

∂B
∂t

∂3B�

∂t3 dt;

Z ∞

�∞

�
B�

∂4B
∂t4 �B

∂4B�

∂t4

�
dt =

Z ∞

�∞

�
∂3B�

∂t3

∂B
∂t
�

∂3B
∂t3

∂B�

∂t

�
dt: (4.46)
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Next consider
Z ∞

�∞

�
∂3B�

∂t3

∂B
∂t
�

∂3B
∂t3

∂B�

∂t

�
dt =

∂2B�

∂t2

∂B
∂t

����∞
�∞
�
Z ∞

�∞

∂2B�

∂t2

∂2B
∂t2 dt�

∂2B
∂t2

∂B�

∂t

����∞
�∞

+

Z ∞

�∞

∂2B
∂t2

∂2B�

∂t2 dt;

Z ∞

�∞

�
∂3B�

∂t3

∂B
∂t
�

∂3B
∂t3

∂B�

∂t

�
dt = 0: (4.47)

This means the third and fourth terms in Eq. (4.44) vanishes. Substituting Eqs. (4.45), (4.18),

(4.46) and (4.47) into Eq. (4.44) we get

dΩ
dz

= �
iγ

2Eω0

Z ∞

�∞
jBj2

�
B�

∂2B
∂t2 �B

∂2B�

∂t2

�
dt�

3iγ
2Eω0

Z ∞

�∞

∂jBj2

∂t

�
B�

∂B
∂t
�B

∂B�

∂t

�
dt

+
γ
E

TR

Z ∞

�∞
jBj2

∂2jBj2

∂t2 dt�
γ
E

Z ∞

�∞
jBj2

∂jBj2

∂t
dt: (4.48)

Now consider the first term in Eq. (4.48). Integrating by parts we get
Z ∞

�∞
jBj2

�
B�

∂2B
∂t2 �B

∂2B�

∂t2

�
dt = B�jBj2

∂B
∂t

����∞
�∞
�
Z ∞

�∞

∂B
∂t

�
∂B�

∂t
jBj2+B�

∂jBj2

∂t

�
dt

� BjBj2
∂B�

∂t

����∞
�∞

+

Z ∞

�∞

∂B�

∂t

�
jBj2

∂B
∂t

+B
∂jBj2

∂t

�
dt;

= �
Z ∞

�∞

∂jBj2

∂t

�
B�

∂B
∂t
�B

∂B�

∂t

�
dt: (4.49)

Expanding the next term in Eq. (4.48) by parts we get
Z ∞

�∞
jBj2

∂2jBj2

∂t2 dt = 2
Z ∞

�∞
jBj2

����∂B
∂t

����2 dt +
Z ∞

�∞
BjBj2

∂2B�

∂t2 dt +
Z ∞

�∞
jBj2B�

∂2B
∂t2 dt;

= 2
Z ∞

�∞
jBj2

����∂B
∂t

����2 dt + BjBj2
∂B�

∂t

����∞
�∞
�
Z ∞

�∞

∂B�

∂t

�
∂B
∂t
jBj2 +B

∂jBj2

∂t

�
dt

+ B�jBj2
∂B
∂t

����∞
�∞
�
Z ∞

�∞

∂B
∂t

�
∂B
∂t
jBj2 +B

∂jBj2

∂t

�
dt;

Z ∞

�∞
jBj2

∂2jBj2

∂t2 dt = �
Z ∞

�∞

�
∂
∂t
jBj2
�2

dt; (4.50)

The last term in Eq. (4.48) can be evaluated as follows:
Z ∞

�∞
jBj2

∂jBj2

∂t
dt = jBj4j∞

�∞�
Z ∞

�∞
jBj2

∂jBj2

∂t
dt;

Z ∞

�∞
jBj2

∂jBj2

∂t
dt = 0: (4.51)

Substituting Eqs. (4.49)–(4.51) in Eq. (4.48) we get the variation in the frequency of the optical

pulse during propagation as

dΩ
dz

=�
iγ

Eω0

Z ∞

�∞

∂
∂t
jBj2

�
B�

∂B
∂t
�B

∂B�

∂t

�
dt�

γ
E

TR

Z ∞

�∞

�
∂
∂t
jBj2
�2

dt: (4.52)



CHAPTER 4. THE MOMENT METHOD 43

This means both IRS and self-steepening leads to a shift in the pulse spectrum.

4.1.4 Evolution of chirp parameter

Next we find the evolution of the chirp parameter. Differentiating Eq. (4.4) with respect to z, we

can write
dC̃
dz

=
i

2E

Z ∞

�∞
(t�T )

�
∂
∂z

�
B�

∂B
∂t

�
�

∂
∂z

�
B

∂B�

∂t

��
dt: (4.53)

From Eqs. (4.42) and (4.43) we have

dC̃
dz

=
�β2

4E

Z ∞

�∞
(t�T )

��
∂2B�

∂t2

∂B
∂t

+
∂2B
∂t2

∂B�

∂t

�
�
�

B
∂3B�

∂t3 +B�
∂3B
∂t3

��
dt

+
iβ3

12E

Z ∞

�∞
(t�T )

��
B�

∂4B
∂t4 �B

∂4B�

∂t4

�
+

�
∂3B�

∂t3

∂B
∂t
�

∂3B
∂t3

∂B�

∂t

��
dt

�
iγ

2Eω0

Z ∞

�∞
(t�T )jBj2

�
B�

∂2B
∂t2 �B

∂2B�

∂t2

�
dt�

3iγ
2Eω0

Z ∞

�∞
(t�T )

∂jBj2

∂t

�
B�

∂B
∂t
�B

∂B�

∂t

�
dt

+
γ
E

TR

Z ∞

�∞
(t�T )jBj2

∂2jBj2

∂t2 dt�
γ
E

Z ∞

�∞
(t�T )jBj2

∂jBj2

∂t
dt: (4.54)

In order to evaluate the first term in Eq. (4.54), consider the integral
Z ∞

�∞
(t�T )

�
B

∂3B�

∂t3 +B�
∂3B
∂t3

�
dt = (t�T )B

∂2B�

∂t2

����∞
�∞
�
Z ∞

�∞

∂2B�

∂t2

�
∂B
∂t

(t�T )+B

�
dt

+ (t�T )B�
∂2B
∂t2

����∞
�∞
�
Z ∞

�∞

∂2B
∂t2

�
∂B�

∂t
(t�T )+B�

�
dt;

= �
Z ∞

�∞
(t�T )

�
∂B
∂t

∂2B�

∂t2 +
∂B�

∂t
∂2B
∂t2

�
dt

�
Z ∞

�∞

�
B

∂2B�

∂t2 +B�
∂2B
∂t2

�
dt: (4.55)

From Eq. (4.54) we can write the first term as
Z ∞

�∞
(t�T )

��
∂2B�

∂t2

∂B
∂t

+
∂2B
∂t2

∂B�

∂t

�
�
�

B
∂3B�

∂t3 +B�
∂3B
∂t3

��
dt

= 2
Z ∞

�∞
(t�T )

�
∂B
∂t

∂2B�

∂t2 +
∂B�

∂t
∂2B
∂t2

�
dt +

Z ∞

�∞

�
B

∂2B�

∂t2 +B�
∂2B
∂t2

�
dt:(4.56)

From Eq. (4.32) we can write Eq. (4.56) as
Z ∞

�∞
(t�T )

��
∂2B�

∂t2

∂B
∂t

+
∂2B
∂t2

∂B�

∂t

�
�
�

B
∂3B�

∂t3 +B�
∂3B
∂t3

��
dt

= 2
Z ∞

�∞
(t�T )

�
∂B
∂t

∂2B�

∂t2 +
∂B�

∂t
∂2B
∂t2

�
dt � 2

Z ∞

�∞
j
∂B
∂t
j2dt: (4.57)
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Next integrating the first term in the above equation by parts we get

Z ∞

�∞
(t�T )

�
∂B
∂t

∂2B�

∂t2 +
∂B�

∂t
∂2B
∂t2

�
dt = (t�T )

����∂B
∂t

����2
�����
∞

�∞

�
Z ∞

�∞

 
(t�T )

∂B�

∂t
∂2B
∂t2 �

����∂B
∂t

����2
!

dt

+ (t�T )

����∂B�

∂t

����2
�����
∞

�∞

�
Z ∞

�∞

 
(t�T )

∂B
∂t

∂2B�

∂t2 �
����∂B

∂t

����2
!

dt;

Z ∞

�∞
(t�T )

�
∂B
∂t

∂2B�

∂t2 +
∂B�

∂t
∂2B
∂t2

�
dt = �

Z ∞

�∞

����∂B
∂t

����2 dt: (4.58)

Substituting Eq. (4.58) into Eq. (4.57) we get
Z ∞

�∞
(t�T )

��
∂2B�

∂t2

∂B
∂t

+
∂2B
∂t2

∂B�

∂t

�
�
�

B
∂3B�

∂t3 +B�
∂3B
∂t3

��
dt =�4

Z ∞

�∞

����∂B
∂t

����2 dt: (4.59)

Next to evaluate the terms in Eq. (4.54) with coefficient β3, consider the integral
Z ∞

�∞
(t�T )

�
B�

∂4B
∂t4 �B

∂4B�

∂t4

�
dt = (t�T )B�

∂3B
∂t3

����∞
�∞
�
Z ∞

�∞

�
(t�T )

∂B�

∂t
∂3B
∂t3 +B�

∂3B
∂t3

�
dt

� (t�T ) B
∂3B�

∂t3

����∞
�∞

+

Z ∞

�∞

�
(t�T )

∂B
∂t

∂3B�

∂t3 +B
∂3B�

∂t3

�
dt;

=

Z ∞

�∞
(t�T )

�
∂B
∂t

∂3B�

∂t3 �
∂B�

∂t
∂3B
∂t3

�
dt

+

Z ∞

�∞

�
B

∂3B�

∂t3 �B�
∂3B
∂t3

�
dt: (4.60)

The first integral in Eq. (4.60) can be reduced to
Z ∞

�∞
(t�T )

�
∂B
∂t

∂3B�

∂t3 �
∂B�

∂t
∂3B
∂t3

�
dt =

∂B
∂t

∂2B�

∂t2 (t�T )

����∞
�∞
�
Z ∞

�∞

∂2B�

∂t2

�
∂2B
∂t2 (t�T )+

∂B
∂t

�
�

∂B�

∂t
∂2B
∂t2 (t�T )

����∞
�∞

+

Z ∞

�∞

∂2B
∂t2

�
∂2B�

∂t2 (t�T )+
∂B�

∂t

�
;

=

Z ∞

�∞

�
∂2B
∂t2

∂B�

∂t
�

∂2B�

∂t2

∂B
∂t

�
dt: (4.61)

Now consider the next term in Eq. (4.60) given by
Z ∞

�∞

�
B

∂3B�

∂t3 �B�
∂3B
∂t3

�
dt =

∂2B�

∂t2 B

����∞
�∞
�
Z ∞

�∞

∂2B�

∂t2

∂B
∂t

dt�
∂2B
∂t2 B�

����∞
�∞

+

Z ∞

�∞

∂2B
∂t2

∂B�

∂t
dt;

=

Z ∞

�∞

�
∂2B
∂t2

∂B�

∂t
�

∂2B�

∂t2

∂B
∂t

�
: (4.62)

Using Eq. (4.60)–(4.62) we can write
Z ∞

�∞
(t�T )

��
B�

∂4B
∂t4 �B

∂4B�

∂t4

�
+

�
∂3B�

∂t3

∂B
∂t
�

∂3B
∂t3

∂B�

∂t

��
dt = 3

Z ∞

�∞

�
∂2B
∂t2

∂B�

∂t
�

∂2B�

∂t2

∂B
∂t

�
dt:

(4.63)
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The next term in the evolution of chirp is governed by self steepening and is given by

Z ∞

�∞
(t�T )jBj2

�
B�

∂2B
∂t2 �B

∂2B�

∂t2

�
dt = (t�T )B�jBj2

∂B
∂t

����∞
�∞
� BjBj2(t�T )

∂B�

∂t

����∞
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�
Z ∞
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∂B
∂t
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∂t
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dt

+
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∂B�
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�
jBj2(t�T )
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∂t

+B(t�T )
∂jBj2

∂t
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dt
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B
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∂B
∂t
�B

∂B�

∂t

�
dt: (4.64)

Next consider the integral

Z ∞

�∞
(t�T )jBj2

∂2jBj2

∂t2 dt = 2
Z ∞

�∞
jBj2(t�T )

����∂B
∂t

����2 dt +
Z ∞

�∞
BjBj2(t�T )

∂2B�

∂t2 dt +
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�∞
B�jBj2(t�T )

∂2B
∂t2 dt

= 2
Z ∞

�∞
jBj2(t�T )

����∂B
∂t

����2 dt + BjBj2(t�T )
∂B�

∂t

����∞
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�
Z ∞
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∂B�
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dt�
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∂t
+B�jBj2
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dt;
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(t�T )jBj2
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∂t2 dt = �
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(t�T )
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B

∂B�

∂t
∂jBj2

∂t
+B�
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∂t
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∂t
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dt

�
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B
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�
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(t�T )

�
∂jBj2

∂t
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dt�
Z ∞

�∞
jBj2

∂jBj2

∂t
dt: (4.65)

Using Eq. (4.51) we can write Eq. (4.65) as

Z ∞

�∞
(t�T )jBj2

∂2jBj2

∂t2 dt =�
Z ∞

�∞
(t�T )

�
∂jBj2

∂t

�2

dt: (4.66)

The last term in Eq. (4.54) can be evaluated as follows:

Z ∞

�∞
(t�T )jBj2

∂jBj2

∂t
dt = (t�T )jBj4j∞

�∞�
Z ∞

�∞
jBj2

�
jBj2 +(t�T )

∂jBj2
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�
dt;
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�∞
(t�T )jBj2

∂jBj2

∂t
dt = �1=2

Z ∞

�∞
jBj4dt: (4.67)
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Using the results in Eqs. (4.59), (4.63), (4.64), (4.66) and (4.67) in Eq. (4.54) we get the evolution

of the chirp parameter along the fiber to be

dC̃
dz

=
β2

E

Z ∞

�∞

����∂B
∂t

����2 dt +
iβ3

4E
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�∞
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∂B�
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dt�
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2Eω0
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�
B
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∂B
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dt
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E
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Z ∞
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(t�T )
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∂jBj2

∂t

�2

dt +
γ

2E

Z ∞

�in f ty
jBj4dt: (4.68)

For ultrashort pulses, the chirp is not only affected by GVD but also by TOD, self-steepening and

IRS.

4.1.5 Evolution of the RMS width

Next we find the evolution of pulsewidth along the fiber length. For this we differentiate Eq. (4.5)

with respect to z to obtain

2σE
dσ
dz

=

Z ∞

�∞
(t� t)2

�
B�

∂B
∂z

+B
∂B�

∂z

�
dt: (4.69)

Using Eqs. (4.8) and (4.9) in Eq. (4.69) we can write

2σE
dσ
dz

= i
β2

2

Z ∞
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(t�T )

2
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B
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dt +

β3
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dt: (4.70)

First we evaluate the terms whose coefficients depend on GVD parameter β2 in Eq. (4.70) as

follows:
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(t�T )
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�
dt: (4.71)

From the definition of chirp parameter in Eq. (4.4) we can write Eq. (4.71) as
Z ∞

�∞
(t�T )

2
�

B
∂2B�

∂t2 �B�
∂2B
∂t2

�
dt =�4iC̃E: (4.72)
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Next consider the terms in Eq. (4.70) whose coefficients depend on third order dispersion parameter

β3 given by

Z ∞
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Next we evaluate the first term in Eq. (4.73) as follows:
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However the last term in Eq.(4.74) is given by
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Substituting Eqs. (4.74) and (4.75) in (4.73) we have
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The last term in Eq. (4.76) can be written as
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Substituting Eq. (4.77) in Eq. (4.76) we have
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����∂B
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����2 dt: (4.78)

The next step in finding the evolution of the pulse width along the fiber is to evaluate the term

governed by self steepening in Eq. (4.70) as follows:

Z ∞

�∞
(t�T )

2
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B�
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∂t
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∂
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�
dt = 3
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∂
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jBj2dt: (4.79)

Next consider the term on the right hand side of Eq. (4.79)
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2jBj2
∂
∂t
jBj2dt = (t�T )
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2jBj2(t�T )+(t�T )

2 ∂
∂t
jBj2
�

dt;

Z ∞

�∞
(t�T )
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�∞
(t�T )jBj4dt = 0: (4.80)

Therefore Eq. (4.79) can be written as

Z ∞

�∞
(t�T )

2
�

B�
∂
∂t
(jBj2B)+B

∂
∂t
(jBj2B�)

�
dt = 0: (4.81)

Substituting Eqs. (4.72),(4.78) and (4.81) into Eq. (4.70) we find the evolution of pulse width along

the fiber to be
dσ
dz

=
β2C
σ

+
β3

2σE

Z ∞

�∞
(t�T )

����∂B
∂t

����2 dt: (4.82)

While the evolution of the width of ultra short pulses is unaffected by IRS and self-steepening, it

depends on the TOD and GVD in the fiber. The above equations for the evolution of the pulse

parameters reduce the complexity of the problem but they are still not in a useful form because

they depend on the pulse shape B(z; t), which is not known until Eq. (3.50) is solved. If one has

some knowledge of the pulse shape and its dependence on the five moments, the problem can be

solved approximately. As seen before in Chapter 2, there are several situations in which pulse

shape is known a priori with a good degree of approximation. For example, in the case of standard
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solitons, pulse shape can be assumed to maintain “sech” shape even if its width changes. As

another example, pulse shape remain nearly Gaussian in a dispersion-managed fiber link [1]. In

general, a Gaussian pulse can be assumed to maintain its shape during propagation inside optical

fibers if the nonlinear length is much larger than the dispersion length [1]. We consider these two

cases in the following two sections.

4.2 Fundamental Soliton

First let us consider the case of perturbed fundamental soliton. The pulse shape is then given by

Eq. (3.7). The width parameter τ and the chirp parameter C appearing in this equation is related

to the RMS width σ and the moment C̃ respectively by a constant factor K such that τ2
= Kσ2

=

(12=π2
)σ2 and C = KC̃ = (12=π2

)C̃. Substituting Eq. (3.7) for B(z; t) in Eq. (4.22) we get

dE
dz

= 0: (4.83)

From Eq. (4.36) we have
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dz

= β2Ω+
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2E

Z ∞

�∞

����∂B
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����2 dt +
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Z ∞

�∞
jBj4dt: (4.84)

Also from Eq. (3.11) we have
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]: (4.85)

Hence ����∂B
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����2 =
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τ2 sech2
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�
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�
t�T

τ

�
+a2sech2

�
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τ

��
Ω+C(t�T )=τ2�2

: (4.86)

The integration of Eq. (4.86), can be performed analytically using Table 4.1 and the final result is

Z ∞

�∞

����∂B
∂t

����2 dt = Ω2E +
E

3τ2

�
1+

π2

4
C2
�
; (4.87)

where E = 2aτ. From Eq. (4.7) we can write

jBj4 = a4sech4
�

t�T
τ

�
: (4.88)
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f (x) 1 x2n+1 x2 x2n tanh2(x) sech2(x) sech2(x) sech2(x) xsech2(x)

tanh(x) tanh2(x) x2n+1tanh2(x) tanh(x)
R ∞
�∞ f (x) 2 0 π2=6 0 2=3 4=3 4=15 0 1=3

sech2(x)dx

Table 4.1: Integration table to get the evolution of pulse parameters of fundamental soliton. Here n is an integer and

takes values 0;1;2; ::::

From Table 4.1 we have Z ∞

�∞
jBj4dt =

E2

3τ
: (4.89)

Hence using Eqs. (4.84), (4.87) and (4.89), the evolution the pulse position can be written as
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β3Ω2

2
+

β3

6τ2

�
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π2

4
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�
+

γE
2ω0τ

: (4.90)

Next we use Eq.(3.7) in Eq. (4.52) to find the evolution of the frequency of the fudamental

soliton as follows:
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From Eqs. (3.7) and (4.85) we have�
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: (4.92)

Also from Eq. (3.7) we can write

jBj2 = a2 sech2
�

t�T
τ

�
: (4.93)

Differentiating Eq. (4.93) with respect to t, we have
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τ
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�
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From Eqs. (4.92) and (4.94) we can write the first integral in Eq. (4.91) as
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Using Table 4.1 we get Z ∞

�∞

∂
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�
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�
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iCE2

3τ3 : (4.96)

Using Eq. (4.94) the second integral in Eq. (4.91) can be written as

Z ∞

�∞

�
∂
∂t
jBj2

�2

dt =
4a4

τ2

Z ∞

�∞
sech4

�
t�T

τ

�
tanh2

�
t�T

τ

�
dt: (4.97)

Again using Table 4.1 we get Z ∞

�∞

�
∂
∂t
jBj2
�2

dt =
4E2

15τ3 : (4.98)

Substituting Eqs. (4.95) and (4.98) into Eq. (4.91) we can write the evolution of the frequency of

the fundamental soliton as
dΩ
dz

=
γEC

3ω0τ3 �
4γTRE
15τ3 : (4.99)

To find the evolution of the chirp next, we use Eq. (3.7) in Eq. (4.68). For a pulse of the form

shown in Eq. (3.7), the constant K takes the value 12=π2. Hence Eq. (4.68) can be written as

dC
dz

=
12β2

π2E

Z ∞

�∞

����∂B
∂t

����2 dt +3i
β3

π2E

Z ∞

�∞

�
∂2B
∂t2

∂B�

∂t
�

∂2B�

∂t2

∂B
∂t

�
dt

�
12iγ

π2Eω0

Z ∞

�∞
(t�T )

∂jBj2

∂t

�
B�

∂B
∂t
�B

∂B�

∂t

�
dt�

6iγ
π2Eω0

Z ∞

�∞
jBj2

�
B

∂B�

∂t
�B�

∂B
∂t

�
dt

� 12
TRγ
π2E

Z ∞

�∞
(t�T )

�
∂jBj2

∂t

�2

dt +
6γ

π2E

Z ∞

�∞
jBj4dt: (4.100)

Now we perform the integration of each term one by one. First we evaluate the term that depend

on β3 as follows:

From Eq. (4.85) we have

∂2B
∂t2 = asech

�
t�T

τ

��
1
τ2 tanh2

�
t�T

τ

�
�

1
τ2 sech2

�
t�T

τ

�
�

i
τ

tanh

�
t�T

τ

��
Ω+C

(t�T )

τ2

�
�

iC
τ2 �

1
τ

tanh

�
t�T

τ

�
� i

�
Ω+C

(t�T )

τ2

��
� exp[iφ� iΩ(t�T )� iC(t�T )

2
=2τ2

]:(4.101)

Hence we find

∂B�

∂t
∂2B
∂t2 = a2 sech2

�
t�T

τ

��
�

1
τ3 tanh3

�
t�T

τ

�
+

1
τ3 sech2

�
t�T

τ

�
tanh

�
t�T

τ

�
+

iC
τ3 tanh

�
t�T

τ

�
+

i
τ2 tanh2

�
t�T

τ

��
Ω+C

(t�T )

τ2

�
�

i
τ2 sech2

�
t�T

τ

��
Ω+C

(t�T )

τ2

�
+

1
τ

tanh

�
t�T

τ

��
Ω+C

(t�T )

τ2

�2

+
C
τ2

�
Ω+C

(t�T )

τ2

�
� i

�
Ω+C

(t�T )

τ2

�3
#
: (4.102)
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Subtracting the complex conjugate of Eq. (4.102) from itself we get�
∂2B
∂t2

∂B�

∂t
�

∂2B�

∂t2

∂B
∂t

�
= a2 sech2

�
t�T

τ

��
2iC
τ3 tanh

�
t�T

τ

�
+

2i
τ2 tanh2

�
t�T

τ

��
Ω+C

(t�T )

τ2

�
�

2i
τ2 sech2

�
t�T

τ

��
Ω+C

(t�T )

τ2

�
�2i

�
Ω+C

(t�T )

τ2

�3
#
: (4.103)

Using Table 4.1 and integrating Eq. (4.103) we get

Z ∞

�∞

�
∂2B
∂t2

∂B�

∂t
�

∂2B�

∂t2

∂B
∂t

�
dt =�

2i
τ2 EΩ

�
1
3
+

π2

4
C2
�
�2iΩ3E: (4.104)

Next we find the effect of self-steepening on the evolution of the chirp by evaluating the third and

the fourth integrals in Eq. (4.100). From Eqs. (4.92) and (4.94) the third integral in Eq. (4.100) can

be written as

Z ∞

�∞
(t�T )

∂jBj2

∂t

�
B�

∂B
∂t
�B

∂B�

∂t

�
dt =

4a4

τ

Z ∞

�∞
(t�T )sech4

�
t�T

τ

�
tanh

�
t�T

τ

��
Ω+

C
τ2 (t�T )

�
dt:

(4.105)

From Table 4.1 Eq. (4.105) can be written as

Z ∞

�∞
(t�T )

∂jBj2

∂t

�
B�

∂B
∂t
�B

∂B�

∂t

�
dt = i

ΩE2

3τ
: (4.106)

The next integral in Eq. (4.100) can be written using Eqs. (4.92) and (4.93) as

Z ∞

�∞
jBj2

�
B

∂B�

∂t
�B�

∂B
∂t

�
dt = 2ia4

Z ∞

�∞

�
Ω+C

(t�T )

τ2

�
sech4

�
t�T

τ

�
dt: (4.107)

Using Table 4.1 to perform the integration we obtain

Z ∞

�∞
jBj2

�
B

∂B�

∂t
�B�

∂B
∂t

�
dt = 2i

ΩE2

3τ
: (4.108)

Next we evaluate the fifth integral in Eq. (4.100) using Eq. (4.94) and Table 4.1 as follows:

Z ∞

�∞
(t�T )

�
∂jBj2

∂t

�2

dt =
4a4

τ2

Z ∞

�∞
(t�T )sech4

�
t�T

τ

�
tanh2

�
t�T

τ

�
dt;

Z ∞

�∞
(t�T )

�
∂jBj2

∂t

�2

dt = 0: (4.109)

Using Eq. (4.89), the final integral in Eq. (4.100) is given by

Z ∞

�∞
jBj4dt =

E2

3τ
: (4.110)
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Using Eqs. (4.87), (4.104), (4.106), (4.108), (4.109), (4.110), in Eq. (4.100), we write the evolution

of chirp along the fiber as

dC
dz

=
12
π2 β2Ω2

+
β2

τ2

�
4
π2 +C2

�
+

β3Ω
2τ2

�
4
π2 +3C2

�
+

6
π2 β3Ω3

+
24γΩE
π2ω0τ

+
2γE
π2τ

: (4.111)

β2� β3� (γE=ω0)� γTRE� γE�
dE
dz 0 0 0 0 0

dT
dz Ω Ω2

2 + 1
6τ2

�
1+ π2

4 C2
�

1=2τ 0 0

dΩ
dz 0 0 C=3τ3 �4=(15τ3) 0

dC
dz

12
π2 Ω2+ 1

τ2

� 4
π2 +C2

� Ω
2τ2

� 4
π2 +3C2

�
+ 6

π2 Ω3 24Ω=π2τ 0 2=(π2τ)
dτ
dz C=τ ΩC=τ 0 0 0

Table 4.2: Evolution of the pulse parameters for the Fundamental soliton obtained using the moment method

Next we find the evolution of the pulse width from Eq. (4.82). Substituting Eq. (3.7) into

Eq. (4.82) and using K = 12=π2, we get

dτ
dz

=
β2C

τ
+

6β3

π2τE

Z ∞

�∞
(t�T )

����∂B
∂t

����2 dt: (4.112)

From Eq. (4.86), the second integral in Eq. (4.112) can be evaluated using Table 4.1 as follows:

Z ∞

�∞
(t�T )

����∂B
∂t

����2 dt =
a2

τ2

Z ∞

�∞
(t�T )sech2

�
t�T

τ

�
tanh2

�
t�T

τ

�
dt

+ a2
Z ∞

�∞
(t�T )sech2

�
t�T

τ

��
Ω+C(t�T )=τ2�2 dt;

=
π2

6
ΩCE: (4.113)

From Eqs. (4.112) and (4.113) we write the evolution of pulse width as

dτ
dz

=
β2C

τ
+β3Ω

C
τ
: (4.114)

The evolution of the pulse parameters found using the moment method for fundamental solitons

are given by Table 4.2.
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4.3 Gaussian Pulse

Next we consider the case of a DM soliton whose pulse shape is represented by a Gaussian profile

as shown in Eq. (3.23). The width parameter, τ and the chirp parameter, C appearing in this

equation are again related to the RMS width, σ and the moment C̃ by a constant factor K such that

τ2
= Kσ2

= 2σ and C = 2C̃ respectively. In order to see how the evolution of the pulse parameters

in such a case differ from that of the fundamental soliton, we use Eq. (3.23) for the pulse shape,

B(z; t) in the evolution equations obtained using the moment method. First the evolution of the

pulse energy given by Eq. (4.22) remain unchanged. Hence

dE
dz

= 0: (4.115)

Next the evolution of the pulse position for the case of Gaussian pulses can be obtained by substi-

tuting Eq. (3.23) into Eq. (4.36). From Eq. (4.36) we have

dT
dz

= β2Ω+
β3

2E

Z ∞

�∞

����∂B
∂t

����2 dt +
3γ

2ω0E

Z ∞

�∞
jBj4dt: (4.116)

From Eq. (3.27) we have����∂B
∂t

����2 = a2
�
Ω2

+(1+C2
)
(t�T )

2

τ4 +2ΩC
(t�T )

τ2

�
: (4.117)

Integrating Eq. (4.117) with respect to t from �∞ to ∞ using Table 4.3 we get

Z ∞

�∞

����∂B
∂t

����2 dt = a2
Z ∞

�∞

�
Ω2

+(1+C2
)
(t�T )

2

τ4 +2ΩC
(t�T )

τ2

�
exp[�(t�T )

2
=τ2

]dt;

Z ∞

�∞

����∂B
∂t

����2 dt = EΩ2
+E

(1+C2
)

2τ2 ; (4.118)

where E =
p

πa2τ. Using Eq. (3.23) the final integral in Eq. (4.116) can be written as

f (x) 1 x x2 exp(�x2
) x2n+1

R ∞
�∞ f (x) exp(�x2

)dx
p

π 0
p

π=2
p

π=2 0

Table 4.3: Integration table to get the evolution of pulse parameters of a Gaussian pulse

Z ∞

�∞
jBj4dt = a4

Z ∞

�∞
exp[�2(t�T )

2
=τ2

]dt (4.119)
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Using Table 4.3 we have Z ∞

�∞
jBj4dt =

E2
p

2πτ
: (4.120)

Hence the the evolution of the pulse position for Gaussian pulse is given by

dT
dz

= β2Ω+
β3

2

�
Ω2

+
(1+C2

)

2τ2

�
+

3γE
p

8πω0τ
: (4.121)

Next we find the evolution of the frequency for the case of a DM soliton. For this we use

Eq. (3.23) in Eq. (4.52) and find

dΩ
dz

=�
iγ

Eω0

Z ∞

�∞

∂
∂t
jBj2

�
B�

∂B
∂t
�B

∂B�

∂t

�
dt�

γ
E

TR

Z ∞

�∞

�
∂
∂t
jBj2
�2

dt: (4.122)

From Eqs. (3.23) and (3.27) we have�
B�

∂B
∂t
�B

∂B�

∂t

�
= 2ia2 ��Ω�C(t�T )=τ2�exp

�
�(t�T )

2
=τ2�

; (4.123)

and
∂
∂t
jBj2 =�2a2 (t�T )

τ2 exp
�
�(t�T )

2
=τ2�

: (4.124)

Hence the first integral in Eq. (4.122) can be written as

Z ∞

�∞

∂
∂t
jBj2

�
B�

∂B
∂t
�B

∂B�

∂t

�
dt =�

4ia4

τ2

Z ∞

�∞
(t�T )

�
�Ω�C(t�T )=τ2�exp

�
�2(t�T )

2
=τ2�dt

(4.125)

Using the Table 4.3 we perform the integration and obtain

Z ∞

�∞

∂
∂t
jBj2

�
B�

∂B
∂t
�B

∂B�

∂t

�
dt =

iCE2
p

2πτ3
: (4.126)

Next from Eq. (4.124) we can write the second integral in Eq.(4.122) as

Z ∞

�∞

�
∂
∂t
jBj2
�2

dt =
2a4

τ2

Z ∞

�∞
2
(t�T )

2

τ2 exp
�
�2(t�T )

2
=τ2�dt: (4.127)

Again using Table 4.3 we perform the integration to obtain

Z ∞

�∞

�
∂
∂t
jBj2
�2

dt =
E2

p
2πτ3

: (4.128)

Substituting Eqs. (4.126) and (4.128) into Eq. (4.122) we find the evolution of the frequency in the

case of Gaussian pulses to be
dΩ
dz

=
γEC

p
2πω0τ3

�
γTRE
p

2πτ3
: (4.129)
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Next we find the evolution of the chirp for Gaussian pulses by using Eq. (3.23) along with

K = 2, which is the value of the constant K in Eq. (4.54). From Eq. (4.54) we have

dC
dz

=
2β2

E

Z ∞

�∞

����∂B
∂t

����2 dt + i
β3

2E

Z ∞

�∞

�
∂2B
∂t2

∂B�

∂t
�

∂2B�

∂t2

∂B
∂t

�
dt

+
2iγ

Eω0

Z ∞

�∞
(t�T )

∂jBj2

∂t

�
B�

∂B
∂t
�B

∂B�

∂t

�
dt�

3iγ
Eω0

Z ∞

�∞
jBj2

�
B

∂B�

∂t
�B�

∂B
∂t

�
dt

� 2
TRγ
E

Z ∞

�∞
(t�T )

�
∂jBj2

∂t

�2

dt +
γ
E

Z ∞

�∞
jBj4dt: (4.130)

Now we evaluate the integrals one by one. The result of the first integration is given in Eq. (4.117).

We now evaluate the second integral. From Eq. (3.27) we have

∂2B
∂t2 = a

"�
�iΩ� (1+ iC)

(t�T )

τ2

�2

�
(1+ iC)

τ2

#
exp

�
iφ� iΩ(t�T )� (1+ iC)

(t�T )
2

2τ2

�
:

(4.131)

Using Eqs. (3.27) and (4.131) the second integral can be written as

Z ∞

�∞

�
∂2B
∂t2

∂B�

∂t
�

∂2B�

∂t2

∂B
∂t

�
dt = a2

Z ∞

�∞
exp

�
�
(t�T )

τ2

��
�2iΩ3

+2iΩ(1�C2
)
(t�T )

2

τ4 �4iΩ2C
(t�T )

τ2

�2iΩ2C
(t�T )

τ2 � 2iC(1+C2
)
(t�T )

3

τ6 �4i(1+C2
)
(t�T )

2

τ4 � 2i
Ω
τ2

�
: (4.132)

Using Table 4.3 we perform the integration and obtain

Z ∞

�∞

�
∂2B
∂t2

∂B�

∂t
�

∂2B�

∂t2

∂B
∂t

�
dt =�2iΩ3E�3iΩ(1+C2

)E=τ2
: (4.133)

From Eqs. (4.123) and (4.124) the third integral in Eq. (4.130) can be written as

Z ∞

�∞
(t�T )

∂jBj2

∂t

�
B�

∂B
∂t
�B

∂B�

∂t

�
dt =�4ia4

Z ∞

�∞

(t�T )
2

τ2

�
�Ω�C

(t�T )

τ2

�
exp

�
�2

(t�T )
2

τ2

�
dt:

(4.134)

Using Table 4.3 and performing the integration we get

Z ∞

�∞
(t�T )

∂jBj2

∂t

�
B�

∂B
∂t
�B

∂B�

∂t

�
dt = i

ΩE2
p

2πτ
: (4.135)

The next term in Eq. (4.130) can be written by using Eqs. (4.123) and (3.27) as

Z ∞

�∞
jBj2

�
B

∂B�

∂t
�B�

∂B
∂t

�
dt = 2ia4

Z ∞

�∞

�
Ω+C(t�T )=τ2�exp

�
�2(t�T )

2
=τ2�dt: (4.136)
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Using Table 4.3 Eq. (4.136) can be written as
Z ∞

�∞
jBj2

�
B

∂B�

∂t
�B�

∂B
∂t

�
dt = 2i

ΩE2
p

2πτ
: (4.137)

The next integral in the evolution equation for chirp is evaluated using Eq. (4.124) in Eq. (4.130)

as follows:
Z ∞

�∞
(t�T )

�
∂jBj2

∂t

�2

dt = 4a4
Z ∞

�∞

(t�T )
3

τ6 exp
�
�2(t�T )

2
=τ2�dt: (4.138)

From Table 4.3 we have Z ∞

�∞
(t�T )

�
∂jBj2

∂t

�2

dt = 0: (4.139)

Thus we can write the evolution of the chirp parameter for the case of Gaussian pulses using

Eqs. (4.118), (4.120), (4.133), (4.135), (4.137) and (4.139) in Eq. (4.130) and the final result is

given by

dC
dz

= 2β2Ω2
+β2

(1+C2
)

τ2 +β3Ω3
+β3

(1+C2
)

τ2 +
4γEΩ
p

2πω0τ
+

γE
p

2πτ
: (4.140)

Next we find the evolution of the pulse width for the case of Gaussian pulses. Substituting

Eq. (3.23) in Eq. (4.82) and using that K = 2, we get

dτ
dz

=
β2C

τ
+

β3

τE

Z ∞

�∞
(t�T )

����∂B
∂t

����2 dt: (4.141)

The integral on the right hand side of Eq. (4.141) can be evaluated analytically by using Eq. (4.117)

and Table 4.3 as follows:
Z ∞

�∞
(t�T )

����∂B
∂t

����2 dt = a2
Z ∞

�∞
(t�T )

�
Ω2

+(1+C2
)
(t�T )

2

τ4 +2ΩC
(t�T )

τ2

�
exp[�(t�T )

2
=τ2

]dt;

= EΩC (4.142)

Substituting Eq. (4.142) into Eq. (4.141) we find the evolution equation for the pulse width for the

case of Gaussian pulse to be
dτ
dz

=
β2C

τ
+

β3ΩC
τ

: (4.143)

To summarize, the evolution equations of the pulse parameters for the case of a Gaussian pulse

using the moment method are summarized in Table 4.4.

Thus we see that the moment method is a simple analytical method that can give the evolution

equations for the pulse parameters in the fiber thus enabling us to understand the propagation
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β2� β3� (γE=ω0)� γTRE� γE�
dE
dz 0 0 0 0 0

dT
dz Ω Ω2

2 + (1+C2)
4τ2 3=

p
8πτ 0 0

dΩ
dz 0 0 C=

p
2πτ3 �1=

p
2πτ3 0

dC
dz 2Ω2+ (1+C2)

τ2 Ω3+ (1+C2)
τ2 4Ω=

p
2πτ 0 1=(

p
2πτ)

dτ
dz C=τ ΩC=τ 0 0 0

Table 4.4: Evolution of pulse parameters for Gaussian pulse obtained using the moment method

of optical pulses inside a fiber in both dissipative and non-dissipative limits. Also the results

obtained using the variational method can be derived using the moment method. This can be seen

immediately by setting β3, TR and 1=ω0 equal to 0 in the evolution equations obtained using the

moment method. However, like the variational method, the moment method is also an approximate

method. The main limitation of this analysis stems from the assumption that the pulse maintains

its shape even though its width may change and it may become chirped.

4.4 Raman-induced Frequency shift

Since 1986, RIFS has been studied extensively for both constant dispersion and dispersion-managed

fibers but mostly in the context of solitons [38]– [40]. However, as seen before in Chapter 3, RIFS

is not necessarily a soliton effect. Now we apply the moment method to study the effect of IRS

on fundamental soliton and Gaussian pulses in the case of both anomalous and normal dispersion

regimes. We also keep the TOD and self-steepening terms since they become important for we

consider pulses whose width is as small as 50 femtoseconds.
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4.4.1 Fundamental Soliton

We first consider the propagation of standard solitons in a fiber with constant dispersion. Then

from the previous sections we know that the five pulse parameters evolve as

dE
dz

= 0 (4.144)

dT
dz

= β2Ω+
β3

2

�
Ω2

+
1

3τ2 (1+
π2

4
C2

)

�
+

γE
2ω0τ

; (4.145)

dΩ
dz

= �
4TRγE
15τ3 +

γCE
3ω0τ3 ; (4.146)

dτ
dz

=
β2C

τ
+β3

CΩ
τ
; (4.147)

dC
dz

=

�
4
π2 +C2

�
β2

τ2 +
β3Ω
2τ2

�
4
π2 +3C2

�
+

6
π2 β3Ω3

+
2γE
π2τ

+
12
π2 β2Ω2

+
24γΩE
π2ω0τ

:(4.148)

Consider first the special case of chirp-free solitons launched in a fiber whose losses are exactly

compensated through distributed amplification such that losses vanish effectively (α = 0). The

pulse energy E then remains constant and γ= γ. If we ignore the higher-order effects except for

IRS by setting ω0 = 0 and β3 = 0 and use C = 0 in Eqs. (4.2)–(4.4), we find that τ remains constant

along the fiber, as it should for solitons. Also, E and τ are not independent but related to each other

by the soliton condition LD = LNL, which can be obtained from Eq. (4.4) by setting dC=dz = 0

if we neglect the Ω term and relate the peak power P0 of the solitons to the soliton energy using

E = 2P0τ. Using the condition LD = LNL, we find that E = 2jβ2j=(γτ). If we substitute this relation

in Eq. (4.146), the RIFS evolves as

Ω(z) =�
8TRjβ2jz

15τ4 : (4.149)

Equation (4.149) is identical to the RIFS magnitude first estimated by Gordon using perturbation

theory [36]. It shows that the RIFS increases linearly with distance but scales with pulse width

as τ�4, thereby becoming important only for pulses shorter than a few picoseconds. However,

its derivation assumes that the soliton remains unchirped. From Eq. (4.148), C remains zero for

solitons only if Ω = 0. Equations (4.147) and (4.148) clearly show that C and τ both begin to

change for standard solitons because of the RIFS. Thus, Eq. (4.149) is only valid in the limit

in which the RIFS is small enough that it does not affect the soliton. We can find the validity

condition for Eq. (4.149) in the absence of third-order dispersion and self-steepening, by requiring
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in Eq. (4.148) that jβ2jΩ2 � 2γE=(π2τ). Using E = 2jβ2j=(γτ), this condition is equivalent to

requiring Ωτ � 1. Noting that the spectral width of a pulse scales inversely with the pulse width

τ, we conclude that Eq. (4.149) is valid as long as the RIFS remains a small fraction of the pulse

spectral width. In many practical situations, RIFS becomes large enough that it exceeds the spectral

width of the pulse significantly.

We thus consider the more general case in which neither E nor τ remain constant along the fiber.

The pulse energy E generally changes because of gain–loss variations introduced when losses are

compensated periodically using optical amplifiers [1]. The soliton width τ begins to change as

soon as the pulse becomes chirped (C 6= 0). Notice that the chirp parameter C does not appear

directly in the Ω equation but it affects the RIFS through pulse-width changes. Using γ= γ e�αz,

the total frequency shift is found by integrating Eq. (4.146) and is given by

Ω(z) =�
4TRγE0

15

Z z

0

e�αz

τ3 dz+
γE0

3ω0

Z z

0
C(z)

e�αz

τ3 dz (4.150)

Note that the RIFS depends on the local pulse width as τ�3 and not as τ�4, as suggested by

Eq. (4.149). Of course, the z dependence of τ and C should be calculated by solving Eqs. (4.147)

and (4.148), which in turn depends on Ω itself. It is this interdependence among τ, C and Ω that

governs the eventual magnitude of the RIFS. Since these evolution equations are coupled they have

to be solved numerically.

As a numerical example, consider the propagation of solitons with initial pulse width, τ 0 = 50 fs

(full width at half maximum about 88 fs) in a 10-m-long, dispersion-shifted fiber with the GVD of 4

ps/km/nm (jβ2j= 5:1 ps2/km). Figures 4.1 and 4.2 show the RIFS and pulse width τ as a function of

distance z in the cases of anomalous and normal dispersion, respectively. The nonlinear parameter

γ= 1:994W�1km�1 was calculated using an effective core area of 50µm2. Also α = 0:2 dB/km

and β3 = 0:1 ps3/km. Consider the case of anomalous dispersion first as it corresponds to the

propagation of solitons. The solid curve in Figure 4.1 shows the C(0) = 0 case that corresponds to

standard solitons. The pulse width is indeed maintained in the beginning, as expected, but begins

to increase after 2 m because of the RIFS and TOD effects. The magnitude of RIFS becomes

comparable to the spectral width of the pulse (about 2 THz) at a distance of 2 m, and it begins to

affect the soliton itself. Notice that Ω increases initially linearly up to a distance of 2 m but then

begins to saturate as the pulse width increases. The use of Eq. (4.149) would be inappropriate under
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Figure 4.1: Evolution of Raman-Induced frequency shift (a) and pulse width (b) when sech-shaped pulses with

T0 = 50 fs propagate inside a 10-m-long fiber exhibiting anomalous dispersion (D = 4 ps/km-nm). The input chirp

parameter C0 varies in the range 0 to 0.2 for the three curves.

such conditions. The dashed and dash-dotted lines show that even a relatively small chirp affects

the RIFS considerably. For positive values of C, the pulse is initially compressed, as expected

for β2C < 0 [1], and then broadens after attaining its minimum width at a distance of about 1 m

as explained in Chapter 2. For this reason Ω initially increases before saturating as the pulse

broadens. The main point to note is that the chirp can increase the RIFS whenever β2C < 0 since

the dispersion-induced chirp is in the opposite direction to that of the initial chirp and as a result

the net chirp is reduced, leading to the initial pulse narrowing. The minimum pulse width occurs

at the point at which the two chirps cancel each other. With a further increase in the propagation

distance the dispersion-induced chirp starts to dominate over the initial chirp and the pulse begins

to broaden. Hence the fiber length is not much longer than 10 m so that the dispersion induced

chirp does not broaden the pulse. For C < 0, pulse begins to broaden immediately, and RIFS is

reduced considerably.

Figure 4.2 shows the RIFS and pulse width as a function of distance in the case of normal

dispersion. The solid line again shows the case C(0) = 0. Since the pulse begins to broaden right

away, in contrast with the soliton case where the pulse width remained constant for up to 2 m, Ω

quickly saturates and is thus considerably smaller in magnitude in the case of normal GVD. The

dashed and dash-dotted lines show that it can be enhanced by chirping the input Gaussian pulse
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Figure 4.2: Evolution of Raman-Induced frequency shift (a) and pulse width (b) when sech-shaped pulses with T 0

= 50 fs propagate inside a 2-m-long fiber exhibiting normal dispersion (D = -4 ps/km-nm). The input chirp parameter

C0 varies in the range -1 to 0 for the three curves.

such that β2C0 < 0. The reason is easily understood by noting that the pulse can be compressed

by a factor of
p

2 for jC0j = 1, and the compression factor can be increased even more for large

values of the chirp. As seen in Fig. 4.2, almost the entire RIFS occurs within the first meter

of the fiber, where pulse remains compressed and its magnitude is about three times larger for

jC0j= 1 compared with the C0 = 0 case. With sufficiently large chirp, the RIFS can even become

comparable to that obtained in the case of anomalous dispersion. We thus conclude that RIFS can

be made large enough to be measurable even in the case of normal GVD through proper chirp

control.

4.4.2 Chirped Gaussian Pulses

In this section we consider the case of a Gaussian pulse shape of the form

A(z; t) =

r
E
πτ

exp[�(1+ iC)(t�T )
2
=2τ2

+ iφ� iΩ(t�T )]: (4.151)

From the previous evaluations, the five pulse parameters then evolve as

dE
dz

= 0; (4.152)

dT
dz

= β2Ω+
β3

2

�
Ω2

+
1+C2

2τ2

�
+

3γE
p

8πω0τ
; (4.153)
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Figure 4.3: Evolution of Raman-Induced frequency shift (a) and pulse width (b) when Gaussian pulses with T 0 =

50 fs propagate inside a 10-m-long fiber exhibiting anomalous dispersion (D = 4 ps/km-nm). The input chirp parameter

C0 varies in the range 0 to 0.2 for the three curves.

dΩ
dz

= �
TRγE
p

2πτ3
+

γCE
p

2πω0τ3
; (4.154)

dτ
dz

=
β2C

τ
+

β3CΩ
τ

; (4.155)

dC
dz

= β2

�
1+C2

τ2

�
+β3Ω3

+β3

�
1+C2

τ2

�
+

γE
p

2πτ
+2β2Ω2

+
4γΩE
p

2πω0τ
: (4.156)

Following the method discussed in the previous section for the case of ‘sech’ pulses, the RIFS

in the Gaussian case is given by

Ω(z) =�
TRγE0p

2π

Z z

0

e�αz

τ3 dz+
γE0p
2πω0

Z z

0
C(z)

e�αz

τ3 dz: (4.157)

where C(z) and τ(z) should be found numerically by solving Eqs. (4.153)–(4.156). Equation

(4.157) should be compared with Eq. (4.150) found in the“sech” case. It is evident that the ex-

act shape of the pulse has a relatively minor effect on the magnitude of the RIFS. In particular, the

functional dependence on the local pulse width and local magnitude of loss remains exactly the

same. Even the numerical factor of (2π)�1=2 � 0:4 in the Gaussian case is only slightly larger than

the factor of 4=15 � 0:267 found in the “sech” case. This feature indicates that even if the pulse

shape deviates somewhat from the shape assumed in applying the moment method, our analysis

should still provide a good estimate of the RIFS in practice.

Figures 4.3 and 4.4 show the RIFS and pulse width of Gaussian pulses as a function of distance
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Figure 4.4: Evolution of Raman-Induced frequency shift (a) and pulse width (b) when Gaussian pulses with T 0 =

50 fs propagate inside a 2-m-long fiber exhibiting normal dispersion (D = -4 ps/km-nm). The input chirp parameter

C0 varies in the range -1 to 0 for the three curves.

in the cases of anomalous and normal dispersion, respectively, for the same 10-m long fiber and for

the same set of parameters used for Figures 4.1 and 4.2. For a fair comparison with the soliton case,

the initial pulse energy is chosen to be E0 =

p
2πjβ2j=(γτ) because dC=dz = 0 from Eq. (4.156)

for this energy when Ω = 0. In all cases, the solid line shows the case when C0 = 0. In the

case of anomalous dispersion (Fig. 4.3), the Gaussian pulse maintains its width up to 2 m, similar

to the soliton case, and then broadens because of the RIFS and TOD effects. As expected, Ω

increases linearly first and then saturates. Interestingly, the Gaussian pulses acquires a slightly

larger RIFS compared with the ‘sech’ pulses as dispersion-induced broadening depends somewhat

on the pulse shape. The dashed and dash-dotted lines show the effects of a positive initial chirp.

Since β2C0 < 0, the pulse undergoes an initial narrowing stage before broadening. A comparison

of Figs. 4.1 and 4.3 shows that the pulses with nonzero initial chirp experience the compression

stage twice. We attribute this to the imbalance between the dispersive and nonlinear effects in the

case of initially chirped pulses. Other qualitative features are similar in the two cases. The case of

normal dispersion shown in Figure 4.4 is quite similar to the results in Fig. 4.2 obtained for “sech”

pulses. For chirp-free Gaussian pulses (solid line), RIFS saturates to a relatively small value of

0.5 THz. However, this value can be increased by applying a negative chirp so that β2C0 < 0.
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4.5 Chapter Summary

From the above results we conclude that the RIFS resulting from intrapulse Raman scattering is

a general phenomenon that occurs for all pulses both in the normal and anomalous dispersion

regimes of an optical fiber. The variational method cannot be used to calculate RIFS because of

the dissipative nature of the Raman effect. However the moment method can be used to get the

general evolution equations for the pulse parameters that can be applied to a given pulse shape. As

an example we applied it to the cases of “sech” and Gaussian pulse shapes. The results also show

that the RIFS depends not only on the width but also on the frequency chirp associated with the

optical pulse. The RIFS becomes quite large in the case of ultrashort pulses because, as seen in

Eqs. (4.150) and (4.157), it depends on the local pulse width as τ�3 and varies considerably with

the history of pulse width changes. Whenever pulse width remains nearly constant along the fiber,

RIFS can accumulate to relatively large values. This is the main reason why RIFS can be quite

large for solitons. In the case of fundamental solitons, our expression for RIFS reduces to that of

Gordon [36] as long as the RIFS is much smaller than the spectral width of the pulse. However,

we show that even optical solitons do not maintain their width when RIFS becomes comparable to

or larger than the spectral width of the pulse. Our analysis remains valid in this regime and shows

how RIFS saturates to a constant value because of soliton broadening.

We also consider numerical examples in both the normal and anomalous dispersion regime

using a 10-m long fiber in which femtosecond pulses are launched. Although RIFS is generally

smaller for normal dispersion compared with the case of anomalous dispersion, it is large enough

to be measurable experimentally. We also have included the effects of TOD and self-steepening in

our analysis. We see that even though the TOD does not appear directly in our expression for RIFS,

it does affect the RIFS through the frequency chirp. The main limitation of our analysis is that our

results may not be valid if the pulse shape is known to change significantly during propagation.



Chapter 5

Amplifier Noise and Bit Error Rate

We now apply the moment method described in Chapter 4, to the problem of amplifier-induced

noises as well as to find the degradation in system performance due to amplifier noise. In commu-

nication systems, the transmission is eventually limited by fiber losses. In order to overcome this

limitation, optical amplifiers are used at regular intervals to compensate for fiber losses. Optical

amplifiers amplify the optical signal through stimulated emission when the amplifier is pumped

electrically or optically to achieve population inversion. Such amplifiers also degrade the ampli-

fied signal because of spontaneous emission that adds noise to the signal during its amplification.

The system degradation is quantified through a parameter Fn, called the amplifier noise figure and

defined as Fn = 2nsp where nsp = N2=(N2�N1) is the spontaneous emission factor related to the

atomic populations N1 and N2 for the ground and excited states [1]. The noise added by these

amplifiers to the signal is called the Amplified Spontaneous Emission (ASE) noise. The ASE noise

accumulates over many amplifiers and degrades the optical signal as the number of amplifiers in-

creases. As the ASE noise level increases, it begins to saturate optical amplifiers and reduces the

gain of amplifiers located further down the fiber link. Hence the signal level drops further while

ASE level increases. If the number of amplifiers is large, the signal will degrade so much that the

system performance is largely reduced at the receiver.

66
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Figure 5.1: Bit Error probabilities.

5.1 Bit Error Rate

Optical receivers convert incident optical power into electric current through a photodiode. Among

a group of optical receivers, a receiver is said to to be more sensitive if it achieves the same per-

formance with less optical power incident on it. The communications system performance is char-

acterized by a quantity called the bit error rate (BER) which is defined as the average probability

of incorrect bit identification of a bit by the decision circuit of the receiver [1]. For example, a

BER of 2� 10�6 would correspond to on average 2 errors per million bits. A commonly used

criterion for digital optical receivers requires BER � 1� 10�9. It is important for the signal to

have minimum distortions in order to avoid a high BER at the receiver. This means that although

the combined effects of GVD, SPM and IRS cannot be eliminated they need to be reduced so that

the pulse can propagate with minimum distortions. Also the inevitable presence of amplifier noises

can also cause pulse distortions and hence cause system degradation. In order to assess the system

performance one needs to know how to calculate the BER of the system at the receiver end. In this

chapter we calculate the BER of the system at the receiver in the presence of amplifier noises.

Figure 5.1 shows schematically the fluctuating signal received by the decision circuit, which

samples it at the decision instant tD determined through clock recovery. The sampled value I

fluctuates from bit to bit around an average value I1 or I0, depending on whether the bit corresponds
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to 1 or 0 in the bit stream. The decision circuit compares the sampled value with the threshold value

ID and calls it bit 1 if I > ID or bit 0 if I < ID. An error occurs if I < ID for bit 1 or if I > ID for

bit 0 due to amplifier noises that add into the signal in the system. Both sources of errors can be

included by defining the error probability as

BER = p(1)P(1=0)+ p(0)P(0=1); (5.1)

where p(1) and p(0) are the probabilities of receiving bits 1 and 0, respectively, P(0=1) is the

probability of deciding 0 when 1 is received, and P(1=0) is the probability of deciding 1 when 0 is

received. Since 1 and 0 bits are equally likely to occur, p(1) = p(0) = 1=2, and the BER becomes

BER =
1
2
[P(1=0)+P(0=1)]: (5.2)

Figure 5.1 shows how P(0=1) and P(1=0) depend on the probability density function p(I) of the

sampled value I. The functional form of p(I) depends on the statistics of noise sources responsible

for current fluctuations. Assuming a Gaussian noise profile, one can write the functional form of

P(0=1) and P(1=0) as

P(0=1) =
1

σ1
p

2π

Z ID

�∞
exp

�
�
(I� I1)

2

2σ2
1

�
dI; (5.3)

P(1=0) =
1

σ0
p

2π

Z ∞

ID

exp

�
�
(I� I0)

2

2σ2
0

�
dI; (5.4)

where σ2
1 and σ2

0 are the corresponding variances. From the definition of the complimentary error

function we have

erfc(x) =
2
p

π

Z ∞

x
exp(�x2

)dx: (5.5)

Using Eq. (5.5) in Eqs. (5.3) and (5.4) we get

P(0=1) =
1
2

erfc

�
I1� IDp

2σ1

�
; (5.6)

P(1=0) =
1
2

erfc

�
ID� I0p

2σ0

�
: (5.7)

Using Eqs.(5.6) and (5.7) in Eq. (5.2) we can write the BER as

BER =
1
4

�
erfc

�
I1� IDp

2σ1

�
+ erfc

�
ID� I0p

2σ0

��
: (5.8)

Eq. (5.8) shows that the BER depends on the decision threshold ID.
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5.2 Q-factor

In practice, ID is optimized to minimize the BER. Hence we minimize BER with respect to ID

using
d
dx

erfc[ f (x)] =
2
p

π
e� f 2

�
d f
dx

; (5.9)

and obtain
(I1� ID)

2

σ2
1

=
(ID� I0)

2

σ2
0

+ ln

�
σ1

σ0

�
(5.10)

For most practical cases, the last term is negligible and hence we get

(I1� ID)

σ1
=

(ID� I0)

σ0
: (5.11)

Hence we can find that the minimum occurs when

ID =
σ0I1 +σ1I0

σ0 +σ1
: (5.12)

When σ1 = σ0, ID = (I1+ I0)=2, which corresponds to setting the decision threshold in the middle.

The BER is then given by

BER =
1
2

erfc

�
Q
p

2

�
; (5.13)

where the factor Q is given by

Q =
I1� I0

σ1 +σ0
: (5.14)

The Q factor is thus a dimensionless factor and is related to the BER as shown in Eq. (5.13).

Figure 5.2 shows how BER varies with Q factor. The BER improves as Q increases and becomes

lower than 10�12 for Q = 7. Now the expression for Q is in terms of the receiver current. Since the

receiver current is directly a measure of optical power, P of the signal such that I = RP, where R is

the responsitivity of the photo detector, and the optical power is related to the energy of the signal

pulse, we can write the Q factor in terms of the pulse energy as

Q =
E(1)�E(0)

σ(1)e +σ(1)e

; (5.15)

where E(1), (σ2
e)
(1) are the energy and variance in energy of the 1 bits and E0, (σ2

e)
(0) are the

energy and variance in energy of the 0 bits. The variance in energy is defined as σ2
e = hE2i�hEi2.

Hence in order to evaluate the Q factor we need to calculate the variance in the energies of 1 and 0

bits at the receiver end.
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Figure 5.2: Bit Error rate versus Q factor.

5.2.1 Energy Fluctuations

In order to calculate the variance in the energies of 1 and 0 bits at the end of the system that use

N amplifiers to compensate the fiber losses, we assume that all the amplifiers are spaced apart by

the same length LA and that the gain of the amplifiers G = exp(αLA) compensates the fiber losses

in each section. Now using the moment method definition of energy and Eq. (4.22) we obtain the

evolution of the pulse energy as
dE
dz

= 0: (5.16)

The use of amplifiers at regular intervals add fluctuations in energy due to the ASE of the amplifier.

Thus including these effects of the amplifier the energy evolution is given by

dE
dz

=

N

∑
i=1

δEiδ(z� zi); (5.17)

where δEi represents the noise added into the pulse energy by the ith amplifier located at zi. Hence

an ASE noise given by δEi is added to the input energy. Integrating Eq. (5.17) over the length of

one amplifier we find that the energy of the pulse after the ith amplifier is given by

Ei = Ei�1 +δEi: (5.18)

This result is obtained by assuming that the amplifier gain has cancelled all the fiber losses in the

previous section between (i�1)th amplifier and ith amplifier exactly.
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Before we can calculate the variance in pulse energy, we have to calculate the first and second

moments of the ASE noise δEi. If the initial field before the ith amplifier is given by Ai�1(z; t) then

after the amplifier, we can write the effective field as Ai(z; t)+δAi where δAi is the fluctuation in

the field due to the ASE of the ith amplifier. From the definition of the pulse energy in Eq. (4.1)

we can write the effective energy after the ith amplifier as

Ei +δEi =

Z ∞

�∞
(Ai +δAi)(A

�

i +δA�i )dt;

=

Z ∞

�∞
jAij2dt +

Z ∞

�∞
(AiδA�i +A�i δAi)dt +

Z ∞

�∞
jδAij2dt: (5.19)

From Eq. (4.1) we have

δEi =

Z ∞

�∞
(AiδA�i +A�i δAi)dt +

Z ∞

�∞
jδAij2dt: (5.20)

It is common to assume that δA(t) is a Markoffian stochastic process such that

hδAi(t)δA j(t)i= 0 hδA�i (t)δA j(t
0

)i= S δi j δ(t� t
0

); (5.21)

where S = nsp(G� 1)hν, h is Planck’s constant and ν is the central frequency of the pulse spec-

trum [1]. Also on an average the noise field vanishes, i.e., hδAii = hδA�i i = 0. Using the above

conditions we can easily calculate the first and second moments of δEi.

First we calculate the first moment. From Eq. (5.20) we have

hδEii= h
Z ∞

�∞
(AiδA�i +A�i δAi)dt +

Z ∞

�∞
jδAij2dti: (5.22)

Using the condition that the noise field vanishes on average, the first integral vanishes. Using the

correlation in Eq. (5.21) we get

hδEii =
Z ∞

�∞
S δ(t� t

0

)dt = S: (5.23)

The second moment of δEi can be found as follows:

hδEi(t)δE j(t
0

)i= h
Z ∞

�∞
dt

0

Z ∞

�∞
dt A�i (t)δAi(t)A

�

j(t
0

)δA j(t
0

)i+ h
Z ∞

�∞
dt

0

Z ∞

�∞
dt A�i (t)δAi(t)A j(t

0

)δA�j(t
0

)i

+ h
Z ∞

�∞
dt

0

Z ∞

�∞
dt A�i (t)δAi(t)δA j(t

0

)δA�j(t
0

)i+ h
Z ∞

�∞
dt

0

Z ∞

�∞
dt Ai(t)δA�i (t)A j(t

0

)δA�j(t
0

)i

+ h
Z ∞

�∞
dt

0

Z ∞

�∞
dt Ai(t)δA�i (t)A

�

j(t
0

)δA j(t
0

)i+ h
Z ∞

�∞
dt

0

Z ∞

�∞
dt Ai(t)δA�i (t)δA j(t

0

)δA�j(t
0

)i

+ h
Z ∞

�∞
dt

0

Z ∞

�∞
dt δA�i (t)δAi(t)A

�

j(t
0

)δA j(t
0

)i+ h
Z ∞

�∞
dt

0

Z ∞

�∞
dt δA�i (t)δAi(t)A j(t

0

)δA�j(t
0

)i

+ h
Z ∞

�∞
dt

0

Z ∞

�∞
dt δA�i (t)δAi(t)δA�j(t

0

)δA j(t
0

)i: (5.24)
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Using Eq. (5.21) we get

hδE2ii = 2S
Z ∞

�∞
dtjAj2+S2

= 2SEi +S2
: (5.25)

Thus we have the first and second moments of δEi. Since the amplifiers are equally spaced such

that they exactly compensate for the fiber losses, the energy at the end of each amplifier is the same

as the initial energy E0. Hence all hδEii and hδE2ii are the same. Denoting the energy of 1 bits by

superscript, 1, we can write the energy after ith amplifier for all 1 bits using Eq. (5.18) as

E(1)
i = E(1)

i�1 +δE(1)
i : (5.26)

Taking the average of Eq. (5.26) and using Eq. (5.23) we get

hEi(1)i = hEi(1)i�1 +S: (5.27)

Thus we can find that at the end of N amplifiers

hEi(1)N = hEi(1)0 +

N

∑
i=1

S = hEi(1)0 +NS; (5.28)

and since hEi(1)0 = E0, the input pulse energy, Eq. (5.28) reduces to

hEi(1)N = E0 +NS; (5.29)

Similarly using Eq. (5.26) we get

(E2
i )

(1)
= (E2

i�1)
(1)

+2E(1)
i�1δE(1)

i +(δE2
i )

(1)
: (5.30)

Taking the average of Eq. (5.30) and using Eqs. (5.23), (5.25) and (5.29) we get

hE2i(1)i = hE2i(1)i�1 +2S[E0 +(i�1)S]+ hδE2i(1)i : (5.31)

Thus after N amplifiers we get

hE2i(1)N = hE2i(1)0 +2
N

∑
i=1

S[E0+(i�1)S]+
N

∑
i=1
hδE2

i i
(1)
: (5.32)

Since for all 1 bits, Ei � E0, hδEi2i = 2SE0 +S2 we perform the summation to get

hE2i(1)N = hE2i(1)0 +2NSE0 +N(N�1)S2
+N(2SE0 +S2

) = hE2i(1)0 +4NSE0 +N2S2
: (5.33)
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Using Eqs. (5.29) and (5.33) in the definition of the variance in the pulse energy we get

(σ2
e)
(1)

= (σ2
E)

(1)
+2NSE0; (5.34)

where (σ2
E)

(1)
= hE2i(1)0 �E2

0 is the initial variance in the pulse energy for 1 bits which is negligible

compared to the fluctuations added by the ASE. Hence we can write

σ(1)e =

p
2NSE0: (5.35)

Performing a similar calculation for the 0 bits keeping in mind that the pulse energy E0 = 0 for the

0 bits and hence for all 0 bits δE2
i = S2 we find

hEi(0)N = NS; (5.36)

and

hE2i(0)N = hE2i(0)0 +NS2
+2S2

N�1

∑
i=1

i = hE2i(0)0 +N2S2
: (5.37)

Hence the variance in pulse energy for the 0 bits is given by

(σ2
e)
(0)

= (σ2
E)

(0)
; (5.38)

where (σ2
E)

(0)
= hE2i(0)0 is the initial variance in the pulse energy for 0 bits which is negligible.

5.2.2 Q-factor Estimation

Using Eqs. (5.34) and (5.38) in Eq. (5.15) we can find the Q factor to be

Q =

r
E0

2NS
; (5.39)

Eq. (5.39) shows that the Q factor is inversely proportional to the number of amplifiers. Thus

having more amplifiers adds more noise into the system and hence reduces the Q factor leading to

an increase in the BER.

The above calculations is based on the assumption that the receiver is noise free. However this

is not the case even for a perfect receiver. Fundamental noise sources such as thermal noise and shot

noise lead to current fluctuations in the receiver even when the optical power P is constant. As seen

before P fluctuates due to amplifier noise. We have already evaluated the Q factor degradation due
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to these fluctuations. Now we have to include the fluctuations caused by thermal and shot noise.

Also while evaluating the Q factor we had neglected the initial fluctuations in energies, (σ2
E)

(0) and

(σ2
E)

(1) at the transmitter. In order to evaluate the BER correctly, we have to take into account all

the above noise sources. Since all these noise processes are independent random processes with

approximately Gaussian statistics, the total variance of current fluctuations for 1 and 0 bits σ2
1 and

σ2
0 respectively, can be obtained by simply adding individual variances.

Shot noise is a manifestation of the fact that the electric current consists of a stream of electrons

that are generated at random times. It was first studied by Schottky in 1918 and has been inves-

tigated thoroughly since then [46], [47]–[49]. The variance in the noise current due to shot noise

depends on the detector components in general [1]. Thermal noise manifests when random ther-

mal motion of electron s in a resistor manifests as a fluctuating current even in the absence of an

applied voltage [50], [51]. The variance in the noise current due to thermal noise does not depend

on the current but depends on the absolute temperature [1]. Since 0 bits do not carry any optical

power, the corresponding current, I = 0. Since shot noise fluctuations depend on the current, the 0

bits do see any effects due to shot noise. Thus if we denote σs and σT as the current fluctuations

due to shot and thermal noise respectively, and using I = RP and PT0 = E0 where T0 is a measure

of pulse width, we can write the total variance in the current fluctuations for 1 and 0 bits as

σ2
1 = σ2

s +σ2
T +

R

T 2
0

(σ2
e)
(1)
; (5.40)

σ2
0 = σ2

T +
R

T 2
0

(σ2
e)
(0)
: (5.41)

Using Eqs. (5.34) and (5.38) in Eqs. (5.40) and (5.41) we get

σ2
1 = σ2

s +σ2
T +

R

T 2
0

((σ2
E)

(1)
+2NSE0�2NS2

) (5.42)

σ2
0 = σ2

T +
R

T 2
0

(σ2
E)

(0)
: (5.43)

We use Eqs. (5.42) and (5.43) along with I1 =
R
T0

E0 and I0 = 0 in Eq. (5.14) to get

Q =
I1

σ1 +σ0
;

Q =
R
T0

E0

�
[σ2

s +σ2
T +

R

T 2
0
((σ2

E)
(1)

+2NSE0�2NS2
)]

1=2
+[σ2

T +
R

T 2
0
(σ2

E)
(0)

]
1=2
�
�1

:(5.44)

Then the BER can be found using the Q factor obtained here in Eq. (5.13).
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5.3 Chapter Summary

In this chapter we have shown how the amplifier noise can degrade the system performance by

causing increased BER and thereby reducing the SNR of the system. We have derived an analytical

expression for the Q factor and shown how the Q factor reduces as the number of amplifiers used in

the system to compensate for fiber losses increases. In addition to these above mentioned noises,

the BER is also affected by timing jitter. This is because the signal is sampled at the decision

instant. If the pulse moves from its position randomly during propagation due to the presence

of timing jitter, an 1 bit could be decided as 0 bit thus causing additional error. Thus when the

ASE adds fluctuations into the pulse amplitude (energy), it affects the Q factor and hence the BER

at the receiver while the timing jitter increases the BER by randomly moving the pulse from its

original position. The following chapters are devoted to analytically calculating timing jitter using

the moment method and to look for suitable methods capable of reducing the timing jitter.



Chapter 6

Timing Jitter in Lightwave Systems

Modern dispersion-managed lightwave systems are limited mainly by the nonlinear effects occur-

ring inside optical fibers and by the amplified spontaneous emission (ASE) added at the amplifiers

[52]. Optical solitons can solve the first problem to some extent since they use the self-phase mod-

ulation, a dominant nonlinear mechanism, to balance the residual dispersion [1]. However, the

ASE noise remains a serious limitation of soliton systems; it manifests through a reduced signal-

to-noise ratio and an increased timing jitter at the optical receiver [53]. Fluctuations in the arrival

time of optical bits of information at the receiver is called timing jitter. The presence of timing

jitter in the system can lead to increased BER at the receiver end. Figure 6.1 shows how timing

jitter can lead to an incorrect bit identification thus leading to an increase in BER at the receiver

end of the system. Curves (a) and (b) in Figure 6.1 show a single 1 bit that is shifted at the decision

circuit of the receiver in the presence of the timing jitter. In the absence of timing jitter, the pulse is

centered at the bit slot, and hence the corresponding signal is above the threshold value, ID of the

receiver. However, timing jitter can shift the pulse position randomly and cause the decision circuit

to occasionally make a wrong identification of the bit. This degrades the system performance. If all

pulses were to shift from their original position by the same amount, the problem can be overcome

by changing the decision time tD accordingly. However timing jitter shifts each pulse randomly

and hence cannot be overcome by adjusting the decision time tD.

The origin of timing jitter can be understood as follows. The ASE noise of the amplifiers

used in the system adds random fluctuations in amplitude, frequency and temporal position of the

76
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Figure 6.1: Increased BER due to timing jitter.

pulse. Temporal fluctuations directly lead to timing jitter [53]. Fluctuations in frequency affect the

group velocity and hence the speed with which the pulse propagates through the fiber. Since the

ASE induced fluctuation in the frequency is random, the transit time through the fiber link is also

random. This is called the Gordon-Haus timing jitter [54]. For pulses whose pulse width are of the

order of few picoseconds, we have seen in Chapter 4, that IRS and TOD becomes very important.

Because of IRS, any fluctuation in the pulse amplitude is converted to frequency fluctuations and

lead to Raman jitter [1]. TOD can also add additional timing jitter. Figure 6.2 shows a schematic

of different origins of timing jitter.

It becomes essential to know how much timing jitter is accumulated at the end of the system so

that one can estimate if the system will work within the allowed BER limit. The tolerable amount

of jitter usually is given by 8% of the bit slot. Since bit slot is defined as tbit = B�1, where B is the

bit rate, the allowed timing jitter in a system is inversely proportional to the bit rate of the system.

In this Chapter we use the moment method to analytically calculate the Gordon-Haus timing jitter

for systems using pulses whose pulse width are larger than 6 ps. For such systems the higher

order terms are negligible and the main origin of timing jitter is due to fluctuations in the pulse

frequency. In the first part of the Chapter we calculate the Gordon-Haus timing jitter for soliton

and non-soliton systems. In the final part of the Chapter we calculate the Gordon-Haus timing
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jitter when more than one amplifiers are used within one map period.

6.1 Gordon-Haus Timing Jitter

The Gordon-Haus timing jitter was first studied for solitons in 1986 [54]. It was later recoginized

that timing jitter can occur with any transmission format and imposes a fundamental limitation

on all long-haul systems designed with a cascaded chain of optical amplifiers [53]- [57]. Optical

amplifiers affect both the amplitude and the phase of the amplified signal. Time dependent varia-

tions in the phase leads to fluctuations in the frequency of the pulse. Since GVD depends on the

frequency because of dispersion, the speed at which a pulse propagates through the fiber is affected

by each amplifier in a random fashion. Such random speed changes produce random shifts in the

pulse position leading to Gordon-Haus timing jitter. We use the moment method to calculate the

Gordon-Haus timing jitter at the end of a typical DM system consisting of periodic sequences of

anomalous and normal dispersion fibers.

6.2 Single Amplifier per Map Period

As seen before in Chapter 1 the soliton systems are periodic after each map period and amplifiers

are usually used after every 80 km and for a typical dispersion-managed system that uses bit rates
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less than 40 Gb/s, the map period is usually around 80 km. In such systems at least one amplifier is

used per map period to compensate for fiber losses. For this section we assume that one amplifier

is placed at every 80 km, such that LA is equal to map period, Lm. Since the higher-order terms are

negligible, the propagation of an optical pulse in the fiber is governed by Eq. (3.3) and is given by

i
∂B
∂z
�

β2

2
∂2B
∂t2 +γjBj2B = 0: (6.1)

From the definition of the moment method in Chapter 4, we can write the energy, position and

frequency of the optical pulse as

E =

Z ∞

�∞
jBj2dt; (6.2)

T =
1
E

Z ∞

�∞
tjBj2dt; (6.3)

Ω =
i

2E

Z ∞

�∞

�
B�

∂B
∂t
�B

∂B�

∂t

�
dt; (6.4)

respectively. We continue to find the evolution of these three parameters as shown in Chapter 4.

Using Eqs. (6.1)–(6.4) we get the evolution of the three pulse parameters as

dE
dz

= 0; (6.5)

dT
dz

= β2Ω; (6.6)

dΩ
dz

= 0: (6.7)

The ASE of the amplifier affects all three parameters and hence change them in random fashion.

Since in the absence of IRS, both position and the frequency are unaffected by the changes in the

pulse energy, we can neglect the energy equation for now. However as we have seen in Chapter 5

the fluctuations in the pulse energy directly affect the BER of the system. Adding the amplifier-

induced noise into the frequency and the position equations, we have

dT
dz

= β2Ω+

N

∑
i=1

δTi δ(z� zi); (6.8)

dΩ
dz

=

N

∑
i=1

δΩi δ(z� zi); (6.9)

where δTi and δΩi are random fluctuations in the pulse position and frequency, respectively, intro-

duced by the ith amplifier located at a distance zi. Integrating Eqs. (6.8) and (6.9) over the length



CHAPTER 6. TIMING JITTER IN LIGHTWAVE SYSTEMS 80

of one amplifier we find that the position and frequency of the pulse after the ith amplifier are given

by

Ti = Ti�1 +b2Ωi�1 +δTi; (6.10)

Ωi = Ωi�1 +δΩi; (6.11)

where b2 =
R LA

0 β2(z)dz.

The timing jitter in the system is defined as σ2
t = hT 2i�hT i2, where T is the pulse position at

the receiver end and the angle brackets indicate averages over the ASE noise. In order to calculate

the timing jitter, we need the second moments of δΩi and δTi at every amplifier. To find these

second moments, we use the moment method and note that the field after the ith amplifier is given

by Ai(z; t)+δAi where δAi is the fluctuation in the field due to the ASE of the ith amplifier. From

the definition of frequency in Eq. (6.4), we have

EiΩi +δ(EiΩi) =
i
2

Z ∞

∞

�
(B�i +δB�i )

∂
∂t
(Bi +δBi)� (Bi +δBi)

∂
∂t
(B�i +δB�i )

�
dt

δ(EiΩi) =
i
2

Z ∞

∞

�
B�i δ

�
∂Bi

∂t

�
+δB�i

∂Bi

∂t
�Biδ

�
∂B�i
∂t

�
�δBi

∂B�i
∂t

�
dt: (6.12)

Integrating the first and the third terms in the above equation by parts we get
Z ∞

∞
B�i δ

�
∂Bi

∂t

�
dt = B�i δBij

∞
�∞�

Z ∞

�∞
δBi

∂B�i
∂t

dt; (6.13)

Z ∞

∞
Biδ
�

∂B�i
∂t

�
dt = BiδB�i j

∞
�∞�

Z ∞

�∞
δB�i

∂Bi

∂t
dt: (6.14)

The first term in Eqs. (6.13) and (6.14) vanishes as the fields B� and B vanish at the limits. Hence

using Eqs. (6.13) and (6.14) in Eq. (6.12) we get

δ(EiΩi) =�i
Z ∞

∞

�
δBi

∂B�i
∂t

�δB�i
∂Bi

∂t

�
dt: (6.15)

We use the above equation to find δΩi as follows:

EiδΩi = δ(EiΩi)�ΩiδEi (6.16)

From Eq. (5.20) we know δEi. The last term in Eq. (5.20) which is due to noise beating with itself

is small compared to the rest of the terms. Hence neglecting the last term and using Eqs. (5.20)

and (6.15) in (6.16) we get

EiδΩi =�i
Z ∞

∞

�
δBi

�
∂B�i
∂t

� iΩiB
�

�
�δB�i

�
∂Bi

∂t
+ iΩiB

��
dt: (6.17)
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Using the transformation

Bi =Vie
�iΩit ;

∂B
∂t

+ iΩiB =
∂V
∂t

e�iΩit ; (6.18)

in Eq. (6.17), we get

δΩi =�
i

Ei

Z ∞

∞

�
δVi

∂V �

i

∂t
�δV �

i
∂Vi

∂t

�
dt: (6.19)

Next we find δTi from the definition of position in Eq. (6.3).

EiTi +δ(EiTi) =

Z ∞

�∞
t(Bi+δBi)(B

�

i +δB�i )dt; (6.20)

TiδEi +EiδTi =

Z ∞

�∞
t(B�i δBi +BiδB�i )dt; (6.21)

Using the definition of δEi from Eq. (5.20) in Eq. (6.21) we get

δTi =
1
Ei

Z ∞

�∞
(t�T )(B�i δBi +BiδB�i )dt: (6.22)

Using the transformation in Eq. (6.18) we get

δTi =
1
Ei

Z ∞

�∞
(t�T )(V�

i δVi +ViδV �

i )dt: (6.23)

From Eqs. (6.19) and (6.23) we can find the variances and cross correlation of δΩi and δTi.

First from Eq. (6.19) we get

δΩ2
i =�

1

E2
i

Z ∞

∞
dt

Z ∞

∞
dt

0

"�
δVi(t)

∂V �

i (t)

∂t
�δV �

i (t)
∂Vi(t)

∂t

� 
δVi(t

0

)
∂V �

i (t
0

)

∂t 0
�δV �

i (t
0

)
∂Vi(t

0

)

∂t 0

!#
(6.24)

From Eq. (5.21) we have

hδVi(t)δVj(t)i= 0 hδV �

i (t)δVj(t
0

)i= S δi j δ(t� t
0

); (6.25)

where S = nsp(G�1)hν. Hence Eq. (6.24) becomes

hδΩ2ii =
2S

E2
i

Z ∞

∞
dt

����∂Vi

∂t

����2 (6.26)

Also using Eq. (6.25) in Eq. (6.19) we get

hδΩii = 0: (6.27)
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Similarly squaring Eq. (6.23) we get

δT 2
i =

1

E2
i

Z ∞

�∞
dt

Z ∞

�∞
dt

0

(t�Ti)(t
0

�Ti)[V
�

i (t)δVi(t)+Vi(t)δV �

i (t)][V
�

i (t
0

)δVi(t
0

)+Vi(t
0

)δV �

i (t
0

)]:

(6.28)

Using Eq. (6.25) in Eq. (6.28) we get

hδT 2ii =
2S

E2
i

Z ∞

�∞
dt(t�T )

2jV j2: (6.29)

Using Eq. (6.25) in Eq. (6.23) we get

hδT ii = 0: (6.30)

Using Eq. (6.19) and (6.23) we have

δΩiδTi =�
i

E2
i

Z ∞

∞
dt

Z ∞

∞
dt

0

(t�Ti)

"
δVi(t

0

)
∂V �

i (t
0

)

∂t
�δV �

i (t
0

)
∂Vi(t

0

)

∂t

#
[V �

i (t)δVi(t)+Vi(t)δV �

i (t)]:

(6.31)

Thus from Eq. (6.25) we get

hδΩδT ii =
iS

2E2
i

Z ∞

∞
dt(t�Ti)

�
Vi

∂V �

i

∂t
�V �

i
∂Vi

∂t

�
: (6.32)

Now that we have found the second moments of δΩi and δTi, we can write from Eqs. (6.10)

and (6.11)

Ω2
i = Ω2

i�1 +δΩ2
i +2Ωi�1δΩi; (6.33)

ΩiTi = Ωi�1Ti�1 +b2Ω2
i�1 +Ωi�1δTi +δΩiTi�1 +β2δΩi +δΩiδTi; (6.34)

T 2
i = T 2

i�1 +b2
2Ω2

i�1 +2b2ΩiTi +δT 2
i +2Ti�1δTi +2b2Ωi�1δTi: (6.35)

Thus taking the average and using Eqs. (6.27) and (6.30) we get

hΩ2ii = hΩ2ii�1 + hδΩ2ii; (6.36)

hΩT ii = hΩT ii�1 +b2hΩ2ii�1 + hδΩδT ii; (6.37)

hT 2ii = hT 2ii�1 +b2
2hΩ

2ii�1 +2b2hΩT ii�1 + hδT 2ii: (6.38)

Thus we know the variances and cross correlations of frequency and position at any ith amplifier

and the noise added into them by the ith amplifier. These relations are valid for any pulse shape.

To proceed further we need to assume a pulse shape. Previously we have seen two pulse shapes,
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viz., the fundamental soliton and the Gaussian pulse shapes. As seen before, the fundamental

soliton can maintain its shape and width in a constant anomalous dispersion fiber in the absence

of fiber losses. However in the presence of fiber losses, the nonlinear effects cannot exactly cancel

the dispersion effects because of the reduced power of the soliton and hence pulse broadens in

the presence of dispersion. However, if one uses dispersion- decreasing fibers in the anomalous

dispersion regime, the soliton can maintain its pulse width and shape. Another example of a soliton

system is provided by dispersion-managed soliton systems. A dispersion managed soliton can be

approximated by a chirped Gaussian pulse shape. Instead of using a DM soliton, one can also

launch a low-power chirped Gaussian pulse through a fiber. In such a case, the pulse does not

maintain its shape and width. However, by reducing the average dispersion to a value close to

zero, we can reduce pulse broadening resulting from dispersion. Such systems are called chirped

return-to-zero (CRZ) systems or non-soliton systems. We will use the results obtained in this

section using the moment method for these three systems in the following sections.

6.2.1 Solitons Systems

As seen before, the existence of optical solitons in the fiber is the result of a balance between GVD

and SPM. Such a soliton maintains its shape and width during propagation in an optical fiber. Fiber

losses become the main limitation in such a soliton system. When amplifiers are used to over come

fiber losses, one would like to have minimum number of amplifiers, for both cost effectiveness and

for minimizing the accumulated amplifier noises. We saw in Chapter 5 that when the number of

amplifiers increases the Q factor decreases. In order to be able to achieve this, we saw that it was

necessary to use dispersion management. We use the moment method to calculate timing jitter in

such dispersion managed systems.

Fundamental soliton in Dispersion decreasing Fibers

The use of dispersion decreasing fibers (DDFs) for soliton communications was first proposed in

1987 which helped relax the restriction LA � LD imposed normally on loss-managed solitons by

decreasing the GVD along the fiber length [5]. The DDFs are designed such that the decreasing

GVD counteracts the reduced SPM experienced by solitons weakened from fiber losses. Since
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dispersion management is combined with loss management, the soliton evolution is governed by

the NLS equation given by Eq. (6.1), except that β2 is now a function of z such that jβ2(z)j =

jβ2(0)jexp(�αz). The result can be understood by noting that the soliton peak power and hence

the nonlinearity parameter γ decreases exponentially in a lossy fiber in exactly the same fashion.

So it is easy to deduce from Eq. (2.60) that N = 1 can be maintained, in spite of power losses.

In order to calculate the timing jitter at the end of such a system we use Eq. (6.36)–(6.38) with

jβ2(z)j= jβ2(0)jexp(�αz) to find that b2 = β2(0)Leff where Leff = [1� exp(�αLA)]=α. Also we

know that unchirped fundamental solitons maintain their pulse shape of the form

Bi(z; t) = ai sech

�
t�Ti

τi

�
exp[iφi� iΩi(t�Ti)]: (6.39)

where Ti, τi, φi and Ωi are the position, pulse width, phase and frequency at the end of the ith

amplifier. Hence from Eq. (6.18) we get

Vi(z; t) = ai sech

�
t�Ti

τi

�
exp(iφi): (6.40)

We find the ASE-induced fluctuations hδΩ2ii and hδT 2ii by using Eq. (6.40) in Eqs. (6.26) and

(6.29). From Eq. (6.40) we have

∂Vi

∂t
=�

�
ai

τi
sech

�
t�Ti

τi

�
tanh

�
t�Ti

τi

��
exp(iφi): (6.41)

Multiplying Eq. (6.41) by its complex conjugate and substituting the result into Eq. (6.26) we get

hδΩ2ii =
2S

E2
i

Z ∞

∞

a2
i

τ2
i

sech2
�

t�T
τi

�
tanh2

�
t�T

τi

�
dt: (6.42)

Using Table 3.1 we perform the integration to get

hδΩ2ii =
2S

3Eiτ2
i

: (6.43)

Similarly using Eq. (6.40) in Eq. (6.29) we get

hδT 2ii =
2S

E2
i

Z ∞

�∞
(t�Ti)

2a2
i sech2

�
t�Ti

τi

�
dt: (6.44)

Again using Table 3.1 we get

hδT 2ii =
π2

6
Sτ2

i

Ei
: (6.45)
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Finally using Eqs. (6.40) and (6.41) in Eq. (6.32) we get

hδΩδT ii = 0: (6.46)

Thus we have found the amplifier-induced fluctuations in frequency and position at each amplifier

and their variances and correlation. Since the fundamental soliton maintains it shape and pulse

width during propagation, the pulse width at the end of every amplifier is the same as the initial

pulse width τ0. Also the energy of the pulse after every amplifier is restored to its initial value E0.

Hence for the case of fundamental solitons the variances and cross correlations are the same at all

the amplifiers. Hence dropping the subscript i, the variances and correlation at every amplifier are

given by

hδΩ2i=
2S

3E0τ2
0

; hδT 2i=
π2

6
Sτ2

0

E0
; hδΩδT i= 0: (6.47)

Now using Eq. (6.47) in the recurrence relations in Eqs. (6.36)–(6.38), we can write after N ampli-

fiers as

hΩ2iN =

N

∑
i=1
hδΩ2i; (6.48)

hΩT iN = b2

N�1

∑
i=1
hΩ2i; (6.49)

hT 2iN = b2
2

N�1

∑
i=1
hΩ2i+2b2

N�1

∑
i=1
hΩT i+

N

∑
i=1
hδT 2i: (6.50)

Performing the summation over n using the following results:

N

∑
i=1

1 = N;

N

∑
i=1

i = N(N +1)=2;
N

∑
i=1

i2 = N(N +1)(2N +1)=6; (6.51)

we can rewrite the above equations to be

hΩ2iN = NhδΩ2i; (6.52)

hΩT iN =
b2

2
N(N�1)hδΩ2i; (6.53)

hT 2iN =
b2

2

6
N(N�1)(2N�1)hδΩ2i+NhδT 2i: (6.54)

Also from Eqs. (6.27) and (6.30), we have hT iN = 0. Hence the timing jitter after N amplifiers is

given by

σ2
GH =

b2
2

6
N(N�1)(2N�1)

�
2S

3E0τ2
0

�
+N

�
π2

6
Sτ2

0

E0

�
: (6.55)
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Noting that N = L=LA, we see that for N � 1, the Gordon-Haus jitter increases with the total

distance, L as L3. It also depends linearly on the accumulated dispersion b2 and is inversely pro-

portional to the pulse energy. A disadvantage of DDF is that the average dispersion along the link

is often relatively large and since the Gordon-Haus jitter is larger for larger dispersion, it is better

to use DM soliton systems since they have relatively smaller average dispersion.

Dispersion-Managed Solitons

We perform the same calculations that we did for fundamental solitons for DM solitons in this

section. A typical DM system consists of a periodic sequence of anomalous- and normal-dispersion

fibers. An optical amplifier is inserted for compensating fiber losses after one or several map

periods. Each amplifier restores pulse energy to its original input value but, at the same time, adds

spontaneous-emission noise. Although the DM soliton does not maintain its pulse width, it evolves

periodically such that the pulse width and chirp are restored to its initial values after every map

period Lm. Since the amplifier spacing is such that LA is a multiple of Lm, the energy, width and

chirp of the pulse are restored to their original values after every amplifier. Thus we see that the

soliton systems are periodic after every amplifier. Assuming a Gaussian pulse shape of the form

Bi(z; t) = ai exp[iφi� iΩi(t�Ti)� (1+ iCi)(t�Ti)
2
=2τ2

i ]; (6.56)

where Ti, τi, φi and Ωi are the position, pulse width, phase and frequency at the end of the ith

amplifier, we find that

Vi(z; t) = ai exp[iφi� (1+ iCi)(t�Ti)
2
=2τ2

i ]: (6.57)

Using Eq. (6.57) in Eqs. (6.26), (6.29), (6.32), we obtain the variances and cross correlation of the

ASE induced frequency and position fluctuations. Differentiating Eq. (6.57) with respect to t we

get
∂Vi

∂t
= ai exp[iφi� (1+ iCi)(t�Ti)

2
=2τ2

i ]
�
�(1+ iCi)(t�Ti)=τ2

i

�
; (6.58)

Multiplying Eq. (6.58) by its complex conjugate and substituting the result into Eq. (6.26) we get

hδΩ2ii =
2S

E2
i

Z ∞

∞

a2
i

τ2
i

(1+C2
i )
(t�Ti)

τ2
i

exp[�(t�Ti)
2
=τ2

i ]dt: (6.59)
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Using Table 3.2 we perform the integration to get

hδΩ2ii =
S
Ei

(1+Ci)

τ2
i

; (6.60)

Similarly using Eq. (6.57) in Eq. (6.29) we get

hδT 2ii =
2S

E2
i

Z ∞

�∞
(t�Ti)

2a2
i exp[�(t�Ti)

2
=τ2

i ]dt: (6.61)

Again using Table 3.1 we get

hδT 2ii =
Sτ2

i

Ei
: (6.62)

Finally using Eqs. (6.57) and (6.58) in Eq. (6.32) we get

hδΩδT ii =
iS

2E2
i

Z ∞

�∞
(t�Ti)

2a2
i (�2iCi)=τ2

i exp[�(t�Ti)
2
=2τ2

i ]dt: (6.63)

Again using Table 3.2 we perform the integration and get

hδΩδT ii =
SCi

Ei
: (6.64)

Thus we have found the amplifier induced fluctuations in frequency and position at each amplifier

and their variances and correlation. Since the DM soliton is periodic in evolution during propaga-

tion, its chirp, width and energy, at the end of every amplifier is the same as the initial chirp, C0,

width, τ0 and energy E0 respectively. Hence for the case of DM solitons the variances and cross

correlations are the same at all the amplifiers and so dropping the subscript i, the variances and

correlation at every amplifier are given by

hδΩ2i=
S

E0

(1+C2
0)

τ2
0

; hδT 2i=
Sτ2

0

E0
; hδΩδT i=

SC0

E0
: (6.65)

Now using Eq. (6.65) in the recurrence relations in Eqs. (6.36)–(6.38), we can write after N ampli-

fiers

hΩ2iN =

N

∑
i=1
hδΩ2i; (6.66)

hΩT iN = b2

N�1

∑
i=1
hΩ2i+

N

∑
i=1
hδΩδT i; (6.67)

hT 2iN = b2
2

N�1

∑
i=1
hΩ2i+2b2

N�1

∑
i=1
hΩT i+

N

∑
i=1
hδT 2i; (6.68)
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Here b2 can be written as βavLA, where βav = (βaLa + βnLn)=(La + Ln), La, βa and Ln, βn are

the length and group velocity dispersion parameter of the anomalous and normal fiber sections.

Performing the summation we get after N such amplifiers using Eq. (6.51)

hΩ2iN = NhδΩ2i; (6.69)

hΩT iN =
b2

2
N(N�1)hδΩ2i+NhδΩδT i; (6.70)

hT 2iN =
b2

2

6
N(N�1)(2N�1)hδΩ2i+b2N(N�1)hδΩδT i+NhδT 2i: (6.71)

Also from Eqs. (6.27) and (6.30), we have hT iN = 0. Hence the timing jitter after N amplifiers is

given by

σ2
GH =

b2
2

6
N(N�1)(2N�1)

�
S

E0

(1+C2
0)

τ2
0

�
+b2N(N�1)

�
SC0

E0

�
+N

�
Sτ2

0

E0

�
: (6.72)

From Eq. (6.72) we see that the leading term of Gordon-Haus jitter depends on the cubic power of

distance similar to the case of fundamental solitons. However amplifier-induced fluctuations differ

from the fundamental soliton case due to the difference in pulse shape. Also since the DM solitons

are chirped initially, the timing jitter also depends on the initial chirp.

6.2.2 Non-soliton Systems

Even though solitons systems can help balance the GVD and nonlinear effects, many other nonlin-

ear effects can seriously limit the system. Also even when using DM soliton systems, the GVD dis-

persion cannot be reduced too much because it is needed to compensate nonlinear effects. However

non-soliton systems can have nearly zero average dispersion, since they have negligible nonlinear

effects when operated at low powers. In a non-soliton system, input pulses are prechirped and

then propagated along the DM link without requiring the periodicity condition, i.e., pulse width

and chirp are not designed to recover their input values after each amplifier. Since the pulse peak

power is low, the nonlinear effects are negligible but not absent. As seen before if the input pulse

is initially chirped such that β2C0 < 0, the pulse at the end of the fiber link may be shorter than

the input pulse. If the dispersion map is made such that the pulse broadens in the first section and

compresses in the second section, the impact of the nonlinear effects can be reduced significantly.

This is because the pulse peak power is reduced considerably in the first section because of rapid
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broadening of chirped pulses, while in the second section it is lower because of the accumulated

fiber losses. Such dispersion-managed links are also referred to as quasi-linear transmission links

and in such cases the average GVD can be reduced to a very low value.

We now calculate the timing jitter at the receiver end for such systems. The pulses in these

systems can be approximated by Gaussian pulse shape of the form shown in Eq. (6.56). Hence

the amplifier induced noises in frequency and position for such pulses are given by Eqs. (6.59),

(6.62), (6.64). However the since non-soliton systems are not periodic, the noise variances and

correlation are not the same at every amplifier. Their evolution hence depends on the evolution of

the chirp and pulse width along the fiber. Using the moment method we have already derived the

evolution of the chirp and pulse width and neglecting the higher order effects and the nonlinear

term in Eqs. (4.155) and (4.156), they are given by

dτ
dz

=
β2C

τ
; (6.73)

dC
dz

= β2

�
1+C2

τ2

�
: (6.74)

Making a transformation z̃ = β2z, we can write Eqs. (6.73) and(6.74) as

dτ
dz̃

=
C
τ
; (6.75)

dC
dz̃

=

�
1+C2

τ2

�
: (6.76)

From Eqs. (6.75) and (6.76) we find that

d
dz̃

�
1+C2

τ2

�
=

�
2C
τ2

�
1+C2

τ2 +(1+C2
)

�
�

2
τ3

�
C
τ

= 0 (6.77)

Hence the quantity (1+C2
)=τ2 does not change during propagation. Physically this quantity is

related to the spectral width of the pulse that remains a constant in a linear medium. Hence we can

replace it by its initial value (1+C2
0)=τ2

0. Eqs. (6.73) and (6.74) can be solved analytically and the

solution is given by Eq. (3.39). Thus we can write the pulse width and chirp after the ith amplifier

as

τi = τ0

"�
1+ iC0

b2

τ2
0

�2

+ i2
b2

2

τ4
0

#1=2

; Ci =C0 + i(1+C2
0)

b2

τ2
0

: (6.78)
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Thus using Eqs. (6.77) and (6.78) in Eqs. (6.60), (6.62) and (6.64) we can write the variances and

cross correlation of amplifier induced fluctuations in frequency and position in the case of low

power CRZ systems as

hδΩ2ii =
S

E0

(1+C2
0)

τ2
0

; (6.79)

hδT 2ii =
Sτ2

0

E0

"�
1+ iC0

b2

τ2
0

�2

+ i2
b2

2

τ4
0

#
; (6.80)

hδΩδT ii =
S

E0

�
C0 + i

�
1+C2

0

� b2

τ2
0

�
: (6.81)

Initially at the transmitter the spectral width is given by 1=τ2
0 since the pulses are unchirped and

since the spectral width is unchanged in a linear medium, Eq. (6.79) can be replaced by

hδΩ2ii =
S

E0

1

τ2
0

: (6.82)

Now using Eqs. (6.79)–(6.81) in the recurrence relations in Eqs. (6.36)–(6.38), we can write after

N amplifiers

hΩ2iN =
S

E0

N

∑
i=1

1

τ2
0

; (6.83)

hΩT iN = b2

N�1

∑
i=1
hΩ2i+

S
E0

N

∑
i=1

�
C0 + i(1+C2

0)
b2

τ2
0

�
; (6.84)

hT 2iN = b2
2

N�1

∑
i=1
hΩ2i+2b2

N�1

∑
i=1
hΩT i+

Sτ2
0

E0

N

∑
i=1

�
(1+ iC0

b2

τ2
0

)
2
+ i2

b2
2

τ4
0

�
: (6.85)

Performing the summation we get

hΩ2iN = N
S

E0

1

τ2
0

; (6.86)

hΩT iN =
b2

2
N(N�1)

S
E0

1

τ2
0

+
b2

2
N(N +1)

S
E0

(1+C2
0)

τ2
0

+N
SC0

E0
;

=
S

E0
N

�
N

b2

τ2
0

+C0

�
; (6.87)

hT 2iN =
b2

2

6
N(N�1)(2N�1)

S
E0

1

τ2
0
+N

S
E0

1+C2
0

τ2
0

+2b2
SC0

E0

�
N
2
(N�1)

+
N
2
(N +1)

�
+

S
E0

b2
2

τ2
0

�
N
6
(N +1)(2N +1)+

N
6
(N�1)(2N�1)+

N
2
(N�1)

�
:

hT 2iN =
S

E0
τ2

0N

"
1+

�
C0 +

b2N

τ2
0

�2
#
: (6.88)
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Thus using Eqs. (6.27), (6.30) and (6.88), we can find the timing jitter in the case of non-soliton

systems after N amplifiers is given by

σ2
GH =

S
E0

τ2
0N

"
1+

�
C0 +

b2N

τ2
0

�2
#
: (6.89)

From Eq. (6.89) we see that the Gordon-Haus jitter is cubic even in the case of non-soliton systems.

Also similar to the case of DM solitons, the timing jitter in the case of the non-soliton system

depends on the initial chirp. While in the DM soliton case, the sign and value of the initial chirp

is fixed by the periodicity conditions, in the case of non-soliton systems, the value of the chirp and

its sign can be used in a way to reduce the total jitter. This will be discussed in Chapter 8. So far in

this chapter we have seen that in both soliton and non-soliton cases, the Gordon-Haus timing jitter

is cubic in distance and is inversely proportional to the pulse energy. This result agrees with the

results of Gordon and Haus, who first derived an expression for jitter in the case of fundamental

solitons in a constant dispersion fiber and showed that the jitter is cubic in distance [54].

6.3 Multiple Amplifiers per Map Period

As seen in the previous section, the amplifier-induced noise depends on the amplifier gain. Hence

larger the gain the greater the noise added to the system. One way to reduce the noise added

by the ASE is by reducing the gain required by an amplifier. If more than one amplifiers with

smaller gain are used such that the total gain of all the amplifiers compensate the total fiber losses,

it can help reduce timing jitter, by reducing the ASE-induced noise of amplifiers. Thus distributed

amplification can help reduce timing jitter [58]. In this section we calculate the timing jitter in

systems when more than one amplifier is used within one map period.

Previously we found the amplifier-induced fluctuations in the frequency and position of the

pulse. We also found the recurrence relations of variances and correlation of these fluctuations

which show the growth of these ASE-induced noise between i� 1 and ith amplifiers. In order to

extend these equations to the case of more than one amplifier in one map period, we assume that

there are na amplifiers within one map period, each with gain Gi, and there are N such map periods

in the entire fiber link. From Eqs. (6.36)–(6.38), we use the subscript i to denote an amplifier

within a map period and subscript j to denote the map periods to write the recurrence relations for
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the amplifier-induced noise between i�1 and ith amplifiers in the jth map period as

hΩ2ii = hΩ2ii�1 + hδΩ2ii; (6.90)

hΩT ii = hΩT ii�1 +dihΩ2ii�1 + hδΩδT ii; (6.91)

hT 2ii = hT 2ii�1 +d2
i hΩ

2ii�1 +2dihΩT ii�1 + hδT 2ii: (6.92)

where di =
R zi

zi�1
β2(z)dz, is related to the net dispersion in the fiber section between the amplifiers

i� 1 and i. Except di, all quantities in Eqs. (6.90)–(6.92) depend implicitly on the map period,

j. Thus we can write the recurrence relations for the ASE-induced noise after the jth map period

using Eqs. (6.90)–(6.92) repeatedly as

hΩ2i j = hΩ2i j�1 +Pj; (6.93)

hΩT i j = hΩT i j�1 +b2hΩ2i j�1 +Q j; (6.94)

hT 2i j = hT 2i j�1 +b2
2hΩ

2i j�1 +2b2hΩT i j�1 +R j: (6.95)

where b2 = ∑na
i=1 di is the net dispersion of each map period and

Pj =

na

∑
i=1
hδΩ2ii; (6.96)

Q j =

na

∑
i=1
hδΩδT ii +

na�1

∑
i=1

hδΩ2ii

 
na

∑
k=i+1

dk

!
; (6.97)

R j =

na

∑
i=1
hδT 2ii +

na�1

∑
i=1

hδΩ2ii

 
na

∑
k=i+1

dk

!2

+2
na�1

∑
i=1

hδΩδT ii

 
na

∑
k=i+1

dk

!
: (6.98)

We can use Eqs. (6.90)–(6.92) to calculate the Gordon-Haus jitter by adding the contributions of

N map periods. However, this step requires knowledge of the coefficients in Eqs. (6.96)–(6.98).

6.3.1 Soliton Systems

In order to evaluate the coefficients in Eqs. (6.96)–(6.98), first consider the case of a fundamental

soliton system. The variances and cross correlations are then given by Eq. (6.47). Using Eq. (6.47)

we see that for the case of the fundamental soliton the Eqs. (6.96)–(6.98) can be written as

P =

na

∑
i=1
hδΩ2i; (6.99)
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Q =

na�1

∑
i=1

hδΩ2i

 
na

∑
k=i+1

dk

!
; (6.100)

R =

na

∑
i=1
hδT 2i+

na�1

∑
i=1

hδΩ2i

 
na

∑
k=i+1

dk

!2

: (6.101)

The subscript j is dropped because the coefficients depend on the pulse parameters and hence

remain the same after every map period for the soliton case. The variances of δΩ and δT are given

by Eq. (6.47). Using Eqs. (6.99)–(6.101), in Eqs. (6.93)–(6.95) and also using the definition of

b2 =
R Lm

0 β2(z)dz = ∑na
i=1 di, we get after N map periods

hΩ2iN = NP; (6.102)

hΩT iN = b2P(N�1)=2+NQ; (6.103)

hT 2iN = Pb2
2N(N�1)(2N�1)=6+Qb2N(N�1)+NR: (6.104)

Thus we can write the timing jitter after N map periods each using na amplifiers as

σGH = P b2
2 N(N�1)(2N�1)=6+Q b2 N(N�1)+R N: (6.105)

The coefficients P, Q and R are given by Eqs. (6.99)–(6.101). Equation (6.105) shows that our

approach provides an analytic expression of the timing jitter that is valid even when multiple am-

plifiers are used within each map period. This equation also applies to the case of the DM soliton.

However the coefficients P, Q and R in such a case are given by

P =

na

∑
i=1
hδΩ2i; (6.106)

Q =

na�1

∑
i=1

hδΩ2i

 
na

∑
k=i+1

dk

!
+

na

∑
i=1
hδΩδT i; (6.107)

R =

na

∑
i=1
hδT 2i+2

na�1

∑
i=1

hδΩδT i

 
na

∑
k=i+1

dk

!
+

na�1

∑
i=1

hδΩ2i

 
na

∑
k=i+1

dk

!2

: (6.108)

The variances and cross correlation of δΩ and δT in the above equations are given by Eq. (6.65).

To demonstrate the most interesting features as simply as possible, we focus on a 10 Gbit/s

DM soliton system, using two specific dispersion maps with a map period Lm of 80 km (typical

value in practice) and consider how the jitter is affected when a second amplifier is placed within

each map period. One map consists of a 76 km anomalous GVD section of dispersion shifted fiber



CHAPTER 6. TIMING JITTER IN LIGHTWAVE SYSTEMS 94

(D = 4 ps/km-nm, α = 0:2 dB/km, Ae f f = 55 µm2), followed by a 3.2 km section of dispersion-

compensating fiber (D =�80 ps/km-nm, α = 0:4 dB/km, Ae f f = 55 µm2), resulting in an average

dispersion of about D = 0:2 ps/km-nm. For the 30-ps (full width at half maximum) unchirped

pulses used for illustration, the map strength defined as

Smap = jDaLa�DnLnj=T 2
FWHM; (6.109)

where Da and Dn are the dispersion parameters of anomalous and normal sections of the fiber. The

map strength given by Eq. (6.109) is a measure of how much the GVD varies between two sections

in a map period. Thus we can see that the pulse width variations are much larger for maps with a

larger map strength. Using the value of the parameters in Eq. (6.109) we find that the system has

a relatively low value of Smap = 0:62 for this map. An amplifier is placed at the end of each DM

stage of length Lm = 79:2 km. The spectral density of noise is calculated from nsp = 1:3 (noise

figure of about 4.1 dB for the lumped amplifier). The solid curve in Fig. 6.3 shows the timing jitter

at the end of each amplifier as a function of transmission distance for τ0 = 18:02 ps (full width at

half maximum, TFWHM of 30 ps), nsp = 1:3 and hν = 0:8 eV. The input chirp is C0 = 0:25 and the

input peak power is P0 = 3:04 mW for solitons propagating in such a lightwave system.

To see how the jitter is affected by a second amplifier placed in each DM stage, we optimize

the location of the second amplifier such that pulse breathing is minimized. For the map under

consideration this occurs when the amplifier is placed at a transmission distance of 35 km in the

dispersion shifted fiber section of the map. At this location of the amplifier, we can use the evo-

lution equations of energy and chirp obtained using the moment method to get the initial power,

P0 = 0:2051 mW, initial chirp, C0 = 0:517, and the chirp at the intermediate amplifier to be�0:01.

The dotted curve in Figure 6.3 shows that the GH jitter is reduced considerably when two ampli-

fiers are used within each DM stage. We can understand this result by noting that the gain of each

amplifier is lower, resulting in a lower value of spectral density of noise, S. In Fig. 6.3 the jitter is

reduced by a factor of 2 when two amplifiers are used.

The second map is designed with a standard fiber and consists of a 66 km anomalous GVD

section of a standard telecommunication fiber (D = 16 ps/km-nm, α = 0:2 dB/km, Ae f f = 55 µm2),

followed by a 13 km section of a dispersion-compensating fiber (D=�80 ps/km-nm, α = 0:4 dB/km,

Ae f f = 55 µm2), resulting in an average dispersion of about D = 0:2 ps/km-nm. From Eq. (5.108),
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Figure 6.3: Timing jitter for a 10 Gb/s DM soliton system as a function of distance. A single amplifier is placed at

the end of each map period at 79 km (solid line), where as a second amplifier is placed at a transmission distance of

35 km for the dashed curve. The map strength is 0:62 and the average dispersion is 0:2 ps/(km-nm).

the map strength with TFWHM = 30 ps is given by Smap = 2:33, indicating a considerable change

in pulse width in each map period. An amplifier is placed at the end of each DM stage of length

Lm = 79 km. The solid curve in Fig. 6.4 shows the timing jitter at the end of each amplifier as a

function of transmission distance for solitons of the same width used in Fig. 6.3 to ensure a fair

comparison. The input chirp is C0 = 0:765 and input peak power is P0 = 7:6 mW for solitons

propagating in such a lightwave system. The dashed curve in Fig. 6.4 shows how jitter is affected

when a second amplifier is placed within each DM stage at a transmission distance of 24 km (lo-

cation optimized to minimize pulse width changes). At this location of the amplifier, we can use

the evolution equations of energy and chirp obtained using the moment method to get the initial

power, P0 = 0:944 mW, initial chirp, C0 = 2:05, and the chirp at the intermediate amplifier to be

0:534.

A comparison of Figs. 6.3 and 6.4 shows several interesting features. Timing jitter is smaller

for the map made with the standard fiber when one amplifier is used in each stage. This is a

consequence of the higher pulse peak powers needed for a map with larger strengths and since

Gordon-Haus timing jitter is inversely proportional to the energy, we can see reduced jitter when

there is increase in energy. The second amplifier may increase or decrease the jitter, depending

on transmission distance. For distances up to 2000 km the Gordon-Haus jitter is greater when
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Figure 6.4: Same as Fig. 6.3 except here the map consists of 66km of standard fiber followed by 13 km of dispersion

compensating fiber, resulting in a map strength of 2:33 and an average dispersion of 0:2 ps/(km-nm). The second

amplifier is placed at a transmission distance of 24 km.

two amplifiers are used in each stage. For longer distances the second amplifier reduces timing

jitter by a large amount (as much as a factor of 2 as shown in Figure 6.4). The reason behind

this is related to the contribution of the Q term in Eq. (6.105). The expression for the Q term in

Eq. (6.107) shows its dependence on the GVD accumulated up to the location of the amplifier.

For an amplifier located at the end of a map period, jdkj in Eq. (6.107) is relatively small. But it

can be quite large for the second amplifier located within the map period. As a result the Q term

contribution becomes large at moderate distances even though this term grows as N 2 while P term

grows as L3, thus reducing the timing jitter. This indicates that the use of multiple amplifiers in

each map period can be beneficial for light-wave systems designed with standard fibers but that the

amplifier locations should be chosen judiciously.

Next we consider a dispersion-managed system which uses a fundamental soliton of width,

18:02 ps in a DDF whose dispersion D decreases from 4 to 0.161 ps/(km-nm) over 80 km which

will require an initial pulse power of 0:1 W, α = 0:2 dB and Ae f f = 55 µm2, such that an amplifier

is placed at every 80 km. Since the soliton pulse width remains the same, the location of the second

amplifier is irrelevant. We place the second amplifier in the middle of the map period, at 40 km.

The timing jitter in the presence of 1 and 2 amplifiers are shown in Figure 6.5. A comparison with

the DM soliton system shows that the Gordon-Haus timing jitter in this system is smaller. This is
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Figure 6.5: Same as Fig. 6.3 and 6.4 except here fundamental solitons are used in a DDF whose dispersion decreases

from 4 to 0.161 ps/(km-nm) over 80 km. The second amplifier is placed at a transmission distance of 40 km.

due to the increased input power needed for such a system. Also the solid (1 amplifier) and dashed

line (2 amplifiers) show that using 2 amplifiers can reduce Gordon-Haus jitter considerably.

To study the multi amplifier case analytically and find the extent of jitter reduction, we consider

the Gordon-Haus jitter in long-haul lightwave systems for which N is so large that the dominant

contribution to the timing jitter comes from the P term in Eq. (6.105), which exhibits a cubic

dependence on N. This limit may require more than 100 amplifiers, depending on the map design.

In the limit N � 1, the dominant term becomes

σ2
GH � P

N
3
(Nb2)

2
: (6.110)

The A coefficient is obtained using Eqs. (6.96) and (6.65) for DM soliton systems. If we use the

relation in Eq. (6.65) we can rewrite Eq. (6.110) as

σ2
GH � nsphνb2

2N3 (1+C2
0)

3τ2
0

na

∑
i=1

Gi�1
Ei

: (6.111)

The quantities Ei and Gi represent the pulse energy at the end of the ith amplifier with gain Gi.

Equation (6.111) generalizes the previously derived expression for Gordon-Haus timing jit-

ter to the case in which multiple amplifiers are used within each map period. Many lightwave

systems are designed with only one amplifier per stage. In that case the last factor reduces to

[exp(αLm)�1]=E0, where E0 is the energy of pulses launched at the input end. With several iden-

tical amplifiers per map period such that they have the same gain and are spaced apart by Lm=na,
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Figure 6.6: Reduction in timing jitter when several amplifiers are placed at equal distances in each map period.

Gi = exp(αLm=na) = G1=na
t , where Gt = exp(αLm) is the total gain of all the amplifiers in each

map period of length Lm. The pulse energy at the output of each amplifier is also the same since

each amplifier is designed to recover the input pulse energy. We can thus set Ei = E0 in Eq. (6.111).

The change in timing jitter with the use of multiple amplifiers is then given by a reduction factor

defined as

fr(na) =
σ2

na

σ2
na=1

= na
G1=na

t �1
Gt �1

; (6.112)

Figure 6.6 shows the reduction factor as a function of na for several values of the map period Lm.

Although there is a practical limit to the number of amplifiers, the preceding results show that the

use of several amplifiers reduces the timing jitter in the same way that it reduces amplifier noise

[59].

The limit in which na tends to infinity corresponds to the case of distributed amplification. Our

analysis shows that Gordon-Haus timing jitter is reduced when distributed amplification is used in

place of one lumped amplifier per map period, and the reduction factor is given by

σ2
distrib

σ2
lumped

=
αLm

exp(αLm)�1
=

lnGt

Gt �1
; (6.113)

where Gt is the total gain of the single lumped amplifier. As a simple example, consider a 50-

km map period, Gt = 10 and assume total a loss of 10 dB over Lm = 50 km, then the Gordon-
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Haus timing jitter is reduced by a factor of 3.9. It should be stressed that this result is based on

the assumption that input pulse parameters remain unchanged in the two cases. In practice, the

periodicity condition requires lower pulse energies in the case of distributed amplification. Since

frequency noise variance scales inversely with E in Eq. (6.65), the reduction in timing jitter, in

practice, is expected to be considerably smaller than that predicted by Eq. (6.113). The same

reduction factor can be derived for the fundamental soliton in DDFs using Eq. (6.47).

6.3.2 Non-soliton Systems

In this section we focus on the non-soliton system in which the pulse parameters are not periodic.

However the dependence of chirp and width of the pulse on distance is given by Eq. (6.78). We

can rewrite Eq. (6.78) to find the chirp and pulse width at the ith amplifier in the jth map period

when multiple amplifiers are used per map period to be

Ci j = C0 +

"
( j�1)b2

(1+C2
0)

τ2
0

+
(1+C2

0)

τ2
0

i

∑
k=1

dk

#
; (6.114)

τ2
i j =

τ2
0

(1+C2
0)

�
1+C2

i j

�
= τ2

0 +( j�1)2 (1+C2
0)

τ2
0

b2
2 +

(1+C2
0)

τ2
0

 
i

∑
k=1

dk

!2

+2C0( j�1)b2

+ 2C0

i

∑
k=1

dk +2( j�1)
(1+C2

0)

τ2
0

b2

i

∑
k=1

dk; (6.115)

where C0 is the initial chirp. Since in the case of a non-soliton system, the parameter (1+C2
)=τ2

remains unchanged, the variance in frequency fluctuations given by Eq. (5.78) remain the same for

all the amplifiers. From Eq. (6.96) the coefficient Pi also remains the same for all the amplifiers

and the coefficient P can be written as

P =

na

∑
i=1

Si

Ei

(1+C2
0)

τ2
0

: (6.116)

Using the Eqs. (6.114) and (6.115) in Eq. (6.97) and (6.98), we can find the coefficients Q j and R j

as follows:

From Eq. (6.97) we know

Q j =

na

∑
i=1
hδΩδT ii +

na�1

∑
i=1

hδΩ2ii

 
na

∑
k=i+1

dk

!
;
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=

na

∑
i=1

Si

Ei

 
C0 +

"
( j�1)b2

(1+C2
0)

τ2
0

+
(1+C2

0)

τ2
0

i

∑
k=1

dk

#!

+

na�1

∑
i=1

Si

Ei

�
(1+C2

0)

τ2
0

� na

∑
k=i+1

dk: (6.117)

Using b2 = ∑na
k=1 dk, Eq. (6.117) reduces to

Q j =

na

∑
i=1

Si

Ei
C0 +

na

∑
i=1

j

�
(1+C2

0)

τ2
0

�
b2: (6.118)

Similarly using Eq.(6.98) we have

R j =

na

∑
i=1
hδT 2ii +

na�1

∑
i=1

hδΩ2ii

 
na

∑
k=i+1

dk

!2

+2
na�1

∑
i=1

hδΩδT ii

 
na

∑
k=i+1

dk

!
;

=

na

∑
i=1

Si

Ei

0@τ2
0 +( j�1)2 (1+C2

0)

τ2
0

b2
2 +

(1+C2
0)

τ2
0

 
i

∑
k=1

dk

!2

+2C0( j�1)b2

+ 2C0

i

∑
k=1

dk +2( j�1)
(1+C2

0)

τ2
0

b2

i

∑
k=1

dk

!
+

na

∑
i=1

Si

Ei

(1+C2
0)

τ2
0

 
na

∑
k=i+1

dk

!2

+ 2
na

∑
i=1

Si

Ei

 
C0 +

"
( j�1)b2

(1+C2
0)

τ2
0

+
(1+C2

0)

τ2
0

i

∑
k=1

dk

#! 
na

∑
k=i+1

dk

!
: (6.119)

Rearranging the terms in Eq. (6.119) and using b2 = ∑na
k=1 dk, we get

R j =

na

∑
i=1

Si

Ei
τ2

0 +

na

∑
i=1

Si

Ei

�
j2
�

1+C2
0

τ2
0

�
b2

2

�
+2

na

∑
i=1

Si

Ei
C0 jb2: (6.120)

Using Eqs. (6.116), (6.118) and (6.120), in Eqs. (6.93)–(6.95), we get

hΩ2i j = hΩ2i j�1 +

na

∑
i=1

Si

Ei

�
(1+C2

0)

τ2
0

�
; (6.121)

hΩT i j = hΩT i j�1 +b2hΩ2i j�1 +

na

∑
i=1

Si

Ei
C0 +

na

∑
i=1

j

�
1+C2

0

τ2
0

�
b2; (6.122)

hT 2i j = hT 2i j�1 +b2
2hΩ

2i j�1 +2b2hΩT i j�1 +

na

∑
i=1

Si

Ei
τ2

0

+

na

∑
i=1

Si

Ei

�
j2
�

1+C2
0

τ2
0

�
b2

2

�
+2

na

∑
i=1

Si

Ei
C0 jb2: (6.123)

Comparing Eqs. (6.121)–(6.123) to Eqs. (6.83)–(6.85), we see that the multiple amplifier case is

similar to the single amplifier except that there is an additional summation over the amplifiers
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within the map period. Thus carrying out the summation first over the amplifiers and using (1+

C2
)=τ2

= 1=τ2
0, at the transmitter, and hence P = ∑na

i=1(Si=E0)1=τ2
0, we get

hΩ2i j = hΩ2i j�1 +
St

E0

�
1

τ2
0

�
; (6.124)

hΩT i j = hΩT i j�1 +b2hΩ2i j�1 +
St

E0
C0 + j

St

E0

�
1+C2

0

τ2
0

�
b2; (6.125)

hT 2i j = hT 2i j�1 +b2
2hΩ

2i j�1 +2b2hΩT i j�1 +
St

E0
τ2

0

+
St

E0

�
j2
�

1+C2
0

τ2
0

�
b2

2

�
+2

St

E0
C0 jb2; (6.126)

where St = ∑na
i=1 Si. Performing the summation over the map periods, we get

hΩ2iN = N
St

E0

1

τ2
0

; (6.127)

hΩT iN =
b2

2
N(N�1)

St

E0

1

τ2
0

+
b2

2
N(N +1)

St

E0

(1+C2
0)

τ2
0

+N
StC0

E0
; (6.128)

hT 2iN =
b2

2

6
N(N�1)(2N�1)

St

E0

1

τ2
0

+N
St

E0

1+C2
0

τ2
0

+2b2
StC0

E0

�
N
2
(N�1)

+
N
2
(N +1)

�
+

St

E0

b2
2

τ2

�
N
6
(N +1)(2N +1)+

N
6
(N�1)(2N�1)+

N
2
(N�1)

�
:

hT 2iN =
St

E0
τ2

0N

"
1+

�
C0 +

b2N

τ2
0

�2
#
: (6.129)

Hence from Eq. (6.129) we can write the Gordon-Haus jitter for the multiple amplifier case for

non-soliton systems as

σ2
GH =

St

E0
τ2

0N

"
1+

�
C0 +

b2N

τ2
0

�2
#
: (6.130)

We can see from Eq. (6.130) that the Gordon-Haus jitter is still cubic in distance and is similar to

Eq. (6.89). The jitter is proportional to St = ∑na
i=1 Si for the multiple amplifier case. Comparing this

with the one amplifier case we find that in the one amplifier case, the jitter is proportional to S =

nsphν(G� 1), where G = exp[�αLA] and in the multiple amplifier case, the jitter is proportional

to St = nsphν∑na
i=1(Gi� 1). Since the gain of each amplifier is such that Gi = exp[�αzi], we can

see that using more than one amplifier can reduce timing jitter in non-soliton systems as well.

To show that using more than one amplifier can help reduce timing jitter even in non-soliton

systems, we consider a non-soliton system using the same dispersion map as the one used for figure
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6.4 except the pulse energy is reduced by a factor of 10 to minimize the nonlinear effects and the

initial chirp is 0. Figure 6.7 shows the reduction in timing jitter when a second amplifier is placed

at a distance of 24 km.
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Figure 6.7: Same as Fig. 6.4 except this system uses one-tenth of the pulse energy used for Fig. 6.4 and the input

pulses are unchirped. The second amplifier is placed at a transmission distance of 24 km.

6.4 Chapter Summary

In this Chapter we used the moment method to analytically derive the timing jitter at the end of

a communication system employing amplifiers at regular intervals. We have extended the theory

to systems using more then one amplifier per map period and shown that such systems can reduce

timing jitter in both soliton and non-soliton systems. Even though using more than one amplifier

per map period can help reduce timing jitter, there are few disadvantages to the idea. One of them

is that it can cost more money to have more than one amplifier to amplify the signal within one

map period. Also these amplifiers perturb the pulse and hence the soliton pulse may not be able

to recover between the amplifiers if the amplifiers are placed very close to each other. In Chapter

4, we saw that the Q factor decreases when the number of amplifiers increases. Thus the BER

of the system can be degraded. Thus when using more than one lumped amplifiers within a map

period one must keep these things in mind. The above results also show that in the absence of

GVD, the timing jitter will be due to amplifier fluctuations added into the position of the pulse and
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grows linearly with distance. However in the presence of GVD the timing jitter is mainly due to

fluctuations added into the frequency of the pulse and grows cubic in distance. Also the Gordon-

Haus timing jitter is inversely proportional to the energy of the input pulse. Since generally soliton

systems use higher input energy, they have lower timing jitter in the system compared to the non-

soliton systems.



Chapter 7

Timing Jitter induced by Intrapulse Raman

Scattering

In the previous Chapter we derived an analytical expression for the Gordon-Haus timing jitter

for lightwave systems operating at bit rates less than 40 Gb/s. We saw that the Gordon-Haus

timing jitter grows cubic with distance and can limit the system after several thousand kilometers.

However, for systems operating at bit rates higher than 40 Gb/s, the higher-order effects such as

IRS and TOD cannot be neglected. The TOD effects, can cause additional pulse broadening even

in a soliton system leading to an increased timing jitter. The IRS effects, as seen before in Chapter

4, are responsible for frequency shifts that depend on the energy of the pulse. Any fluctuation in

the pulse energy can be transferred to the frequency and hence to the position in the presence of

GVD leading to another increase in timing jitter. This additional jitter due to the IRS is called

Raman Jitter.

Since the allowed value of timing jitter is inversely proportional to the bit rate of the system,

at high bit rates, the systems will be limited by timing jitter at shorter distances than the systems

operating at lower bit rates. Hence, it becomes important to know the exact impact of the additional

jitter induced by IRS and TOD in such systems. In this Chapter we use the moment method

to get analytic expressions for timing jitter due to both the Raman and Gordon-Haus effects for

high bit rate systems. Similar to the Gordon-Haus jitter, the Raman jitter occurs for both soliton

and non-soliton systems. The Raman jitter has been studied in the context of constant-dispersion

104
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fibers [60] and dispersion-decreasing fibers [55]. However, most lightwave systems make use

of dispersion management. In this Chapter, we consider the impact of Raman-induced timing

jitter on dispersion-managed (DM) systems and non-soliton systems to find how these systems are

inherently limited by timing jitter at bit rates of 80 Gb/s or more.

Lightwave systems that operate at a bit rate of 80 Gb/s or more use very short pulses (� 1 ps).

As an example, a 160 Gb/s may require a pulse width as short as 1 ps. For such systems, the pulse

propagation in a fiber is governed by the NLS equation given in Eq. (3.51) and written again here

as
∂A
∂z

+
α
2

A+
iβ2

2
∂2A
∂t2 �

β3

6
∂3A
∂t3 = iγjAj2A� iγTRA

∂jAj2

∂t
: (7.1)

Here we have neglected the effect of self-steepening since they become important only for pulses

shorter than 100 fs. Using the transformation given by Eq. (3.2) we can rewrite Eq. (7.1) as

∂B
∂z

+
iβ2

2
∂2B
∂t2 �

β3

6
∂3B
∂t3 = iγjBj2B� iγTRB

∂jBj2

∂t
; (7.2)

where γ= γ exp[�
R z

0 α(z)dz]. Using Eq. (7.2) and the moment definitions of energy, frequency

and position, we derive the evolution equations for the pulse parameters following the method of

Chapter 4.

Using the results obtained in Chapter 4 and neglecting the effects of self-steepening in Eqs. (4.22),

(4.36) and (4.52), we can write the evolution equations for the energy, frequency and position as

dE
dz

= 0; (7.3)

dT
dz

= β2Ω+
β3

2E

Z ∞

�∞

����∂B
∂t

����2 dt; (7.4)

dΩ
dz

= �
γ
E

TR

Z ∞

�∞

�
∂
∂t
jBj2

�2

dt: (7.5)

The above equations simply describe the evolution of the three pulse parameters. However, we

have to add the ASE-induced fluctuation into these equations in order to account for the effects of

lumped amplifiers. Thus, Eqs. (7.3)–(7.5) should be modified as follows to include the amplifier

noise:

dE
dz

= ∑
i

δEiδ(z� zi); (7.6)
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dT
dz

= β2Ω+
β3

2E

Z ∞

�∞

����∂B
∂t

����2 dt +∑
i

δTiδ(z� zi); (7.7)

dΩ
dz

= �
γ
E

TR

Z ∞

�∞

�
∂
∂t
jBj2
�2

dt +∑
i

δΩiδ(z� zi); (7.8)

where δEi, δΩi, and δTi are random fluctuations in the pulse energy, frequency, and position,

respectively, introduced by the ith amplifier located at a distance zi. We proceed to calculate timing

jitter from the above equations using the same technique we used to calculate Gordon-Haus jitter

in Chapter 6. However, because of the presence of energy, E in the equation for Ω due to IRS, we

need to find the variances and correlations of the E, Ω and T . Also, the above equations show that

the evolutions of these parameters are dependent on the pulse shape. Hence, to proceed further we

need to assume a specific pulse shape. In the following sections we consider the cases of soliton

and non-soliton systems one after the other.

7.1 Solitons Systems

As seen in the previous Chapter the soliton systems are periodic after every amplifier, and hence

the evolution of the pulse parameters is also periodic in every fiber section before the amplifiers.

We have also seen in Chapter 4 that this periodicity of the soliton system is valid in the presence of

IRS only if the RIFS remains a small fraction of the pulse spectral width. For pulses whose width

is larger than 100 fs the RIFS is small enough to satisfy the above condition and hence for systems

under consideration the assumption that a soliton system is periodic remains valid. However when

the pulse width is comparable to or less than 100 fs, one has to include the evolution equations for

chirp and pulse width derived in Chapter 4 in the calculation of timing jitter.

7.1.1 Fundamental solitons in DDFs

We first consider the case of fundamental solitons propagating in DDFs. The pulse shape in such

systems is given by Eq. (3.7). First let us consider the changes in the soliton position in such

systems. Using Eq. (3.7) in Eq. (7.7) we find that the pulse position evolves from Eq. (4.90) as

dT
dz

= β2Ω+
β3Ω2

2
+

β3

6τ2 +∑
i

δTiδ(z� zi): (7.9)
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Next the evolution of the frequency can be found by using Eq. (3.7) in Eq. (7.8) and can be written

using Eq. (4.99) as
dΩ
dz

=�
4γTRE
15τ3 +∑

i
δΩiδ(z� zi): (7.10)

The evolution of the pulse energy is governed by Eq. (7.6). Now that we know how the energy,

position and frequency of a fundamental soliton evolve, we can integrate Eqs. (7.6), (7.9) and

(7.10) over one amplifier length to get

E(LA) = E(0)+δE1; (7.11)

Ω(LA) = Ω(0)+bRE(0)+δΩ1; (7.12)

T (LA) = T (0)+b2Ω(0)+b2RE(0)+b3 +b3ΩΩ2
(0)

+bEΩE(0)Ω(0)+b3EE2
(0)+δT1; (7.13)

where the coefficients bR, b2, b2R, b3, b3E b3Ω and bEΩ are given by

b2 = β2(0)Leff; b3 = β3(0)Leff=(6τ2
); (7.14)

bR = �4γTRLeff=(15τ3
0); (7.15)

b2R = �2γTRβ2(0)L
2
eff=(15τ3

0); b3E =
β3(0)

2α

�
4γTRLeff

15τ3
0

�2

; (7.16)

b3Ω =
1
2

Leffβ3(0); bEΩ =�
4TRγβ3(0)

15τ3
0

L2
eff; (7.17)

where Leff is the effective length defined as

Leff = [1� exp(�αLA)]=α: (7.18)

The expressions in Eqs. (7.14)– (7.17) were obtained by using γ(z) = γ(0)exp(�αz), β2(z) =

β2(0)exp(�αz) and β3(z) = β3(0)exp(�αz) for fundamental solitons propagating in a DDF.

For simplicity, we neglect the contribution of higher-order terms containing b3Ω; b3E and bΩE .

These terms involve the product of two small parameters, TR and β3 and can be neglected in most

cases of practical interest. Hence we can write from Eqs. (7.11)–(7.13) the energy, frequency and

position after any ith amplifier as

Ei = Ei�1 +δEi; (7.19)

Ωi = Ωi�1 +bREi�1 +δΩi; (7.20)

Ti = Ti�1 +b2Ωi�1 +b2REi�1 +b3 +δTi: (7.21)
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The timing jitter induced by the Raman and Gordon-Haus effects can be calculated using the

definition of timing jitter, σ2
t = hT 2i� hT i2, where the angle brackets indicate average over the

ASE noise. For this purpose, we need to find the variances and cross correlations of δEi, δΩi and

δTi. In the calculation of timing jitter, we are interested in finding how much, on average, the pulse

position has shifted at the end of the system. Since we are interested in finding the shift in 1 bits,

we need δEi, δΩi and δTi for any given 1 bit. Using the moment method, we have calculated the

variance and average of δEi for 1 bits in Chapter 5. From Eqs. (5.23) and (5.25) we have

hδEii = S; hδE2ii � 2SEi; (7.22)

where we have neglected the last term, which is due to the beating of noise with itself, since it is

small compared to the signal and noise beating with each other.

To find the cross correlations, we use the results obtained in the Chapters 5 and 6 using the

moment method for δEi and δΩi and δTi. Neglecting any terms due to noise beating with itself and

using Eqs. (5.22), (6.17) and (6.22) we obtain

δEi =

Z ∞

�∞
(BiδB�i +B�i δBi)dt; (7.23)

δΩi = �
i

Ei

Z ∞

∞

�
δBi

�
∂B�i
∂t

� iΩiB
�

�
�δB�i

�
∂Bi

∂t
+ iΩiB

��
dt; (7.24)

δTi =
1
Ei

Z ∞

�∞
(t�T )(B�i δBi +BiδB�i )dt: (7.25)

Using the transformation in Eq. (6.18) we can write the above equations in terms of Vi(z; t) as

δEi =

Z ∞

�∞
(ViδV �

i +V �

i δVi)dt; (7.26)

δΩi = �
i

Ei

Z ∞

∞

�
δVi

∂V �

i

∂t
�δV �

i
∂Vi

∂t

�
dt; (7.27)

δTi =
1
Ei

Z ∞

�∞
(t�T )(V �

i δVi +ViδV �

i )dt: (7.28)

From Eqs. (7.26)–(7.28) we obtain the correlations δEiδΩi and δEiδTi as

δEiδΩi = �
i

Ei

Z ∞

∞
dt

Z ∞

∞
dt

0

"
δVi(t

0

)
∂V �

i (t
0

)

∂t
�δV �

i (t
0

)
∂Vi(t

0

)

∂t

#
�

[Vi(t)δV �

i (t)+V �

i (t)δVi(t)]; (7.29)

δEiδTi =
1
Ei

Z ∞

∞
dt

Z ∞

∞
dt

0

(t�Ti)[Vi(t)δV �

i (t)+V �

i (t)δVi(t)]�

[Vi(t
0

)δV �

i (t
0

)+V �

i (t
0

)δVi(t
0

)]: (7.30)
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Taking the average of Eqs. (7.29) and (7.30) and using Eq.(6.25) we get

hδEδΩii =
iS
Ei

Z ∞

∞
dt

�
V �

i
∂Vi

∂t
�Vi

∂V �

i

∂t

�
; (7.31)

hδEδT ii =
2S
Ei

Z ∞

∞
dt(t�Ti)jVij2: (7.32)

For the fundamental soliton, the form of Vi is given in Eq. (6.40) as

Vi(z; t) = ai sech

�
t�Ti

τi

�
exp(iφi): (7.33)

From Eq. (7.33) the time derivative is given by

∂Vi

∂t
=�

�
ai

τi
sech

�
t�Ti

τi

�
tanh

�
t�Ti

τi

��
exp(iφi): (7.34)

Using Eqs. (7.33) and (7.34) in Eqs. (7.31) and (7.32) we finally obtain

hδEδΩii = �
2iS
Ei

Z ∞

∞

a2
i

τi
sech2

�
t�T

τi

�
tanh

�
t�T

τi

�
dt; (7.35)

hδEδT ii =
2S
Ei

Z ∞

∞
dt(t�Ti)a

2
i sech2

�
t�T

τi

�
: (7.36)

Using Table 4.1 and performing the integrations we get

hδEδΩii = 0 hδEδT ii = 0: (7.37)

The variances of δΩi and δTi and their correlation were found in Chapter 6 and are given by

Eqs. (6.43), (6.45) and (6.46) for the case of the fundamental soliton. Since we know that soliton

systems are periodic such that the pulse width and energy are recovered after every amplifier, the

variances and cross correlations of δE, δΩ and δT in the case of fundamental solitons can be

written, after dropping the subscript i, as

hδE2i= 2SE0; hδΩδEi= 0; (7.38)

hδΩ2i=
2S

3E0τ2
0

hδEδT i= 0; (7.39)

hδT 2i=
π2Sτ2

0

6E0
hδΩδT i= 0: (7.40)

Now that we have found the second moments of δE, δΩ and δT , we can write the recurrence

relations from Eqs. (7.19)–(7.21) as follows. The first moments are given by

hEiN = E0 +

N

∑
i=1
hδEi; (7.41)



CHAPTER 7. TIMING JITTER INDUCED BY INTRAPULSE RAMAN SCATTERING 110

hΩiN = bR

N�1

∑
i=1
hEii +

N

∑
i=1
hδΩi; (7.42)

hT iN = b2

N�1

∑
i=1

Ωi +b2R

N�1

∑
i=1

Ei +

N

∑
i=1

b3 +

N

∑
i=1
hδT i: (7.43)

Performing the summation using Eqs. (6.27), (6.30) and (7.22), we obtain

hEiN = E0 +N S; (7.44)

hΩiN = bRN(N�1) S=2+NbRE0; (7.45)

hT iN = b2bRN(N�1)(2N�1) S=6+b2bRN(N�1) S=2+b2RN(N�1) S=2+b2RNE0

+ Nb3: (7.46)

Next the second moments and correlations are found to be

hE2ii = hE2ii�1 + hδE2ii�1 +2hEii�1hδEii; (7.47)

hEΩii = hEΩii�1 +bRhE2ii�1 + hδEδΩii; (7.48)

hΩ2ii = hΩ2ii�1 +b2
RhE

2ii�1 +2bRhEΩii�1 + hδΩ2ii; (7.49)

hET ii = hET ii�1 +b2hEΩii�1 +b2RhE2ii�1 +b3hEii�1 + hδEδT ii (7.50)

hΩT ii = hΩT ii�1 +b2hΩ2ii�1 +b2RhEΩii�1 +b3hΩii�1 +bRhET ii�1

+ b2bRhEΩii�1 +b2RbRhE2ii�1 +b3bRhEii�1 + hδΩδT ii (7.51)

hT ii = hT ii�1 +b2
2hΩ

2ii�1 +b2
2RhE

2ii�1 +b2
3 + hδT 2ii +2b2hΩT ii�1 +2b2RhET ii�1

+ 2b3hT ii�1 +b2b2RhEΩii�1 +2b3b2hΩii�1: (7.52)

Summing up Eqs. (7.47)–(7.52) over N amplifiers, we get

hE2iN =

N

∑
i=1
hδE2i+2

N

∑
i=1
hEii�1hδEi; (7.53)

hEΩiN = bR

N�1

∑
i=1
hE2ii +

N

∑
i=1
hδEδΩi; (7.54)

hΩ2iN = b2
R

N�1

∑
i=1
hE2ii +2bR

N�1

∑
i=1
hEΩii +

N

∑
i=1
hδΩ2i; (7.55)

hET iN = b2

N�1

∑
i=1
hEΩii+b2R

N�1

∑
i=1
hE2ii +b3

N�1

∑
i=1
hEii +

N

∑
i=1
hδEδT i (7.56)

hΩT iN = b2

N�1

∑
i=1
hΩ2ii +b2R

N�1

∑
i=1
hEΩii +b3

N�1

∑
i=1
hΩii+bR

N�1

∑
i=1
hET ii
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+ b2bR

N�1

∑
i=1
hEΩii +b2RbR

N�1

∑
i=1
hE2ii +

N

∑
i=1
hδΩδT i (7.57)

hT 2iN = b2
2

N�1

∑
i=1
hΩ2ii +b2

2R

N�1

∑
i=1
hE2ii +

N

∑
i=1

b2
3 +

N

∑
i=1
hδT 2i

+ 2b2

N�1

∑
i=1
hΩT ii +2b2R

N�1

∑
i=1
hET ii +2b3

N�1

∑
i=1
hT ii

+ b2b2R

N�1

∑
i=1
hEΩii+2b3b2

N�1

∑
i=1
hΩii: (7.58)

Performing the summation using Eqs. (6.51), (7.38)–(7.40), Eqs. (7.44)–(7.46) and

N

∑
i=1

i3 =

�
N(N +1)

2

�2

;

N

∑
i=1

i4 = N(N +1)(2N +1)(3N2
+3N�1)=30; (7.59)

we obtain the following analytical expressions:

hE2iN = NhδE2i+2NE0hδEi; (7.60)

hEΩiN = bRN(N�1)=2hδE2i+bRN(N�1)E0hδEi+NhδEδΩi; (7.61)

hΩ2iN = b2
R

N
6
(N�1)(2N�1)hδE2i+b2

R
N
3
(N�1)(2N�1)E0hδEi

+ bRN(N�1)hδEδΩi+NhδΩ2i; (7.62)

hET iN = b2
N
2
(N�1)hδEδΩi+b2R

N
2
(N�1)hδE2i+bRb2

N
12

(N�1)(2N�1)hδE2i

+ b3
N
2
(N�1)S+NhδEδT i

= hδE2i
N
2
(N�1)

�
b2R +bRb2

(2N�1)
6

�
+b3

N
2
(N�1)S; (7.63)

hΩT iN = b2
N
2
(N�1)hδΩ2i+ hδEδΩi

�
b2R

N
2
(N�1)+b2bR

N
2
(N�1)2

�
+ hδE2i

�
b2b2

R
N
24

(N�1)(N�2)(3N�1)+b2RbR
N
6
(N�1)(2N�1)

�
+ b3bR

N
6
(N�1)(2N�1)S+bRb3N(N�1)E0 +NhδΩδT i;

= b2
N
2
(N�1)hδΩ2i+ hδE2i

�
b2b2

R
N
24

(N�1)(N�2)(3N�1)

+ b2RbR
N
6
(N�1)(2N�1)

�
+b3bR

N
6
(N�1)(2N�1)S+bRb3N(N�1)E0; (7.64)

hT 2iN = b2
2

N
6
(N�1)(2N�1)hδΩ2i+N2b2

3 +NhδT 2i+ hδE2i
�

b2
2R

N
6
(N�1)(2N�1)+ b2b2RbR

N
4
(N�1)2

(N�2)+ b2
Rb2

2
N

120
(N�1)(6N3�20N2

+24N +1)

�
+2b3b2bR
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N
3
(N�1)(N�2)S+

N
2
(N�1)2

(N�8)E0

�
+b3b2R

�
N
3
(N�1)(N�2)S

+N(N�1)E0] : (7.65)

Using Eqs. (7.46) and (7.65) in the definition of the timing jitter we obtain the timing jitter in

the case of a fundamental soliton propagating in DDFs with periodic amplification to be

σ2
t = σ2

GH +R1h(δE)
2i+R2; (7.66)

where σ2
GH is the Gordon-Haus timing jitter evaluated in the previous Chapter and is given by

σ2
GH =

b2
2

6
N(N�1)(2N�1)hδΩ2i+NhδT 2i; (7.67)

and the coefficients R1 and R3 are given by

R1 = N(N�1)[b2
Rb2

2(N
3�10N2

+29N�9)=120

+b2bRb2R(19N2�65N +48)=96+b2
2R(2N�1)=6]; (7.68)

R2 = N(N�1)b3 [bR(N�1)(N�2)=6+b2R(N�2)=3]S: (7.69)

The R1 term originates from the RIFS. For this reason, this contribution is referred to as the Raman

jitter. The R1 dominates for N � 1 because of its N5 dependence. The R2 term results from the

combination of TOD and Raman effects and thus becomes important only for pulses much shorter

than 1 ps. In the absence of the Raman and TOD effects, we recover the expression for the Gordon-

Haus jitter obtained in Chapter 6. The leading term in the timing jitter given by Eq. (7.66) is due

to RIFS and grows as N5 whereas the Gordon-Haus term given by Eq. (7.67) grows as N3. Both

of these contributions agree with the earlier results of Essiambre and Agrawal [55]. The same

expression applies for constant-dispersion fibers with minor changes. The coefficients b2 and b3

require replacing Leff with LA because β2 and β3 are constant along the fiber and the coefficient

b2R changes to 4γTR(Leff�LA)=(15ατ3
0) while bR remains the same.

As a numerical example we consider a 160-Gb/s fundamental soliton in a 45-km-long DDF

with β2(0) = 1:275 (D(0) = 1:0 ps/(km-nm)). The fiber is assumed to have an effective area of

54 µm2, losses of 0.2 dB/km, TR = 3 fs, and β3 = 0. Optical amplifiers are spaced 45 km apart. The

spectral noise density was calculated using nsp = 1.3. The pulse width, τ0 = 1:25 ps, and hence

the pulse energy, E0 = 0:9 pJ so that it corresponds to a standard fundamental soliton. Figure 7.1
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Figure 7.1: Timing jitter for a 160 Gb/s system using fundamental soliton in DDFs whose dispersion D decreases

from 1 to 0.165 ps/(km-nm) over 45 km.

shows the dependence of timing jitter on distance for such a system. The dashed line shows the

Gordon-Haus jitter obtained from Eq. (7.67), and the solid line shows the sum of Gordon-Haus and

Raman jitter from Eq. (7.66). The effect of TOD is included in the dotted line. Since the Raman

contributions from RIFS begins to dominate the jitter after 1000 km, it is evident that the system

performance is mainly limited by the RIFS at high bit rates. Notice that the sum of Raman jitter

and Gordon-Haus jitter is much larger in this case. This is due to the relatively large value of the

average dispersion.

If we design the fundamental soliton system with the same average dispersion using a DDFs

whose jβ2j decreases from 0.24 to 0.04 ps2/km (D goes from 0:188 to 0:03 ps/(km-nm)) over

45 km, with a pulse energy of 0.17pJ, we obtain the results shown in Fig. 7.2. Timing jitter is

now smaller than that of Fig. 7.1. This qualitative change is due to a reduced energy needed for

fundamental solitons. The Raman jitter has its origin in energy fluctuations whose magnitude is

proportional to the pulse energy. In contrast, the Gordon-Haus jitter is inversely proportional to the

pulse energy. Thus, as the pulse energy decreases, the Gordon-Haus jitter increases but the Raman

jitter decreases.
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Figure 7.2: Timing jitter for a 160 Gb/s system using fundamental soliton in DDFs whose dispersion D decreases

from 0.188 to 0.03 ps/(km-nm) over 45 km.

7.1.2 Dispersion-Managed Solitons

Next we consider the case of DM solitons. The pulse shape of such a soliton is then given by

Eq. (6.56). Using Eq. (6.56) in Eqs. (7.6)–(7.8), we get

dE
dz

= ∑
i

δEiδ(z� zi); (7.70)

dΩ
dz

= �
TRγE
p

2πτ3
+∑

i
δΩiδ(z� zi); (7.71)

dT
dz

= β2Ω+
β3(1+C2

)

4τ2 +β3
Ω2

2
+∑

i
δTiδ(z� zi); (7.72)

Integrating Eqs. (7.70)–(7.72), over the length of one amplifier we get

E(LA) = E(0)+δE1; (7.73)

Ω(LA) = Ω(0)+bRE(0)+δΩ1 (7.74)

T (LA) = T (0)+b2Ω(0)+b2RE(0)+b3 +b3ΩΩ2
(0)

+bEΩE(0)Ω(0)+b3EE2
(0)+δT1; (7.75)
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where the coefficients bR, b2, b2R, b3, b3E , b3Ω and bEΩare given by

b2 =

Z LA

0
β2(z)dz; b3 =

Z LA

0

β3(1+C2
)

4τ2 dz; (7.76)

bR = �
Z LA

0
q(z)dz; b2R =�

Z LA

0
dzβ2(z)

Z z

0
dz

0

q(z
0

) (7.77)

b3Ω =
1
2

Z LA

0
β3 dz; bEΩ =�

1
2

Z LA

0
dzβ3(z)

Z z

0
q(z

0

)dz
0

; (7.78)

b3E = �
1
2

Z LA

0
dzβ3(z)

�Z z

0
q(z

0

)dz
0

�2

; q(z) =
TRγ
p

2π
exp(�αz)

τ3(z)
; (7.79)

where we have used γ(z) = γexp(�αz). Eqs. (7.73)–(7.75) look the same as Eqs. (7.11)–(7.13)

except for the definitions of the coefficients, bR, b2, b2R, b3, b3E , b3Ω and bEΩ. However in the

case of DM solitons, the situation is quite different. First, the pulse width τ is not constant but varies

in a periodic fashion along the fiber link. It takes its minimum value in the middle of each fiber

section forming the dispersion map. As a result, the maximum contribution to the frequency shift in

Eq. (7.74) comes from this region. It is sometimes concluded that RIFS is smaller for DM solitons

if we assume that τ in Eq. (7.77) corresponds to the minimum width of a DM soliton [61]. However,

one should note that the pulse energy is enhanced considerably for DM solitons. Moreover, the

contribution where the pulse width is minimum is reduced because of losses. For these reasons,

the RIFS and hence the Raman jitter of DM solitons can exceed that of fundamental solitons.

For simplicity, we neglect the contribution of higher-order terms containing b3Ω; b3E and bEΩ

like we did for the fundamental soliton case and write the from Eqs. (7.73)–(7.75) the energy,

frequency and position after any ith amplifier as

Ei = Ei�1 +δEi; (7.80)

Ωi = Ωi�1 +bREi�1 +δΩi; (7.81)

Ti = Ti�1 +b2Ωi�1 +b2REi�1 +b3 +δTi: (7.82)

Next we find the variances and cross correlations of δEi, δΩi and δTi. From Eq. (6.57) and (6.58),

we can write

Vi(z; t) = ai exp[iφi� (1+ iCi)(t�Ti)
2
=2τ2

i ]; (7.83)

∂Vi

∂t
= ai exp[iφi� (1+ iCi)(t�Ti)

2
=2τ2

i ]
�
�(1+ iCi)(t�Ti)=τ2

i

�
: (7.84)
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From Eqs. (5.23), (5.25), (6.60), (6.62) and (6.64), in chapters 5 and 6, we already know that for

DM soliton the variances of δE, δΩ and δT and the cross correlation of δΩ and δT at the ith

amplifier are given by

hδE2ii = 2SEi; hδEii = S; hδΩ2ii =
S
Ei

(1+C2
i )

τ2
i

(7.85)

hδT 2ii =
S
Ei

τ2
i ; hδΩii = hδT ii = 0; hδTδΩii =

S
Ei

Ci: (7.86)

From Eqs. (7.31) and (7.32) we have

hδEδΩii =
iS
Ei

Z ∞

∞
dt

�
V �

i
∂Vi

∂t
�Vi

∂V �

i

∂t

�
; (7.87)

hδEδT ii =
2S
Ei

Z ∞

∞
dt(t�Ti)jVij2: (7.88)

Using Eqs. (7.83) and (7.84) in Eqs (7.87) and (7.88), and using Table 4.3, we obtain

hδEδΩii =
S
Ei

2a2
i
Ci

τi

Z ∞

∞
dt

(t�Ti)

τi
exp[�(t�Ti)

2
=τ2

i ]

hδEδΩii = 0 (7.89)

hδEδT ii =
2S
Ei

a2
i

Z ∞

∞
dt(t�Ti)exp[�(t�Ti)

2
=τ2

i ]

hδEδT ii = 0: (7.90)

Dropping the subscript i due to periodicity of the DM soliton system we can write the variances

and correlations of the fluctuation in energy, position and frequency added by every amplifier as

hδE2i= 2SE0; hδΩδEi= 0 hδEi= S; (7.91)

hδΩ2i=
S

E0

(1+C2
0)

τ2
0

hδEδT i= 0 hδΩi= 0; (7.92)

hδT 2i=
S

E0
τ2

0 hδΩδT i=
S
E

C0 hδT i= 0: (7.93)

Using the recurrence relations in Eqs. (7.80)–(7.82), the first moments of E, Ω and T after N

such amplifiers are given by

hEiN = E0 +

N

∑
i=1
hδEi; (7.94)

hΩiN = bR

N�1

∑
i=1
hEii +

N

∑
i=1
hδΩi; (7.95)

hT iN = b2

N�1

∑
i=1

Ωi +b2R

N�1

∑
i=1

Ei +

N

∑
i=1

b3 +

N

∑
i=1
hδT i: (7.96)
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Performing the summation using Eqs. (6.27), (6.30) and (7.22) we get

hEiN = E0 +N S; (7.97)

hΩiN = bRN(N�1) S=2+NbRE0; (7.98)

hT iN = b2bRN(N�1)(2N�1) S=6+b2bRN(N�1) S=2+b2RN(N�1) S=2+b2RNE0

+ Nb3: (7.99)

Next we consider the second moments of E, Ω, T and find that they evolve as

hE2ii = hE2ii�1 + hδE2ii�1 +2hEii�1hδEii; (7.100)

hEΩii = hEΩii�1 +bRhE2ii�1 + hδEδΩii; (7.101)

hΩ2ii = hΩ2ii�1 +b2
RhE

2ii�1 +2bRhEΩii�1 + hδΩ2ii; (7.102)

hET ii = hET ii�1 +b2hEΩii�1 +b2RhE2ii�1 +b3hEii�1 + hδEδT ii (7.103)

hΩT ii = hΩT ii�1 +b2hΩ2ii�1 +b2RhEΩii�1 +b3hΩii�1 +bRhET ii�1

+ b2bRhEΩii�1 +b2RbRhE2ii�1 +b3bRhEii�1 + hδΩδT ii (7.104)

hT ii = hT ii�1 +b2
2hΩ

2ii�1 +b2
2RhE

2ii�1 +b2
3 + hδT 2ii +2b2hΩT ii�1 +2b2RhET ii�1

+ 2b3hT ii�1 +b2b2RhEΩii�1 +2b3b2hΩii�1: (7.105)

Summing up Eqs. (7.100)–(7.105) over N amplifiers, we get

hE2iN =

N

∑
i=1
hδE2i+2

N

∑
i=1
hEii�1hδEi; (7.106)

hEΩiN = bR

N�1

∑
i=1
hE2ii +

N

∑
i=1
hδEδΩi; (7.107)

hΩ2iN = b2
R

N�1

∑
i=1
hE2ii +2bR

N�1

∑
i=1
hEΩii +

N

∑
i=1
hδΩ2i; (7.108)

hET iN = b2

N�1

∑
i=1
hEΩii+b2R

N�1

∑
i=1
hE2ii +b3

N�1

∑
i=1
hEii +

N

∑
i=1
hδEδT i (7.109)

hΩT iN = b2

N�1

∑
i=1
hΩ2ii +b2R

N�1

∑
i=1
hEΩii +b3

N�1

∑
i=1
hΩii+bR

N�1

∑
i=1
hET ii

+ b2bR

N�1

∑
i=1
hEΩii +b2RbR

N�1

∑
i=1
hE2ii +

N

∑
i=1
hδΩδT i (7.110)

hT 2iN = b2
2

N�1

∑
i=1
hΩ2ii +b2

2R

N�1

∑
i=1
hE2ii +

N

∑
i=1

b2
3 +

N

∑
i=1
hδT 2i
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+ 2b2

N�1

∑
i=1
hΩT ii +2b2R

N�1

∑
i=1
hET ii +2b3

N�1

∑
i=1
hT ii

+ b2b2R

N�1

∑
i=1
hEΩii+2b3b2

N�1

∑
i=1
hΩii: (7.111)

Performing the summation using Eqs. (6.51), (7.59), (7.91)–(7.93) and Eqs. (7.97)–(7.99), we

finally obtain

hE2iN = NhδE2i+2NE0hδEi; (7.112)

hEΩiN = bRN(N�1)=2hδE2i+bRN(N�1)E0hδEi+NhδEδΩi; (7.113)

hΩ2iN = b2
R

N
6
(N�1)(2N�1)hδE2i+b2

R
N
3
(N�1)(2N�1)E0hδEi

+ bRN(N�1)hδEδΩi+NhδΩ2i; (7.114)

hET iN = b2
N
2
(N�1)hδEδΩi+b2R

N
2
(N�1)hδE2i+bRb2

N
12

(N�1)(2N�1)hδE2i

+ b3
N
2
(N�1)S+NhδEδT i

= hδE2i
N
2
(N�1)

�
b2R +bRb2

(2N�1)
6

�
+b3

N
2
(N�1)S; (7.115)

hΩT iN = b2
N
2
(N�1)hδΩ2i+ hδEδΩi

�
b2R

N
2
(N�1)+b2bR

N
2
(N�1)2

�
+ hδE2i

�
b2b2

R
N
24

(N�1)(N�2)(3N�1)+b2RbR
N
6
(N�1)(2N�1)

�
+ b3bR

N
6
(N�1)(2N�1)S+bRb3N(N�1)E0 +NhδΩδT i;

= b2
N
2
(N�1)hδΩ2i+ hδE2i

�
b2b2

R
N
24

(N�1)(N�2)(3N�1)+b2RbR
N
6
(N�1)(2N�1)

�
+ b3bR

N
6
(N�1)(2N�1)S+bRb3N(N�1)E0 +NhδΩδT i; (7.116)

hT 2iN = b2
2

N
6
(N�1)(2N�1)hδΩ2i+b2N(N�1)hδΩδT i+N2b2

3 +NhδT 2i

+ hδE2i
�

b2
2R

N
6
(N�1)(2N�1)+b2b2RbR

N
4
(N�1)2

(N�2)

+ b2
Rb2

2
N

120
(N�1)(6N3�20N2

+24N +1)

�
+2b3b2bR

�
N
3
(N�1)(N�2)S

+
N
2
(N�1)2

(N�8)E0

�
+b3b2R

�
N
3
(N�1)(N�2)S+N(N�1)E0

�
: (7.117)

Using Eqs. (7.99) and (7.117) in the definition of the timing jitter we obtain the timing jitter in

the case of DM soliton system with periodic amplification and is given by

σ2
t = σ2

GH +R1h(δE)
2i+R2; (7.118)
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where σ2
GH is the Gordon-Haus timing jitter evaluated in the previous Chapter and is given by

σ2
GH =

b2
2

6
N(N�1)(2N�1)hδΩ2i+b2N(N�1)hδΩδT i+NhδT 2i; (7.119)

and the coefficients R1 and R3 are given by

R1 = N(N�1)[b2
Rb2

2(N
3�10N2

+29N�9)=120

+b2bRb2R(19N2�65N +48)=96+b2
2R(2N�1)=6]; (7.120)

R2 = N(N�1)b3[bR(N�1)(N�2)=6+b2R(N�2)=3]S: (7.121)

As expected, the leading term in timing jitter is due to RIFS and grows as N5 whereas the Gordon-

Haus term grows as N3. The R2 term gives the jitter due to TOD and Raman effects and becomes

important only for pulses much shorter than 1 ps. Comparing Eq. (7.118) to Eq. (7.66), we see

that the difference in the form of the expression for timing jitter between the DM and fundamental

soliton cases is the presence of the N2 term in the Gordon-Haus timing jitter in the case of DM

soliton. This is because the input pulses are chirped in the case of DM solitons. Also the coeffi-

cients b2, b3, bR and b2R used in the timing jitter expressions depends on the evolution of the pulse

width along the fiber and the local dispersion in the DM soliton case. Hence they will have to be

calculated numerically using the moment equation for the pulse width for DM solitons.

To show the importance of the Raman jitter for lightwave systems, we consider a dispersion-

managed system capable of operating at 160 Gb/s. The use of dense dispersion-management is

essential at such high bit rates [62]. The dispersion map consists of 1.0 km of anomalous-GVD

fiber with D= 2:5ps/(km-nm) and 1.0 km of normal-GVD fiber with D=�2:35 ps/(km-nm). Each

fiber section is assumed to have an effective area of 54 µm2, losses of 0.2 dB/km, TR = 3 fs, and

β3 = 0. Optical amplifiers are spaced 40 km apart (LA = 40 km, Lm = 2 km). The spectral noise

density was calculated using nsp = 1.3. The input Gaussian pulse parameters were found using

the periodicity conditions for solitons on the moment equations for energy, pulse width and chirp,

and have values τ0 = 1:25 ps, C0 = 1 and E0 = 0:12 pJ. Figure 7.3 shows the dependence of the

timing jitter as a function of distance. The dashed line shows the contribution of Gordon-Haus

jitter obtained from Eq. (7.119). The sum of the Raman and Gordon-Haus jitters is given by the

solid line. The dots show the timing jitter including the effects of Raman jitter, Gordon-Haus jitter

and TOD. Since the Raman contributions from RIFS begin to dominate the jitter after 500 km, it
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Figure 7.3: Timing jitter for a 160 Gb/s system using DM soliton with average dispersion D av = 0.1275 ps/(km-

nm).

is evident that the system performance is mainly limited by the Raman-induced frequency shift at

high bit rates.

7.2 Non-soliton Systems

Next we consider the case of non-soliton systems. In non-soliton systems, input pulses are pre-

chirped but they do not follow a periodic evolution pattern. In general, the chirp and the pulse

width cannot be calculated analytically because of the nonlinear effects. However, in quasi-linear

links in which the GVD of each fiber section is so large that the pulse spreads over several bit slots,

the pulse evolution is nearly linear along the DM link. The chirp and the pulse width of the pulses

as a function of distance can then be found analytically as shown in Chapter 6. Since the non-

soliton system is not periodic, C and τ have different values at different amplifiers. This feature

complicates the calculation somewhat but the procedure is straightforward. At the ith amplifier,

the chirp and the pulse width can then be written from Eq. (6.78) as

Ci = C0 + ib2
(1+C2

0)

τ2
0

(7.122)
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τ2
i = τ2

0

�
(1+C2

0)+2iC0
b2

τ2
0

+ i2
b2

2

τ4
0

�
: (7.123)

Also from Eq. (6.77) we know that the quantity (1+C2
)=τ2 remains constant during propagation.

Since at the transmitter end the pulse is unchirped, (1+C2
)=τ2

= (1+C2
0)=τ2

0 = 1=τ2
0. At the end of

each amplifier the energy of the pulse takes its initial value E0. Using all these in Eqs. (7.91)–(7.93)

we can write the variances and correlations of the fluctuation in energy, position and frequency

added by the ith amplifier as

hδE2ii = 2SE0; hδΩδEii = 0 hδEii = S; (7.124)

hδΩ2ii =
S

E0

1

τ2
0

hδEδT ii = 0 hδΩii = 0; (7.125)

hδT 2ii =
S

E0
τ2

0

�
(1+C2

0)+2iC0
b2

τ2
0
+ i2

b2
2

τ4
0

�
hδT ii = 0;

hδΩδT ii =
S
E

�
C0 + ib2

(1+C2
0)

τ2
0

�
: (7.126)

Using the recurrence relations in Eqs. (7.80)–(7.82), the first moments of E, Ω and T after N

such amplifiers are given by

hEiN = E0 +

N

∑
i=1
hδEi; (7.127)

hΩiN = bR

N�1

∑
i=1
hEii +

N

∑
i=1
hδΩi; (7.128)

hT iN = b2

N�1

∑
i=1

Ωi +b2R

N�1

∑
i=1

Ei +

N

∑
i=1

b3 +

N

∑
i=1
hδT i: (7.129)

Performing the summation using Eqs. (6.27), (6.30) and (7.22) we get

hEiN = E0 +N S; (7.130)

hΩiN = bRN(N�1) S=2+NbRE0; (7.131)

hT iN = b2bRN(N�1)(2N�1) S=6+b2bRN(N�1) S=2+b2RN(N�1) S=2+b2RNE0

+ Nb3: (7.132)

Next we consider the second moments and find that

hE2ii = hE2ii�1 + hδE2ii�1 +2hEii�1hδEii; (7.133)
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hEΩii = hEΩii�1 +bRhE2ii�1 + hδEδΩii; (7.134)

hΩ2ii = hΩ2ii�1 +b2
RhE

2ii�1 +2bRhEΩii�1 + hδΩ2ii; (7.135)

hET ii = hET ii�1 +b2hEΩii�1 +b2RhE2ii�1 +b3hEii�1 + hδEδT ii (7.136)

hΩT ii = hΩT ii�1 +b2hΩ2ii�1 +b2RhEΩii�1 +b3hΩii�1 +bRhET ii�1

+ b2bRhEΩii�1 +b2RbRhE2ii�1 +b3bRhEii�1 + hδΩδT ii (7.137)

hT ii = hT ii�1 +b2
2hΩ

2ii�1 +b2
2RhE

2ii�1 +b2
3 + hδT 2ii +2b2hΩT ii�1 +2b2RhET ii�1

+ 2b3hT ii�1 +b2b2RhEΩii�1 +2b3b2hΩii�1: (7.138)

Summing over N such amplifiers we get

hE2iN =

N

∑
i=1
hδE2ii +2

N

∑
i=1
hEii�1hδEii; (7.139)

hEΩiN = bR

N�1

∑
i=1
hE2ii +

N

∑
i=1
hδEδΩii; (7.140)

hΩ2iN = b2
R

N�1

∑
i=1
hE2ii +2bR

N�1

∑
i=1
hEΩii +

N

∑
i=1
hδΩ2ii; (7.141)

hET iN = b2

N�1

∑
i=1
hEΩii+b2R

N�1

∑
i=1
hE2ii +b3

N�1

∑
i=1
hEii +

N

∑
i=1
hδEδT ii (7.142)

hΩT iN = b2

N�1

∑
i=1
hΩ2ii +b2R

N�1

∑
i=1
hEΩii +b3

N�1

∑
i=1
hΩii+bR

N�1

∑
i=1
hET ii

+ b2bR

N�1

∑
i=1
hEΩii +b2RbR

N�1

∑
i=1
hE2ii +

N

∑
i=1
hδΩδT ii (7.143)

hT 2iN = b2
2

N�1

∑
i=1
hΩ2ii +b2

2R

N�1

∑
i=1
hE2ii +

N

∑
i=1

b2
3 +

N

∑
i=1
hδT 2ii

+ 2b2

N�1

∑
i=1
hΩT ii +2b2R

N�1

∑
i=1
hET ii +2b3

N�1

∑
i=1
hT ii

+ b2b2R

N�1

∑
i=1
hEΩii+2b3b2

N�1

∑
i=1
hΩii: (7.144)

Performing the summation using Eqs. (6.51), (7.59), (7.130)–(7.132) and Eqs. (7.124)–(7.126)

we finally obtain

hE2iN = 4NSE0 (7.145)

hEΩiN = bRN(N�1)(2SE0); (7.146)
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hΩ2iN = b2
R

N
3
(N�1)(2N�1)(2SE0)+N

S
E0

1

τ2
0

; (7.147)

hET iN = b2R
N
2
(N�1)(2SE0)+bRb2

N
12

(N�1)(2N�1)(2SE0)+b3
N
2
(N�1)S

= (2SE0)
N
2
(N�1)

�
b2R +bRb2

(2N�1)
6

�
+b3

N
2
(N�1)S; (7.148)

hΩT iN = b2
N
2
(N�1)

S
E0

1

τ2
0

+(2SE0)

�
b2b2

R
N
24

(N�1)(N�2)(3N�1)+b2RbR
N
6
(N�1)(2N�1)

�
+ b3bR

N
6
(N�1)(2N�1)S+bRb3N(N�1)E0 ++

b2

2
N(N +1)

S
E0

(1+C2
0)

τ2
0

+N
SC0

E0
; (7.149)

hT 2iN = b2
2

N
6
(N�1)(2N�1)

S
E0

1

τ2
0

+N
S

E0

1+C2
0

τ2
0

+2b2
SC0

E0

�
N
2
(N�1)

+
N
2
(N +1)

�
+

S
E0

b2
2

τ2
0

�
N
6
(N +1)(2N +1)+

N
6
(N�1)(2N�1)+

N
2
(N�1)

�
+N2b2

3

+ (2SE0)

�
b2

2R
N
6
(N�1)(2N�1)+b2b2RbR

N
4
(N�1)2

(N�2)

+ b2
Rb2

2
N

120
(N�1)(6N3�20N2

+24N +1)

�
+2b3b2bR

�
N
3
(N�1)(N�2)S

+
N
2
(N�1)2

(N�8)E0

�
+b3b2R

�
N
3
(N�1)(N�2)S+N(N�1)E0

�
:

=
S

E0
τ2

0N

"
1+

�
C0 +

b2N

τ2
0

�2
#
+(2SE0)

�
b2

2R
N
6
(N�1)(2N�1)+b2b2RbR

N
4
(N�1)2

(N�2)

+ b2
Rb2

2
N

120
(N�1)(6N3�20N2

+24N +1)

�
+N2b2

3 +2b3b2bR

�
N
3
(N�1)(N�2)S

+
N
2
(N�1)2

(N�8)E0

�
+b3b2R

�
N
3
(N�1)(N�2)S+N(N�1)E0

�
: (7.150)

Using Eqs. (7.132) and (7.150) in the definition of the timing jitter we obtain the timing jitter

in the case of the non-soliton system to be

σ2
t = σ2

GH +R1(2SE0)+R2; (7.151)

where σ2
GH is the Gordon-Haus timing jitter evaluated in the previous Chapter and is given by

σ2
GH =

S
E0

τ2
0N

"
1+

�
C0 +

b2N

τ2
0

�2
#
; (7.152)

and the coefficients R1 and R3 are given by

R1 = N(N�1)[b2
Rb2

2(N
3�10N2

+29N�9)=120
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Figure 7.4: Timing jitter for a 160 Gb/s nonsoliton system with average dispersion D av = 0:04 ps/(km-nm).

+b2bRb2R(19N2�65N +48)=96+b2
2R(2N�1)=6]; (7.153)

R2 = N(N�1)b3[bR
(N�1)

6
(N�2)+b2R

(N�2)
3

]S: (7.154)

Similar to the soliton case, the leading term in the timing jitter in non-soliton systems is due to

RIFS and grows as N5 while the Gordon-Haus term grows as N3. The TOD and Raman effects

are given by the R2 term. Eqs. (7.151) and(7.152) show that both Raman and Gordon-Haus jitter

depends on the average dispersion of the system. Since non-soliton system can have nearly zero

average dispersion, the timing jitter in the case of non-soliton systems can be reduced considerably

compared to the soliton systems. Since in the case of non-soliton systems, the initial chirp of the

pulse does not have to satisfy the periodicity condition, it can be chosen in such a way as to reduce

the timing jitter of the system. This is called the pre-compensation technique. The next Chapter

gives a detail account of different compensation techniques that can help reduce timing jitter. Even

though this might help reduce Gordon-Haus jitter, this does not help reduce Raman jitter and the

system is soon limited by Raman jitter.

As a numerical example we consider a non-soliton system capable of operating at 160 Gb/s

using dense dispersion-management. The dispersion map is same as the one used for the DM

system in Figure 7.3. The average dispersion of the system is reduced to βav = 0:05ps2/km by
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Figure 7.5: (a) Gordon-Haus timing jitter for a 10 Gb/s DM soliton system with average dispersion D av = 0.04

ps/(km-nm). (b) Timing jitter for a 160 Gb/s DM system with average dispersion D av = 0.1275 ps/(km-nm).

changing the dispersion of the normal-GVD fiber to be D = �2:4 ps/(km-nm). The parameters

are also the same except that the initial chirp is chosen in such a way that it compensates the total

accumulated dispersion along the fiber length, i.e., C0 = b2N=τ2
0. This is called pre-compensation,

which will be discussed in the next Chapter. Figure 7.4 shows the dependence of the timing jitter

as a function of distance. The dashed line shows the contribution of Gordon-Haus jitter obtained

from Eq. (7.152). The sum of Raman jitter and Gordon-Haus jitter is given by the solid line. The

dotted line shows the timing jitter including the effects of Raman jitter, Gordon-Haus jitter and

TOD. The Gordon-Haus timing jitter is reduced to a very low value due to the pre-compensation.

However the Raman jitter still dominates the timing jitter thus limiting the non-soliton system.

7.3 Numerical Results

In this section we compare the results obtained in the previous sections with the results of numerical

simulation obtained by solving the NLS equation Eq. (7.1) using the split-step fourier method. We

first consider a 10-Gb/s dispersion-managed system with 10.5 km of anomalous-GVD fiber with

D = 4 ps/(km-nm) and 9.7 km of normal-GVD fiber with D =�4 ps/(km-nm). Each fiber section

has a loss of 0.2 dB/km, and effective area of 55 µm2. The amplifiers spacing is 80.8-km. The
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Figure 7.6: Timing jitter for a 160 Gb/s non-soliton system with average dispersion D av = 0.04 ps/(km-nm).

spectral noise density was calculated using nsp = 1.3. Since at this bit rate the effects of Raman jitter

can be neglected, Figure 7.5(a) shows the timing jitter obtained by numerical simulation without

the Raman contribution by asterisks and results for Gordon-Haus timing jitter from Eq. (7.119)

by solid line. The timing jitter calculated from Eq. (7.119) closely agrees with those obtained by

solving NLS using the split-step Fourier method.

Next, to verify the results obtained for Raman jitter, we consider the same DM system as the

one used to obtain Figure 7.3. We compare the analytical results obtained in equation Eq. (7.118)

to the results obtained through numerical simulations in Figure 7.5(b). The “stars” show the results

of numerical simulation including the Raman term and the solid line represents the sum of Raman

jitter and Gordon-Haus jitter obtained from the analytical results. The numerical simulation shows

larger value of jitter than predicted by the above equations as the distance increases. This is due

to the jitter induced by intra-channel cross phase modulation which is not considered in the above

analysis.

We finally verify the results obtained for non-soliton systems in the previous section. Since

the nonlinearity is negligible, the numerical analysis of these systems are fairly simple and we use

ordinary differential equation (ODE) solvers to solve the moment equations Eqs. (7.70)–(7.72) to
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calculate timing jitter directly. Figure 7.6 shows the results obtained through numerical simulation

for the same non-soliton system as the one used for Figure 7.4 in dotted lines and the results of

Eqs. (7.152) and (7.153) in solid and dashed line respectively. The figures shows that numerical

simulation agrees perfectly with the theoretical result for Gordon-Haus jitter. However they show

larger jitter than one predicted for Raman jitter. This discrepancy is due to the jitter induced by the

higher order terms which are not considered in the above analysis.

7.4 Chapter Summary

In this Chapter we have derived an analytical expression for Raman-induced timing jitter in high-

speed DM lightwave systems using the moment method. We have applied the general formalism

to three types of lightwave systems corresponding to the use of DM solitons, fundamental solitons

in DDFs, and CRZ pulses in a quasi-linear configuration. We were able to obtain simple analytic

expressions for the timing jitter in each case. We compared the three configurations for a 160-

Gb/s system and found that Raman jitter increases with the number, N of amplifiers as N 5. Unlike

Gordon-Haus jitter the Raman jitter is directly proportional to the pulse energy and hence increases

with increased pulse energy.

The Raman jitter begins to dominate after 500 km in the case of DM solitons. In the case of

fundamental solitons propagating inside DDFs, the Raman contribution can be made smaller by

using a reduced pulse energy but the jitter is quite large. In the case of quasi-linear non-soliton

systems, the Raman jitter dominates at large distance but can be reduced by reducing the average

dispersion close to zero. In all cases, jitter can exceed the acceptable value (about 0.5 ps for 8%

of the bit slot) after 1000 km or so, indicating that such systems cannot be operated over long

distances unless a jitter-reduction scheme is implemented. Our expression of the timing jitter can

be used in the case of dense dispersion management realized using multiple map periods between

two neighboring amplifiers. We have included the effects of third-order dispersion as well in our

analysis.

We have checked the accuracy of this calculation using numerical simulations. In the case of

DM soliton systems, we verify our results by solving the NLS using split-step Fourier method

and for non-soliton systems we use ODE solvers to verify our calculations. In both cases the
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numerical simulations agree well with the analytical results. The minor discrepancies in the case

of DM solitons is because of the additional timing jitter due to intra-channel interactions between

the pulses. In the case of non-soliton systems the higher-order terms which were neglected during

our analysis can cause additional jitter leading to increased jitter in the numerical simulations.



Chapter 8

Control of Timing Jitter

In previous chapters we have seen that the timing jitter ultimately limits the performance of all

long-haul communications systems. It is essential to find a solution that can control the growth of

timing-jitter in order to improve the system performance. The use of optical filters for controlling

timing jitter of solitons was proposed as early as 1991 [63]–[65]. This approach makes use of the

fact that ASE occurs over the entire bandwidth of the amplifier but the soliton spectrum occupies

only a small fraction of it. The bandwidth of the filter is chosen such that the soliton bit stream

passes through the filter but most of the ASE is blocked. If the optical filter is placed after each

amplifier, it improves the SNR because of reduced ASE and also reduces timing jitter simulta-

neously. This was verified in an experiment in 1991 but the reduction was only 50% [64]. The

moment method can be used to show that the use of filters after every amplifier can reduce timing

jitter [66]. The filter technique can be improved dramatically by allowing the center frequency of

the successive optical filters to slide slowly along the link. Such sliding-frequency filters avoid

accumulation of ASE within the filter bandwidth and at the same time, reduce the growth of timing

jitter [67]. As the filter passband shifts, solitons shift their spectrum as well to minimize filter

induced losses while the spectrum of ASE cannot change. The net result is that the ASE noise that

accumulated over a few amplifiers is filtered out when the soliton has shifted by more than its own

bandwidth.

The filter technique improves the performance of the soliton systems. The two drawbacks of

the filter technique are that it requires the input pulses to be solitons and that the optical filters have

129
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to be placed after every amplifier and the filter introduces an additional loss for the soliton that

should be compensated by increasing the gain of the amplifier. Hence, it becomes essential to find

a simpler method which, can work for both soliton and non-soliton systems. In this Chapter we

discuss two such methods. In the first section we discuss various dispersion compensation tech-

niques in which timing jitter can be reduced by compensating for the total accumulated dispersion

in the system [68]. We show that this technique works for both soliton and non-soliton systems. In

the final section we show that using parametric amplifiers in place of erbium doped fiber amplifiers

(EDFAs), can reduce not only Gordon-Haus timing jitter but also Raman jitter in both soliton and

non-soliton systems.

8.1 Compensation Techniques

The dispersion compensation technique is a simple approach to reduce timing jitter in communi-

cation systems. From Chapter 6 we have seen that the Gordon-Haus jitter depends on the total

accumulated GVD over the total length of the fiber. We can see from Eqs. (6.55), (6.72), (6.89),

that for fundamental solitons in DDFs, DM solitons and non-solitons respectively, that the cubic

term that dominates timing jitter at long distances depends on the accumulated GVD through the

factor b2 defined as
R LA

0 β2dz. In the dispersion compensation technique, a fiber is added at the

beginning of the system, or at the end of the system, or a combination of both, such that it reduces

the accumulated GVD, thus reducing the timing jitter.

8.1.1 Soliton Systems

In soliton systems, a post-compensating fiber can be added at the end of the fiber link such that

it reduces the accumulated GVD in the fiber link. Using the moment method we can find the

contribution of the post-compensating fiber to the timing jitter. In order to do that, we assume

that the post-compensation fiber is of length Lc and has a GVD coefficient β2c. If before the

post-compensation fiber, the frequency and the position of the pulse is given by ΩN and TN , from

Eqs. (6.10) and (6.11), we can write the frequency and the position after the post-compensation
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fiber as

Ωc = ΩN; (8.1)

Tc = TN +bcΩN; (8.2)

where bc =
R Lc

0 β2cdz. The variances of Ωc and Tc are given by

hΩ2
ci= hΩ2iN; (8.3)

hT 2
c i= hT 2iN +b2

chΩ
2iN +2bchΩT iN: (8.4)

Using the above equations and the results for hΩ2iN , hΩT iN and hT 2iN obtained in Chapter 6 we

can find the timing jitter after the post compensation fiber for both fundamental solitons in DDF

and DM solitons.

Fundamental solitons in DDF

For fundamental solitons in DDF we have found the timing jitter after N amplifiers in Chapter

6. Hence using Eqs. (6.52)–(6.54) in Eq. (8.4) we get the variance in position after the post-

compensation fiber to be

hT 2
c i= NhδT 2i+NhδΩ2i

�
b2

c +
b2

2

6
(N�1)(2N�1)+bcb2(N�1)

�
: (8.5)

Hence the timing jitter after the post compensation is given by

σ2
c = NhδT 2i+NhδΩ2i

�
b2

c +
b2

2

6
(N�1)(2N�1)+bcb2(N�1)

�
: (8.6)

From Eq. (8.6) the leading term in timing jitter is still cubic. If the dispersion of the post-

compensation fiber is such that bc = �yNb2, where y is the fraction of post-compensation, we

can write the cubic term in Eq. (8.6) as

σ2
c � N3b2

2hδΩ2i
�
y2� y+1=3

�
: (8.7)

From Eq. (8.7) we find that the minimum value of σ2
c occurs when

dσ2
c

dy
= 2y�1 = 0

y = 1=2 (8.8)



CHAPTER 8. CONTROL OF TIMING JITTER 132

Figure 8.1: Effect of post-compensation on timing jitter of a 10-Gb/s fundamental solitons in DDF system for the

same map as Fig. 6.5. Jitter is plotted as a function of transmission distance for 4 values of y representing the fraction

of post-compensation.

Thus the minimum timing jitter occurs when one half of the accumulated GVD over the fiber link

is compensated, and the minimized Gordon-Haus timing jitter is given by

σ2
c = hδΩ2i

b2
2

6
N[1+N2

=2]+NhδT 2i: (8.9)

To study how post-compensation affects timing jitter, we consider the 10-Gb/s soliton systems

with the dispersion map used for Fig. 6.5. Figure 8.1 shows changes in timing jitter for several

values of y for the case of a single amplifier per map period. In the absence of post-compensation

(y= 0), jitter becomes quite large with increasing distance (the dotted curve in Fig. 4). Even a small

value of post-compensation (y = 0:25) reduces jitter considerably. The three most noteworthy

features are that (i) jitter can be reduced but cannot be eliminated through post-compensation, (ii)

jitter can be minimized with an optimum length of post-compensation fiber (y = 0:5), and (iii)

100% post-compensation makes the situation worse compared with no compensation.

An interesting question is whether post-compensation remains an effective technique for reduc-

ing the timing jitter even when more than one amplifiers are used in each map period. Figure 8.2

shows the jitter under conditions identical to those of Figure 8.1 except that a second amplifier is

placed at a distance of 40 km. The post-compensation reduces the jitter for all values of 0 < y < 1.

Jitter is again minimum when y = 0:5. This result shows that post-compensation can reduce timing

jitter even when more than one amplifier is used per map period.
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Figure 8.2: Same as Fig. 8.1, except a second amplifier is placed at 40 km.

Dispersion-managed solitons

In the case of DM solitons the timing jitter after N amplifiers can be written from Eq. (6.71) in

Chapter 6. Hence using Eqs. (6.69)–(6.71) in Eq. (8.4) we get the timing jitter after the post-

compensation fiber to be

σ2
c = NhδT 2i+NhδΩδT i [b2(N�1)+2bc]

+ NhδΩ2i
�

b2
2

6
(N�1)(2N�1)+b2

c +bcb2(N�1)

�
(8.10)

From Eq. (8.10) the leading term in timing jitter is still cubic. If the dispersion of the post-

compensation fiber is such that bc = �yNb2, where y is the fraction of post-compensation, we

can write the cubic term in Eq. (8.10) as

σ2
c � N3b2

2hδΩ2i
�
y2� y+1=3

�
: (8.11)

From Eq. (8.11) we find that the minimum value of σ2
c occurs when

dσ2
c

dy
= 2y�1 = 0

y = 1=2; (8.12)

and the minimized Gordon-Haus timing jitter can be written from Eq. (8.10) as

σ2
c = hδΩ2i

b2
2

6
N[1+N2

=2]+NhδT 2i�b2NhδΩδT i: (8.13)
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Figure 8.3: a) Effect of post-compensation on timing jitter of a 10-Gb/s DM soliton system for the same map as

Fig. 6.3. Jitter is plotted as a function of transmission distance for 4 values of y representing the fraction of post-

compensation. b) a second amplifier is placed at a distance of 35 km.

In order to show that post-compensation can reduce timing jitter for DM solitons, we consider

the 10-Gb/s DM soliton systems with the dispersion map used for Fig. 6.3. Figure 8.3 shows

changes in timing jitter for several values of y for the case of a) a single amplifier per map period

and b) when a second amplifier is placed at 35 km. In the absence of post-compensation (y = 0),

jitter becomes quite large with increasing distance (the dotted curve in Fig. 8.3). However post-

compensation can help reduce the jitter. The jitter can be minimized with an optimum length of

post-compensation fiber such that y = 0:5.

To see if these results hold even when the system has a larger map strength, we consider the

DM system with the same dispersion map as the one used for Fig. 6.4. Figure 8.4 shows the jitter

under conditions identical to those of Figure 8.3 for the same system as the one used for figure 6.4

except that a post-compensating fiber is added. For the case when there is one amplifier per map

period the optimum compensation still remains 50%. When y =�0:5, the jitter is much worse than

even when there is 100% post-compensation when the distances are more than 2500 km. This is

because the term that depends on N2 in Eq. (8.10) also contributes significantly to the timing jitter

for moderate distances before the cubic term takes over, whereas the relation in Eq. (8.11) is based

on the cubic term. This shows that one can reduce timing jitter whether the average dispersion

in the system is positive or negative by choosing the dispersion of the post-compensation fiber

accordingly.
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Figure 8.4: a) Effect of post-compensation on timing jitter of a 10-Gb/s DM soliton system for the same map

as Fig. 6.4. Jitter is plotted as a function of transmission distance for 4 values of y representing the fraction of

post-compensation. b) a second amplifier is placed at a distance of 24 km.

Next consider the situation shown in Figure 8.4(b) when a second amplifier is placed at 24 km.

The jitter gets much worse for all positive values of y and for distances up to 5000 km. The lowest

value of timing jitter is achieved for negative values of y. The reason for this is again related to

the quadratic term in the timing jitter, which in the case of DM systems using multiple amplifiers

per map period is given by the Q term from Eq. (6.105). Hence we conclude that the contribution

of the Q term can be cancelled under some conditions by the use of negative values of the post-

compensation parameter y. The optimum value of y is now given by y = 0:5+Q=(PNb2). Thus

we see that the optimum y in the case of multiple amplifiers depends on the ratio of the P and Q

terms given by Eqs. (6.96) and (6.97). These results suggest that even though post-compensation

helps reduce timing jitter, the role of post-compensation requires a careful analysis when multiple

amplifiers are used in each map period.

8.1.2 Non-soliton Systems

Unlike soliton systems, the chirp of the non-soliton pulse does not satisfy any periodicity condition.

Hence the chirp of these pulses can be chosen in such a way as to reduce timing jitter. Thus for non-

soliton systems, the pre-chirp fiber can also act as the pre-compensation fiber. Such a non-soliton

system consists of a pre-chirp (pre-compensation) fiber, the fiber link and a post-compensation
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fiber. The effect of the post-compensation fiber can be found again using the moment method.

Using Eqs. (6.86)–(6.88) in Eq. (8.4) we get the timing jitter after the post-compensation fiber to

be

σ2
c =

S
E0

Nτ2
0

"
1+

�
C0 +

b2N

τ2
0

�2
#
+

S
E0

N
b2

c

τ2
0

+2
S

E0
Nbc

�
N

b2

τ2
0

+C0

�

σ2
c =

S
E0

Nτ2
0

"
1+

�
C0 +

bc

τ2
0

+
b2N

τ2
0

�2
#
: (8.14)

From Eq. (8.14) we see that the cubic term in timing jitter can be completely cancelled if

C0 +D+
b2N

τ2
0

= 0; (8.15)

where D = bc=τ2
0. This can be achieved by three ways we can make 1) D = 0 and C0 = b2N=τ2

0

which is complete pre-compensation, 2) C0 = 0 and D= b2N=τ2
0 which is complete post-compensation

and 3) D+C0 = b2N=τ2
0 which is a combination of both.

Any of these three compensation techniques will give minimum jitter at the receiver end which

is linear in distance instead of cubic and is given by

σ2
c =

S
E0

Nτ2
0: (8.16)

Although the final timing jitter does not depend on the fraction of pre- or post compensation, the

timing jitter within the system does. At the receiver end of the non-soliton system, it does not

matter how C0 and D are chosen as long as C0 +D = �Nb2=τ2
0. However, in order to minimize

the effects of interaction between neighbouring pulses within the channel during propagation, the

timing jitter must be kept minimum not just at the receiver end but also within the fiber link. In

order to find the optimum compensation technique, we need to find the fraction of pre- and post-

compensation required so that the timing jitter both inside the fiber link and at the receiver end are

minimum. If x is the fraction of pre-compensation, such that x =�C0τ2
0=Nb2 and y is the fraction

of post-compensation such that y =�Dτ2
0=Nb2, we should find the values of x and y such that the

maximum jitter within the fiber link will be equal to the final jitter at the end of the system thus

keeping the jitter within small. The jitter within the fiber link after ith amplifier can be written

using Eq. (6.89) to be

σ2
i =

S
E0

iτ2
0

"
1+

�
C0 +

b2i

τ2
0

�2
#
: (8.17)
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Multiplying and dividing the above equations on both sides by N 2b2
2=τ4

0 and using the definition of

the fraction of pre-compensation, x Eq. (8.17) can be written as

σ2
i =

S
E0

N3τ2
0

�
b2

2

τ4
0

�
i
N

"
τ4

0

N2b2
2

+

�
i
N
� x

�2
#
: (8.18)

Simplifying the above equation by defining z= i=N, where z is the fractional distance, ε= τ4
0=N2b2

2

and K = N3τ2
0Sb2

2=(E0τ4
0), we have

σ2
i = Kz[ε+(z� x)2

]: (8.19)

In most systems ε � 1 and is negligible for very long distances. The fractional distance z

is assumed to be a continuous variable and when x = 0, the jitter is a monotonically increasing

function of z. When 0 < x � 1, the jitter has a local maximum within the system. The local

extremes can be found by setting the first differential of Eq. (8.19) with respect to z to 0

dσ2
i

dz
= K[(z� x)2

+2z(z� x)] = 0; (8.20)

and solving for z to get

z = x or z = x=3: (8.21)

From Eqs. (8.20) and (8.21) we can find that

d2σ2
i

dz2

����
z=x

= 2Kx > 0 (8.22)

d2σ2
i

dz2

����
z=x=3

= �2Kx < 0 (8.23)

Thus the local maximum in jitter occurs at z = x=3 and is given by

σ2
max(x) = K

4
27

x3
: (8.24)

The optimum fraction of pre-compensation can be found when the maximum jitter within the fiber

link is equal to the maximum jitter at the receiver end when z = 1 and can be written as

K
4

27
x3

= K(1� x)2
: (8.25)

Solving for x we get xopt = 3=4. Thus we find that the optimum compensation is found to be 75%

pre-compensation and 25% post-compensation.
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When ε cannot be neglected, the optimum compensation can be found using the perturbation

method as follows. The jitter within the fiber link is given by Eq. (8.19). We consider the linear

term in z to be a small perturbation. Thus we can re-write Eq. (8.19) as

σ2
i = K(A+ εB); (8.26)

where A = z(z�x)2 and B = z. Similarly z can be written as z = z0+εz1. Differentiating Eq. (8.26)

with respect to z to find the local maximum we get

dσ2
i

dz
= K

dA
dz

����
z=z0+εz1

+Kε
dB
dz

����
z=z0+εz1

= 0: (8.27)

Expanding A and B in a Taylor series up to the first order in ε we get

dA
dz

����
z=z0

+ ε

"
z1

d2A
dz2

����
z=z0

+
dB
dz

����
z=z0

#
= 0;

dA
dz

����
z=z0

= 0 z1
d2A
dz2

����
z=z0

+
dB
dz

����
z=z0

= 0: (8.28)

From the definitions of A and B we get

dA
dz

����
z=z0

= 3z2
0�4z0x+ x2

= 0

z0 = x;x=3 (8.29)

Taking the second differential of A with respect to z we find that

d2A
dz2

����
z0=x

= 2x

d2A
dz2

����
z0=x=3

= �2x (8.30)

Thus the local maximum in jitter occurs when z0 = x=3.

Next to find z1, we use the second part of Eq. (8.28) to get

z1
d2A
dz2

����
z=z0

+1 = 0

z1 =
1
2x

: (8.31)

Using Eqs. (8.29) and (8.31) in the definition of A and B we can write

A(x) =
� x

3
+

ε
2x

��
�

2x
3
+

ε
2x

�
B(x) =

x
3
+

ε
2x
: (8.32)
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Using Eq. (8.32) in Eq. (8.26) we find that the maximum jitter within the fiber link can be written

to the first order in ε, as

σ2
max = K

�
4x3

27
+

εx
3

�
: (8.33)

Equating the maximum jitter to the jitter at the receiver end we get

4x3

27
+

εx
3

= (1� x)2
+ ε;

4x3

27
� x2

+2x+
εx
3
� (ε+1) = 0 =U(x): (8.34)

Now U(x) can be written as U(x) = U0(x)+ εU1(x), where U0(x) = 4x3=27� x2
+ 2x and U1 =

(x=3)�1 and the optimum fraction of pre-compensation, xopt = x0 + εx1. Hence expanding U0(x)

and U1(x) in Taylor’s series we can write U(x) to first order in ε from Eq. (8.34) as

U(x) = U0(x0)+ ε

 
dU0

dx

����
x=x0

x1 +U1(x0)

!
= 0;

U0(x0) = 0
dU0

dx

����
x=x0

x1 +U1(x0) = 0 (8.35)

Using the definition of U0 in Eq. (8.35) we get

4x3
0

27
� x2

0 +2x0 = 0; x0 = 3=4: (8.36)

Next to find x1, we use Eq. (8.35) to get

x1 =�U1(x0)=(
dU0

dx
)(x0): (8.37)

Using the definition of U0(x) in Eq. (8.37) we get

x1 =�1: (8.38)

Using Eqs. (8.38) and (8.36) we find that the optimum fraction of pre-compensation xopt = 3=4+ε

which agrees with our previous result of xopt = 3=4 when ε is negligible. Thus we see that the

optimum compensation is still about 75% pre-compensation and 25% post-compensation.

To verify this prediction numerically, we plot in Fig. 8.5 the timing jitter as a function of

distance for three different compensation techniques for a 40 Gb/s system using chirped Gaussian

pulses of width 6:87 ps. The dispersion map consists of 10 km of anomalous dispersion fiber
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Figure 8.5: Effect of post-compensation on timing jitter of a 40-Gb/s non-soliton system with average dispersion

0:08 ps/km-nm. Jitter is plotted as a function of transmission distance for a) complete post-compensation, b) complete

pre-compensation and c) optimum compensation. The dotted line show the result of numerical verification.

D= 4ps/(km-nm) and 9.6 km of normal dispersion fiber of D=�4 ps/km-nm. Each fiber section is

assumed to have an effective area of 54 µm2 and losses of 0.2 dB/km. Optical amplifiers are spaced

80 km apart. The spectral noise density was calculated using nsp = 1.3. The average dispersion in

this case is 0:1ps2/km. To ensure the quasi-linear nature of pulse propagation, the peak power of

each pulse is taken to be 1 mW. The initial chirp is chosen so as to compensate for the accumulated

dispersion according to the three different techniques. The curves (a), (b) and (c) show the cases of

complete pre-compensation, complete post-compensation and optimum compensation techniques

respectively. The solid lines represent the analytical result and the dots represent numerically

averaged values over 104 realizations. Our analytical predictions are consistent with the numerical

solutions of the moment equations, on which they are based. More importantly, Fig. 8.5 shows that

when we choose 75% of pre-and 25% post-compensation, the jitter is indeed minimized along the

entire fiber link.

8.2 Parametric amplifiers

At bit rates of up to 40 Gb/s, we have seen in Chapter 7 that the timing jitter is mainly due to

the Gordon–Haus effect [52]. But at higher bit rates the pulse width becomes so short that timing
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jitter is dominated by the Raman jitter caused by RIFS. We derived the analytic expressions for the

timing jitter for systems using bit rates of more than 40 Gb/s in the cases of dispersion-managed

(DM) solitons, fundamental solitons in dispersion-decreasing or constant-dispersion fibers, and

non-soliton systems in Chapter 7, and showed that for a chain of N amplifiers, timing jitter result-

ing from the RIFS grows as N5 while the Gordon-Haus jitter grows only as N3. The idea of using

optical phase conjugation (OPC) for compensating the effects of GVD and self-phase modulation

is well known and was pursued during the 1990s [69]. It has also been shown that OPC can be used

to cancel the Raman-induced frequency shift [70] induced by the phenomenon of Raman scatter-

ing [1], and hence reduce timing jitter in lightwave systems designed using dispersion-decreasing

fibers [71]. Parametric amplifiers can act as an optical phase conjugator, and the noise figure of

such an amplifier is typically less than that of an EDFA. The basic idea behind the use of para-

metric amplifiers for jitter-compensation is to replace the erbium-doped fiber amplifiers (EDFAs)

with the parametric amplifiers, which provide gain through four-wave mixing. In doing so both the

Raman and Gordon–Haus contributions to the jitter can be reduced by a large amount. However

the effects of third-order dispersion (TOD) cannot be compensated by using OPC.

Parametric amplifiers use a four-wave mixing process [1] in which the energy of one or more

pumps is used to amplify a weak signal and to simultaneously generate one or more waves at the

idler frequencies [72]–[74]. The most important feature of a parametric amplifier for our purpose

is that the phase of the idler waves is related to the phase of the signal wave as φi = φ0�φs because

of OPC, where φ0 is a constant phase related to the pump phases. For a signal field with amplitude

B(z; t), the idler fields can be written as B�(z; t) within a constant phase factor. In practice, B and

B� have different wavelengths. In the case of two pumps, the three main idler frequencies are

related to the signal frequency ωs as ωi = ω1 +ω2�ωs, ω0

i = 2ω1�ωs, ω00

i = 2ω2�ωs, where ω1

and ω2 are the pump frequencies [73]. In practice one should choose the idler whose frequency

is close to the signal frequency so that all fiber parameters remain nearly the same for both fields.

The proposed technique can tolerate a mismatch of 2 or 3 nm, especially if the dispersion slopes

are matched along the DM fiber link but is likely to become unsuitable when the signal and idler

wavelengths differ by more than 5 nm.

Consider a DM system in which parametric amplifiers are used periodically with a spacing LA.

The propagation of an optical pulse in the first fiber section before it is amplified by a paramet-
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ric amplifier is governed by the generalized nonlinear Schrödinger (NLS) equation which can be

written from Eq. (7.2) as

i
∂B
∂z
�

β2

2
∂2B
∂t2 � i

β3

6
∂3B
∂t3 +γjBj2B = TRγB

∂jBj2

∂t
; (8.39)

where B(z; t) is the slowly varying amplitude of the pulse envelope, β2 is the GVD coefficient,

β3 is the TOD parameter, γ= γ exp[�
R z

0 α(z)dz] is the nonlinear parameter responsible for self-

phase modulation weakened by fiber losses, and the Raman parameter TR accounts for the Raman-

induced frequency shift. After the signal is amplified by the first parametric amplifier, the idler

field is proportional to B�(z; t) if the pump has a narrow spectrum compared with the signal. If this

field is used in the next fiber section, its evolution is governed by the following equation obtained

by taking the complex conjugate of Eq. (8.39):

i
∂B�

∂z
+

β2

2
∂2B�

∂t2 � i
β3

6
∂3B�

∂t3 �γjBj2B� = TRγB�
∂jBj2

∂t
: (8.40)

After the second amplifier, the signal goes back to B(z; t) and hence would satisfy Eq. (8.39).

It is thus evident that the evolution of each optical pulse is periodic with the period 2LA rather than

the amplifier spacing LA. Within each period of length 2LA, we need to use Eqs. (8.39) and (8.40)

in the two neighboring fiber spans of length LA. A comparison of these two equations shows that

the GVD parameter β2 and the self-phase modulation parameter γ change sign after each amplifier.

Since the Raman term is proportional to γ, it also changes its sign. The net result is that the GVD,

self-phase modulation, and the Raman-induced frequency shift are compensated after every two

amplifiers. This is the main advantage of using parametric amplifiers. Since TOD does not change

sign, we can see that OPC does not help in reducing the TOD effects.

Using the results obtained in Chapter 7, in Eqs. (7.3)–(7.5) we can write the evolutions of

energy, frequency and position of the pulse along the fiber section before an amplifier as

dE
dz

= 0; (8.41)

dT
dz

= β2Ω+
β3

2E

Z ∞

�∞

����∂B
∂t

����2 dt; (8.42)

dΩ
dz

= �
γ
E

TR

Z ∞

�∞

�
∂
∂t
jBj2

�2

dt: (8.43)
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The above equations can be modified as follows to include the amplifier noise:

dE
dz

= ∑
i

δEiδ(z� zi); (8.44)

dT
dz

= β2Ω+
β3

2E

Z ∞

�∞

����∂B
∂t

����2 dt +∑
i

δTiδ(z� zi); (8.45)

dΩ
dz

= �
γ
E

TR

Z ∞

�∞

�
∂
∂t
jBj2
�2

dt +∑
i

δΩiδ(z� zi); (8.46)

where δEi, δΩi, and δTi are random fluctuations in the pulse energy, frequency, and position,

respectively, introduced by the ith amplifier located at a distance zi. We proceed to calculate timing

jitter from these above equations like we did in Chapter 7.

8.2.1 Soliton Systems

Since parametric amplifiers can act as optical phase conjugators to restore the field to its original

state after every two amplifiers, in the case of solitons, pulse parameters such as the chirp and

the pulse width are restored to their input values after every two amplifiers. We first consider

the case of systems using the fundamental soliton in DDFs that employ parametric amplifiers in

place of EDFAs and in the following section we consider the case of DM soliton systems that use

parametric amplifiers in place of EDFAs. In both cases we use the moment method to show that

both Raman jitter and Gordon-Haus jitter can be reduced by the use of parametric amplifiers.

Fundamental solitons in DDFs

When fundamental solitons are launched inside a DDF, the soliton shape and width are pre-

served in spite of fiber losses. The GVD coefficient for DDFs in general decreases as jβ2(z)j =

jβ2(0)jexp(�αz) along the length of the fiber and reaches a value βmin
2 at the end of each fiber

section of length LA. The pulse shape in such a case is given by Eq. (6.39) to be

Bi(z; t) = ai sech

�
t�Ti

τi

�
exp[iφi� iΩi(t�Ti)]: (8.47)

We used this form for the pulse shape in Chapter 7 to find the variances and cross-correlations

in δEi, δΩi and δTi to be the same at every amplifier due to the periodicity of the soliton system.
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From Eqs. (7.38)–(7.40) we can write the the variances and cross-correlations as

hδE2i= 2SE0; hδΩδEi= 0; (8.48)

hδΩ2i=
2S

3E0τ2
0

hδEδT i= 0; (8.49)

hδT 2i=
π2Sτ2

0

6E0
hδΩδT i= 0: (8.50)

As discussed before, the pulse evolution is periodic not after every amplifier but after every two

amplifiers. We use this feature to calculate the impact of parametric amplification on the timing

jitter. Consider a set of two amplifiers. Equations (8.44)-(8.46) show how E; Ω, and T evolve

along the fiber link before the first amplifier. Integrating these equations over the amplifier spacing

LA and including the fluctuations induced by the first amplifier, we obtain from Eqs. (7.11)–(7.13)

by neglecting the higher order terms

E(LA) = E(0)+δE1; (8.51)

Ω(LA) = Ω(0)+bRE(0)+δΩ1 (8.52)

T (LA) = T (0)+b2Ω(0)+b2RE(0)+b3+δT1: (8.53)

The parameters b2, bR, b2R and b3 are given by Eqs. (7.14)–(7.17).

We now consider changes in E, Ω and T after the first amplifier. Eqs. (8.44)–(8.46) can still be

used if we change β2 to�β2 and γ to�γ. Integrating these equations, E, Ω, and T after the second

amplifier are given by

E(2LA) = E(0)+δE1 +δE2; (8.54)

Ω(2LA) = Ω(LA)�bRE(LA)�δΩ2;

= Ω(0)�bRδE1 +δΩ1�δΩ2; (8.55)

T (2LA) = T (LA)�b2Ω(LA)+b3�b2RE(LA)+δT2;

= T (0)�b2bRE(0)+2b3�b2δΩ1�b2RδE1 +δT1 +δT2; (8.56)

where the sign of Ω was reversed to account for the phase reversal at the parametric amplifier.

These equations show that after every two amplifiers, the effects of Raman-induced frequency shift

and GVD cancel precisely because of parametric amplification. We consider that the fundamental
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soliton system uses N parametric amplifiers, grouped into M pairs so that M = N=2. Summing

Eqs. (8.54)–(8.56) over M such pairs we get

hEiM = E0 +2MS; (8.57)

hΩiM = �bRMS; (8.58)

hT iM = 2Mb3�b2bRME0�b2RMS: (8.59)

In order to find the timing jitter, we have to find the variance of T after N amplifiers. After any jth

pair of amplifiers the variance of T can be written from Eq. (8.56) as

hT 2i j = hT 2i j�1 +4b2
3 +b2

2b2
RhE

2i j�1 +b2
2hδΩ2i j +b2

2RhδE2i j +2hδT 2i j +4b3hT i j�1�

2b2bRhET i j�1 +2b2bRb2RhEi j�1hδEi j�2b2RhδEi jhT i j�1�4b2bRb3hEi j�1: (8.60)

In order to proceed further we need to find hE2iM and hET iM. Using Eqs. (8.54) and (8.56) we

get

hE2i j = hE2i j�1 +2hδE2i j; (8.61)

hET i j = hET i j�1 +2b3hEi j�1�b2bRhE2i j�1�b2RhδEi jhEi j�1 +2hδEδT i: (8.62)

Summing Eqs. (8.61) and (8.62) over M such pairs we get

hE2iM = 2MhδE2i; (8.63)

hET iM = 2b3M(M1)S�b2bRM(M�1)hδE2i�b2RM(M�1)S2
: (8.64)

Using Eqs. (8.63) and (8.64) in Eq. (8.60) we can find the variance in T after M pairs of amplifiers

to be

hT 2iM = 4Mb2
3 +b2

2b2
RM(M�1)hδE2i+b2

2MhδΩ2i+b2
2RMhδE2i+2MhδT 2i+4b2

3M(M�1)

+
2
3

b2
2b2

RM(M�1)(M�2)hδE2i+
2
3

b2bRb2RM(M�1)(M�2)S2

+ b2RM(M�1)S2�
8
3

b2bRb3M(M�1)(M�2)S: (8.65)

Using Eqs. (8.65) and (8.57) and substituting M = N=2 we can find the timing jitter when using

parametric amplifiers in place of EDFAs to be

σ2
PA = σ

02
GH +[b2

2b2
R(N

2�4)=12+b2
2R]N=2hδE2i+b2b3bRSN(N�2)(N�4)=3; (8.66)

σ
02
GH = N(b2

2=2)hδΩ2i+NhδT 2i: (8.67)
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Figure 8.6: Timing jitter for a 160-Gb/s fundamental solitons in DDF system with 45-km amplifier spacing. The

solid and dashed lines show respectively timing jitter with and without the Raman contribution for both EDFAs and

parametric amplifiers. The map parameters are the same as Figure 7.1. The dotted line shows the acceptable value of

timing jitter.

Eqs. (8.66) and (8.67) show Raman jitter and Gordon-Haus jitter grow cubic and linear in distance

respectively when parametric amplifiers are used instead of EDFAs.

As a comparison we can write the Raman jitter and Gordon-Haus jitter when EDFAs are used

from Eqs. (7.66) and (7.67) to be

σ2
t = σ2

GH +R1h(δE)
2i+R2; (8.68)

σ2
GH =

b2
2

6
N(N�1)(2N�1)hδΩ2i+NhδT 2i; (8.69)

and the coefficients R1 and R2 are given by

R1 = N(N�1)[b2
Rb2

2(N
3�10N2

+29N�9)=120

+b2bRb2R(19N2�65N +48)=96+b2
2R(2N�1)=6]; (8.70)

R2 = N(N�1)b3 [bR(N�1)(N�2)=6+b2R(N�2)=3]S: (8.71)

We see from Eqs. (8.66) - (8.71) that both the Raman jitter and the Gordon-Haus jitter are reduced

considerably by using parametric amplifiers because they scale as N3 and N, rather than N5 and

N3, respectively.
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To illustrate the extent of timing jitter reduction offered by parametric amplifiers, we consider a

dense dispersion-managed system capable of operating at 160 Gb/s using fundamental solitons in

DDF system with a 45-km-long DDF with D(0)= 1:0 ps/(km-nm). The dispersion map is the same

as the one used to study Raman jitter in Figure 7.1 in Chapter 7. Figure 8.6 shows the dependence

of timing jitter on distance for such a system while using EDFAs and parametric amplifiers. The

solid and dashed lines show respectively the total timing jitter with and without (TR = 0) the Raman

contribution. The dotted line shows the tolerable value of the jitter for a 160 Gb/s system (8% of

the bit slot). The timing jitter limits the distance to below 500 km when using EDFAs. The use

of parametric amplifiers reduces the jitter to within the tolerable value for distances as large as

8,000 km. Of course, other effects such as soliton collisions and Q-factor degradation may not

allow transmission over 4000 km.

Dispersion-managed solitons

A DM system consists of a periodic sequence of anomalous- and normal-dispersion fiber sections.

To compensate for fiber losses in such a system, an amplifier is placed after one or more map

periods at LA. The pulse shape in such a case is given by Eq. (6.56) to be

Bi(z; t) = ai exp[iφi� iΩi(t�Ti)� (1+ iCi)(t�Ti)
2
=2τ2

i ]; (8.72)

Using this form of pulse shape we can write the variances and cross-correlations in δEi, δΩi and

δTi from Eqs. (7.91)–(7.93) in Chapter 7 to be

hδE2i= 2SE0; hδΩδEi= 0 hδEi= S; (8.73)

hδΩ2i=
S

E0

(1+C2
0)

τ2
0

hδEδT i= 0 hδΩi= 0; (8.74)

hδT 2i=
S

E0
τ2

0 hδΩδT i=
S
E

C0 hδT i= 0: (8.75)

The pulse evolution again is periodic not after every amplifier but after every two amplifiers. Using

this feature for a set of two amplifiers, we calculate the impact of parametric amplification on the

timing jitter. Integrating Eqs. (8.73)-(8.75) equations over the amplifier spacing LA and including

the fluctuations induced by the first amplifier, we obtain from Eqs. (7.80)–(7.82) by neglecting the

higher order terms

E(LA) = E(0)+δE1; (8.76)
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Ω(LA) = Ω(0)+bRE(0)+δΩ1 (8.77)

T (LA) = T (0)+b2Ω(0)+b2RE(0)+b3+δT1: (8.78)

The parameters b2, bR, b2R and b3 are given by Eqs. (7.76)–(7.79).

Integrating Eqs. (8.76)–(8.78) and changing β2 to �β2 and γ to �γ we find E, Ω and T after

the second amplifier to be

E(2LA) = E(0)+δE1 +δE2; (8.79)

Ω(2LA) = Ω(0)�bRδE1 +δΩ1 +δΩ2; (8.80)

T (2LA) = T (0)�b2bRE(0)+2b3�b2δΩ1�b2RδE1 +δT1 +δT2: (8.81)

The above equations show that after every two amplifiers, the effects of the Raman-induced fre-

quency shift and GVD again cancel precisely because of parametric amplification. Next we con-

sider that the DM soliton system also uses N parametric amplifiers, grouped into M pairs so that

M = N=2. Summing Eqs. (8.79)–(8.81) over M such pairs we get

hEiM = E0 +2MS; (8.82)

hΩiM = �bRMS; (8.83)

hT iM = 2Mb3�b2bRME0�b2RMS: (8.84)

In order to find the timing jitter, we have to find the variance of T after N amplifiers. After any jth

pair of amplifiers the variance of T can be written from Eq. (8.78) as

hT 2i j = hT 2i j�1 +4b2
3 +b2

2b2
RhE

2i j�1 +b2
2hδΩ2i j +b2

2RhδE2i j +2hδT 2i j

+ 4b3hT i j�1�2b2bRhET i j�1 +2b2bRb2RhEi j�1hδEi j�2b2RhδEi jhT i j�1

� 4b2bRb3hEi j�1�2b2hδΩδT i j: (8.85)

Using Eqs. (8.76) and (8.78) to find hE2iM and hET iM we get

hE2i j = hE2i j�1 +2hδE2i j; (8.86)

hET i j = hET i j�1 +2b3hEi j�1�b2bRhE2i j�1�b2RhδEi jhEi j�1 +2hδEδT i: (8.87)

Summing Eqs. (8.86) and (8.87) over M such pairs we get

hE2iM = 2MhδE2i; (8.88)

hET iM = 2b3M(M1)S�b2bRM(M�1)hδE2i�b2RM(M�1)S2
: (8.89)
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Using Eqs. (8.88) and (8.89) in Eq. (8.85) we can find the variance in T after M pairs of amplifiers

to be

hT 2iM = 4Mb2
3 +b2

2b2
RM(M�1)hδE2i+b2

2MhδΩ2i+b2
2RMhδE2i+2MhδT 2i+4b2

3M(M�1)

+
2
3

b2
2b2

RM(M�1)(M�2)hδE2i+
2
3

b2bRb2RM(M�1)(M�2)S2

+ b2RM(M�1)S2�
8
3

b2bRb3M(M�1)(M�2)S�2b2MhδΩδT i: (8.90)

Using Eqs. (8.88) and (8.89) and substituting M = N=2 in Eq. (8.90), we find the timing jitter when

using parametric amplifiers in place of EDFAs to be

σ2
PA = σ

02
GH +[b2

2b2
R(N

2�4)=12+b2
2R]N=2hδE2i+b2b3bRSN(N�2)(N�4)=3; (8.91)

σ
02
GH = N[(b2

2=2)hδΩ2i�b2hδΩδT i+ hδT 2i]: (8.92)

Eqs. (8.89) and (8.90) show that Raman jitter and Gordon-Haus jitter grow cubic and linear in

distance respectively when parametric amplifiers are used instead of EDFAs. As a comparison we

can write the Raman jitter and Gordon-Haus jitter when EDFAs are used from Eqs. (7.118) and

(7.119) to be

σ2
t = σ2

GH +R1h(δE)
2i+R2; (8.93)

σ2
GH =

b2
2

6
N(N�1)(2N�1)hδΩ2i+b2N(N�1)hδΩδT i+NhδT 2i; (8.94)

and the coefficients R1 and R2 are given by

R1 = N(N�1)[b2
Rb2

2(N
3�10N2

+29N�9)=120

+b2bRb2R(19N2�65N +48)=96+b2
2R(2N�1)=6]; (8.95)

R2 = N(N�1)b3[bR(N�1)(N�2)=6+b2R(N�2)=3]S: (8.96)

We see from Eqs. (8.89) - (8.94) that both the Raman jitter and the Gordon-Haus jitter are reduced

considerably by using parametric amplifiers because they scale as N3 and N, rather than N5 and N3,

respectively. To illustrate the extent of timing jitter reduction offered by parametric amplifiers, we

consider a dense dispersion-managed system capable of operating at 160 Gb/s. The map consists

of 1-km section of anomalous-GVD fiber (D= 2:5 ps/km-nm) and another 1-km section of normal-

GVD fiber (D =�2:43 ps/km-nm). In both fiber sections, α = 0.2 dB/km, the nonlinear parameter
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Figure 8.7: Timing jitter for a 160-Gb/s DM soliton system with 40-km amplifier spacing. The solid and dashed

lines show respectively timing jitter with and without the Raman contribution for both EDFAs and parametric ampli-

fiers. The dotted line shows the acceptable value of timing jitter.

γ = 2.26 W�1/km, the Raman parameter TR = 3 fs, and β3 = 0.1 ps3/km. Amplifiers are placed

40 km apart. The noise figure for parametric amplifiers depends on the excess noise introduced

by pump power fluctuations. We calculate the spectral noise density using nsp = 1.3 for both

parametric amplifiers and EDFAs (the worst-case scenario) which corresponds to a noise figure of

4.2 dB. The parameters for the input Gaussian pulse were found using the periodicity conditions

for solitons and have values τ0 = 1.25 ps, C0 = 1 and E0 =0.12 pJ [7]. Figure 8.7 shows the

increase in timing jitter as a function of distance in the cases of EDFAs and parametric amplifiers.

The solid and dashed lines show respectively the total timing jitter with and without (TR = 0)

the Raman contribution. The dotted line shows the tolerable value of the jitter for a 160 Gb/s

system (8% of the bit slot). In the absence of parametric amplifiers, the system performance is

limited by the jitter to the extent that the soliton system cannot operate beyond 500 km. However

when parametric amplifiers are used, the timing jitter is reduced so much that it limits the system

performance only after 4000 km. (Of course, other effects such as soliton collisions and Q-factor

degradation can limit the system before 4000 km.)

Next to verify that the use of parametric amplifiers in place of EDFAs can reduce both Gordon-

Haus jitter and Raman jitter, we consider the same DM system as the one used to obtain Figure 8.7.
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Figure 8.8: Gordon-Haus timing jitter for a 160 Gb/s DM soliton system when using parametric amplifiers and

EDFAs. The ’stars’ show numerical results and the solid line show the analytical results.

We compare the analytical results to the results obtained by numerical simulation in Figures 8.8

(a) and (b). The ‘stars’ show the results of the numerical simulation and the solid line show

the analytical results. The numerical simulation shows a larger value of jitter than predicted by

the above equations as the distance increases. This is due to the jitter induced by intra-channel

cross phase modulation which is not considered in the above analysis. Figure 8.8 (a) and (b)

shows Gordon-Haus jitter and Raman jitter as a function of distance respectively. The numerical

simulations agree with the analytical predictions that the use of parametric amplifiers in place of

EDFAs can reduce both Gordon-Haus jitter and Raman Jitter.

8.2.2 Non-soliton Systems

Non-soliton systems uses prechirped pulses of relatively low energy propagating along a DM link

without enforcing a periodic evolution pattern. The chirp and the pulse width cannot be calculated

at the location of each amplifier in the general case in which the nonlinear effects are included.

However, in the case of quasi-linear propagation, the nonlinear term can be neglected, and the

pulse evolution is nearly linear along the DM link. The chirp and the pulse width of the pulses can

then be found analytically as shown in chapters 6 and 7. From chapters 6 and 7, since the noise

variances and cross-correlations in the case of non-soliton systems depend on chirp and pulse width
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at each amplifier, they are different at different amplifiers. After the first parametric amplifier, the

chirp changes sign and from Eq. (7.122) can be written as

C1 =�(C0 +b2=τ2
0); (8.97)

After the second amplifier, the chirp C is restored to C0. Physically, the effect of dispersion is

canceled for each pair of parametric amplifiers. Similarly, the pulse width after the first and second

parametric amplifiers is given by

τ1 = τ0

q
1+C2

1 ; τ2 = τ0: (8.98)

We note that from Eqs. (8.97) and (8.98) that both the chirp and pulse width are restored to their

original values after every two amplifiers just like in the case of solitons. This feature is quite

different compared with the case of EDFAs for which the width and chirp evolve in a non-periodic

fashion. It results from the fact that even when the average dispersion is not zero, its effects are

canceled for every pair of parametric amplifiers. Using this form of pulse shape we can write the

variances and cross-correlations in δE j, δΩj and δTj after any jth pair of amplifiers from Eqs.

(7.124)–(7.126) in Chapter 7 to be

hδE2i j = 2SE0; hδΩδEi j = 0 hδEi j = S; (8.99)

hδΩ2i j =
S

E0

(1+C2
0)

τ2
0

hδEδT i j = 0 hδΩi j = 0; (8.100)

hδT 2i j1 =
S

E0
τ2

0

q
1+C2

1 hδΩδT i j1 =
S
E

C1 hδT i j = 0: (8.101)

hδT 2i j2 =
S

E0
τ2

0 hδΩδT i j2 =
S
E

C0; (8.102)

where j1 and j2 represent the first and the second amplifiers in the jth pair. Since only hδT 2i j1

and hδΩδT i j1 depend on the chirp C1, we can use Eqs. (8.97) to rewrite them in terms of C0 and

τ0. We can then drop the subscript 1 and 2 for the rest of the variances and correlations which have

the same value at all the amplifiers.

Using Eqs. (8.76)–(8.78) we find E, Ω and T after the second amplifier to be

E(2LA) = E(0)+δE1 +δE2; (8.103)

Ω(2LA) = Ω(0)�bRδE1 +δΩ1 +δΩ2; (8.104)

T (2LA) = T (0)�b2bRE(0)+2b3�b2δΩ1�b2RδE1 +δT1 +δT2: (8.105)
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Summing Eqs. (8.103)–(8.105) over M such pairs we get

hEiM = E0 +2MS; (8.106)

hΩiM = �bRMS; (8.107)

hT iM = 2Mb3�b2bRME0�b2RMS: (8.108)

In order to find the timing jitter, we have to find the variance of T after N amplifiers. After any jth

pair of amplifiers the variance of T can be written from Eq. (8.108) as

hT 2i j = hT 2i j�1 +4b2
3 +b2

2b2
RhE

2i j�1 +b2
2hδΩ2i j +b2

2RhδE2i j

+ 4b3hT i j�1�2b2bRhET i j�1 +2b2bRb2RhEi j�1hδEi j�2b2RhδEi jhT i j�1

� 4b2bRb3hEi j�1�2b2hδΩδT i j1 + hδT 2i j1 + hδT 2i j2: (8.109)

Using Eqs. (8.103) and (8.105) to find hE2iM and hET iM we get

hE2i j = hE2i j�1 +2hδE2i j; (8.110)

hET i j = hET i j�1 +2b3hEi j�1�b2bRhE2i j�1�b2RhδEi jhEi j�1 +2hδEδT i: (8.111)

Summing Eqs. (8.110) and (8.111) over M such pairs we get

hE2iM = 2MhδE2i; (8.112)

hET iM = 2b3M(M1)S�b2bRM(M�1)hδE2i�b2RM(M�1)S2
: (8.113)

Using Eqs. (8.112) and (8.113) in Eq. (8.109) we can find the variance in T after M pairs of

amplifiers to be

hT 2iM = 4Mb2
3 +b2

2b2
RM(M�1)(2SE0)+b2

2M
S

E0

1

τ2
0

+b2
2RM(2SE0)+4b2

3M(M�1)

+
2
3

b2
2b2

RM(M�1)(M�2)(2SE0)+
2
3

b2bRb2RM(M�1)(M�2)S2

+ b2RM(M�1)S2�
8
3

b2bRb3M(M�1)(M�2)S+2b2M
S

E0

�
C0 +

b2

τ2
0

�
+2

S
E0

τ2
0

+
S

E0
τ2

0

�
C0 +

b2

τ2
0

�2

: (8.114)

Using Eqs. (8.112) and (8.113) and substituting M = N=2 in Eq. (8.114), we can find the timing

jitter when using parametric amplifiers in place of EDFAs to be

σ2
PA = σ

02
GH +[b2

2b2
R(N

2�4)=12+b2
2R]N=2(2SE0)+b2b3bRSN(N�2)(N�4)=3; (8.115)
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σ
02
GH = N

S
E0

τ2
0

"
1+

1
2

�
C0 +

2b2

τ2
0

�2
#
: (8.116)

Eqs. (8.115) and (8.116) show Raman jitter and Gordon-Haus jitter again grow cubic and linear

in distance respectively when parametric amplifiers are used instead of EDFAs. When EDFAs are

used the Raman jitter and Gordon-Haus jitter can be written from Eqs. (7.151) and (7.152) to be

σ2
t = σ2

GH +R1(2SE0)+R3; (8.117)

σ2
GH =

S
E0

τ2
0N

"
1+

�
C0 +

b2N

τ2
0

�2
#
; (8.118)

and the coefficients R1 and R3 are given by

R1 = N(N�1)[b2
Rb2

2(N
3�10N2

+29N�9)=120

+b2bRb2R(19N2�65N +48)=96+b2
2R(2N�1)=6]; (8.119)

R3 = N(N�1)b3[bR
(N�1)

6
(N�2)+b2R

(N�2)
3

]S: (8.120)

We see from Eqs. (8.117) - (8.120) that both the Raman jitter and the Gordon-Haus jitter are

reduced considerably by using parametric amplifiers in the case of non-soliton system because

they scale as N3 and N, rather than N5 and N3, respectively. The Gordon-Haus timing jitter given

by Eq. (8.116) when using parametric amplifiers can be further reduced by using pre-compensation

discussed in the previous section. Since in this case the dispersion in one fiber section is cancelled

in the next fiber section due to phase conjugation the accumulated dispersion can be seen from

Eq. (8.116) to be C0 = �2b2=τ2
0 which is due to the noise variance in the frequency that has

accumulated over the second fiber section. Thus the accumulated dispersion in this case is only

over one amplifier length instead of the entire fiber link like in the case of EDFAs.

Similar to the case of DM solitons, the timing jitter can be reduced using parametric amplifiers

in place of EDFAs. Figure 8.9 shows the impact of intrapulse Raman scattering on the performance

of a 160-Gb/s non-soliton system using the same dispersion map used earlier for Figure 8.7. The

pulse energy is reduced by a factor of 10 to reduce the nonlinear effects. The average dispersion

is also reduced to βav = �0:005 ps2/km by changing the normal-GVD to �2:492 ps/(km-nm). In

the case of EDFAs, the input chirp C0 was chosen to be jβavjL=τ2
0, where L is the total distance

of propagation as is the condition for pre-compensation from the previous section. For systems
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Figure 8.9: Timing jitter for a 160-Gb/s non-soliton system with 40-km amplifier spacing. The solid and dashed

lines show respectively timing jitter with and without the Raman contribution for both EDFAs and parametric ampli-

fiers. The map parameters are the same as the one used for Figure 8.7, except the average dispersion is reduced to

Dav = 0:004 ps/km-nm. The dotted line shows the acceptable value of timing jitter.

with parametric amplifiers C0 was chosen to be 2jβavjLA=τ2
0. As expected, for lightwave systems

designed using EDFAs, precompensation reduces the Gordon–Haus contribution but the Raman

jitter increases with distance and ultimately limits the system after 3000 km. The use of parametric

amplifiers reduces the Raman jitter considerably, and the system is not limited by jitter for distances

as large as 10,000 km. Again other degradation factors not included here may limit the length to

much smaller values even when parametric amplifiers are used.

8.3 Chapter Summary

In this Chapter we have studied two methods for controlling timing jitter in lightwave systems.

First we saw that for systems that are limited mainly by Gordon-Haus jitter, dispersion compen-

sation techniques can help reduce timing jitter. We used the moment method to show analytically

that for soliton systems post-compensation can reduce timing jitter, provided that its magnitude

is optimized properly. More specifically, post-compensation of residual dispersion by 50% re-

duces the jitter by a factor of 2 at long distances when a single amplifier is used for each map

period. However, jitter actually increases if the residual dispersion is eliminated completely by

use of a post-compensation fiber. When there are two or more amplifiers within each map pe-
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riod the situation becomes complex to the extent that an increase in the average dispersion may

reduce the jitter for moderate distances. We also showed that for non-soliton systems, both pre-

and post-compensation can reduce timing jitter. In general, 100% compensation of the total dis-

persion in the case of non-soliton systems is essential for realizing jitter values comparable with

those obtained for DM solitons. However we found that the optimum compensation in this case is

75% pre-compensation and 25% post-compensation. We used numerical simulations to verify this

result.

Secondly, we used the moment method to show that both the Raman-induced and the ASE-

induced timing jitter can be reduced considerably for lightwave systems using bit rates more than

40 Gb/s by replacing EDFAs with parametric amplifiers. Our expressions can be used even in the

case of dense dispersion management, realized using multiple map periods between two neighbor-

ing amplifiers. We have included the effects of third-order dispersion as well. We have applied this

general formalism to three types of lightwave systems corresponding to the use of DM solitons,

fundamental solitons with DDFs, and chirped return-to-zero pulses in a quasi-linear configuration.

We have obtained the analytic expressions for the timing jitter in each case. We compared the three

configurations for a 160-Gb/s system and found that in all cases the timing jitter at the receiver end

can be reduced by a large factor by replacing EDFAs with parametric amplifiers. Although para-

metric amplifiers have not yet been used for designing lightwave systems, the situation is likely

to change in the near future in view of the recent advances in designing broadband parametric

amplifiers [72]–[74].

Several assumptions made in our analysis must be satisfied before the jitter-reduction scheme

using parametric amplifiers can be implemented successfully. First, the OPC process must create a

phase-conjugated version of the signal. This is possible only if the pump phase does not fluctuate

much. In practice, the line width of semiconductor lasers used for pumping is increased to�1 GHz

for suppressing the onset of stimulated Brillouin scattering. This is not of much concern for the

following reason. At high bit rates, each optical pulse is so short (� 1 ps) that the pump phase

remains constant over its entire width. Thus, as long as the bit rate is much larger than the pump

bandwidth, the OPC process is close to being ideal. The second issue is related to the mismatch

between the signal and idler wavelengths. The main requirement here is that the dispersion param-

eter should be the same at both fields. This is possible only if they have the same wavelength. In
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practice, the wavelength can differ by a few nanometers especially for fibers with low dispersion

slopes, but larger differences are likely to become intolerable.



Chapter 9

Conclusions

In this thesis, we use the moment method to study the propagation of optical pulses in optical fibers.

In particular we apply the moment method to study the effects of noise induced by the optical

amplifiers on the input pulses and the effects of timing jitter on optical communications systems.

The propagation of optical fields in fibers is governed by a nonlinear partial differential equation,

called the nonlinear Schrödinger equation which can be derived from Maxwell’s equations. Hence

to understand the evolution of an optical pulse when it propagates through an optical fiber, it

becomes necessary to solve the nonlinear Schrödinger equation. Since the equation is nonlinear

we have to use approximate methods to solve this equation. We show that the variational method

which is usually employed to study the propagation of optical pulse in fibers, cannot be used in

the presence of intra-pulse Raman scattering, due to its dissipative nature. Hence it is necessary

to find another method that will work even in the presence of dissipation in the system. The

moment method which treats the optical pulse as a particle can be used for both dissipative and

non dissipative systems.

First we use the moment method to study the effects of intrapulse Raman scattering on optical

pulses propagating in fibers. Using the moment method we showed that the Raman-induced fre-

quency shift resulting from intrapulse Raman scattering is a general phenomenon that occurs for

all pulses both in the normal and anomalous dispersion regimes of an optical fiber. We apply the

results to the cases of “sech” and Gaussian pulse shapes. The results show that the Raman-induced

frequency shift depends not only on the width but also on the frequency chirp associated with

158
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the optical pulse. The RIFS becomes quite large in the case of ultrashort pulses as it depends on

the cubic inverse of the local pulse width and varies considerably with the history of pulse width

changes. Whenever pulse width remains nearly constant along the fiber, Raman induced frequency

shift can accumulate to relatively large values.

We show that even optical solitons do not maintain their width when Raman induced frequency

shift becomes comparable to or larger than the spectral width of the pulse. Our analysis remains

valid in this regime and shows how the Raman induced frequency shift saturates to a constant value

because of soliton broadening. We give numerical examples of “sech” and Gaussian pulses in

both the normal and anomalous dispersion regime using a 10-m long fiber in which femtosecond

pulses are launched. Although Raman induced frequency shift is generally smaller for normal

dispersion compared with the case of anomalous dispersion, it is large enough to be measurable

experimentally. We include the effects of third-order dispersion and self-steepening in our analysis

and show that it affects the frequency shift through the frequency chirp.

Next we used the moment method to study the effects of amplifier induced noise on commu-

nication system. We show that the amplifier induced noise can degrade the system by reducing

the signal to noise ratio of the system and also can lead to timing jitter which can cause increased

bit error rate there by reducing the signal to noise ratio. The amplifier induced noise affects the

amplitude, the frequency, the position and the phase of the pulse. The fluctuations in pulse ampli-

tude can reduce the signal to noise ratio of the system by reducing the Q factor of the system. We

showed that for a system using N amplifiers periodically to compensate for fiber losses, we were

able to find an analytic expression for the Q factor and show that it is inversely proportional to N.

Thus the Q factor decreases as the number of amplifiers increases. We have included the effects of

thermal and shot noise in our calculations to find the Q factor.

The fluctuations added by the amplifier to the frequency and the position of the pulse can cause

timing jitter in the system leading to an increased bit error rate and thereby degrading the system.

We use the moment method to analytically calculate timing jitter in communications systems using

N amplifiers at regular intervals. We show that fluctuations in the frequency can affect the position

of the pulse due to the presence of group velocity dispersion in system. The resulting timing jitter

is called the Gordon-Haus timing jitter. Using the moment method we show that the Gordon-Haus

timing jitter grows cubic with distance and is inversely proportional to the energy of the pulse.
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For systems using bit rates up to 40 Gb/s, the timing jitter is mainly due to Gordon-Haus jitter.

We apply this method to three types of systems, viz., i) systems using fundamental solitons in

dispersion-decreasing fibers, ii) dispersion-managed soliton systems and iii) non-soliton systems.

For all three cases we extend the theory to see the effects of using more than one amplifier within

a map period. We found that using more than one amplifier within one map period can help reduce

Gordon-Haus timing jitter in all three cases. However when using more than one amplifiers in the

dispersion managed soliton systems to reduce Gordon-Haus timing jitter, the effectiveness of the

technique seem to depend on the position of the second amplifier and on the dispersion map. We

give numerical examples in all the three cases to show that using more than one amplifier within

each map period can help reduce Gordon-Haus timing jitter. However, as the number of amplifiers

increases, the Q factor decreases.

In the presence of intra-pulse Raman scattering, any fluctuations in the pulse amplitude affects

the frequency of the pulse thus causing additional timing jitter. This jitter is called Raman jitter.

For systems using bit rates more than 40 Gb/s, the intra-pulse Raman scattering and third-order

dispersion effects cannot be neglected. We use the moment method to derive analytic expressions

for Raman jitter for all three systems mentioned above. We show that Raman jitter dominates the

timing jitter for these systems. The Raman jitter grows as fifth power of distance and can limit the

system before the Gordon-Haus jitter limits the system. Since at such high bit rates the acceptable

value of jitter is smaller, the results show that these systems are limited within 1000 km. Unlike

Gordon-Haus jitter the Raman jitter is proportional to the pulse energy and since soliton systems

require larger pulse energies, they have a larger value of timing jitter due to Raman jitter than

non-soliton systems.

We have included the effects of third-order dispersion in our calculations. Our results can be

used even in the case of dense dispersion management which is necessary to achieve such high bit

rates. We have given numerical examples for all three systems to show our results. We have verified

the accuracy of our analytical results using numerical simulations. In the case of soliton systems

we verified our results using the split step Fourier method and for non-soliton systems we used

ordinary differential equations solvers to verify our analytical results. The numerical simulations

agrees well with our analytical results except for a minor discrepancy which is due to intra-pulse

interactions in the case of solitons and due to higher order terms in the case of non-solitons.
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Since timing jitter can limit the system considerably, it becomes essential to control timing jitter

in communications systems. We propose a few different techniques for this purpose and show

using the moment method that these techniques can reduce timing jitter in all the three systems

considerably. For systems that are mainly limited by Gordon-Haus jitter we show that dispersion

compensation techniques can help reduce timing jitter. In the case of soliton systems we show

that post-compensation can help reduce Gordon-Haus jitter by half. When using one amplifier

per map period, we see that even a small amount of post-compensation can help. However the

optimum compensation turns out to be compensating for 50% of the total accumulated dispersion.

However when using more than one amplifier per map period the optimum compensation seems to

depend on the dispersion map of the system. We also show that both positive and negative average

dispersion can be used to compensate for the accumulated dispersion in such a case.

For non-soliton systems both pre- and post-compensation techniques can be used to reduce

timing jitter. In this case the timing jitter can be reduced to a linear function of distance rather

than cubic thus reducing jitter by a large amount. There are three ways of accomplishing this, i)

complete pre-compensation, ii) complete post-compensation and iii) a combination of both. We

show that for all the three types of compensation, the jitter at the receiver end is the same. However

in order to keep the jitter minimum both within the system and at the receiver end, the optimum

compensation is 75% pre-compensation and 25% post-compensation. We verify this result using

numerical simulations and show that the optimum compensation keeps the jitter minimum both

within the system and at the receiver end. We give numerical examples of all three systems to

show that dispersion compensation can reduce Gordon-Haus jitter considerably.

For systems using more than 40 Gb/s, we suggest using parametric amplifiers in place of

erbium-doped fiber amplifiers. Since parametric amplifiers can act as phase conjugators and if

we alternate between the signal and the idler pulses between amplifiers, we can compensate for

group velocity dispersion, intra-pulse Raman scattering and self-phase modulation in the system.

Such a technique can reduce both Raman jitter and Gordon-Haus jitter thus reducing timing jitter

by considerable amounts for such high bit rate systems. We show using the moment method that

using parametric amplifiers in place of fiber amplifiers can reduce Raman jitter to cubic depen-

dence in distance instead of fifth power and Gordon-Haus jitter to linear in distance instead of

cubic for all the three systems. Such systems are not jitter limited up to 5000 km. We give numer-
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ical examples for each of the three systems to show our results. We have numerically verified our

analytical results using numerical simulations and our numerical results agree with our analytical

results.

Thus we conclude that the moment method is a simple method that can be used for studying

the pulse propagation in optical fibers. This method works even when the system exhibits dissi-

pation. The results we obtained using this method for Gordon-Haus jitter and Raman jitter in the

case of fundamental solitons agrees with the previously obtained results of Gordon and Haus [54]

and Essiambre [55] respectively. In the case of fundamental solitons, our expression for Raman

induced frequency shift reduces to that of Gordon [36] so long as the shift is much smaller than the

spectral width of the pulse. However to use the moment method we have to assume a pulse shape

and that the pulse shape does not change during propagation. Hence results obtained using this

method should be used with caution if the pulse shape changes significantly during propagations.

In conclusion we feel that using the moment method we can learn a great deal more about the pulse

evolution both in terms of uncovering new phenomena and better understanding similar systems.
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Appendix A

Acronyms

ASE amplified spontaneous emission

BER bit error rate

CRZ chirped return-to-zero

DDF dispersion decreasing fiber

DM dispersion managed

DMS dispersion managed soliton

EDFA erbium-doped fiber amplifier

fs femto seconds

FWHM full-width at half maximum

FWM four wave mixing

GH Gordon-Haus

GVD group velocity dispersion

IRS intra-pulse Raman scattering

NLS non-linear Schrödinger equation

fs femto seconds
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ps picoseconds

RIFS Raman induced frequency shift

RMS root mean square

SNR signal to noise ratio

SPM self phase modulation

SRS stimulated Raman scattering

SSFS soliton self frequency shift

TOD third-order dispersion

WDM wavelength division multiplexing


