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Abstract

Optical pulse propagation through a fiber is governed by the nonlinear Schrodinger equation. In
most cases when the system is not dissipative, using the variational method can help reduce this
partial differential equation that governs the pulse propagation into many ordinary differential
eguations. This reduction makes it easier to study the changes in pulse parameters and hence
easier to study the pul se propagation through the fiber. However for dissipative system this method
cannot be used. In a communication systems with high bit rates ( > 40 Gb/s) when ultrashort soli-
tons are used as optical bits of information, the communication system becomes dissipative due to
intra pulse Raman scattering in the fiber. In such a case, the system becomes non Hamiltonian and
variational method cannot be used for such systems. We show that the moment method remains
valid for both dissipative and non-dissipative systems and hence can be used to study the pulse
propagation in both high and low bit rate systems. In particular we apply this method to study the
effect of amplifier noise on the pulse parameters and analytically calculate the timing jitter due to
the amplifiersthat are used periodically to compensate the fiber losses.

Amplifiers used in soliton communications systems restore the soliton energy, but also add
amplified spontaneous emission noise. This noise affects the soliton evolution along the fiber
link limiting the total transmission distance by reducing the signal to noise ratio of the system.
The amplifier induced noise also fluctuate the amplitude, frequency and position of the pulse thus
causing timing jitter in the system that lead to increased bit error. We use the moment method to
calculate thetiming jitter at the end of the system and show using this method that several different
techniques can help reduce the timing jitter at the end of the system.

For systems using bit rates < 40 Gb/s the timing jitter is mainly due to Gordon—Haus effect

which hasitsorigin in amplified spontaneous emission-induced frequency fluctuations. By apply-
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ing the moment method to such systems we show that dispersion compensation techniques can
reduce timing jitter. However, at higher bit rates for which the pulse width becomes shorter than
5 ps, the Raman jitter induced by intra pulse Raman scattering in the fiber is likely to become the
most limiting factor. For such a system we show that using parametric amplifiers instead of fiber
amplifiers can reduce timing jitter. We apply the moment method not only to soliton systems but

also to non-soliton systems and show that these techniques work for both the systems.
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Chapter 1

| ntroduction

Optical communications systems use near-infrared lightwave pulses in optical fibers as carrier
of information from one place to another. The basic components of an optical communications
systems are an optical transmitter which converts electrical signal into optical signal and launches
it into the optical fiber, an optical fiber cable and areceiver that converts the optical signal received
into an electrical signal [1]. In order to compensate for fiber losses for long distance transmission,
optical amplifiersare used periodically after every 80—-100 km along thefiber link. These amplifiers
compensate for fiber losses by amplifying the signal, thus enabling the signal to be transmitted
over long distances. The system performance is characterized by bit-error rate (BER) which is
the average probability of incorrect bit identification. In order to have alow BER, which means
a better system performance, it is essential that the optical signals are carried over long distances

with minimum distortions.

1.1 Historic Overview of Optical communications Systems

The idea of optical waves for communications was faced with two main problems in the early
1960s. The first problem was the availability of a suitable source of such waves. Secondly, the
need for a suitable medium of transmission delayed the progress. In 1970 the availability of GaAs
semiconductor lasers and low loss silicafibers that can guide the optical waves over long distances
solved both the problems. An optical communication system based on a single mode fiber trans-

mitted 2 Gb/s over 40 kmin 1981 [2]. Since then, the communication technology has shown rapid

1
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progress. In just 20 years the bit rates have increased to 40 Gb/s and more. Moreover the use of
wavel ength-division-multiplexing (WDM) technique has revolutionized and increased the capacity

of modern optical communication systemsto beyond 1 Th/s.

1.2 Group Velocity Dispersion

In a single-mode fiber, the group velocity associated with the fundamental mode is frequency
dependent. Hence, different spectral components of an optical pulse travel at dightly different
group velocities, a phenomenon known as the group-vel ocity dispersion (GVD). When the optical
pulseistransmitted through a single mode fiber, different spectral components of the pulse disperse
during propagation and do not arrive simultaneously at the output, causing the pulse to broaden.
The extent of this broadening is governed by the GVD coefficient, 32, related to the dispersion
parameter of thefiber D asD = —(2mc/A?)B,, where c isthe speed of light and A isthe wavelength
of the lightwave. The time delay AT due to GV D should be less than the bit slot Tg = 1/B, where
B is the bit rate, which means BAT < 1. For a single-mode fiber of length L, the time delay is
given by AT = LDAA [1], where AA is the range of wavelengths emitted by the optical source.
As aresult, BL|D|AA < 1 gives the limitation on the bit rate due to GVD in the fiber. Also while
using amplifiersat regular intervals, GV D can aso cause increased timing jitter in the system, thus
leading to system degradation. To increase the bit rate, the pulse spread due to GVD should be
kept small. The pulse spread due to GV D can be avoided when the fiber dispersionis close to zero.
However, if the dispersionis closeto zero, four-wave mixing (FWM) interactions can cause severe

distortion to the signal when amplifiers are used.

1.3 Fiber Nonlinearity

Therefractiveindex of silicais power dependent, and the nonlinear contribution become important
at high power levels. The effect of such nonlinear refraction is to produce a nonlinear phase shift
that is dependent on the input power of the optical pulse. The time dependence of the input power
of the pulse causes the nonlinear phase shift to vary with time, resulting in frequency chirping,

which meansthat the carrier frequency of the input pulse changes with time. The time dependence
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of the carrier frequency of the pulse in turn affects the pul se shape through GV D. Hence the power
dependence of the refractive index can be alimiting factor for the optical communication systems.
Since the nonlinear phase shift responsible for the effects is induced by the optical field itself,
the nonlinear phenomenon responsible for this limitation is referred to as self-phase modulation
(SPM). SPM can lead to considerable spectral broadening of pulses propagating inside an optical
fiber.

1.4 Dispersion-Managed Solitons

In 1972, Zakharov and Shabat [ 3] and later Hasegawa and Tappert [4] showed that awave envelope
propagating in an ideal optical fiber with GVD and nonlinearity has a solitary wave solution, called
the ‘ soliton” when dispersion in the fiber is anomalous (B2 < 0). An optical soliton is produced by
the balance between nonlinear SPM effect and the GV D effect and thus suffers no distortion due
to GVD or SPM and maintains its shape along the fiber. However in the presence of fiber losses,
the pulse startslosing energy and the pulse width increases. In such a case one needs to use optical
amplifiers to reshape the pulse and restore its energy. An important issue for such periodically
amplified systems is the amplifier spacing La between the amplifiers. In order to keep the cost
minimum, the amplifier spacing should be as large as possible. Typically for a non-soliton system
it is 80-100 km. In the case of soliton system the spacing should be smaller than the dispersion
length Lp = TZ/B2 where Ty isthe pulse width. This is because, when the amplifier amplifies the
soliton energy to the input level, the soliton is perturbed and adjusts its width in the fiber section
following the amplifier by shedding a part of its energy as dispersive waves.

In order to reduce the dispersive waves, one has to reduce the amplifier spacing so that the
soliton is not perturbed much. For systems that use bit rates more than 10 Gb/s, it becomes dif-
ficult to realize the condition Lo << Lp in practice. The solution to this problem is dispersion-
management. One such dispersion management scheme that helps relax this condition is achieved
by using dispersion-decreasing fibers (DDFs) [5]. DDFsare designed such that the GV D decreases
along the fiber and counteracts the decreased nonlinearity experienced by the soliton affected by
fiber losses. This can solve the problem of achieving the amplifier spacing condition. But the

average GVD of the entire link is often relatively large. For reducing timing jitter, alow average
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dispersion is desirable. Dispersion maps that consist of alternating GVD fibers can help reduce
the average GVD of the entire fiber link while keeping the GVD in each section large to avoid
the FWM effects. This approach can also help in achieving an amplifier spacing of 80 to 100 km.
In such a system the pulse width and shape of optical pulses evolve periodicaly. The pulse thus
gets back its original shape and width after each map period and is called the dispersion-managed
soliton (DMYS).

1.5 Goal of theThesis

Optical amplifiers are used to solve the problem of fiber losses, and GVD can be reduced on aver-
age by using dispersion management. However another factor that can limit the communications
system is the SPM phenomenon. The effects of SPM cannot be treated alone as the GVD and the
SPM effects act on the optical pulse ssmultaneously. In order to give a mathematical description
of both the effects, one needs to use the nonlinear Schrodinger (NLS) equation which governs
the propagation of optical pulses through a fiber in the presence of fiber losses, dispersion and
nonlinearity. The NLS equation isanonlinear partial differential equation. In the case of constant
dispersion fibers, Zakharov and Shabat succeeded in solving the NL S equation by using theinverse
scattering method [6] and demonstrated that the solution to the equation is a solitary wave, called
soliton, when the dispersion is anomalous[3].

When the dispersion changes sign periodically likein the dispersion management case, theNLS
eguation has to be solved numerically. The variational approach can be used to give approximate
analytical results that agree well with numerical smulations[7]—[10]. The variational approach is
based on the observation that in the absence of nonlinearity in the fiber, a chirped Gaussian pulse
maintains its shape during propagation although its amplitude, width and chirp changes. In the
case of dispersion-managed soliton, the nonlinear effects are weak locally in each fiber section
compared to the dispersive effects. Hence a Gaussian shaped pulse launched into such afiber will
maintain its shape while its amplitude, width, chirp and the phase all vary along the fiber. For such
asystem, variationsin the pulse parameters can be studied using the variational approach, thus en-
abling a better system design. With all the improvements provided by the dispersion-management
technique, the bit rates have now increased to 40 Gb/s or more, leading to the use of ultrashort
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solitons. For such a system, higher-order dispersion effects and intrapul se Raman scattering (IRS)
cannot be neglected. Even though dispersion effects can be handled using a variational approach,
this method cannot be used to account for intrapulse Raman scattering because the Lagrangian
density needed for it does not exist due to the dissipative nature of the Raman effect. Thus the
variational approach failsif the system becomes non-Hamiltonian.

It becomes neccessary to use a different method that will work for both dissipative and non
dissipative systems. The moment method first introduced by Vlasov [11] can be used for this
purpose. The goal of this thesis is to use the moment method for studying dispersion-managed
lightwave systems. We use this method in particular to study the effects of amplifier noise in the
system, to calculate the timing jitter induced by the amplifier noise at the end of the system, and to
study the extent of system degradation caused by the timing jitter. We apply this method to both
soliton and non-soliton systems. We also describe the techniques that can help reduce timing jitter,
and using the moment method we show that these techniques are effective for both soliton and

non-soliton systems.

1.6 Outlineof the Thesis

Chapter 2 givesan introduction of the basic mathematical description of light propagationin optical
fibers. It shows how starting from Maxwell’s equations, the nonlinear Schrodinger (NLS) equation
that governsthe propagation of optical pulsesthrough an optical fiber can be derived. Thelater part
of the chapter gives the solution of the NL S equation and describes various numerical techniques
that can be used to solve this equation.

Chapter 3 describesthe variational approach and its application to a non-dissipative system (op-
erating at a bit rate < 40 Gb/s). For two different pulse shapes we derive the variational equations
that describe the evolution of the pulse parameters along the fiber. The later part of the chapter
provides a detailed description of intrapulse Raman scattering (IRS) and shows why a variational
approach cannot be used to describe this effect.

Chapter 4 describes the moment method and shows how the moment method can be used to
study the pulse evolution along the fiber in the presence of IRS. The results shown are general

and can be used for any given pulse shape. The application of this method for two different pulse
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shapesisdiscussed in the final part of this chapter.

Chapter 5 gives details on amplifier noise and shows the results obtained using the moment
method to calculate the bit error rate (BER) of a system using amplifiers at regular intervals. The
BER of the systemisrelated to the the signal to noiseratio (SNR) of the system and hence describes
the system performance.

Chapter 6 gives the analytical results obtained using the moment method to calculate the
Gordon-Haus timing jitter in both soliton and non soliton systems. In the later part of this chapter
we consider the Gordon-Haus timing jitter in systems when two or more amplifiers are used within
one map period.

Chapter 7 considers the effects of IRS and third order dispersion on timing jitter. Using the
moment method we calculate the total timing jitter including Raman jitter and Gordon-Haus jitter
for both soliton and nonsoliton systems. We show that timing jitter in this case is mainly due to
Raman jitter and it limits the system to lengths below 500 km. We also include the numerical
simulations conducted to verify the results obtained by the moment method and show that they
agree very well.

Chapter 8 discusses various techniques that can be used to reduce timing jitter in a system.
First we consider dispersion compensation and show using the moment method that this technique
worksfor soliton and non-soliton systems and we al so show that there is an optimum compensation
for which the system works better. Secondly, we consider using parametric amplifiers instead of
erbium doped fiber amplifiers (EDFAS). In this case we show that both Gordon-Haus jitter and
Raman jitter are reduced for both soliton and nonsoliton systems. Finally we show using numerical
simulations that by replacing EDFAs with parametric amplifiers indeed reduces both Raman and
Gordon-Haus timing jitters. The results obtained by numerical simulation agrees well with the
results obtained using the moment method.

Chapter 9 summarizes the main results of thisthesis and should be useful for a quick review of

the results.



Chapter 2

Nonlinear Schrodinger Equation

Optical communication systems use the phenomenon of total internal reflection for guiding optical
pulsesin optical fibers. The propagation of light through such a dielectric waveguide can be de-
scribed using Maxwell’s equations for electromagnetic waves. The propagation of electromagnetic
fields in any medium whose electric and magnetic field vectors are given by E and H and their
corresponding flux densities are given by D and B, respectively, is governed by the following four

Maxwell’s equations:

0B

Ox E :—E, (2.2)
oD

DXH—J%‘E, (2.2)

OeD = pPf, (2.3)

OeB =0. (2.4)

where the volume density for free current, J and the volume density for free charge ps represent

the sources for the electromagnetic field. The flux densities are related to the field vectors by

B=wH+M, (2.6)
where gq is the vacuum permittivity, po is the vacuum permeability, P is the induced €electric

polarization vector and M is the induced magnetic polarization vector. Once the total electric

and magnetic response of the medium is known, all electromagnetic phenomena can be explained

7
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using Maxwell’sequations (2.1)—2.4) together with the constitutiverelations (2.5) and (2.6). Since
fibers are source free and nonmagnetic, pf =0, J = 0and M = 0. Hence Egs. (2.1)—(2.6) reduces

to
OxE = _%_f, 2.7)
OxH = aa—?, (2.8)
ODeD =0, (2.9)
NeB =0, (2.10)
D = &oE + P, (211)
B = poH . (2.12)

Taking the curl of Eq. (2.7) and using Eq. (2.12) we get
DxDxE:—po%(DxH). (2.13)

Using Egs. (2.8) and (2.11) in Eq. (2.13) we find

2 2
10%E 9P 210

IXOXE="GT%e e

where c is the speed of light in vacuum and is given by 1/c? = pogo. Using Ox Ox E = O(C e
E)—-[O?E and JeD =¢e E = 0, we can write Eq. (2.14) as

1 0%E 92P
DZE
c? ot2 Ho ot2’ (2.15)

Theinduced polarization P (r,t) can be written as
P(r,t) =Pc(r,t) +Pnc(r,t) (2.16)
where P isthelinear part and isrelated to the electric field E as
PL(r,t) = 8°/ZX(1) (t—t)E(r t)dt, (2.17)
and Py isthe nonlinear part and isrelated to the electric field E as

Prrt)=so [ [ [ xO-tt-tot—to)i xE(rWE( L)E(r )dudbdis, (219
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where XM and x(® are the first and third order susceptibilities. The second order susceptibility is
not considered because it vanishes due the molecular symmetry of silicaglass. Hence Eg. (2.15)

becomes
1 0%E 9P 9P
2 L NL

In order solve Eq. (2.19) first we assume that the nonlinear induced polarization Py isasmall

perturbation to P, secondly, the optical field maintains its polarization along the fiber length and
finally the optical field is quasi-monochrométic, i.e., the pulse spectrum, centered at wo, has a
spectral width Aw such that Aw/wp << 1. Using the slowly varying envel ope approximation, the

electric field can be written as
E— %A[E(r,t)exp(—iwot) +ed, (2.20)

where X is the polarization unit vector, and E(r,t) is a sowly varying function of time. The

polarization P_ and Py can also be expressed similarly as
1 .
PL= é>A<[PL(r,t) exp(—iwgt) +c.c], (2.21)
1 .
Pne = EA[PNL(U) exp(—iwxt) +c.cl, (2.22)

Substituting Egs. (2.20) and (2.21) into Eq. (2.17) we can find that the amplitude of the linear part
of induced polarization given by
PL(r.t) = so/ Xt —t)E(r,t') expl—ico(t —t)]dt |
_ B0 [T oW -
=2 | R (@E(r .0 wo) expl-i(w- wo)t]dos (2.23)

where E(r,w) isthe Fourier transform of E(r,t) and is defined as

~

E(r,0) :/m E(r,t) explit]dt (2.24)

Similarly theamplitude of the nonlinear part of theinduced polarization can be found from Eq. (2.18)

to be
PNL(r,t)zso/// X&) (t —ty,t —to,t —t3)} x E(r,t1)E(r,t) E(r, ta)dtydtodts,  (2.25)

where the ! show that the multiplication between the E and x(® is for the respective time co-

ordinates.
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Assuming that the nonlinear response in the fiber is instantaneous, the Eqg. (2.25) can be sim-

plified by using X3 (t —tg,t —ta, t —t3) = X(I5(t —t1)d(t — t2)3(t — t3) to give
PuL = ox @i x E(r, t)E(r, t)E(r,t). (2.26)

This assumption will not be valid when pulse width is smaller than 1 ps due to the contribution of
molecular vibrations (the Raman effect) to x (3. This contribution and its effect will be considered
at the end of the next chapter when intrapulse Raman scattering is discussed. This condition is
valid for pulse widths > 1 ps because for silica fibers the Raman response occurs on atime scale
of 60— 70 fs. Substituting Egs. (2.20) and (2.22) into Eq. (2.26) we get two terms, one oscillating
at wp and another term oscillating at 3wg. The term oscillating at 3wy requires phase matching and

isgeneraly negligiblein optical fibers. Hence the Py can be written as

3
P = ZEoXioonE (1, DIE(r 1)
= SOSNLE(r7t)7 (227)

whereey. = (3/4)X>(<§3<X|E(r,t)|2. Dueto the presence of theintensity intheterm Py (en. O |E(r,1)[?),
Eq. (2.19) isnonlinear and is difficult to solve. Hence wetreat €y as a constant by treating Py as
a perturbation. It is then easier to work in the Fourier domain in order to obtain a wave equation
for E(r,1).
Using Egs. (2.24), (2.23) and (2.27) we can write Egs. (2.20)—«2.22) as

o>

E = %_[/ [E(r,oo—ooo) exp(—iwt) 4 c.cjdow, (2.28)
P = %Tgo/ % (W) E(r, — odp) exp(—iat) + ¢.c]dw, (2.29)
PaL = %_[SosNL/ [E(r,w— (00) exp(—loot) +C.C]du), (2.30)
From Eq. (2.28)
[O%E = %{ [O%E(r, w— wy) exp(—iwt) + c.c|dw, (2.31)
62_'5__2/“’ WPIE(r, 00— o) exp(—iwt) + c.cldw (2:32)
otz 4n) o O™ to)eP R '
Differentiating Eq. (2.29) twice w.r.t t we get
%P

—Z = —%{ao/m WK () E(r, 00— tp) exp(—ict) + c.c]dw. (2.33)
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Similarly from Eg. (2.30) we get

% = _%TSO‘QNL /_o; W[E(r, 00— wo) exp(—iat) + ¢.cldw, (2.34)
Substituting Egs. (2.31)—(2.34) in Eq. (2.19) we can show that E(r,t) satisfies the Helmoltz equa-
tion

[D2E + kge(w)E =0, (2.35)
where g(w) = 1+X>(<;L() (w) + e is the dielectric constant, kg = w/c and the relation pogo = 1/¢?
was used. The refractive index and absorption coefficient are related to the dielectric constant and

can be written in the form
Ai=n+nlE?  &=a+oaE> (2.36)

respectively. Using the relations, (fi+i6/2ko)? = g(w) = 1+ % (@ (W) +enL and enL = (3/4))(XXXX
|E(r,1)|? we get

fi— G2/ (42 + i ko = 1+ Xod (00) + (3/4) X\ E| 2
+n

(n+%) +[2nnz — Gk5+(n2 JIEP = 1+ %5 (@) + (3/4)xE? (2.37)

From Eqg. (2.37) we can write

o %2
ko ko

(@) = 14 ReEV (@] ale) = AmTP(w)] (2.38)
(@) = SREXT (@] a2(0) = S mix ()] (239)

Eq. (2.35) can be solved using the method of separation of variables where we assume a solution

of the form
E(r, 00— wo) = F(x Y)A(z, 0— ax) exp(iBo2) (2.40)

where A(z w) is a slowly varying function of z and Bg is the wave number to be determined.
Substituting this solution into Eq. (2.35) and rearranging we get the following two equation for
F(x,y) and A(z, w):

0°F 0%F 2 &2

a@ oy TE@G—FIF =0 (241)

2i BO‘;—? +(B2—P3A=0 (2.42)
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Since A(z, w) isaslowly varying function of zwe have neglected the second derivative with respect
to zin the above equation.
It iseasier to solve EQ. (2.41) in the cylindrical co-ordinates. So using the relations
F(xy) = f(p) exp(~imp)
0°F +62F _0°F L1 oF L1 0°F
0x2  0y2  0p? p?ap p?ogr’
we can write EQ. (2.41) in cylindrical co-ordinates as

d’f  1df P
d—p2+5d—p+<s(oo)k5—82—?)f:o. (2.43)

The dielectric constant £(w) can be approximated as £(w) = (n+An)? ~ n? 4+ 2nAn in Eq. (2.43),

where An = np|E|2 +i6/2ko isasmall perturbation. Hence Eq. (2.43) can be written as

— +——+ [ kg — B — —+2nAn f=0. 2.44
This equation can be solved using perturbation method. When An = 0, Eq. (2.44) reduces to the
well-known differential equations for Bessel functions. For a fiber of core radius a that has a
refractive index n = n; but takesthe valuen = n'2 outside the core (p > a), the general solution for

Eq. (2.44) inside the core can be written as
f(p) = C1Im(kp) + CoNm(kp), (2.45)
where J, isthe Bessel function, Ny, is the Neumann function, and
K = (nfk§ — B?) 2. (2.46)

The constants C; and Cy can be found using the appropriate boundary conditions. Ny, has a singu-
larity at p = 0 and hence for a physical solution C, = 0. Thus F(p., ®) = Jn(kp) exp(—imgp), for
p < aand in the cladding region (p > a), the solution F (p, ®) = Km(yp) exp(—ime) where Ky, is
modified Bessel function and y = (32 — n2k2)%/2. Using the same method, the magnetic compo-
nent H, can be found. The boundary condition that the tangential componentsof E(r,t) and H(r,t)
be continuous at p = a can be used to find B

We now include the effect of Anin EQ. (2.44). In the first-order perturbation theory, An does

not affect F (p, @). However B becomes

B =B-+AB, (2.47)



CHAPTER 2. NONLINEAR SCHRODINGER EQUATION 13

where
np — o/ JpANIF (p.¢) "dpde
[ /pIF(p.@)|?dpde -

This completes the formal solution of Eq. (2.41) to the first-order in perturbation An. Next in

(2.48)

order to complete the calculation of the electric field E(r,t), we need to solve Eq. (2.42) for the
slowly varying pulse envelope. Using Eq. (2.47) we can approximate 32 — 2 in Eq. (2.42) by
2Bo(B — Bo). Eq. (2.42) can then be written as

~

9 ilB() + aB— BolA (249)

Thisequation showsthat asthe pul se propagates al ong the fiber each spectral component within the
pulse envel ope acquires a phase shift whose magnitude is both frequency and intensity dependent.

Expanding B(co) in a Fourier series about the carrier frequency wo we get

B(®) = Bo-+ (00— @0)Ba + (0 60)2Bo + 5 (0~ ) ot - (250)
where .
d™p
W=

The cubic and higher order termsin the expansion in Eq. (2.50) are negligibleif the spectral width
Aw << wy. Substituting Eq. (2.50) in EQ. (2.49) and taking the inverse Fourier transform by using

Azt = o [ Az wo)expl-i(e- wm)tide (2.552)

Eq. (2.49) can be written as

oA 0A iR, 0%A

55 = Plar ~ 5 gz TIABA (253)

0z
The term with AB includes the effect of fiber oss and nonlinearity. Using An = np|E|?+i6 /2ko
in Eq. (2.48) and substituting for AB in EqQ. (2.53) we get

0A  OA iB20°A

a .
5 TR A= iyIAPPA, (254)

2w 2
where the nonlinearity parameter y is defined as

_ N20x
Y= CAef

(2.55)
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The parameter Ags isknown as the effective core area and is defined as

_ (/[ pAn|F(p, @) |>dpdep)?
Aot = T T olF (0. @) ['dpde (256)

The parameter Agqi depends on the fiber parameters such as the core radius and core-cladding

index difference and its evaluation requires the use of the function F (p, ¢). Using atransformation,

t' =t — B1z into Eq. (2.54) we get

0A iB20°A a, .
E +7W + EA_ |y|A| A. (257)

The above equation describes the propagation of picoseconds optical pulse in single-mode fibers.
It is often referred to as the nonlinear Schrodinger equation. It includes the effects of fiber losses
through a, GVD through (2 and fiber nonlinearity through y. The GVD parameter (3, can be
positive or negative. In the anomalous dispersion regime 32 < 0 and the fiber can support optical

solitons.

2.1 Solutions of the nonlinear Schr odinger equation

The mathematical description of solitonsemploysthe NL S equation satisfied by the pulse envel ope
A(zt) inthe presence of GVD and SPM. In order to discuss the solution to thisequationin asimple

way consider that the fiber islossless (a = 0). Hence normalizing Eq. (2.57) using

t z A
T=—, == U=—, 2.58
To ¢ Lo VPo (238
where Tp is ameasure of the pulse width, Py isthe peak power of the pulseand Lp = TO2 /B2 isthe
dispersion length, it takes the form

U  soU

=2 N2|lU AU = 2.
5 gzt UJ2U =0, (2.59)

where s= sgn(B2) = +1 or —1, depending on whether 3, is positive (normal GVD) or negative
(anomalous GVD). The parameter N is then defined as

N? = yPoLp = yPoT¢/|Bal. (2.60)

It is useful to introduce another length scale called the nonlinear length, Ly, = 1/yPy. The disper-

sion length Lp and the nonlinear length Ly provide the length scales over which the dispersive
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or nonlinear effects become important for pulse evolution along the fiber length L. When the fiber
length L issuchthat L << Ly_ and L << Lp, neither dispersive nor nonlinear effects play asignif-
icant role during pulse propagation. When thefiber length L issuchthat L << Ly andL > Lp, the
pulse evolution is governed by GV D and nonlinear effects play a minor role. This can happen for
short pulses or pulses with peak power Py << 1 W. When the fiber length L issuchthat L << Lp
and L > Ly, the pulse evolution is governed by SPM and dispersive effects play a minor role.
This can happen for relatively wide pulses with a peak power Py > 1 W. When the fiber length is
comparableto Lp and Ly, dispersion and nonlinearity act together as the pulse propagates along

the fiber.

2.1.1 Standard Soliton pulse

The NLS equation is a nonlinear partial differential equation that cannot be solved analytically
except for some specific cases in which the inverse scattering method [3] can be used to solve the
NLS equation. Numerical approach is often employed for understanding the nonlinear effectsin
optical fibers. The details of the inverse scattering method are discussed in many books devoted to
solitons [12]— [15]. The main result can be summarized as follows. When an input pulse having
an amplitude

U (0,t) = Nsech(t), (2.61)

islaunched into afiber that has anomalous GV D, its shape remains unchanged during propagation
when N = 1 but follows a periodic pattern for integer values of N > 1 such that the input shapeis
recovered at { = mrt/2, where mis an integer. An optical soliton whose pulse parameters satisfy
the condition N = 1 iscalled the fundamental soliton. Pulses corresponding to other integer values
of N are called higher-order solitons and the parameter N represents the order of the soliton. Only
afundamental soliton maintains its shape during propagation inside the optical fibers.

The solution of the NL S that corresponds to the fundamental soliton can be obtained by solving
Eq. (2.59) directly, without recourse to inverse scattering method. Using the fact that N = 1 for
fundamental solitonsand that in the anomalous dispersion regime 32 is negative, Eg. (2.59) can be
written as

oU 102U

JR— _ 2 =
%z+2m?+w|u 0, (2.62)
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The approach consists of assuming that there exits a solution of the form

U (Z,1) = V(1) explig(Q)], (2.63)

to Eqg. (2.62), where V must be independent of { to represent fundamental soliton that maintains
its shape during propagation. The phase ¢ depends on  but is assumed to be independent of time.
Substituting Eqg. (2.63) into EQ. (2.62) and rearranging we obtain

dp 1 /10 5
"=V <§W+V > =K, (2.64)

where K isa constant. From Eq. (2.64) we can write the phase ¢ = K. The function V(1) isthen

found to satisfy the nonlinear differential equation

Gz = V(K —V?). (2.65)

Multiplying Eq. (2.65) by 2(dV /dt) and integrating over T,
(dV/d1)?=2KV2-V44C, (2.66)

where C is a constant of integration. Using the boundary condition that both V and dV /dt should
vanish as |t| — o for pulses, C is found to be 0. The constant K is found to be 1/2 using the
condition that at the soliton peak 1= 0,V = 1 and dV /dt = 0. Using these valuesfor the constants
and integrating Eq. (2.66) we obtain V (1) = sech(t). Using thisin Eq. (2.63) we can write

U(,1) = sech(t) exp(iZ/2), (2.67)

Eq. (2.67) represents the well-known “sech” solution for the fundamental soliton. It showsthat the
input pulse acquires a phase shift of {/2 asit propagates inside the fiber, but its amplitude remains
unchanged. In essence, the effects of fiber dispersion are exactly compensated for by the fiber
nonlinearity when the input pulse has a* sech” shape and its width and peak power are related as
given by Eq. (2.60) with N = 1. Thisistrue only if the fiber losses are negligible. In the presence
of loss and/or amplification, the soliton may be perturbed and using the variational or perturbation

method the approximate soliton solution is given by
U(zt) = asech (?) explio—iQ(t—T) —iC(t—T)2/213, (2.68)

where the amplitude a, phase @, frequency Q, timedelay T, chirp C and width t al are functions

of z.
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2.1.2 Chirped Gaussian Pulse

When nonlinear effects play a minor role, and the pulse propagation is governed mainly by GVD,
the last term in Eq. (2.62) can be neglected. However we cannot use the dimensionless parameters
¢ and 1 in EqQ. (2.62) because the pulse width and the shape in general can vary along the fiber
length. Hence Eq. (2.62) iswritten in physical unitsas

0U  Bp0%U

Eg. (2.69) has the same form as a free particle equation and can be solved by using the Fourier

method. If U (z, ) isthe Fourier transform of U (zt) such that
U(zw) = / U(z.t) explict]dt, (2.70)

then it satisfies an ordinary differential equation

oU B
i, = wzu (2.71)
whose solution is given by _
U(zw) = U(0,w) exp(léBzwzz). 2.72)

Taking the inverse Fourier transform we obtain
(z,t) = / (0, w) exp[= Bzcozz— iot]dt, (2.73)

Eq. (2.73) shows that GVD changes the phase of each spectral component of the pulse by an
amount that depends on the frequency and the propagated distance. Even though such a phase
change does not affect the pulse spectrum, it can modify the pulse shape.

Consider that the pulse shape U (0,t) is given by a chirped Gaussian pulse of form

U(0,t) = exp {— (Hzic)% , (2.74)

where C isthe chirp parameter and 1¢ isthe initial pulse width. Using Eq. (2.74) in Eq. (2.70) we

U(0,w) = {ZLT(E:}

get )

1/2
w13

&P { 21+ |C)] (279
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Substituting U (0, w) from Eq. (2.75) in Eq. (2.73) and carrying out the integration we get

To o {_ (1+iC)t? }
T2 i1 i) 2P| 2[2—iPaz(1+iC)]]

Thus a chirped Gaussian pulse maintains its shape during propagation, however its width changes

U(zt) = (2.76)

due to GVD. The width of such a pulse after propagating a distance zisrelated to the initial width

CBz\?  (Boz\?
(“?) *(?g)

The above equation shows that the broadening depends on relative signs of the GV D parameter 3

To by 2
T

- (2.77)

and the chirp parameter C. When [3,C > 0 the pul se broadens monotonically whilewhen 3,C < 0, it
goesthrough an initial narrowing stage and then increases with distance. When the pulseisinitially
chirped and the condition 3>C < 0 is satisfied, the dispersion induced chirp is in the opposite

direction leading to an initial pulse narrowing. The minimum pulse width occurs at

C

Zmin = mLD (2.78)
and hasthe value
To
Tmin = m (279)

Chirped Gaussian pulses are used in describing dispersion managed solitonsin dispersion maps
that consist of the aternating GVD fibers [9]. The use of such maps lowers the average GVD of
the entire link while keeping the GVD of each section large enough that the FWM and TOD
effects remain negligible. In such a system, the GVD parameter takes values 324 and 32y in the
anomalous and normal sections of lengths |, and |,,. The map period Ly, is then given by |5+ .
The properties of DM solitons will depend on severa map parameters. If the map period is a
fraction of the nonlinear length, the nonlinear effects are relatively small, and the pulse evolvesin
alinear fashion over one map period. On alonger length scale, solitons can still form if the SPM
effects are balanced by the average dispersion. As a result solitons can survive even though not
only peak power but also the width and shape of such solitons oscillate periodically. For such a
case the nonlinear term can no longer can be neglected. Hence the pulse propagation is governed
by

U _B@RU gy~ (2.80)
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Eq. (2.80) cannot be solved easily since both (32 and y vary with z and the nonlinear effects are
non zero. Often numerical techniques are used to solve such an equation. Numerical simulations
show that a nearly periodic solution can often be found by adjusting input pulse parameters such
as the pulse width, chirp and peak power. The pulse shape of DM soliton can then in general be
represented by a chirped Gaussian of the form

U(zt) = aexplio—iQ(t—T) — (1+iC)(t—T)?/2t%. (2.81)

Several approximate analytical approaches can be used to get further physical insights. A common
approach makes use of the variational method [7]-{10]. Another approach expands the solution to
Eq. (2.80) in terms of a complete set of Hermite-Gauss functions that are solutions of the linear
problem [16]. A third approach solves an integral equation derived in the spectral domain using
perturbation theory [17]{19]. We focus on the variational method in the next chapter.

2.2 Numerical Methods

The numerical techniques used to study pulse propagation in optical fibers can be classified into
two broad categories known as the finite difference methods and the pseudo spectral methods. One
exampl e of the pseudo spectral methodsisthe split-step fourier method [20]-{22]. A numerical ap-
proach is often necessary to understand the nonlinear effectsin optical fibers. Hence understanding

these numerical methods becomes essential [23].

2.2.1 Split-Step Fourier Method

The propagation equation Eq. (2.80) describes the effects of the dispersion in alinear medium and
the nonlinear effects that arise due to fiber nonlinearities. Hence rewriting EqQ. (2.80) in terms of

the linear and nonlinear operators,
aA Fa A~
— = (D+N)A 2.82
5, = D+NA (2.82)

where D isthe differential operator that describes the effects of dispersion and N accounts for fiber

nonlinearity. These operators are given by

5:_@5_2+3353

> 02 6o (2:83)
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N = iy|A]? (2.84)

In general, dispersion and nonlinearity act together along the length of the fiber. The split-step
Fourier method obtains an approximate solution by assuming that in propagating through the op-
tical fiber over a small distance h, the dispersive and nonlinear effects can be considered to act
independently. More specifically, propagation from zto z+ hiscarried out in two steps. In thefirst
step, the nonlinearity acts alone, and D = 0in Eq. (2.82). In the second step, dispersion acts alone
andN =0in Eq. (2.82). The effect of dispersion is then found by taking the Fourier transform of
the equation. The accuracy of the split-step Fourier method can be improved by keeping the step

size h small.

2.2.2 Finite-Difference M ethods

Aninherent fundamental approximation in the derivation of the NL S equation isthe slowly varying
envel ope approximation. In order to relax this approximation finite-difference methods are used in
place of the split-step Fourier method. Another approximation used in deriving the NL S equation
isthat there is no backward propagating waves. Such problems require the simultaneous consider-
ing of both forward and backward propagating waves. Also in order to consider the birefringence
effects of the fiber one needs to consider the vector nature of the electromagnetic fields. For the
case of linear medium the algorithms that solve the Maxwell equations Egs. (2.7)—2.10) directly
in the time domain by using finite-difference methods have been developed for many years [24]—
[28]. However in 1992, such algorithms were extended to the case of nonlinear media [29]{33].
In particular this method was used to study pulse propagation in optical fibersin [29]-{31]. Con-
ceptualy , the main difference between the finite-difference time-domain method and split-step
Fourier method is that the former deals with all electromagnetic components. The finite-difference
time-domain method is certainly more accurate since it solvesthe Maxwell equations directly with
a minimum number of approximations. However it is more time consuming than the split-step
Fourier method. It may be necessary to use this method for ultrashort pulses whose width is less
than 10 fs. However in most applications of nonlinear fiber optics, pulses are much wider than 10

fs and using the split-step Fourier method provides reasonably accurate solution in such cases.
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2.3 Chapter Summary

Pulse propagation in optical fibers is governed by the NLS equation. In this chapter we have
derived the NLS equation that governs the propagation of optical pulses in optical fibers from
the Maxwell’s equations. We gave the analytical solutions to this equation for two specific cases
and discussed the properties of these solutions. We showed that standard solitons can maintain
their pulse shape and width during propagation in the optical fibersif their pulse energy is chosen
appropriately. When nonlinear effects can be neglected, we showed that the solution to the NLS
eguation is given by a chirped Gaussian function. We also showed that such a solution does not
maintain its pul se width during propagation. However the evolution of their pulse width and chirp
can be found analytically. We also presented various numerical methods that can be used to study
the propagation of pulses through optical fibers.



Chapter 3

Variational Method and its limitations

Asdiscussed in Chapter 2, pulse propagation in anonlinear dispersive medium such as silicafibers
isgoverned by the NL S equation. In the case of single-mode fibers that allow the propagation of a

single electromagnetic-wave mode, the NL S equation can be written as [1]

2 .
o e VA= — A (31)

where A(z t) is the lowly varying amplitude of the pulse envelope, a accounts for fiber losses,
B2 isthe GVD coefficient, and y is the nonlinear parameter responsible for SPM. In a constant
dispersion fiber, the GVD coefficient 32,y and a are all constant throughout the fiber. The NLS
eguation can be solved in that case by the inverse scattering method if a = 0 [3] and the solution
to the NL S equation in the case of anomalous dispersion can be found to be of the form shown
in Eq. (2.67). Such a solution is called the fundamental soliton and maintains its pul se shape and
width as it propagates along the fiber. However, in the presence of fiber losses the pulse beginsto
spread dueto GVD.

In the absence of nonlinearity, the accumulated dispersion over the length of the fiber can be
compensated at the receiver end. This is not the case in the presence of nonlinear effects. Also
when amplifiers are used to compensate for fiber losses the GVD can lead to increased timing
jitter in the system. A simple solution is provided by dispersion-management. Dispersion maps
that consists of alternating GV D fibers can help reduce the average GVD. However 32,y and a are
now periodic functions of z because of their different valuesin two or more fiber sections used to

form a dispersion map. Solving the NL S then becomes complicated. Analytical calculations for

22
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such a case is possible using a variational approach. In this approach, one assumes that the pulse
propagates with a self-similar shape. With this assumption, the optical system is described by the
averaged Lagrangian density which is the action functional. The corresponding Euler-Lagrange
eguations that describe the evolution of pulse parameters can be then derived by equating the
variational derivative of the action functional to zero. The variational approach hence offers a
simple approximate analytical method of solving the NL S equation. The variational method can
be used to study avariety of problemsin DM systems and the results agree reasonably well with
numerical simulations [7]— [10]. The variational method can be used for conservative systems
even when the coefficients are explicitly coordinate dependent. However, the variational approach

cannot be used for dissipative systems.

3.1 Variational analysisof pulsepropagation in non-dissipative
systems

It is useful to eliminate the last term in Eq. (3.1) with the transformation

z
A(zt) = B(z,t) exp {—% / cx(z)dz] . (3.2)
0
Eq. (3.1) then takes the form

where the power variations along the DM fiber link are included through a periodically varying
nonlinear parameter Y=y exp[— [§a(z)dZ). In general Eg. (3.3) issolved numerically to study the
performance of DM systems. However considerable insights into the design of DM systems can

be gained using the variational method. One can posit a Lagrangian density of the form

i (0B _oB*\ 1
K:§<BE_Baz>+§<BZ

and using the Euler-L agrange equations

0 /oK 0 /oK oK
a(a%a—z(a—q)‘a—"’ (39)

0B
ot

2
+V|B|4> : (3.4)
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where the generalized coordinate q is B*, q; is aat and gz is a , one can reproduce Eqg. (3.3).
The averaged Lagrangian density L is defined as L = [©_K(t,q(z))dt. Then the reduced Euler-

lagrangian density can be written as

d /oL oL

where q are the pul se parameters that depend on z. For further calculations one needsto use a pulse

shape.

3.1.1 Fundamental Soliton

A well-known solution to the NLS equation in a lossless, anomal ous-dispersion, fiber is the fun-
damenta soliton. But in the presence of loss and/or amplification, the fundamental soliton is
perturbed. Hence we first consider a perturbed fundamental soliton for the pulse shape. The pulse

shape isthen given by
B(zt) = asech (?) explio—iQ(t—T) —iC(t— T)2/2t2), (3.7)

where the amplitude a, phase @, frequency Q, timedelay T, chirp C and width t al are functions
of z. Normally, soliton pulses are unchirped. As an extension, we allow for a chirp on the input
pulsethat is small enough that the soliton shape does not change even though its width can change.

Using Eg. (3.7) in Eg. (3.4) we can find the Lagrangian density. In order to calculate the first
termin the Lagrangian density we take the derivative of the pulse shape from Eqg. (3.7) with respect
to z and we get

e (?) eplip—iQ(t—T) —iC(t—T)2/2t?

L) 0Q oT C(t-T)aT (t-T)*oC . (t—T)?0t
{Iaz i T)a +Qa LI - 212 0z ¢ 13 0z
+839T e <ﬂ> tanh <ﬂ> , (3.8)
10z T T
and from Eq. (3.7)
L,0B [.00 0Q oT  C(t—T)aT (t—T)?9C __ (t—-T)?0t
i {az (-t =5 "2 &t v &

_ 2 _ _
a’ sech? (Q) + LI (g) tanh (g) . (3.9)
T T 0z T T
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Subtracting the complex conjugate of EQ. (3.9) from Eq. (3.9) we can write the first term in the

Lagrangian density as

LB 0B\ [ dp . _0Q 9T C(t-T)oT (t-T)’aC _(t—T)%dr
(B oz o 62) B { az+(t ) 5z oz 2 0z 22 a7 O © oz
a2 sech? (?) . (3.10)

Now to find the second term in the Lagrangian density, we take the derivative of Eqg. (3.7) with
respect tot to find that

[ () e () e )

explip—iQ(t—T) —iC(t—T)?/213. (3.11)

Hence the second term of the lagrangian density can now be written from Egs. (3.11) and (3.7) as

2 2
%(Bz %—? y|B|4> [thanh2< ) + B2 <Q+C(t;2T)) +Va’sech? (%)]
a> L (t-T
Esech <T> (3.12)

From Egs. (3.10) and (3.12) the total Lagrangian density is given by
_ _ o 2 _ 2
K:azsechz<g> [ a(p+(t—T)aQ—Qa—T—C(t T)oT (=T’ (t-T) g}

0z 0z 12 0z 212 9z 13 0z

+azzsechz< - )[BZ ( TT>+B <Q+C(t;2T)) +ya sech2<¥)]-(3-l3)

Integrating the Lagrangian density K in Eq. (3.13) over t from —oo to oo, we can find the averaged

0z 9z

Lagrangian density. All integrals can be evaluated analytically with the help of Table 3.1.1. The
final resultis
TE2

L-e|-P-aF +$(%%§‘%$ﬂ o (1+ch2) R R )
where E = [*, a?sech? (-1 dt = 2a%t isthe energy of the pulse.

The evolution of various pulse parameters along the fiber can be found by applying Eg. (3.6)
to Eq. (3.14). Theresulting equations are called the variational equations. When g = @ we get the
variational equation for the pulse energy E as

dE
5 =0 (3.15)
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f(x) 1| x| x% |tanh?(x) | sech?(x)

[ f(x) sech?(x)dx | 2| 0| T@/6 | 2/3 4/3

Table 3.1: Integration table to find the Lagrangian given by Eq. (3.14)

If = Q we get the equation for timedelay T

dT
& = P (3.16)
if q=T we get frequency equation
dQ
e 0, (3.17)
when g = C we get the equation for pulse width
dt o 3.C
2 (318)

when g = T we get the equation for variation in chirp

dC_PB(4 2 &E
E:T—2<¥+C )+BQQ +ﬁ. (3.19)
The evolution of phase of the pulse can be found by using g = E in Eq. (3.6) to be

Bk (3:20)

These variational equations show how the pulse parameters change over the fiber length and
hence give insight into the pulse propagation along the fiber. The energy equation can be easily
integrated over the fiber length. If the initial pulse has zero frequency shift, Q(0) = 0, then it will
remain zero in the absence of amplifier noise. Since the temporal position, depends only on the
frequency shift, the temporal position aso remains constant in the absence of amplifier noise. The
phase equation can be ignored asit is not coupled to the other parameters. Thus one needs to solve

coupled equation that describe the pulse width and chirp which reduces to

dt 3C
i ol 21
dC B[ 4 2VE

2
— === ——- 22
dz 12 (n2+C > T e (3:22)
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For afundamental soliton that isunchirped (C = 0), in the absence of effective fiber losses due to
distributed amplification, we find from the variational equations that the energy E and pulse width
T remain constant along the fiber. Also, E and 1 are not independent but related to each other by
the soliton condition given in Eq. (2.60). The peak power of the solitonsis related to the soliton
energy E = 2Pyt. Using this relation, in Eq. (2.60) we find that E = 2|B3,|/yt for fundamental
solitons. Egs. (3.21) and (3.22) show that initially unchirped soliton maintains both its chirp and
pulse width while propagating in an anomalous GV D fiber as expected.

3.1.2 Gaussian pulse

Next consider the case of a DM soliton that can be represented by a chirped-Gaussian shape pulse
of theform
B(zt) = aexplip—iQ(t—T) — (14iC)(t—T)?/21?. (3.23)

Using such apulse shapein Eq. (3.4), the Lagrangian density can be found in the case of Gaussian

pulses. In order to find the first term of the Lagrangian density, we take the derivative of Eq. (3.23)

with respect to z and get
0B C o o g T\2/0e2 |09 L 0Q L 0T
E_aexp[lcp IQt—T)—(1+iC)(t—T) /ZT][IOZ i(t—T) OZHQaz
. (t=T)aT .(t—T)?aC . (t=T)?%at
+(1+iC) e E+(1+IC) e (3.24)
Using Egs. (3.23) and (3.24) we find
0B 2200 L 0Q (. .\ (t=T)\ oT
B az_aexp[ t—T) /T]{laz i(t—T) aZ+(|Q+(1+|C) 2 3%
(t—T)%aC _(t=T)%0r
150 E+(1+|C) o (3.25)

Subtracting the complex conjugate of Eqg. (3.24) from Eqg. (3.25) we get the first term of the La-

grangian density to be

T (9B g8\ _ | 99 199 _ (t=T)\oT ,(t-T)%0C
(B B )_{ +(t=T) <Q+C 2 )()zjLI 212 0z

0z 0z 0z 0z

+(1— ic:)(t%)zg—j a?exp[—(t—T)?/1?. (3.26)
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f(x) 1 | x| x* |exp(—x?)

[, 10 exp(—R)dx | Vit | 0| V2| /T2

Table 3.2: Integration table to find the Lagrangian given by Eq. (3.30)

Now to calculate the second term of the Lagrangian density we take the derivative of Eq. (3.23)
with respect tot and find

‘;—tB = aexplip—iQ(t—T) — (1+iC)(t—T)?/2t?] (-iQ — (1+iC)(t - T)/1?), (3.27)

Using Egs. (3.23) and (3.27) we can write the second term of the Lagrangian density as

OB |2 2 T2 _T\2 _ 2
%(Bz a_tB +VIBI4> =[527aex|0[—(t TZT) Ik T4T) +<Q+C(t TzT)) ]
Y 2(t—T)?
+§a4exp[— - (3.28)

From Egs (3.26) and (3.28) the total Lagrangian density can be written as

_ o 2 - 2
K = a2exp[_(t_-|-)2/.[2] |:_(aa_(zp_'_(t_-|-)aa_gzz B (Q—I—C(t _[ZT)) aa_-lz- (t 2_[12-) aa_cz: _C(t _[;-) g_;:|
2 2 _ 2 T2
+%exp[—(t—T)2/r2] [Bz ((t T4T) + <Q+C(t TZT)> >+Va2exp[— (t TZT) ]]. (3.29)

Integrating Eq (3.32) over t from —oo to c we find the averaged Lagrangian density. The integral
can again be performed analytically with the help of Table 3.1.2. Thefinal result is

[ do _dT (1dC Cudt B2E 2 2 VE?
L_E[ Q ( )}+ (1+C)+BzEQ/2+7(8n)l/2T,

dz dz 412 (3.30)

4dz 2tdz

where the pulse energy in thiscaseisgiven by E = [ a?exp[— (t;—l)z]dt = /TRT.
Applying Eqg. (3.6) to Eqg. (3.30) we can find the evolution of various pulse parameters. First

the equation for energy can be found by using g = @in Eq. (3.6) and can be written as

dE
=0

o 31
= (3.31)

When q = Q we get the equation for timedelay T
T _pa, (332

dz
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if =T we get frequency equation

dQ
e 0, (3.33)
when g = C we get the equation for pulse width
dt BZC
dz~ 1’ (334)

and when q = 1 we get the equation for variation in chirp

dc Bz ) 2, 2E
14+C%) +B2Q° + , 3.35
Frint It Ry = (3.35)
and the phase evolution can then be found again by using g = E in Eq. (3.6) to be
do B2 SyE

dz = 202 T ey (3.36)

Similar to the fundamental soliton case, we can ignore the energy and phase equations. In
the absence of Raman Scattering, the frequency remains constant and hence the temporal position

eguation is integrable and the coupled equations for T and C can be written as

dt . BZC

@z 1 (3.37)
dC By, o E

& = o (1HC)+ N (3.38)

In the absence of nonlinearity, the ratio (14 C?) /12 is related to the spectral width of the pulse
which remains constant in alinear medium. For such a case the Egs. (3.37) and (3.38) can now be

solved analytically and have the following general solution:
z 2
=2(0)+2 [ B(2C2)dz  C2)=C(0 ”C / Ba(2) (3:39
0

Integrating over two sections of the dispersion map, the value of pulse width and chirp at the end

of the first map period L, are given by
T(Lm) =T(0)[(1+C(0)d)?>+d?]*2,  C(Lm) =C(0)+ (1+C%0))d, (3.40)

whered = Baylm/ TZ(O) and B4y isthe average GVD value. When Bz = 0, both the pulse width and
chirp return to the input values at the end of each map period. If the average dispersion is non-zero,
then the pulse does not evolve periodicaly. If the input peak power is so large that the nonlinear-

ity cannot be neglected, the pulse parameters do not return to their input values even for perfect
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GVD compensation. However one can find periodic solutions of these equations numerically by
imposing the periodic boundary conditionst(L,) = 1(0) and C(Ly,) = C(0) which ensure that the
pulse recoversitsinitial shape at the end of each map period. Such pulses propagate through the
dispersion managed link in a periodic fashion and are called dispersion-managed solitons.

Thus a combination of the variational method with direct numerical ssimulations can form an
efficient approach to many problemsin fiber communications. However the use of the variational
method is limited to systems that conserve energy. However in the presence of higher-order non-
linear effects such as intrapul se Raman scattering which can cause dissipation in the system and so
writing a Lagrangian for such systemsis not possible. Thus the variational method cannot be used

to study such systems and one hasto revert to other approximate methods.

3.2 Intrapulse Raman Scattering

It was discovered in 1985 numerically [34] that the spectrum of an ultrashort optical pulse can shift
toward longer wavelengths (a “red” shift) when the pulse propagates in the anomal ous-dispersion
regime of an optical fiber. Such a spectral shift was observed in a 1986 experiment [35] by using a
stabilized, mode-locked laser capable of emitting pul ses shorter than 1 ps. It was called the soliton
self-frequency shift (SSFS) because pulses whose spectrum was red-shifted were propagating as
solitons inside the optical fiber used in the experiment. In fact, Gordon used a perturbation the-
ory of solitons for predicting the magnitude of the spectral shift and its dependence on the pulse
and fiber parameters [36]. Physically, the spectral shift is attributed to the intrapulse Raman scat-
tering (IRS), a phenomenon in which high-frequency components of an optical pulse pump the
low-frequency components of the same pulse, thereby transferring energy to the red side through
stimulated Raman scattering [37]— [40].

In order to understand the phenomenon of |RS better we have to go to the derivation of the NLS
equation in chapter 2. Eq. (2.57) should be modified for ultrashort optical pulses whose width
is < 5 ps. The spectral width of such pulses becomes comparable to the carrier frequency and
several approximations made in the derivation of Eq. (2.57) become questionable. Furthermore,
the spectrum of such short pulses is wide enough that the Raman gain in the fiber can amplify

their low-frequency components by transferring energy from high-frequency components of the
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same pulse, leading to the IRS that causes the pulse spectrum to shift toward the red side as the
pulse propagates inside the fiber. The physical origin of this effect is related to the retarded nature
of nonlinear response. While deriving Eq. (2.57) from Eq. (2.19), we made the assumption that
the nonlinear response of the fiber is instantaneous. Using this we modified Eq. (2.26) to give
Eq. (2.27), by using X3 (t —tg,t —tp,t —t3) = &(t —t1)d(t — t2)3(t — t3). Thisapproximation isno
longer valid.

Delayed nonlinear effects can be included by assuming the following functional form for the

third-order susceptibility,
X (t—t,t—to,t —tg) = X IRt —t2)3(t — t2)3(t — t3) (341)

where R(t —t1) is the nonlinear response function normalized similar to the delta function as
[Z,R(t)dt = 1. Substituting this form for X3 in Eq. (2.25) and carrying out the two integrals

over the delta functions, we can write the nonlinear polarization as
t
Pae = eoxPE(r, 1) / R(t —t1) |E(r,t1)[2dts, (3.42)

where it is assumed that the electric field and the induced polarization vectors point along the
same direction. The upper limit of integration extends only up to t because the response function
R(t —t1) must be zero for t; > t to ensure causality. Now using Egs. (3.42), (2.28) and (2.29) we

can rewrite Eq. (2.35) as

O2E + n?(w)k3E = —ikoa +)((3)k5//oo R(w— )
x E(w1,2)E(wp, 2)E (01 + w2 — 00, 2)denday, (3.43)

where R(w) is the Fourier transform of R(t). As before, we can treat the terms on the right hand
side of EqQ. (3.43) as a small perturbation and obtain the modal distribution by the same method
used in chapter 2. Using the slowly varying amplitude A(zt) as in Eq. (2.40) we can get the
following equation for ultrashort pulses inside the fiber [52]:

0A « 0A iB20%°A B30°A
R A SN

- iy(1+ &%) <A(z,t) / Z R(t’)|A(z,t—t’)|2dt’> , (3.44)
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whereyisthe nonlinear parameter defined in Eq. (2.55) and wy is the center frequency of the pulse
spectrum. The time derivative appearing on the right hand side of Eq. (3.44) includes the self
steeping effect, shock formation at the pulse edge and IRS.

The response function R(t) should include both the electronic and vibrational (Raman) contri-
butions. Assuming that the electronic contribution is nearly instantaneous, the functional form of
R(t) can be written as [41]-{45]

R(t) = (1 - fr)3(t) + frhR(1), (3.45)

where fr represents the fractional contribution of the delayed Raman response to the nonlinear
polarization. The Raman response function hg(t) is responsible for the Raman gain. For pulses

shorter than 5 ps we can use the Taylor-series expansion to |A(z t —t'|? such that
Azt—1) P~ AZDP -t S Az P (3.46)

This approximation isvalid if the pulse envel ope evolves slowly along the fiber. Defining the first

moment of the nonlinear response function as

Tr= /_ithR(t)dt, (3.47)

and using that [* R(t) = 1 along with Eq. (3.46) in Eq. (3.44) we get

0A « 0A iB20°A P3d3A . PO B IR 0|A?
5 ARt S sz e V(A A+&a(|A| A-TRA=Z- ) (348)

Once again using the transformation t=t— 1z, we can write Eq. (3.48) as

A o iBd?A Bsd®A . [ L, i 9 3|A|2
oA+ 2 BT iy 1ARPA+ — — (JAPA) — TRA . 3.49
5z T2M S g2 e ars = VI AITAT g (ATA) — TRAG, (3.49)

Now using the transformation in Eq. (3.2) we can eliminate the loss term and for the sake of
simplicity dropping the prime ont we can write Eq. (3.49) as

0B iB20°B Psd*B ., YO, _, . . _0BF

The term proportional to 3 governs the effects of third-order dispersion and becomes important
for ultra short pulses. The term proportional to w, !is responsible for self-steepening and shock

formation and is important for pulses shorter than a few fs. The last term proportional to Tr is
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responsible for intrapulse Raman scattering and is related to the slope of the Raman gain spectrum
of the material of the fiber and takes a value of 3 fsfor a pulse propagating at 1.55um in standard
silicafiber. All three parameters are negligible for pulses whose width, T > 1 ps but they become
appreciable for femtosecond pulses. As an example consider a 30 fs (full width at half maximum
of 50 fs) propagating at A = 1.55 um, whose carrier frequency wy is given by 2rc/A. For such a
system the self steepening coefficient, wy * = 0.8 fs while Raman scattering coefficient Tr is 3 fs.
Hence the self-steepening term can be neglected for pulses whose width islarger than 30 fs but the

term responsible for intrapul se Raman scattering is still important.

3.3 Chapter Summary

As seen before the IRS can lead to a shift in the soliton frequency. This Raman-induced frequency
shift (RIFS) isnegligiblefor pulse width larger than 10 ps but becomes of considerable importance
for short solitons (1(0) < 1ps). The RIFS leads to considerable changes in the evolution of solitons
as it modifies the gain and dispersion experienced by solitons. When the spectral shift becomes
large that it cannot be compensated, the soliton moves out of the gain window of the amplifiers
thusloosing all itsenergy. For ultrashort solitons, including the IRS and third-order dispersion, the

NLS equation given in Eq. (3.49) can be written as

0A o iBa0’A BsdA . - 0|A]?

In the presence of IRS, the system becomes dissipative and writing a Lagrangian density for such a
system is not possible. Hence the variational method cannot be used to study the effects of IRS on
pulse propagation in afiber. To study the IRS in solitons, soliton perturbation theory can be used.
However for ultrashort pulses, the IRS is no longer small enough to be treated as a perturbation.
Also from a physical standpoint, it is hard to see why the spectral red shift of ultrashort pulses
should require the formation of solitons. The IRS phenomenon should occur for any optical pulse,
irrespective of whether it propagates in the normal- or anomal ous-dispersion regime of an optical
fiber. It should aso be affected by the frequency chirp, if the input pulse is chirped. In effect,
although the variational approach works well for conservative systems, it fails in the presence of

Raman scattering in the fiber. Hence a more generalized theory that will work for both dissipative
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and non-dissipative systems has to be used in order to study the pulse propagation in the case
of systems using ultrashort pulses. In the next chapter we use the moment method to develop a

genera theory to study the pulse propagation in optical fibers.



Chapter 4

The Moment Method

The Moment method was developed as early as 1971 [11] and has been used to calculate timing
jitter in DM systems [56]. This method provides simple analytic theory for studying the evolution
of the pulse parameters thus helping to gain insights into pulse propagation. Since this method
does not require a Lagrangian, this method can be used for both dissipative and non dissipative

systems.

4.1 Definition of the Moments

The basic idea of the Moment method is to treat the optical pulse like a particle [11] whose energy

E, position T, and the frequency Q are defined as

E:/ |B|2dt, (4.1)
1o

T:E/tﬂdu (4.2
i > ( 0B _0B'

Q_EE/MG“E_ at)dt, 4.3)

where B is related to the envelope of the pulse, A launched into the fiber by the transformation
shown in Eq. (3.2). The root mean square (RMS) width of such a pulse is defined as

&zé/(bﬁfﬂ%t (4.4)

The actual pulse width isrelated to the RMS width by a constant factor that depends on the pulse

shape. We introduce one more moment related to the chirp of the pul se by the same constant factor

35
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< 0 0B _oB*
_E/m(t—T) <B = -8Z >dt. (4.5)

Evidently, the evolution of these pul se parameters depend on the evolution of the pulseitself inthe

using the definition

fiber which is governed by the NLS equation Eq. (3.50) in the case of ultra short pulses. To find
the evolution of these pulse parameters we use Egs. (4.1)— (4.5) along with Eqg. (3.50).

4.1.1 Energy Evolution

First consider the evolution of the pulse energy. To find that we differentiate Eq. (4.1) with respect
to zand get

dE 0B 0B
E_/_w<Ba—+Ba >dt. (4.6)

Using Eq. (3.48) we find that

oB B20°B PB3d°B Yy 0 . 0|BJ? 5
5= _?W+EF_&—(|B| B) —iyTr BT+|V|B| B. (4.7)

Hence we can write

*aB BZ *aZB B3 *aSB * y 0 2 2 | | 4
T A T W‘B S(8P8) - ivRBPO it (49
* 2p* 3o _

z 202 T6° a3

Adding Egs. (4.8) and (4.9) and substituting in Eq. (4.6) we get

dE Bz (,0°B" .0°B Bs *aSB a°B*
dz /oo 2 (B at2 B dt+/ B e "B &

Y 2 P,
o m( ~(B B)+B (18] B)> (4.10)

Consider thefirst integral in Eq. (4.10). Leaving out the coefficientsit is given by

© ( 8°B* _,0°B 628* ,0°B
/. (B > B atz)dt / B / Bt (4.11)

Integrating by parts we find that

0°B* _,0°B 0B*
/ (B 5z o 6t2>dt_BT

00 _/ O_BZ
e ot2

0B |2
ot2

, 0B[”
dt—B° 5

o/

dt.  (4.12)
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The second and the fourth term in Eq. (4.12) cancel each other and since B(z,t) is the pulse enve-
lope and hence at t — oo the field must vanish which meansast — o, B(z t) and "B - exponentially

tend to zero. Using these conditionsin Eqg. (4.12) we get

© / 9°B* _.0°B
/. (B —> B atz)dt_o. (4.13)

Now considering the second integral in EQ. (4.10) given by

%8 0% * 63 :
/ (B o at3>dt /B—dt / B (4.14)

Performing the integration by parts we get

,0°B  _0°B ,0%B|”
/ (B o3 i ot3 )dt B o2

(o]

" 0B 9°B
© Ot Ot?

2R* 2R*
B GBaBdt+BOB

w Ot Ot2 ot2 dt.

(4.15)

—00 —00

Thefirst and the third terms equal 0 since B and B* vanish at the limits. Hence we have

,03B _0°B* © (0B3°B* 0B*9°B
/ <B o B >dt - _/m (E a2 o 0t2>dt' (4.16)

Integrating again by parts

,0°B a3B* © (9B0°B* 0B*0°B
/ (B a6 B >dt /w(ﬁ a2 ot at2>dt’

_ |, BBy |08, o 0B,
ot o Ot Ot2 ot _w Ot O0t2
68628* aB* 9°B
/ (6t a2 o at2>dt' (.10

From Egs. (4.16) and (4.17) we can conclude

) *638 aSB*
/oo <B SF+Br >dt (4.18)

Expanding the final integral in Eq. (4.10) we get
® B2 B2 B*
/ ( ~(IBB)+B (|B|ZB*)>dt_/ <|B|2"| | +B*|B|2 +|B|z<3| | +B|B|26 )dt’

_ 3/_00 |B|2%dt. (4.19)

Integrating Eq. (4.19) by parts we get

2
[ B2 = e, - [ Bl (420
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Thefirst termin Eq. (4.20) goesto zero at the limits. Hence we can write
0|B|? 0|B|?
/ BF"dt / BF"dL_ (4.21)

Substituting Egs. (4.13), (4.18) and (4.21) in Eq. (4.10) we find the evolution of pulse energy along
the fiber is given by
dE

5 =0 (4.22)

Eq. (4.22) shows that the pulse energy remains constant when the pul se propagates a ong the fiber
just asin alossesfiber. Thisis because the power losses are included in the nonlinear parameter v,

while making the transformation in Eq. (3.2).

4.1.2 Evolution of Pulse Position

Next we find the evolution of the pulse position along the fiber. Differentiating Eq. (4.2) with

0B 0B
dz E/ (B—+Ba )dt (4.23)

Adding Egs. (4.8) and (4.9) and substituting in Eq. (4.23) we get

i 0 2p* 2 3 3R
ar _ i t(BaB—B*aB>dt+BS (B*aB BaB>dt

respect to z we get

dz 2E /. ot2 o2 6E a3 - o3
L A Y N PN
aE Lt (B 5 (BIB[®) + B (B*[B| )) dt. (4.24)

Considering thefirst integral we can do the integration by parts and get

0°B* . 0° oB* |” © 9B* 4(tB) ., 0B © 9B a(tB*)

/_ t<B 52 P atz)dt_tB ot |_ ., J-w ot ot dt—t8" 5 e SOt Ot dt.
(4.25)
Thefirst and third terms vanish at the limits and hence we have
00 OZB* aZB © (9BO(tB*) 0B*d(tB)
/_oot<B a2 at2>d /w<ﬁ ot ot ot )dt’
« ( |oB> _.0B |oB oB*
:/_ (t ol TB Y _Bat>dt’

0B 0B
/ (B = -82 >dt. (4.26)
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From the definition of frequency in Eq (4.3) we can write Eq. (4.26) as

0 0°B* . 02 .
I (B > B atz)olt_ —2iEQ. (4.27)

Now consider the second term in Eq. (4.24) given by

,0°B  _0°B* , 0%B|” © 92B0(tB*) 0°B*
/t<BW+Bat3>dt oz .oz o B

(o]

© 32B* 9(tB)
w Ot2 Ot 5 b
(4.28)

—00 —00

The first and third terms vanish at the limits. Hence Eq. (4.28) can be written as

© *035 0°B* © ( 3°BoB* _,0°B 0°B*0B _0°B*
/. (B Ed Bat3)dt /w<‘WW+BW“—atzE*B—atz)dt-

© (9°BoB* 0°B*0B L0°B  _0°B
B _/mt (6t2 o o E) dt_A (B a2 BT )4129)
Now consider the first term on the right hand side of Eq. (4.29).

© 0B [0B*  9°B*
+ [ S |

S (aZBaB* OZB*GB> oB|?
—/ dt — —t

iz o o ot ot ) o Ot | Ot ot2
oB|? © 9B* [0B aZB
Y /m ot [at atz}dt (4.30)

Thefirst and third terms go to zero at the limits. Rearranging the remaining terms we get

© (0Ba3°B* aB*aZB
_2/mt<5 a2 o at2>dt 2/

7

© (0B3°B* 0B*0°B oB |
/mt (E a2 o at2>dt__/m a| & (431)
Next consider the second term on the right hand side of Eq. (4.29).
,0°B  _92B* .0B|” © |oB[? _oB*|” © |9B|?
_A (B oz B )dt B m+/m |~ Sa m+/oo ar| &
_2 /_ 5 . (4.32)
Substituting Egs (4.31) and (4.32) into Eq. (4.29) we get
© [/ 3B 938 | 9B |?
/_ t(BF+Bat3)dt_3/_wE dt. (4.33)

Now consider the final integral in Eq. (4.24). From Eq. (4.19) we can write

® 0 2 0 a2 o [ mi291B
/_wt<B ~(BB?) + B (BB )) dt_3/_wt|B| St (4.34)
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Integrating Eq. (4.34) by parts we get

[ B s =g [ 2 (2 4 o) e

/ t||3|26|B| dt — — 1/2/ IB|dt. (4.35)

Substituting Eqs (4.27), (4.33), (4.34) and Eq. (4.35) into Eq. (4.24) we can find that the evolution

of pulse position along the fiber is given by

dar B3
9z B2Q +

2
3y 4
dt + —— B dt. 4.36

—o | O

Eq.(4.36) shows that the pulse position is affected by any frequency shift due to GVD and also

because of TOD. In the absence of amplifiers, this shift in the position is deterministic.

4.1.3 Evolution of Frequency Shift

Next we find the evolution of frequency, Q along the fiber. Differentiating Eq. (4.3) with respect

to z we get
9 [ 0B
dz ZE/ {62( 6t>_6_z<B ot )}dt‘ (4:37)
Now consider
0 0B 0°B  0B*0B
2 (pZ) g2 *. 4.
az< 6t> ozt oz (438)
From Eq. (4.7) we can write
0°B B,0°B Bz0*B .__ 9BI|B|? 0°|BJ?
Bt 200 6o Rg g VRE @
Y, B> . aB
- L e+ il iy (439)
. 0°B [32 ,0°B  B3..0'B *656|B|2 o ,0%|BJ?
- 20t eC o VRB Gr ~VRIBI e
FZ 3B
g 2 e+ w822 e 2. (4.40)
6B*OB_.B2628*OB Bg@SB*OB _ *0|B|268 2+ 0B
szt 2ozt o VRS 5 g VBB
_ ¥ 9 1g2gn %8 (4.41)

o Ot
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Adding Egs. (4.40) and (4.41) and substituting into Eq. (4.38) we find

2R 3 4 3p* 2|B|2
0 (B 6B> Bz (0 B* 0B 5" 0 B> B3 <B*a B 0°B 6_B> T |B|26 |B|

oz \~ ot 2\ a2 ot a3 at4 a3 ot ot2
0/B]> ¥ ..0B
wvepSE - T (5% 8% + 208289 %)), (@42

Hence we can write

% 2 * 3p* VYot 3 * 2 2
a<BaB)_ [32(0808 BaB> @(05 OBOB)+iVI_R|B|26|B|

az\ "~ ot ot2 ot ot3 at T at ot2
LBy 9B
_ 2___ 2p* 2
iy|B| P at2(|B| B*) + (|B| B) 5 ) (4.43)

Using Egs. (4.42) and (4.43) in Eq. (4.37) we can find the evolution of frequency along the fiber to

be
9%B*9B  32BIB* ?B _.9%B
dz ZE/ K a2 ot o at >_<B 5 B 0t3>}dt

Bs[/.,0°B _0*B* 0°B*0B 0°BoB*
+2E/ K ot Bow )\ )|

2 2p* iy 00 2 *
iy | 2 B*a B a B dt 3iy d|B| g a_B_BaB at
"~ 2Ewp /- a2~ 2o 2Ewp /- Ot o ot
02|B|? 0|B|?
+%TR/_OO|B|2 0|t2| t——/ B2l | | (4.44)

In order to calculate dQ/dz we evaluate one by one the integrals on the right hand side of the
Eq. (4.44). First consider the integration by parts of thefirst term in EqQ. (4.44) given by

0 a_BaZB*
o Ot 0t2

32 ot o at Ed Lot o e

(e, g
- J_w\ Ot2 ot  at2 ot ’

© /52B* 9B 2B 0B*
/_w <—6t2 F WW) dt = 0. (4.45)

0 20 2 * 2|® 0 % 32 2
/ (65 0B 6B@B>dt: 0B _ aBaBdt ‘aB

From Eq. (4.18) we know that the second term in Eq. (4.44) vanishes. Now consider the third term
in Eq. (4.44). Performing the integration by parts we get

© / 9*B _0*B* ,03B]” © 0B* 3°B 0°B* © 0B 9°B*
/. (BW_Bat‘l)dt B ). am et B ) e

,0°B _o*B* 0°B* 0B 0°BOB*
/. (B % Ba ) = <—0t3 o ﬁﬁ) at. (4.46)

00

—00
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Next consider
/°° 0°B'0B 0°B0B") , _ 0°B'0B|” (= 0°B'9’B, 0°BOB'|"  (* 0°BO%B’
ot3 ot  at3 ot oot ot J_w Ot2 o2 ot2 ot |_ _e Ot2 0t2
© (3°B*0B 0°BoB*
/m< o3 ot o3 ot )dt =0 (4.47)

This means the third and fourth terms in Eq. (4.44) vanishes. Substituting Egs. (4.45), (4.18),
(4.46) and (4.47) into Eq. (4.44) we get

dQ iy 812 ,0°B  _0°B 3y [~ aB|?>/_,0B _0B*
dz = 2Ew /) | | <B 52 B o dt_ZEooo oot \Par B )&
21Rr|2 2
+r T/ |B|2‘)a|t52| dt—y/ |B|20|B| (4.48)

Now consider thefirst termin Eq. (4.48). Integrating by parts we get

0 0°B _0°B* oB|” oB (0B 0|B|?
2 * - — R*IR|2 2 *
/_w|B| (B 52 Sz )dt BB 5 / a ( B +B 5 )dt
® |00 * 2
2aB +/ 0B <|B|ZOB a|aBt| >dt’

- a|B|2 B 0B’
__/m—at (BE—Bat>d. (4.49)

Expanding the next term in EQ. (4.48) by parts we get

00 2 2 00 2 00 2R* 00 2
/ |B|206|3| a=2 (" p|% dt+/ B|B|ZaBdt+/ B128* L 2,

— BIB|

ot ot2 ot2
aB* ® © 9B* [0B a|B|2
2 2
_2/ dt+B|B| B / - [ B2+Bo }dt
2
+B*|B|ZaB / %?{ |B|2+Ba|aBt| ]dt,
92|B? ® (9 5\
2 _ e 2
/ B2 ot = /_oo <6t|B|> dt, (4.50)

The last term in Eq. (4.48) can be evaluated as follows:
0B 0|B
=y
2
/ |B|26|B| dt=0 (4.51)

Substituting Egs. (4.49)—(4.51) in Eq. (4.48) we get the variation in the frequency of the optical
pulse during propagation as

_ iy 2 (0B g8 ¥ 9 50\
e ] |B| (B > Bat>dt ETR/ <6t|B| dt. (452
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This means both IRS and self-steepening leads to a shift in the pul se spectrum.

4.1.4 Evolution of chirp parameter

Next we find the evolution of the chirp parameter. Differentiating Eq. (4.4) with respect to z, we

€[22 (62 s

From Egs. (4.42) and (4.43) we have

dC B [ 0’B* 0B 0°B 0B 0B _,0°B
@€ | “‘”Kmaﬁ*atz o) \Boz tB o) |®

iB3 L0*B  _0*B* 9°B* 0B 0°BoB*
e /- (t_T)KBW_BaH o wa )|

iy e 2(x®B  L0°B\ 3y = _9BF/.0B 0B
2Ewy /- (t D8l (B 52 B o 2Ewy /- (t D7g \Bo B )

2 2
T/ |B|260|t52| dt — V/ |B|26|B| (4.54)

can write

In order to evaluate the first term in Eq. (4.54), consider the integral
/Z(t—T) (Ba;i* +B*(§E> dt = (t—T)B% B za;TBZ (‘Z—tB(

(Z;ZB w—/_i%? (%(t—T)%—B*) dt,

[ (F )

0°B* . 0°B
- /m (B —7 +B at2>dt. (4.55)

(o]

t—T)+B>dt

+ (t—T)B*

From Eq. (4.54) we can write the first term as
[o|(wa ww) (% ea)]
o (2B T [ (65 ) o
From Eq. (4.32) we can write Eq. (4.56) as
Lo |(Eaama) (o)

© 0B 9°B* 68*62 5
_2/_w(t—T)<a = 6t2>dt 2/ |—| dt.  (457)
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2
)dt

Next integrating the first term in the above equation by parts we get

e 0B9%B* 0B* 0%B aB|2|” e 0B*92B |dB
[ (3% Ta)s = 0 L. (“‘”Wﬁ“ﬁ

oB* 12" e oB92B* |0B|?
+(t=T) ‘ ot _w_/oo <(t_T)E ot2 _‘E )dt’
S 0B#%B* 0B*9°B © | 9B|?
/_oo(t—T) (E o+ at2>o|t — —/_w =t (4.58)

Substituting Eq. (4.58) into Eq. (4.57) we get

@ 0°B* 0B 9B 0OB* B* . 0%B = |9B|?
[ [( 52 ﬁ*ﬁﬁ) B (B 53 B ms)]dt—“l/m kS

Next to evaluate the termsin Eq. (4.54) with coefficient 33, consider the integral

°° ,0°B _d*B* ,0°B © 0B*9°B _,0°B
/J T><BW—B&4>‘“ = (=TB s m_/OO((t_T)Wat?’ Bat3>dt

+ / aBa3B*+ 9°B* .
at ot3 o3

0 0B0°B* 0B*9°B
B /_w(t_T) (E o3 ot at3)dt

(4.59)

B
ot3

© / 9°B* _.0°B
+ /oo (B e -B 6t3>dt (4.60)
Thefirst integral in EQ. (4.60) can be reduced to
o 0Bd°B* 0B*9°B 0B 02B* ® © 9°B* [ 0°B 0B
[T (a FER, at3>dt_ A I 2 (W(t_THE)

0B* 9°B ” © 3°B [ 9°B* 0B
e L% (e R)
0°BoB* 0°B* B
—/ ( - E) dt. (4.61)

Now consider the next term in Eq. (4.60) given by

© / 3%B* _ 0°B 02B* _|” ©* BB, 9°B_, © 32B 0B
/. (B 5 P ms)dt Eca I e Edt_WB e
0°BoB* 0°B* 0B
_/_w<at2 ot ot2 E)' (4.62)

Using Eq. (4.60)—(4.62) we can write

o L0*B  _0°B* 0°B* 0B 9°B 0B © (9°BOB* 0°B* 0B
/_oo(t_T) [(B FCdr )+< o3 ot o3 ot ﬂ dt_g/_w (at2 ot o2 E) at.

(4.63)
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The next term in the evolution of chirp is governed by self steepening and is given by

0 0°B _0°B* aB oB* |
. 2 x2 B2 — * 2V - 2+
[ a-Te (B — Batz)dt C-T)B'BPG| -~ BBP-T) G
0B [/ oB* « d|B |2 Ko 2
/. E( BI(t-T)+B'(t-T)< - +B'[Bf ) at
oB* 9B B2
+ [ 2 <|B| (t-T )at+B(t—T) L BB ot
B
2
_/ |B|< ot >dt
® d|B|?> (_,0B _0B*
—/m(t—T) = <B = -BZ )dt. (4.64)
Next consider the integral
) 21R|2 2p* 2
/_w(t—T)|B|26 B dt_Z/ BR(t—T dt+/ BIB|2(t — )aBdt+/ B*B2(t—T )%—Edt
—2/ 82|84ty BT —/ % g2t —1) Bt
o | . ) ot
oB* a| K 5 . oB|”
—/m = (B(t—T) o +BIB2) di+B' BT )E,m
©9B,_, _ 0B B [, B2 . .,
—/ME|B| t-1)Z dt—/ " <B t-T) %5 +B'B
0 02|B|2 0 0B 9|B]*  .0BO|BJ?
2 _ . *
/( Rl dt = /m(t T>(Bat & TP E )dt
e oB* 0B
. 2 *
/M|B| (B ~+B at)olt,
® 9%|BJ? ® d|BJ? 6|B|
2 - o YR 2
/m( T) B ot = /w(t T)( - > dt — / B (4.65)
Using Eq. (4.51) we can write Eg. (4.65) as
0o 62|B|2 co a|B|2 2
— 2 e — -
/_w(t T)[B /_w(t T)( = ) dt. (4.66)

Thelast term in Eq. (4.54) can be evaluated as follows:

o0 0 2 o 0 aBZ
[ a-ieata = a-Tyete. - [ Be (182+- )22 e

/w( )|B|2a|B|2dt —1/2/ IB|“dt. (4.67)
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Using the resultsin Egs. (4.59), (4.63), (4.64), (4.66) and (4.67) in EQ. (4.54) we get the evolution
of the chirp parameter along the fiber to be

dC B dt+|33 © (0°BOB* 0°B*0B d
dz  E at 4E ot2 ot  ot? ot
iy 9B aB oB* iy a2 (g% 9B
Ewo (t T) ot B3t ot -B ot dt— 2Euy /- | | ot B ot dt
0B |2> Y 4
——T / dt B|%dt. 4.68
(%) dep [0 B (468)

For ultrashort pulses, the chirp is not only affected by GVD but aso by TOD, self-stegpening and
IRS.

4.1.5 Evolution of the RM S width

Next we find the evolution of pulsewidth along the fiber length. For this we differentiate Eq. (4.5)

with respect to z to obtain

do * ,0B 0B
20EE_/m(t—t) [B — Baz]dt. (4.69)

Using Egs. (4.8) and (4.9) in EQ. (4.69) we can write

2p* 2 3 3p*
20E—Z_|—/ (t-T ( B —B*a B)dH—B?’ (t—T) <B*a_B+BaB )dt

at2 ot2 6 ot3 ot3
—% -1y ( ~(1B%B) + B (|B|ZB*)> (4.70)
First we evaluate the terms whose coefficients depend on GVD parameter 32 in Eg. (4.70) as
follows:
* °B* . 0°B 5 0B* |
/m(t—T) (B B atz)olt_ T |
© gB* ,0B *6B
—/m - <2(t—T)B+(t—T) - )dt TG
© 0B . ,0B*
+/_wa<2(t—T)B =T >dt,
0 ,0B _o0B*
_2/_w(t—T)<BE—Bat)d (4.71)

From the definition of chirp parameter in Eq. (4.4) we can write Eq. (4.71) as

0 0°B* _,0°B %
[ -7y (B > B atz)dt:—4|CE. (4.72)
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Next consider thetermsin Eqg. (4.70) whose coefficients depend on third order dispersion parameter

B3 given by
I G e e
- [0 (2T TP e -S|
(" Oaztli* <Z(I—T)B+(t_T)2%B> dt.
= —2/ (t—T <B*(ZE+BO;§> .
_/_w(t—T) (0;* %i?+%|?a;§*)dt‘ .

Next we evaluate the first term in Eq. (4.73) asfollows:

e L%B _9%B L0B|"
/m( T)(B B )dt:( —T)B

= 9B [ 9B* .
ot2 ot /mﬁ(at (t_THB)dt
oB*

®  [® 9B* (9B
ot oo_/ ot <6t(t_ )+B>dt’
,0B 9B
_—2/ t=T)|Z t—/ (BE+BOt>d(4.74)
However the last term in Eq.(4.74) is given by
0B 9B .
/ (BE+BO )dt_|B| " / B—dt+|B| 2 / B—dt

0B _oB’
_—/OO(B 8% >dt,

B 0B\
/ (BE+Bat)dt_O. (4.75)

+ (t-T)B

Substituting Egs. (4.74) and (4.75) in (4.73) we have
* B _0°B*
. 2 xY B _
/m(t T) (B 6t3+Bat3>dt 4/ (t=T)

Thelast term in Eq. (4.76) can be written as

00 * 32 2p*
/ (t—T)2<aB aB+a—BaB>dt:(t—T)2

0 0B*0°B 0B 9°B*
2
dt_/oo(t_T) ( ot oz "ot o )dt'
(4.76)

6_82
ot

0B ,02B* oB*
ot ot2 ' ot ot2 / ot ((t_T> iz T2 T >dt
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dt.

0 oB* 628 0B 02B*
/m(t_T) <6t T 6t2> 2/ (t=T1

Substituting Eq. (4.77) in Eq. (4.76) we have

© ,0°B _0°B*
/_w(t—T) (BFJrBatS)dt 6/ t—T)|Z

The next step in finding the evolution of the pulse width aong the fiber is to evaluate the term

dt. (4.78)

governed by self steepening in Eq. (4.70) asfollows:
°° 2 (a0 /1m2 0 Li26s °° 20129 512
/ (t—T)? (B 5 (1BB) + B (BB") dt:3/ (t=T)?|B2 Bt (4.79)

Next consider the term on the right hand side of Eq. (4.79)
[ a-Trepgera = - T2B", - [ IBR (28R T)+ (- T)2 1B a
/ (t—T)2|B|Za|B|2dt: —/ (t—T)[B%t = O. (4.80)

Therefore EQ. (4.79) can be written as

/_w(t—T)2< (|B|ZB)+B (|B|ZB*))dt:O. (4.81)

Substituting Egs. (4.72),(4.78) and (4.81) into Eq. (4.70) we find the evolution of pulse width along

the fiber to be )
do BZC [33 0B
4z o ' 20E (t -7 ot

While the evolution of the width of ultra short pulses is unaffected by IRS and self-steepening, it

. (4.82)

depends on the TOD and GVD in the fiber. The above equations for the evolution of the pulse
parameters reduce the complexity of the problem but they are still not in a useful form because
they depend on the pulse shape B(z t), which is not known until Eq. (3.50) is solved. If one has
some knowledge of the pulse shape and its dependence on the five moments, the problem can be
solved approximately. As seen before in Chapter 2, there are severa situations in which pulse

shape is known a priori with agood degree of approximation. For example, in the case of standard

T e op L2 d
_w‘[mat<“—T>a7+ﬂt D

)
t

0 oB* aZB 0B 92B* 0 oB|?
__/ t-7)° (()t a2 ot o >dt_4/_w(t_T>‘E

dt

(4.77)
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solitons, pulse shape can be assumed to maintain “sech” shape even if its width changes. As
another example, pulse shape remain nearly Gaussian in a dispersion-managed fiber link [1]. In
general, a Gaussian pulse can be assumed to maintain its shape during propagation inside optical
fibersif the nonlinear length is much larger than the dispersion length [1]. We consider these two

cases in the following two sections.

4.2 Fundamental Soliton

First let us consider the case of perturbed fundamental soliton. The pulse shape is then given by
Eq. (3.7). The width parameter T and the chirp parameter C appearing in this equation is related
to the RMS width o and the moment € respectively by a constant factor K such that 12 = Ko? =
(12/1®)02 and C = KC = (12/m®)C. Substituting Eq. (3.7) for B(zt) in Eq. (4.22) we get

dE
it 0. (4.83)
From Eq. (4.36) we have
el =B2Q+ at dt+ 260E |- |B| dt. (4.84)

Also from Eg. (3.11) we have

‘Z)_'? . [?sech (?) tanh (?) + asech (?) (—iQ—iC(t—T)/1?)

explip—iQ(t—T)—iC(t—T)?/2t?. (4.85)
Hence
0B|* & T T -7
] = S (17 Yt (7)ot (7 0t o

The integration of Eq. (4.86), can be performed analytically using Table 4.1 and the final result is

[

where E = 2at. From Eq. (4.7) we can write

0B

E N2
2 2
5| =0+ <l+—C > (4.87)

4

B|* = a*sech? (g) : (4.88)
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f(x) 2l x2 x2" | tanh?(x) | sech?(x) | sech?(x) sech?(x) xsech? (X)
tanh(x) tanh?(x) | x*™anh?(x) | tanh(x)
12 8(x) o | /6| o 2/3 4/3 4/15 0 1/3
sech?(x)dx

Table4.1: Integration table to get the evol ution of pulse parameters of fundamental soliton. Herenis an integer and
takesvalues0,1,2,....

From Table 4.1 we have

/w Bdt—E (4.89)
— N 3t ' .

Hence using Egs. (4.84), (4.87) and (4.89), the evolution the pulse position can be written as

ar _ BsQ* | B3 YE

— e 1+—C

2 (4.90)

Next we use Eq.(3.7) in Eq. (4.52) to find the evolution of the frequency of the fudamental

soliton as follows:

dQ iy , (., 0B 0B y 9, 5\?
- B/ t|B|< i Bat>dt ETR/ <a|B| dt (4.91)
From Egs. (3.7) and (4.85) we have
0B _o0B* (t T) o0 o ft=T
B*—-B -2 [Q hel — ). 4.92
( 5 5 ) [ +C ]a SeC - (4.92)
Also from Eg. (3.7) we can write
|B|? = a?sech? (?) : (4.93)
Differentiating Eq. (4.93) with respect tot, we have
2 2 _ _
OB _ 28" <Q> tanh (Q) . (4.94)
ot T T T

From Egs. (4.92) and (4.94) we can write thefirst integral in Eq. (4.91) as

00 * 4
/ 2|B|2 g8 _g% dt:/ i o c( T) sech® (=0 ) tanh (121 ) .
—w Ot ot ot o T T T

(4.95)
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Using Table 4.1 we get

ot ot 33
Using Eqg. (4.94) the second integral in Eq. (4.91) can be written as

© (9 S\, 4t e (=T L (t=T
/_w<&|8|) - h( ) )t anh <T>dt. (4.97)

Again using Table 4.1 we get
© (9 \2. = 4E2
/_w <E|B| ) dt =1 (4.98)

Substituting Egs. (4.95) and (4.98) into Eqg. (4.91) we can write the evolution of the frequency of

00 * H 2
/ %|B|2( a—B—BaB)dt:E. (4.96)

the fundamental soliton as
dQ YEC  4yTRE
— = — . 4.99
dz 3wt 1513 (4.99)

To find the evolution of the chirp next, we use Eq. (3.7) in Eq. (4.68). For a pulse of the form

shown in Eq. (3.7), the constant K takes the value 12/1%. Hence Eq. (4.68) can be written as

dc 12 oB|? 0°B0B* 0°B* 0B
dz ~ n2[I352 ar| dtrs 2E/ (at2 ot o2 E)dt
12iy 0|B|? (_,0B _0B* 6iy oB* _.0B
~ PEws ). (t_T)_|at| (B E_Bat )dt T2Eo ) |B|2< = -B at>dt
TRY /B2 6y
—1221E (t—T) (%) dt+ e |B|4dt. (4.100)

Now we perform the integration of each term one by one. First we evaluate the term that depend
on 33 asfollows:
From Eq. (4.85) we have

2 B B B - B B
B _ asech t=T 1tanh2 =T\ 1sech2 =T L tanh t-T Q +C(t 7
ot2 T 12 T 12 T T T 12

_'TE_}t h( TT> —i <Q+C(t;2T)>] x explip—iQ(t—T) —iC(t — T)?/2144.101)

Hence we find

0B*0°B , L, (t-T 1, 5(t-T 1 o t=T t—T)\ iC t—T
WW_a sech <—T ){—T—gtanh <—T >+T—3sech (—r )tanh(—T >+§tanh(—T

(7)o )t (1) o2

+%tanh (?) <Q+C(t ;ZT)>2+T92 (Q +c(t;—;)) —i (Q +c(t;—2T))3] . (4102)

)
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Subtracting the complex conjugate of Eq. (4.102) from itself we get

0°BoB* 9°B* 0B , o (t=T\[2C t—T\ 2, ,(t-T (t—T)
— — | = h*l — | | stanh| — | + tanh“ [ —— ) | Q+C

(()tz ot ot? 6t) a4 e ( T >L3an< T )+T2an ( T )( T >

_%sechz (#) <Q+c(t;72T)) _2i <Q+C(t;2T))3 .

Using Table 4.1 and integrating Eq. (4.103) we get

00 2 * 2p* i
/ (0 BoB" 0°B 6_8) dt:—TZ—;EQ <}+§CZ> —2iQ°E. (4.104)

(4.103)

ot2 ot ot2 ot 3

Next we find the effect of self-steepening on the evolution of the chirp by evaluating the third and
the fourth integralsin Eq. (4.100). From Egs. (4.92) and (4.94) the third integral in Eq. (4.100) can

be written as
°° dB|* (,.0B aB* _dat e A (t=T t—T C
/m(t T)—— ot (B A at>dt T/m(t—T)sech — tanh < Q+T—2(t—T) dt.
(4.105)
From Table 4.1 Eq. (4.105) can be written as
0 B]* (0B 0B QE2
/_w(t—T) o (B = -8 )dt - (4.106)
The next integral in Eq. (4.100) can be written using Egs. (4.92) and (4.93) as
0 oB* 0B . * (t—T) t—T
2 _ p* — 4 4
/_w|B| (B B at)dt dia /_w Q+c, ]sech ( - >dt. (4.107)
Using Table 4.1 to perform the integration we obtain
0 oB* 0B QE2
2 _ p* — 9=
/W|B| (B B at)dt 2" (4.108)

Next we evaluate the fifth integral in Eq. (4.100) using Eq. (4.94) and Table 4.1 asfollows:
°° 0/BJ? 4% (=T 2 (t=T
/m(t—T) (T) dt = 7m(t—T)sech ) tanh? (= ) .
o 2\ 2
/ (t—T) (ﬂ) dt = 0. (4.109)
—oo ot
Using Eq. (4.89), the final integral in Eq. (4.100) is given by

/m Bldt— £ (4.110)
e -3 '
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Using Egs. (4.87), (4.104), (4.106), (4.108), (4.109), (4.110), in Eq. (4.100), we write the evolution
of chirp along the fiber as

dc 12 Q/4 6 24yQE 2y
B0 E§<HZ+C>+BS—<¥+3CZ)+¥8393+ VOE | 2VE - 4a10)

dz T 212 TRwoT  TET

Box Bax (YE/uwo)x | YTREX YE x
dE 0 0 0 0 0
ar Q T (1+5C?) | 1 0 0
da 0 0 C/3t® | -4/(15t%)| O
€ 12024+ 3 (45+C?) | & (2+3C?) +50% | 240/1P 0 2/ (1)
dr C/t QC/t 0 0 0

Table 4.2: Evolution of the pulse parameters for the Fundamental soliton obtained using the moment method

Next we find the evolution of the pulse width from Eq. (4.82). Substituting Eq. (3.7) into
Eq. (4.82) and using K = 12/17, we get

© 2
dt BzC 6[33 (t B T) 0B
dz~ 1 TTE /_» ot

. (4.112)

From Eqg. (4.86), the second integral in Eq. (4.112) can be evaluated using Table 4.1 as follows:

/Z(t—T)‘%? dt = fj/ (t—T)sech2<t TT>t h2<t TT>dt
+a2/°;(t T)sech2<t TT>[Q+C(t— )19,

= §QCE. (4.113)

From Egs. (4.112) and (4.113) we write the evolution of pulse width as

dt BZC C
— Q— 4114
— =B (4.114)

The evolution of the pulse parameters found using the moment method for fundamental solitons

are given by Table 4.2.
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4.3 Gaussian Pulse

Next we consider the case of a DM soliton whose pulse shape is represented by a Gaussian profile
as shown in Eq. (3.23). The width parameter, T and the chirp parameter, C appearing in this
equation are again related to the RMS width, o and the moment € by a constant factor K such that
12 = Ko? = 20 and C = 2C respectively. In order to see how the evolution of the pulse parameters
in such a case differ from that of the fundamental soliton, we use Eq. (3.23) for the pulse shape,
B(zt) in the evolution eguations obtained using the moment method. First the evolution of the
pulse energy given by Eq. (4.22) remain unchanged. Hence

dE
it 0. (4.115)
Next the evolution of the pulse position for the case of Gaussian pulses can be obtained by substi-
tuting Eq. (3.23) into Eqg. (4.36). From Eq. (4.36) we have

2

© | 0B y [

e _BZQ+E e dt+—2on _w|B| dt. (4.116)
From Eq. (3.27) we have

B|°_ 5[, 2 (t=T)2 (t-T)

5 =a {Q +(1+4C9) " +2QC 2 ] (4.117)

Integrating Eq. (4.117) with respect to t from —oo to c using Table 4.3 we get

*|0B|® = t—T)>2 t—T
/m ot dt:aZ/oo [92+(1+Cz)( T4) +a2ac! 2 )]exp[—(t—T)z/rz]dt,
" |98/’ 2, g (1+CY)
/_oo o| M=EQHE— (4.118)

where E = /Ta%t. Using Eq. (3.23) thefinal integral in Eq. (4.116) can be written as

f(x) 1 | x| x |exp(—x?) |x2M1

[ f(x) exp(=x2)dx | /T1| O | \/T/2 /2 0

Table 4.3: Integration table to get the evolution of pulse parameters of a Gaussian pulse

/ " |BJdt = af / " expl—2(t — T)?/12dt (4.119)
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Using Table 4.3 we have
00 E2
B|%dt = : 4.120
| Bt = —— (4.120)
Hence the the evolution of the pulse position for Gaussian pulseis given by
dT Bs [H2, (1+C?) 3YE
= [32Q Q . 4121
az ~ Pt { ooz |t et (4.121)

Next we find the evolution of the frequency for the case of a DM soliton. For this we use
Eqg. (3.23) in Eq. (4.52) and find
2

d iy 2 (5B _ g%\ g Vi [ (e
e ] t|B| ( = -BZ )dt ETR/OO(at|B| dt. (4.122)
From Egs. (3.23) and (3.27) we have
(B*%—tB - BaaBt ) =2ia?[-Q-C(t—T)/t?]exp [ (t - T)?/71%], (4.123)
and
%|B|2 _ o2l ;ZT) exp[-(t—T)%/1?. (4.124)

Hence thefirst integral in Eq. (4.122) can be written as

0 * ind oo
/m%|5|2< g—'f’—sa; >d :—4;—‘;‘ (t-T)[-Q-C(t—T)/2] exp[—2(t - T)2/x? dit

—00

(4.125)
Using the Table 4.3 we perform the integration and obtain
® 9 0B _0B iCE?
—|B*(B*——B = — . 4.12
/_w6t| | ( o 6t>dt Nt (4.126)
Next from Eq. (4.124) we can write the second integral in Eq.(4.122) as
® 2 234 2,2
/ |B| / 2! 12 exp[ 2(t - T)2/t?] . (4.127)
Again using Table 4.3 we perform the integration to obtain
00 a 5 2 E2
—|B dt = : 4.128
/—oo (0’[ | | > \/Z'[T:3 ( )

Substituting Egs. (4.126) and (4.128) into Eq. (4.122) we find the evolution of the frequency in the
case of Gaussian pulsesto be
dQ  yEC YTRE

- = — . 4.12
G2~ Vo Vo (4.129)
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Next we find the evolution of the chirp for Gaussian pulses by using Eq. (3.23) aong with
K = 2, which isthe value of the constant K in Eq. (4.54). From Eq. (4.54) we have

dc 2_82/ dt+ / aZBaB*_aZB*a_B it
dz ot 2E ot2 ot ot2 ot
2|y a|B|2 ,0B 0B 3y 2(g%8" _
/ (t=T ot B at Bat / Bl at at dt
- Lav = (OB Y / 4
2 = _w(t T)( 5 dt+E _w|B| dt. (4.130)

Now we evaluate the integrals one by one. Theresult of thefirst integrationisgivenin Eq. (4.117).
We now evaluate the second integral. From Eq. (3.27) we have

(t—T))Z_(1+iC)

0°B . .
(—IQ— (1+iC) 2 2

a2 =2

2 2
(4.131)

exp{icp—iQ(t—T) (1+|C)( T)Z].

Using Egs. (3.27) and (4.131) the second integral can be written as

» (9°BoB" _0°B'0B 2 [ =DV o3, 2 (t=T2 . o (t-T)
/m<at2 ot ot2 E) dt = a /ooexp[— 2 ]{—ZIQ +2iQ(1-C9) - —4iQ (;Ti2

: t—T . t—-T)% t-T)2 . Q
_zig?c! > )—2|C(1+C2)( TG) —4|(1+c2)( T4) _2'?2}' (4.132)
Using Table 4.3 we perform the integration and obtain
© (9°BoB* 0°B* 0B .3 : 2 2
/ <0t2 = - E) dt — —2iQ%E — 3IQ(1+ CHE /2 (4.133)
From Egs. (4.123) and (4.124) the third integral in EqQ. (4.130) can be written as
0 0/B|?> (_.0B 0B t— t—T) (t—T)2
[ e-mes <BE—B >dt_—4 / [Q—C | e |25 ot
(4.134)
Using Table 4.3 and performing the integration we get
© 0|B]? (_,0B _0B* . QFE?
-T B"— —-B 4.1
/m(t ot ( o Ca >dt Vo (4139

The next term in Eq. (4.130) can be written by using Egs. (4.123) and (3.27) as

/M|B|2<Ba§t* B*%)dt 2|a4/°° [Q+C(t—T)/t?|exp[-2(t—T)?/1?] dt. (4.136)
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Using Table 4.3 Eq. (4.136) can be written as

© oB* 0B QE?
2 _px’=2 — 9
/m|B| (B B at)olt A (4.137)
The next integral in the evolution equation for chirp is evaluated using Eq. (4.124) in Eqg. (4.130)
asfollows:
w 2\ 2 © (t_T)\3
/ (t—T) (‘1%') dt:4a4/ (t TJ) exp[—2(t—T)?/t?] dt. (4.138)
From Table 4.3 we have
00 a|B|2 2
/ (t—T) (T) dt = 0. (4.139)

Thus we can write the evolution of the chirp parameter for the case of Gaussian pulses using

Egs. (4.118), (4.120), (4.133), (4.135), (4.137) and (4.139) in EqQ. (4.130) and the final result is

given by
dC s o (14+C?) 3 o (1+C?)  4EQ VE
— = 2B,Q%+ +B3Q° + + + : 4.140
dz B B 12 Ba s T2 V2mwt  V2mt ( )

Next we find the evolution of the pulse width for the case of Gaussian pulses. Substituting

Eqg. (3.23) in Eq. (4.82) and using that K = 2, we get

dt  B.C . 0B
LS Y AT =

2
. (4.141)

dz 1 1E/) w

Theintegral on theright hand side of Eq. (4.141) can be evaluated analytically by using Eq. (4.117)
and Table 4.3 asfollows:

0 o 2
/_w(t—T) ‘Z)—'? (t-T)

“dt— az/_(:(t - [Q2+ (1+CH) +zgc(t_T)} expl— (t — T)2/19dt,

12
= EQC (4.142)

Substituting Eq. (4.142) into Eq. (4.141) we find the evolution equation for the pulse width for the

case of Gaussian pulse to be
dt _ BC N B3QC

dz 1 T

. (4.143)

To summarize, the evolution equations of the pulse parameters for the case of a Gaussian pulse
using the moment method are summarized in Table 4.4.
Thus we see that the moment method is a simple analytical method that can give the evolution

equations for the pulse parameters in the fiber thus enabling us to understand the propagation
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By x Bax (YE/wo)x |  YTIREX YE x
4e 0 0 0 0 0
dr Q L@ | 3/ /8 0 0
@ 0 0 Cc/v2ne | —1/v2nt 0
6 | 2024 W) | 934 M) 1 40/v2mt| 0 | 1/(v2Zmy
at C/1 QC/t 0 0 0

Table 4.4: Evolution of pulse parameters for Gaussian pulse obtained using the moment method

of optical pulses inside a fiber in both dissipative and non-dissipative limits. Also the results
obtained using the variational method can be derived using the moment method. This can be seen
immediately by setting B3, Tr and 1/ux equal to O in the evolution equations obtained using the
moment method. However, like the variational method, the moment method is a so an approximate
method. The main limitation of this analysis stems from the assumption that the pulse maintains

its shape even though its width may change and it may become chirped.

4.4 Raman-induced Frequency shift

Since 1986, RIFS has been studied extensively for both constant dispersion and di spersion-managed
fibers but mostly in the context of solitons [38]—[40]. However, as seen before in Chapter 3, RIFS
is not necessarily a soliton effect. Now we apply the moment method to study the effect of IRS
on fundamental soliton and Gaussian pulses in the case of both anomalous and normal dispersion
regimes. We aso keep the TOD and self-steepening terms since they become important for we

consider pulses whose width is as small as 50 femtoseconds.
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441 Fundamental Soliton

We first consider the propagation of standard solitons in a fiber with constant dispersion. Then

from the previous sections we know that the five pulse parameters evolve as

(21_5 0 (4.144)
?TZ =B Q+323 {Q%ﬁ(ugcz)} +2£wor (4.145)
3; Bic [33_ (4.147)
?:ch: <T[2+C ) E§+823§ (1‘[2+3CZ> ZB 0+ 121\£E+n2B2 o’ ?ﬁE

Consider first the special case of chirp-free solitons launched in afiber whose losses are exactly
compensated through distributed amplification such that losses vanish effectively (a = 0). The
pulse energy E then remains constant and y = y. If we ignore the higher-order effects except for
IRS by setting wp = 0 and 33 = 0and useC = 0in Egs. (4.2)—«4.4), wefind that T remains constant
along the fiber, asit should for solitons. Also, E and t are not independent but related to each other
by the soliton condition Lp = Ly, which can be obtained from Eq. (4.4) by setting dC/dz= 0
if we neglect the Q term and relate the peak power Py of the solitons to the soliton energy using
E = 2Ppt. Using the condition Lp = Ly, we find that E = 2|32|/(yT). If we substitute thisrelation
in Eq. (4.146), the RIFS evolves as

8TR| [32 | V4
1514

Q2) = — (4.149)

Equation (4.149) isidentical to the RIFS magnitude first estimated by Gordon using perturbation
theory [36]. It shows that the RIFS increases linearly with distance but scales with pulse width
as 174, thereby becoming important only for pulses shorter than a few picoseconds. However,
its derivation assumes that the soliton remains unchirped. From Eq. (4.148), C remains zero for
solitons only if Q = 0. Equations (4.147) and (4.148) clearly show that C and T both begin to
change for standard solitons because of the RIFS. Thus, Eq. (4.149) is only valid in the limit
in which the RIFS is small enough that it does not affect the soliton. We can find the validity
condition for Eq. (4.149) in the absence of third-order dispersion and self-steepening, by requiring
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in Eq. (4.148) that |B2|Q? < 2yE/(TP1). Using E = 2|B2|/(y1), this condition is equivaent to
requiring Qt < 1. Noting that the spectral width of a pulse scales inversely with the pulse width
T, we conclude that Eq. (4.149) is valid as long as the RIFS remains a small fraction of the pulse
spectral width. In many practical situations, RIFS becomes|arge enough that it exceeds the spectral
width of the pulse significantly.

We thus consider the more general case inwhich neither E nor T remain constant along thefiber.
The pulse energy E generally changes because of gain—oss variations introduced when losses are
compensated periodically using optical amplifiers [1]. The soliton width T begins to change as
soon as the pulse becomes chirped (C # 0). Notice that the chirp parameter C does not appear
directly in the Q equation but it affects the RIFS through pulse-width changes. Using y =y e %4,
the total frequency shift isfound by integrating Eq. (4.146) and is given by

_ 4TryEo

QA7) =-—75

ze—OlZ VEO z e—az
41
/O adzt 1) [ C2) g de (4.150)

Note that the RIFS depends on the local pulse width as T2 and not as T4, as suggested by
Eq. (4.149). Of course, the z dependence of T and C should be calculated by solving Egs. (4.147)
and (4.148), which in turn depends on Q itself. It is this interdependence among 1, C and Q that
governsthe eventual magnitude of the RIFS. Since these evolution equations are coupled they have
to be solved numerically.

Asanumerical example, consider the propagation of solitonswithinitial pulsewidth, To=50fs
(full width at half maximum about 88 fs) in a10-m-long, dispersion-shifted fiber withthe GVD of 4
ps’km/nm (|B2| = 5.1 ps?/km). Figures 4.1 and 4.2 show the RIFS and pulsewidth T asafunction of
distance z in the cases of anomalous and normal dispersion, respectively. The nonlinear parameter
y = 1.994W1km 1 was calculated using an effective core area of 50um?. Also a = 0.2 dB/km
and B3 = 0.1 ps’/km. Consider the case of anomalous dispersion first as it corresponds to the
propagation of solitons. The solid curve in Figure 4.1 shows the C(0) = 0 case that corresponds to
standard solitons. The pulse width is indeed maintained in the beginning, as expected, but begins
to increase after 2 m because of the RIFS and TOD effects. The magnitude of RIFS becomes
comparable to the spectral width of the pulse (about 2 THz) at a distance of 2 m, and it beginsto
affect the soliton itself. Notice that Q increases initially linearly up to a distance of 2 m but then
beginsto saturate asthe pulse width increases. The use of Eq. (4.149) would be inappropriate under
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Figure 4.1: Evolution of Raman-Induced frequency shift (a) and pulse width (b) when sech-shaped pulses with
To = 50 fs propagate inside a 10-m-long fiber exhibiting anomalous dispersion (D = 4 ps/km-nm). The input chirp

parameter C variesin the range 0 to 0.2 for the three curves.

such conditions. The dashed and dash-dotted lines show that even arelatively small chirp affects
the RIFS considerably. For positive values of C, the pulse is initially compressed, as expected
for 2C < 0 [1], and then broadens after attaining its minimum width at a distance of about 1 m
as explained in Chapter 2. For this reason Q initially increases before saturating as the pulse
broadens. The main point to note is that the chirp can increase the RIFS whenever 3,C < 0 since
the dispersion-induced chirp is in the opposite direction to that of the initial chirp and as a result
the net chirp is reduced, leading to the initial pulse narrowing. The minimum pulse width occurs
at the point at which the two chirps cancel each other. With a further increase in the propagation
distance the dispersion-induced chirp starts to dominate over the initial chirp and the pulse begins
to broaden. Hence the fiber length is not much longer than 10 m so that the dispersion induced
chirp does not broaden the pulse. For C < 0, pulse begins to broaden immediately, and RIFS is
reduced considerably.

Figure 4.2 shows the RIFS and pulse width as a function of distance in the case of normal
dispersion. The solid line again shows the case C(0) = 0. Since the pulse begins to broaden right
away, in contrast with the soliton case where the pulse width remained constant for up to 2 m, Q
quickly saturates and is thus considerably smaller in magnitude in the case of normal GVD. The

dashed and dash-dotted lines show that it can be enhanced by chirping the input Gaussian pulse



CHAPTER 4. THE MOMENT METHOD 62

S 250
@ =) (0)
1.5 ‘
)
I
- 1 :
2 ST
~ y /
v
I
‘:\/
0 0
0 0.5 1 1.5 2 0 0.5 1 15 >

Distance (m) Distance (m)

Figure 4.2: Evolution of Raman-Induced frequency shift (a) and pulse width (b) when sech-shaped pulses with T
= 50 fs propagate inside a 2-m-long fiber exhibiting normal dispersion (D = -4 ps’km-nm). The input chirp parameter

Cop variesin therange -1 to O for the three curves.

such that B2Co < 0. The reason is easily understood by noting that the pulse can be compressed
by a factor of \/2 for |Co| = 1, and the compression factor can be increased even more for large
values of the chirp. As seen in Fig. 4.2, dmost the entire RIFS occurs within the first meter
of the fiber, where pulse remains compressed and its magnitude is about three times larger for
|Co| = 1 compared with the Cy = 0 case. With sufficiently large chirp, the RIFS can even become
comparable to that obtained in the case of anomal ous dispersion. We thus conclude that RIFS can
be made large enough to be measurable even in the case of normal GVD through proper chirp

control.

4.4.2 Chirped Gaussian Pulses

In this section we consider the case of a Gaussian pulse shape of the form

Alzt) = \/Eexp[—(1+ iC)(t—T)%/2t? +ip—iQ(t —T)]. (4.151)

From the previous evaluations, the five pul se parameters then evolve as

dE

—=0. (4.152)
dT Bs[ ., 1+C? 3yE

=B+ =2 |0 4.1
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Figure 4.3: Evolution of Raman-Induced frequency shift (&) and pulse width (b) when Gaussian pulses with To =
50 fspropagateinside a 10-m-long fiber exhibiting anomal ous dispersion (D = 4 pg’km-nm). Theinput chirp parameter
Co variesin therange 0 to 0.2 for the three curves.
dQ TRY yCE
= _ YE + e , (4.154)
dz V2ne  V2muyt3
dt B2C  [B3CQ
—_— =+ ,
dz T T

(4.155)

dc 1+C? 3 <1+cz) VE ,  4YQE
- = +B3Q° + + +2B2Q° + ——. 4.156
iz B2 ( 2 ) Bs B3 2 T B2 N ( )

Following the method discussed in the previous section for the case of ‘sech’ pulses, the RIFS

in the Gaussian case is given by

TRyEO /Z e—aZ VEO z e—GZ
Q(2) = - d C(2)—5-dz 4.157
@ == Jy & 9 oricn Jo (2) z (4.157)

3

where C(z) and t(z) should be found numerically by solving Egs. (4.153)—<4.156). Equation
(4.157) should be compared with Eg. (4.150) found in thesech” case. It is evident that the ex-
act shape of the pulse has arelatively minor effect on the magnitude of the RIFS. In particular, the
functional dependence on the local pulse width and local magnitude of loss remains exactly the
same. Even the numerical factor of (2m) ~1/2 % 0.4 in the Gaussian case isonly slightly larger than
the factor of 4/15 ~ 0.267 found in the “sech” case. This feature indicates that even if the pulse
shape deviates somewhat from the shape assumed in applying the moment method, our analysis
should still provide a good estimate of the RIFS in practice.

Figures 4.3 and 4.4 show the RIFS and pulse width of Gaussian pulses asafunction of distance
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Figure 4.4: Evolution of Raman-Induced frequency shift (a) and pulse width (b) when Gaussian pulses with Tg =
50 fs propagate inside a 2-m-long fiber exhibiting normal dispersion (D = -4 ps/km-nm). The input chirp parameter

Co variesin the range -1 to O for the three curves.

in the cases of anomalous and normal dispersion, respectively, for the same 10-m long fiber and for
the same set of parameters used for Figures4.1 and 4.2. For afair comparison with the soliton case,
the initial pulse energy is chosen to be Eg = v/2mB;|/(yT) because dC/dz = 0 from Eq. (4.156)
for this energy when Q = 0. In al cases, the solid line shows the case when Cop = 0. In the
case of anomalous dispersion (Fig. 4.3), the Gaussian pulse maintains its width up to 2 m, similar
to the soliton case, and then broadens because of the RIFS and TOD effects. As expected, Q
increases linearly first and then saturates. Interestingly, the Gaussian pulses acquires a slightly
larger RIFS compared with the * sech’ pul ses as dispersion-induced broadening depends somewhat
on the pulse shape. The dashed and dash-dotted lines show the effects of a positive initial chirp.
Since 32Cp < 0, the pulse undergoes an initial narrowing stage before broadening. A comparison
of Figs. 4.1 and 4.3 shows that the pulses with nonzero initial chirp experience the compression
stage twice. We attribute this to the imbalance between the dispersive and nonlinear effectsin the
case of initially chirped pulses. Other qualitative features are similar in the two cases. The case of
normal dispersion shown in Figure 4.4 is quite similar to the resultsin Fig. 4.2 obtained for “sech”

pulses. For chirp-free Gaussian pulses (solid line), RIFS saturates to a relatively small value of

0.5 THz. However, this value can be increased by applying a negative chirp so that 32Co < 0.
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4.5 Chapter Summary

From the above results we conclude that the RIFS resulting from intrapulse Raman scattering is
a general phenomenon that occurs for all pulses both in the normal and anomalous dispersion
regimes of an optical fiber. The variationa method cannot be used to calculate RIFS because of
the dissipative nature of the Raman effect. However the moment method can be used to get the
general evolution equations for the pulse parameters that can be applied to a given pulse shape. As
an example we applied it to the cases of “sech” and Gaussian pulse shapes. The results also show
that the RIFS depends not only on the width but also on the frequency chirp associated with the
optical pulse. The RIFS becomes quite large in the case of ultrashort pulses because, as seen in
Egs. (4.150) and (4.157), it depends on the local pulse width as T2 and varies considerably with
the history of pulse width changes. Whenever pulse width remains nearly constant along the fiber,
RIFS can accumulate to relatively large values. This is the main reason why RIFS can be quite
large for solitons. In the case of fundamental solitons, our expression for RIFS reduces to that of
Gordon [36] as long as the RIFS is much smaller than the spectral width of the pulse. However,
we show that even optical solitons do not maintain their width when RIFS becomes comparable to
or larger than the spectral width of the pulse. Our analysis remains valid in this regime and shows
how RIFS saturates to a constant value because of soliton broadening.

We also consider numerical examples in both the normal and anomalous dispersion regime
using a 10-m long fiber in which femtosecond pulses are launched. Although RIFS is generally
smaller for normal dispersion compared with the case of anomalous dispersion, it islarge enough
to be measurable experimentally. We also have included the effects of TOD and self-stegpening in
our analysis. We see that even though the TOD does not appear directly in our expression for RIFS,
it does affect the RIFS through the frequency chirp. The main limitation of our analysisisthat our

results may not be valid if the pulse shape is known to change significantly during propagation.



Chapter 5

Amplifier Noise and Bit Error Rate

We now apply the moment method described in Chapter 4, to the problem of amplifier-induced
noises as well asto find the degradation in system performance due to amplifier noise. In commu-
nication systems, the transmission is eventually limited by fiber losses. In order to overcome this
limitation, optical amplifiers are used at regular intervals to compensate for fiber losses. Optical
amplifiers amplify the optical signal through stimulated emission when the amplifier is pumped
electrically or optically to achieve population inversion. Such amplifiers aso degrade the ampli-
fied signal because of spontaneous emission that adds noise to the signal during its amplification.
The system degradation is quantified through a parameter F,, called the amplifier noise figure and
defined as Fy = 2nsp where nsp = Na/ (N2 — Ny) is the spontaneous emission factor related to the
atomic populations N; and N, for the ground and excited states [1]. The noise added by these
amplifiersto the signal is called the Amplified Spontaneous Emission (ASE) noise. The ASE noise
accumulates over many amplifiers and degrades the optical signal as the number of amplifiersin-
creases. Asthe ASE noise level increases, it begins to saturate optical amplifiers and reduces the
gain of amplifiers located further down the fiber link. Hence the signal level drops further while
ASE level increases. If the number of amplifiersislarge, the signal will degrade so much that the

system performance is largely reduced at the receiver.
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Figure 5.1: Bit Error probabilities.
5.1 BitError Rate

Optical receivers convert incident optical power into electric current through a photodiode. Among
a group of optical receivers, a receiver is said to to be more sensitive if it achieves the same per-
formance with less optical power incident on it. The communications system performance is char-
acterized by a quantity called the bit error rate (BER) which is defined as the average probability
of incorrect bit identification of a bit by the decision circuit of the receiver [1]. For example, a
BER of 2 x 10 % would correspond to on average 2 errors per million bits. A commonly used
criterion for digital optical receivers requires BER < 1 x 10~°. It is important for the signal to
have minimum distortionsin order to avoid a high BER at the receiver. This means that although
the combined effects of GVD, SPM and IRS cannot be eliminated they need to be reduced so that
the pulse can propagate with minimum distortions. Also the inevitable presence of amplifier noises
can also cause pulse distortions and hence cause system degradation. In order to assess the system
performance one needs to know how to calculate the BER of the system at the receiver end. In this
chapter we calculate the BER of the system at the receiver in the presence of amplifier noises.
Figure 5.1 shows schematically the fluctuating signal received by the decision circuit, which
samples it at the decision instant tp determined through clock recovery. The sampled value |

fluctuates from bit to bit around an average value I or |p, depending on whether the bit corresponds
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to 1 or Ointhebit stream. The decision circuit compares the sampled value with the threshold value
Ipand calsithbit1if | > Iporbit0ifl < Ip. Anerror occursif | < Ip for bit 1 or if | > Ip for
bit O due to amplifier noises that add into the signal in the system. Both sources of errors can be

included by defining the error probability as
BER = p(1)P(1/0) + p(0)P(0/1), (5.0)

where p(1) and p(0) are the probabilities of receiving bits 1 and 0, respectively, P(0/1) is the
probability of deciding 0 when 1 isreceived, and P(1/0) isthe probability of deciding 1 when O is
received. Since 1 and O hits are equally likely to occur, p(1) = p(0) = 1/2, and the BER becomes

BER = %[P(l/o) +P(0/1)]. (52)

Figure 5.1 shows how P(0/1) and P(1/0) depend on the probability density function p(1) of the
sampled value |. The functional form of p(l) depends on the statistics of noise sources responsible
for current fluctuations. Assuming a Gaussian noise profile, one can write the functional form of

P(0/1) and P(1/0) as

__ 1 b (1 =12)?

P(0/1) = cjl\/ZT/_wexp (— = )dl, (5.3)
1 0 (1 —1g)?

P(1/0) = oo\/ﬁ/b exp (— 2 >d|, (5.4)

where 0% and 0(2) are the corresponding variances. From the definition of the complimentary error

function we have

erfc(x) = %_[ /X ) exp(—x2)dx. (5.5)

Using Eq. (5.5) in Egs. (5.3) and (5.4) we get
P(0/1) = %erfc (' 1f;0'f> , (5.6)
P(1/0) = %erfc ('\sz_o'(‘:) . (5.7)

Using Egs.(5.6) and (5.7) in Eq. (5.2) we can writethe BER as

1 I1—ID> (ID—I0>
BER = - |erfc +erfc
4 [ ( V20, V200
Eqg. (5.8) shows that the BER depends on the decision threshold I p.

. (5.9)
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5.2 Q-factor

In practice, Ip is optimized to minimize the BER. Hence we minimize BER with respect to Ip

using
d 2 2 df
&erfc[f(x)]_ﬁe ~ A (5.9
and obtain
l1—1p)2  (Ip—Ip)?
(li—lo)”_ (Io—lo) +|n<ﬂ> (5.10)
For most practical cases, the last term is negligible and hence we get
l1—1 Ip—1
(i—lo) _(lo—lo) (5.11)
01 Op
Hence we can find that the minimum occurs when
ool1+ 01l
lp=——". 512
" ootor 612

When 01 = 0o, Ip = (114 10) /2, which corresponds to setting the decision threshold in the middle.
The BER isthen given by

1 Q
BER= - erfc| — |, 5.13
2 (f2> 619
where the factor Q is given by
l1—1lo
= ) 514
Q 01+ 0Og ( )

The Q factor is thus a dimensionless factor and is related to the BER as shown in Eq. (5.13).
Figure 5.2 shows how BER varies with Q factor. The BER improves as Q increases and becomes
lower than 10~ for Q = 7. Now the expression for Q isin terms of the receiver current. Since the
receiver current isdirectly a measure of optical power, P of the signal such that | = RP, where Ris
the responsitivity of the photo detector, and the optical power is related to the energy of the signal

pulse, we can write the Q factor in terms of the pulse energy as

Oe " +0¢e
where E®, (62)(V) are the energy and variance in energy of the 1 bits and E°, (02)© are the
energy and variance in energy of the 0 bits. The variancein energy is defined as 02 = (E?) — (E)2.
Hencein order to evaluate the Q factor we need to calculate the variance in the energies of 1 and 0

bits at the receiver end.
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4
Q
Figure 5.2: Bit Error rate versus Q factor.

5.2.1 Energy Fluctuations

In order to calculate the variance in the energies of 1 and O bits at the end of the system that use
N amplifiers to compensate the fiber losses, we assume that all the amplifiers are spaced apart by
the same length La and that the gain of the amplifiers G = exp(aLa) compensates the fiber |osses
in each section. Now using the moment method definition of energy and Eq. (4.22) we obtain the

evolution of the pulse energy as
€
dz

The use of amplifiersat regular intervals add fluctuationsin energy due to the ASE of the amplifier.

(5.16)

Thusincluding these effects of the amplifier the energy evolution is given by

d N
d_'i =3 822, (5.17)

where OE; represents the noise added into the pulse energy by theith amplifier located at z;. Hence
an ASE noise given by OE; is added to the input energy. Integrating EQ. (5.17) over the length of

one amplifier we find that the energy of the pulse after the ith amplifier is given by
Ei =E_1+ OE. (5.18)

Thisresult is obtained by assuming that the amplifier gain has cancelled all the fiber lossesin the

previous section between (i — 1)th amplifier and ith amplifier exactly.
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Before we can calculate the variance in pulse energy, we have to calculate the first and second
moments of the ASE noise 8E;. If theinitia field before theith amplifier isgivenby Aj_1(zt) then
after the amplifier, we can write the effective field as Aj(z t) + 0A; where dA; is the fluctuation in
the field due to the ASE of the ith amplifier. From the definition of the pulse energy in Eq. (4.1)

we can write the effective energy after the ith amplifier as
£ 08 = [ (A8 (A +5A
:/0:0 |Ai|2dt+/o;(Ai6Ai*+Ai*6Ai)dt+/°:°|6Ai|2dt. (5.19)
From Eq. (4.1) we have
5E :/Z(A56Ai*+Ai*6Ai)dt+/°;|6Ai|2dt. (5.20)
It is common to assume that dA(t) is a Markoffian stochastic process such that
(BAI(DBA(1) =0 (BAT(1)BA|(t)) = S&; 3t —t), (5.21)

where S= nsp(G — 1)hv, his Planck’s constant and v is the central frequency of the pulse spec-
trum [1]. Also on an average the noise field vanishes, i.e., (dAj) = (3A") = 0. Using the above
conditionswe can easily calculate the first and second moments of OE;.

First we calculate the first moment. From Eg. (5.20) we have
(BE) = ([ (Ao + A+ [ o). (5.22)

Using the condition that the noise field vanishes on average, the first integral vanishes. Using the
correlation in Eq. (5.21) we get

(3E); :/_0;86(t—t')dt:S (5.23)
The second moment of 3E; can be found as fol lows:
(B (t)OE; (t / dt/ dit A7 (t)3A (DA ()3A, (1 / dt/
H([Ca [ aamsamsn s+ ([ d [ damen
+ /m dt'/oo dt Aj(t)3A; (t)AS(t) )Y+ ( /oo dt'/oo dt A (t)dA(t
/ dt/ dit 3AY (1) A (1A (1) 3A; / dt/

+ (/oodt /oodt SAY (1)BA (1) BA (1) 3A; (1)

)
t
)

OA; (t’

)
BA(t)BA! (1))
(t

dt A7 (1)BA(LA(1)3A! (1)
(

Aj(t)BA; (1)

dt 3A () 3A (1) A (1 )3AI(L))

(5.24)
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Using Eg. (5.21) we get
(SE2); = 25 / dt|APR + S = 25F + S (5.25)

Thus we have the first and second moments of dE;. Since the amplifiers are equally spaced such
that they exactly compensate for the fiber losses, the energy at the end of each amplifier isthe same
astheinitial energy Eq. Hence all (3E); and (3E?); are the same. Denoting the energy of 1 bits by

superscript, 1, we can write the energy after ith amplifier for all 1 bitsusing Eq. (5.18) as

EV =g, + e, (5.26)
Taking the average of Eq. (5.26) and using Eq. (5.23) we get

ENY = (E)Nh+s (5.27)

Thuswe can find that at the end of N amplifiers

(EW = (E)§ +iS= (E)g’+NS (5.28)

and since <E>él) = Eo, the input pulse energy, Eqg. (5.28) reduces to
(1) _
(E)N’ =Eo+NS (5.29)
Similarly using Eq. (5.26) we get
(EHD = (B2 )W +28M 5EY + (5EA) V. (5.30)
Taking the average of Eq. (5.30) and using Egs. (5.23), (5.25) and (5.29) we get
(B2 = (E2)) + 250+ (i—- 1) + (8E2)". (5.31)
Thus after N amplifiers we get
1 1 N N
€N = (€5 +23 S0+ (- 18+ 3 (3" (5.32)
i= i=
Since for al 1 bits, Ej ~ Eg, (8E)? = 2S5y + S we perform the summation to get

EAY = (ED £ 2NSEy+ N(N — 1)+ N(2SEo + &) = (E2){Y + ANSEo + N2 (5.33)
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Using Egs. (5.29) and (5.33) in the definition of the variance in the pulse energy we get
(08)™ = (o8)™ + 2NSEo, (5.34)

where (02)D = <E2>él) — EZ istheinitial variancein the pulse energy for 1 bitswhichisnegligible

compared to the fluctuations added by the ASE. Hence we can write
ol — \/2NSE,. (5.35)

Performing asimilar calculation for the 0 bits keeping in mind that the pulse energy Eq = O for the
0 bits and hence for al 0 bits SEZ = S? we find

(E)N) =NS, (5.36)
and -
€0 = ()0 L NS + 28 Z i = (B0 + N22. (5.37)

Hence the variance in pulse energy for the O bitsis given by
(08)'9 = (a2)", (5.38)

where (02)(© = (E2){¥ istheinitial variance in the pulse energy for 0 bitswhich is negligible.

5.2.2 Q-factor Estimation

Using Egs. (5.34) and (5.38) in Eq. (5.15) we can find the Q factor to be

Q= \/re (5.39)

Eq. (5.39) shows that the Q factor is inversely proportional to the number of amplifiers. Thus
having more amplifiers adds more noise into the system and hence reduces the Q factor leading to
an increase in the BER.

The above calculationsis based on the assumption that the receiver is noise free. However this
isnot the case even for aperfect receiver. Fundamental noise sources such asthermal noise and shot
noise lead to current fluctuationsin the receiver even when the optical power P isconstant. Asseen

before P fluctuates due to amplifier noise. We have already evaluated the Q factor degradation due
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to these fluctuations. Now we have to include the fluctuations caused by thermal and shot noise.
Also while eval uating the Q factor we had neglected theinitial fluctuationsin energies, (02)(© and
(02)Y at the transmitter. In order to evaluate the BER correctly, we have to take into account all
the above noise sources. Since all these noise processes are independent random processes with
approximately Gaussian statistics, the total variance of current fluctuations for 1 and 0 bits 02 and
0(2) respectively, can be obtained by ssmply adding individual variances.

Shot noiseisamanifestation of the fact that the electric current consists of a stream of electrons
that are generated at random times. It was first studied by Schottky in 1918 and has been inves-
tigated thoroughly since then [46], [47]-{49]. The variance in the noise current due to shot noise
depends on the detector components in general [1]. Thermal noise manifests when random ther-
mal motion of electron sin aresistor manifests as a fluctuating current even in the absence of an
applied voltage [50], [51]. The variance in the noise current due to thermal noise does not depend
on the current but depends on the absolute temperature [1]. Since 0 bits do not carry any optical
power, the corresponding current, | = 0. Since shot noise fluctuations depend on the current, the O
bits do see any effects due to shot noise. Thusif we denote o5 and ot as the current fluctuations
due to shot and thermal noise respectively, and using | = RP and PTo = Eg where Tg is ameasure

of pulse width, we can write the total variance in the current fluctuations for 1 and O bits as

R
0f =0z +0% +3(09) Y, (5.40)
0
R
0% = 0% + ﬁ(o@@. (5.41)
0

Using Egs. (5.34) and (5.38) in Egs. (5.40) and (5.41) we get

02 = 02+ 0% +T—R2((o§)<1> +2NSEp — 2NS?) (5.42)
0
R
0% = 0% + ﬁ(oé)(o). (5.43)
0

We use Eqgs. (5.42) and (5.43) along with 11 = § Ep and lo = 01in Eq. (5.14) to get

l1
01—!—00,

Q=

R R R -1
Q="re ([o§+o% + R ((0) ) + 2NSEo— NS 2 1 0f + ﬁwé)(‘”]m) (5.4
0 0

Then the BER can be found using the Q factor obtained here in Eq. (5.13).
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5.3 Chapter Summary

In this chapter we have shown how the amplifier noise can degrade the system performance by
causing increased BER and thereby reducing the SNR of the system. We have derived an analytical
expression for the Q factor and shown how the Q factor reduces as the number of amplifiersused in
the system to compensate for fiber losses increases. In addition to these above mentioned noises,
the BER is also affected by timing jitter. This is because the signal is sampled at the decision
instant. If the pulse moves from its position randomly during propagation due to the presence
of timing jitter, an 1 bit could be decided as O bit thus causing additional error. Thus when the
A SE adds fluctuations into the pulse amplitude (energy), it affects the Q factor and hence the BER
at the receiver while the timing jitter increases the BER by randomly moving the pulse from its
original position. The following chapters are devoted to analytically calculating timing jitter using

the moment method and to look for suitable methods capable of reducing the timing jitter.



Chapter 6
Timing Jitter in Lightwave Systems

Modern dispersion-managed lightwave systems are limited mainly by the nonlinear effects occur-
ring inside optical fibers and by the amplified spontaneous emission (ASE) added at the amplifiers
[52]. Optical solitons can solvethefirst problem to some extent since they use the self-phase mod-
ulation, a dominant nonlinear mechanism, to balance the residual dispersion [1]. However, the
ASE noise remains a serious limitation of soliton systems; it manifests through a reduced signal-
to-noise ratio and an increased timing jitter at the optical receiver [53]. Fluctuationsin the arrival
time of optical bits of information at the receiver is called timing jitter. The presence of timing
jitter in the system can lead to increased BER at the receiver end. Figure 6.1 shows how timing
jitter can lead to an incorrect bit identification thus leading to an increase in BER at the receiver
end of the system. Curves(a) and (b) in Figure 6.1 show asingle 1 bit that is shifted at the decision
circuit of thereceiver in the presence of thetiming jitter. In the absence of timing jitter, the pulseis
centered at the bit slot, and hence the corresponding signal is above the threshold value, I p of the
receiver. However, timing jitter can shift the pulse position randomly and cause the decision circuit
to occasionally make awrong identification of the bit. Thisdegradesthe system performance. If all
pulses were to shift from their original position by the same amount, the problem can be overcome
by changing the decision time tp accordingly. However timing jitter shifts each pulse randomly
and hence cannot be overcome by adjusting the decision timetp.

The origin of timing jitter can be understood as follows. The ASE noise of the amplifiers

used in the system adds random fluctuations in amplitude, frequency and temporal position of the
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Figure 6.1: Increased BER dueto timing jitter.

pulse. Temporal fluctuations directly lead to timing jitter [53]. Fluctuationsin frequency affect the
group velocity and hence the speed with which the pulse propagates through the fiber. Since the
ASE induced fluctuation in the frequency is random, the transit time through the fiber link is also
random. Thisiscalled the Gordon-Haustiming jitter [54]. For pulses whose pulse width are of the
order of few picoseconds, we have seen in Chapter 4, that IRS and TOD becomes very important.
Because of IRS, any fluctuation in the pulse amplitude is converted to frequency fluctuations and
lead to Raman jitter [1]. TOD can also add additional timing jitter. Figure 6.2 shows a schematic
of different origins of timing jitter.

It becomes essential to know how much timing jitter isaccumulated at the end of the system so
that one can estimate if the system will work within the alowed BER limit. The tolerable amount
of jitter usually is given by 8% of the bit slot. Since bit slot is defined astpi; = B~, where Bisthe
bit rate, the allowed timing jitter in a system isinversely proportional to the bit rate of the system.
In this Chapter we use the moment method to analytically calculate the Gordon-Haus timing jitter
for systems using pulses whose pulse width are larger than 6 ps. For such systems the higher
order terms are negligible and the main origin of timing jitter is due to fluctuations in the pulse
frequency. In the first part of the Chapter we calculate the Gordon-Haus timing jitter for soliton

and non-soliton systems. In the final part of the Chapter we calculate the Gordon-Haus timing
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jitter when more than one amplifiers are used within one map period.

6.1 Gordon-HausTiming Jitter

The Gordon-Haus timing jitter was first studied for solitonsin 1986 [54]. It was later recoginized
that timing jitter can occur with any transmission format and imposes a fundamental limitation
on all long-haul systems designed with a cascaded chain of optical amplifiers [53]- [57]. Optical
amplifiers affect both the amplitude and the phase of the amplified signal. Time dependent varia-
tions in the phase leads to fluctuations in the frequency of the pulse. Since GVD depends on the
frequency because of dispersion, the speed at which a pul se propagates through the fiber is affected
by each amplifier in a random fashion. Such random speed changes produce random shiftsin the
pulse position leading to Gordon-Haus timing jitter. We use the moment method to calculate the
Gordon-Haus timing jitter at the end of atypical DM system consisting of periodic sequences of

anomal ous and normal dispersion fibers.

6.2 Single Amplifier per Map Period

As seen before in Chapter 1 the soliton systems are periodic after each map period and amplifiers

are usually used after every 80 km and for atypical dispersion-managed system that uses bit rates
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less than 40 Gb/s, the map period is usually around 80 km. In such systems at least one amplifier is
used per map period to compensate for fiber losses. For this section we assume that one amplifier
isplaced at every 80 km, such that L isequal to map period, L. Since the higher-order terms are
negligible, the propagation of an optical pulsein the fiber is governed by Eg. (3.3) and is given by

2
i— ——=— +V|B]’B=0. (6.1)

From the definition of the moment method in Chapter 4, we can write the energy, position and

frequency of the optical pulse as

E— / B2, 6.2)
_ 17 ee2
_ E/ t|BJ2dt, 6.3)
0B _oB’
ZE/ ( e )dt, (6.4)

respectively. We continue to find the evolution of these three parameters as shown in Chapter 4.

Using Egs. (6.1)—(6.4) we get the evolution of the three pulse parameters as
dE

5 =° (6.5)
dT
o4 = P (6.6)
dQ

The ASE of theamplifier affectsall three parameters and hence change them in random fashion.
Since in the absence of IRS, both position and the frequency are unaffected by the changes in the
pulse energy, we can neglect the energy equation for now. However as we have seen in Chapter 5
the fluctuations in the pulse energy directly affect the BER of the system. Adding the amplifier-

induced noise into the frequency and the position equations, we have

dT

55 = B+ ZéT. z2-12), (6:8)

2169. z—7z), (6.9)

where 8T; and 8Q; are random fluctuations in the pulse position and frequency, respectively, intro-

duced by the ith amplifier located at a distance z. Integrating Egs. (6.8) and (6.9) over the length
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of one amplifier we find that the position and frequency of the pulse after theith amplifier are given
by

T = Ti1+b2Qi 1 +0T;, (6.10)
Qi = Qj_1+0Q;, (6.11)

where by = [34B2(2)dz
The timing jitter in the system is defined as a? = (T?) — (T)?, where T is the pulse position at
the receiver end and the angle brackets indicate averages over the ASE noise. In order to calculate
the timing jitter, we need the second moments of dQ; and &T; at every amplifier. To find these
second moments, we use the moment method and note that the field after the ith amplifier is given

by Ai(z,t) + dA; where 8A; isthe fluctuation in the field due to the ASE of the ith amplifier. From
the definition of frequency in Eq. (6.4), we have

EQi +3(EQ) = iz/oo((B*+5B*)%(Bi+5Bi)_(Bi+5Bi)%(Bi*+aBi*)>dt

e 9B 9B 0B
2/ [B ( )+6B, - B.6< 6t> 58~ ]dt. 6.12)

Integrating the first and the third termsin the above equation by parts we get

/ Br5<608'>dt_5*55.| ) / 55.08' dt, (6.13)
/ B.es(aaB >dt_ BiSB!|.. / 6B*@dt (6.14)

Thefirst term in Egs. (6.13) and (6.14) vanishes as the fields B* and B vanish at the limits. Hence
using Egs. (6.13) and (6.14) in Eq. (6.12) we get

S(EQi) = —i / 55,280 _ 5m: 98 | gt (6.15)
® ot ot
We use the above equation to find 6Q; as follows:
EidQ = &(EQ;) — Q;0E; (6.16)

From Eq. (5.20) we know OE;. The last term in Eq. (5.20) which is due to noise beating with itself
is small compared to the rest of the terms. Hence neglecting the last term and using Egs. (5.20)
and (6.15) in (6.16) we get

ESQ = —i/ {55. <aa|3t iQiB*> — 3B (%HQ B)} dt. (6.17)
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Using the transformation

B = Vie '@, %—?+ QB= %—\t/e it (6.18)
in Eq. (6.17), we get _
50 = _EI_|A {6\/. ag/* 5\/,*%\:' dt. (6.19)
Next we find &T; from the definition of positionin Eq. (6.3).
ET 4 5(ET) = /_Zt(Bi 8B (B + 8B )dt, (6.20)
T8E, + ;5T — /_ Zt(Bi*ESBi + BBt (6.21)
Using the definition of dE; from Eq. (5.20) in Eq. (6.21) we get
5T = é/i(t T)(BYOB: + B3B!t (6.22)
Using the transformation in Eq. (6.18) we get
5T = [ =T)wav+viay (6.23)

From Egs. (6.19) and (6.23) we can find the variances and cross correlation of 0Q; and &T;.

First from Eq. (6.19) we get

2 0V*() ) V() o (L)
502 = ——/ dt/ dt (6\/. Loy ()—) (6\/.( )= e = () =g )
(6.22)
From Eg. (5.21) we have
(A1) =0 (A (1)dV;(t)) = S&;j d(t—t), (6.25)
where S= nsp(G — 1)hv. Hence Eq. (6.24) becomes
5 2S ov; |2
6= / dt‘ > (6.26)

Also using Eq. (6.25) in Eq. (6.19) we get

(5Q); = 0. (6.27)
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Similarly squaring Eqg. (6.23) we get

517 = 25 [ ot [ ad (=T T OO +U OB (1] X) +(E)3v (1)

(6.28)
Using Eqg. (6.25) in EQ. (6.28) we get
(6T2)i:é—§/ dt(t—T)4V[2 (6.29)
i —o00
Using Eqg. (6.25) in EQ. (6.23) we get
(8T)i =0. (6.30)
Using Eq. (6.19) and (6.23) we have
i e OV (t ) OVA(t
5T =2 [ ot ["a =) [ave) M - o) 2 v o) +vioav o)
i (o) (o)
(6.31)
Thus from Eg. (6.25) we get
S ) e
<596r>._2—Ei2L dt(t—'l'.){\/. oLy Ot}' (6.32)

Now that we have found the second moments of dQ; and dT;, we can write from Egs. (6.10)

and (6.11)

Q? = Q? | + 802+ 2Q; 109, (6.33)
QT = Qi1 Ti1+ 0207 1+ Qi_18T + 3 Ti—1 + B20CQ; + 33T, (6.34)
T2 = T2 1 + 307 1 + 2000y T + 8T;? + 2T 18T; + 2b,Q;_13T,. (6.35)

Thus taking the average and using Egs. (6.27) and (6.30) we get

(Q%)i = (Q%)i_1+ (3Q);, (6.36)
(QT); = (QT)i_1+bp(Q?)i_1 + (5Q3T);, (6.37)
(T2)i = (T2)i_1+b3(Q%)i_1 + 2b2(QT)i_1 + (3T);. (6.38)

Thus we know the variances and cross correlations of frequency and position at any ith amplifier
and the noise added into them by the ith amplifier. These relations are valid for any pul se shape.

To proceed further we need to assume a pulse shape. Previously we have seen two pulse shapes,
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viz., the fundamental soliton and the Gaussian pulse shapes. As seen before, the fundamental
soliton can maintain its shape and width in a constant anomalous dispersion fiber in the absence
of fiber losses. However in the presence of fiber losses, the nonlinear effects cannot exactly cancel
the dispersion effects because of the reduced power of the soliton and hence pulse broadens in
the presence of dispersion. However, if one uses dispersion- decreasing fibers in the anomalous
dispersion regime, the soliton can maintain its pul se width and shape. Another example of asoliton
system is provided by dispersion-managed soliton systems. A dispersion managed soliton can be
approximated by a chirped Gaussian pulse shape. Instead of using a DM soliton, one can also
launch a low-power chirped Gaussian pulse through a fiber. In such a case, the pulse does not
maintain its shape and width. However, by reducing the average dispersion to a value close to
zero, we can reduce pulse broadening resulting from dispersion. Such systems are called chirped
return-to-zero (CRZ) systems or non-soliton systems. We will use the results obtained in this

section using the moment method for these three systemsin the following sections.

6.2.1 Solitons Systems

As seen before, the existence of optical solitonsin the fiber isthe result of a balance between GVD
and SPM. Such a soliton maintainsits shape and width during propagation in an optical fiber. Fiber
losses become the main limitation in such a soliton system. When amplifiers are used to over come
fiber losses, one would like to have minimum number of amplifiers, for both cost effectiveness and
for minimizing the accumulated amplifier noises. We saw in Chapter 5 that when the number of
amplifiersincreases the Q factor decreases. In order to be able to achieve this, we saw that it was
necessary to use dispersion management. We use the moment method to calculate timing jitter in

such dispersion managed systems.

Fundamental soliton in Dispersion decreasing Fibers

The use of dispersion decreasing fibers (DDFs) for soliton communications was first proposed in
1987 which helped relax the restriction La < Lp imposed normally on loss-managed solitons by
decreasing the GV D aong the fiber length [5]. The DDFs are designed such that the decreasing

GVD counteracts the reduced SPM experienced by solitons weakened from fiber losses. Since
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dispersion management is combined with loss management, the soliton evolution is governed by
the NLS equation given by Eq. (6.1), except that 32 is now a function of z such that |B2(2)| =
|B2(0)|exp(—az). The result can be understood by noting that the soliton peak power and hence
the nonlinearity parameter y decreases exponentialy in a lossy fiber in exactly the same fashion.
So it is easy to deduce from Eq. (2.60) that N = 1 can be maintained, in spite of power |osses.

In order to calculate the timing jitter at the end of such a system we use Eq. (6.36)—6.38) with
IB2(2)| = |B2(0)| exp(—az) to find that by = B2(0)Less Where Lt = [1— exp(—alLa)]/a. Also we

know that unchirped fundamental solitons maintain their pulse shape of the form

Bi(2t) = axm(i T)aMm 0t - Th)]. (6.39)

where Tj, T;, @ and Q; are the position, pulse width, phase and frequency at the end of the ith
amplifier. Hence from Eq. (6.18) we get

Vi(zt) = asech< TT

> exp(i@). (6.40)

We find the ASE-induced fluctuations (8Q?); and (8T2); by using Eqg. (6.40) in Egs. (6.26) and
(6.29). From Eq. (6.40) we have

i |4 =T =T
5 [T—Isech< - >t h( - )} exp(i@). (6.41)
Multiplying Eq. (6.41) by its complex conjugate and substituting the result into Eqg. (6.26) we get
2S aI -T
2, &9 2 2
(0Q%); = £z )., r2 sech ( T > anh ( T ) dt. (6.42)
Using Table 3.1 we perform the integration to get
2S
3Q?) = : 6.43
< >I 3EiTi2 ( )
Similarly using Eq. (6.40) in Eq. (6.29) we get
o2 = 25 [ - Toebsenr (T (6.49
i /o i
Again using Table 3.1 we get
2
@12y = TS (6.45)

6 E
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Finally using Egs. (6.40) and (6.41) in Eq. (6.32) we get
(6Q0T); = 0. (6.46)

Thus we have found the amplifier-induced fluctuations in frequency and position at each amplifier
and their variances and correlation. Since the fundamental soliton maintains it shape and pulse
width during propagation, the pulse width at the end of every amplifier is the same as the initial
pulse width 1g. Also the energy of the pulse after every amplifier isrestored to itsinitial value Eo.
Hence for the case of fundamental solitons the variances and cross correlations are the same at all

the amplifiers. Hence dropping the subscript i, the variances and correlation at every amplifier are

given by
2S T St3
Q%) = ——— 5T%) = =0 3Q8T) = 0. 6.47
CF) =g OTI=Fg, (0 (6.47)
Now using Eq. (6.47) in the recurrence relations in Egs. (6.36)—6.38), we can write after N ampli-
fiersas
N
Q)N = _Z<6QZ>, (6.48)
1=
N—1
(QT)n = by ;<QZ>, (6.49)
i=
) Nt N—1 N )
(T)n=Db (Q%)+2bp Y (QT)+ S (8T4). (6.50)
22, 2012
Performing the summation over n using the following results:
N N N
1=N, i=N(N+1)/2, i“=N(N+1)(2N+1)/6, (6.51)
i; |; |;
we can rewrite the above equations to be
(Q%)n = N(3Q?%), (652)
(@T) = ZN(N-1) (52, (6.59
2
(T?)N = %N(N —1)(2N—1)(3Q%) + N(3T?). (6.54)

Also from Egs. (6.27) and (6.30), we have (T )n = 0. Hence the timing jitter after N amplifiersis

b3 2S T SU3
oy = EZN(N—l)(ZN—l) (fﬁg) +N (EE_(S)' (6.55)

given by
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Noting that N = L/La, we see that for N > 1, the Gordon-Haus jitter increases with the total
distance, L as L2. It also depends linearly on the accumulated dispersion b, and is inversely pro-
portional to the pulse energy. A disadvantage of DDF isthat the average dispersion along the link
is often relatively large and since the Gordon-Haus jitter is larger for larger dispersion, it is better

to use DM soliton systems since they have relatively smaller average dispersion.

Dispersion-Managed Solitons

We perform the same calculations that we did for fundamental solitons for DM solitons in this
section. A typical DM system consists of aperiodic sequence of anomalous- and normal-dispersion
fibers. An optical amplifier is inserted for compensating fiber losses after one or severa map
periods. Each amplifier restores pulse energy to its original input value but, at the same time, adds
spontaneous-emission noise. Although the DM soliton does not maintain its pulse width, it evolves
periodically such that the pulse width and chirp are restored to its initial values after every map
period Ly,. Since the amplifier spacing is such that La is a multiple of Ly, the energy, width and
chirp of the pulse are restored to their original values after every amplifier. Thus we see that the

soliton systems are periodic after every amplifier. Assuming a Gaussian pulse shape of the form
Bi(zt) = ajexpli@ —iQi(t—T) — (1+iC)) (t— Ti)?/27], (6.56)

where Tj, T, @ and Q; are the position, pulse width, phase and frequency at the end of the ith

amplifier, we find that
Vi(z,t) = & expliq — (L+iGCi) (t - Ti)?/2t]. (6.57)

Using Eq. (6.57) in Egs. (6.26), (6.29), (6.32), we obtain the variances and cross correlation of the
ASE induced frequency and position fluctuations. Differentiating Eq. (6.57) with respect tot we
get

% = aexplig — (1+iCi) (t — Ti)2/2t7] [~ (1 +iC) (t — T)) /7] , (6.58)

Multiplying Eq. (6.58) by its complex conjugate and substituting the result into Eq. (6.26) we get

0 o2 _T
<592>i=§—i§ / %mcﬁ%exp[—(t—m%ﬂdt- (6:59)
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Using Table 3.2 we perform the integration to get

S(1+C)
2y =
(0Q)i = g 7 (6.60)
Similarly using Eq. (6.57) in Eq. (6.29) we get
2 _ 25 [® 2.2 2/:2
OT%i= 5 [ t-T)%eql-(t-T)?/fldt (661)
i —00
Again using Table 3.1 we get
2
(5T2); = S (6.62)
Ei
Finally using Egs. (6.57) and (6.58) in Eq. (6.32) we get
@0ty == [ - TR(-aC) Pepl-t-T)X/2fd. (669
i —00
Again using Table 3.2 we perform the integration and get
(5Q8T); = % (6.64)
|

Thus we have found the amplifier induced fluctuations in frequency and position at each amplifier
and their variances and correlation. Since the DM soliton is periodic in evolution during propaga-
tion, its chirp, width and energy, at the end of every amplifier is the same as the initial chirp, Co,
width, Tp and energy Eo respectively. Hence for the case of DM solitons the variances and cross
correlations are the same at all the amplifiers and so dropping the subscript i, the variances and

correlation at every amplifier are given by

S (1+C3) Sr? o
3P = == 0O 5T?) = =0, 3Q3T) = ==, 6.65
o) =g @17 =2 (s08T)=¢ (6.65)
Now using Eq. (6.65) in the recurrence relations in Egs. (6.36)—(6.38), we can write after N ampli-
fiers
2 A 2
Q= (302, (6.66)
2
NN
(QTH)n=Db2 H (Q°) + ) (8Q3T), (6.67)
292
N—1 N—1 N

(TN = b3 Z (Q%) +2by Z (QT) +_Z<5T2>, (6.68)
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Here by can be written as Bala, Where Bay = (Baka + Bnkn)/(La+ Ln), La, Ba @nd Ly, Bn are
the length and group velocity dispersion parameter of the anomalous and normal fiber sections.

Performing the summation we get after N such amplifiers using Eqg. (6.51)

(Q%)n = N(80?), (6.69)
(QT)N = %N(N — 1)(3Q%) + N(3Q8T), (6.70)
(T?)N = %%N(N —1)(2N — 1)(3Q?) + boN(N — 1)(3Q3T) + N(3T?). (6.71)

Also from Egs. (6.27) and (6.30), we have (T)n = 0. Hence the timing jitter after N amplifiersis
given by

oy = %%N(N —1)(2N—1) (E—So (1%@’)) +byN(N—1) (%) +N (SET—()%) . (872

From Eq. (6.72) we see that the leading term of Gordon-Haus jitter depends on the cubic power of

distance similar to the case of fundamental solitons. However amplifier-induced fluctuations differ
from the fundamental soliton case dueto the difference in pulse shape. Also since the DM solitons

are chirped initially, the timing jitter al'so depends on theinitial chirp.

6.2.2 Non-soliton Systems

Even though solitons systems can help balance the GV D and nonlinear effects, many other nonlin-
ear effects can serioudly limit the system. Also even when using DM soliton systems, the GVD dis-
persion cannot be reduced too much becauseit is needed to compensate nonlinear effects. However
non-soliton systems can have nearly zero average dispersion, since they have negligible nonlinear
effects when operated at low powers. In a non-soliton system, input pulses are prechirped and
then propagated along the DM link without requiring the periodicity condition, i.e., pulse width
and chirp are not designed to recover their input values after each amplifier. Since the pulse peak
power is low, the nonlinear effects are negligible but not absent. As seen before if the input pulse
isinitially chirped such that 32Cp < O, the pulse at the end of the fiber link may be shorter than
the input pulse. If the dispersion map is made such that the pulse broadens in the first section and
compresses in the second section, the impact of the nonlinear effects can be reduced significantly.

Thisis because the pulse peak power is reduced considerably in the first section because of rapid
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broadening of chirped pulses, while in the second section it is lower because of the accumulated
fiber losses. Such dispersion-managed links are also referred to as quasi-linear transmission links
and in such cases the average GV D can be reduced to avery low value.

We now calculate the timing jitter at the receiver end for such systems. The pulses in these
systems can be approximated by Gaussian pulse shape of the form shown in Eq. (6.56). Hence
the amplifier induced noises in frequency and position for such pulses are given by Egs. (6.59),
(6.62), (6.64). However the since non-soliton systems are not periodic, the noise variances and
correlation are not the same at every amplifier. Their evolution hence depends on the evolution of
the chirp and pulse width along the fiber. Using the moment method we have already derived the
evolution of the chirp and pulse width and neglecting the higher order effects and the nonlinear

term in Egs. (4.155) and (4.156), they are given by

dt B2C
- _Fe= e
dc 1+C?
T —p (TZ ) | (6.74)
Making a transformation Z = 32z, we can write Egs. (6.73) and(6.74) as
dt C
- _= v
daz 1’ (6.75)
dc [/1+C?
B ( 2 ) : (6.76)
From Egs. (6.75) and (6.76) we find that
d (1+C? 2C\ 1+C? ) 2\ C
w7 )= (%) 7 e (5)3
=0 (6.77)

Hence the quantity (1+ C?)/12 does not change during propagation. Physically this quantity is
related to the spectral width of the pulse that remains a constant in alinear medium. Hence we can
replaceit by itsinitial value (14 C2)/13. Egs. (6.73) and (6.74) can be solved analytically and the
solutionis given by Eqg. (3.39). Thuswe can write the pulse width and chirp after the ith amplifier

as
1/2

o - bp\? b3 o 5, b2
Ti=To 1+|CoT2 +i - , C'_C0+'(1+CO)T2- (6.78)
0 0

0
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Thus using Egs. (6.77) and (6.78) in Egs. (6.60), (6.62) and (6.64) we can write the variances and

cross correlation of amplifier induced fluctuations in frequency and position in the case of low

power CRZ systems as
S (1+C3
(3Q%); = g( tg 0), (6.79)
(5T2); = Sto (1+ic0@>2+|2b—2 (6.80)
= 3 T3 '
(5Q3T); = é {Co+i (1+C3) %} . (6.81)
0

Initially at the transmitter the spectral width is given by 1/T(2) since the pulses are unchirped and
since the spectral width isunchanged in alinear medium, Eq. (6.79) can be replaced by

S1
Eo'l'o

Now using Egs. (6.79)—6.81) in the recurrence relationsin Egs. (6.36)—(6.38), we can write after

(5Q%); = (6.82)

N amplifiers
sN1
2 —_ J—
@n=g 3z (6.83)
QT =by S (@) + 5 (14022 6.84
(QT)n = 2i;< >+E_- C0+(+o)%7 (6.84)
2 2N ! 2 % k ; b 2b2
(TN =Db3 i;(Q )+ 20 ;(QT)+ 5 i; {(1+|C0T )2 +i =15 (6.85)
Performing the summation we get
S1
(Q%)N Ng—z, (6.86)
b S1 bz S (1+C3) o
_ Snint2
= EON [NT%+C0}, (6.87)
N S1 S1+Ch o [N
(TN _EN(N—l)(ZN 1)E %+ g T% + 2by Es E(N—l)
N S b3 N N
+E(N+1)]+E—0%[E(N+l)(2N+1)+€(N—1)(2N—1)+§(N—1) .
(T2 = 212N <C0+ bZN) (6.88)
Eo %
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Thus using Egs. (6.27), (6.30) and (6.88), we can find the timing jitter in the case of non-soliton

systems after N amplifiersis given by

S

2 2
0] = —T1gN
GH Eo 0

1+ <c0+bf—2N>2] . (6.89)

0
From Eq. (6.89) we see that the Gordon-Hausjitter is cubic even in the case of non-soliton systems.
Also similar to the case of DM solitons, the timing jitter in the case of the non-soliton system
depends on the initial chirp. While in the DM soliton case, the sign and value of the initial chirp
isfixed by the periodicity conditions, in the case of non-soliton systems, the value of the chirp and
itssign can be used in away to reduce the total jitter. Thiswill be discussed in Chapter 8. Sofar in
this chapter we have seen that in both soliton and non-soliton cases, the Gordon-Haus timing jitter
is cubic in distance and is inversely proportional to the pulse energy. This result agrees with the
results of Gordon and Haus, who first derived an expression for jitter in the case of fundamental

solitonsin a constant dispersion fiber and showed that the jitter is cubic in distance [54].

6.3 Multiple Amplifiersper Map Period

As seen in the previous section, the amplifier-induced noise depends on the amplifier gain. Hence
larger the gain the greater the noise added to the system. One way to reduce the noise added
by the ASE is by reducing the gain required by an amplifier. If more than one amplifiers with
smaller gain are used such that the total gain of all the amplifiers compensate the total fiber |osses,
it can help reduce timing jitter, by reducing the ASE-induced noise of amplifiers. Thus distributed
amplification can help reduce timing jitter [58]. In this section we calculate the timing jitter in
systems when more than one amplifier is used within one map period.

Previously we found the amplifier-induced fluctuations in the frequency and position of the
pulse. We also found the recurrence relations of variances and correlation of these fluctuations
which show the growth of these ASE-induced noise between i — 1 and ith amplifiers. In order to
extend these equations to the case of more than one amplifier in one map period, we assume that
there are n; amplifiers within one map period, each with gain G;, and there are N such map periods
in the entire fiber link. From Egs. (6.36)—6.38), we use the subscript i to denote an amplifier

within amap period and subscript j to denote the map periods to write the recurrence relations for
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the amplifier-induced noise between i — 1 and ith amplifiersin the jth map period as

(Q%)i = (Q%)i 1+ (3, (6.90)
(QT) = (QT)i_1+di(Q?)i_1 + (3QSTY;, (6.91)
(T2)i = (T2)i_1+dX(Q?)i_1+ 20 (QT)i_1 + (8T?);. (6.92)

where d; = fzil B2(z)dz, isrelated to the net dispersion in the fiber section between the amplifiers
i—1andi. Except d;, al quantitiesin Egs. (6.90)—6.92) depend implicitly on the map period,
j. Thus we can write the recurrence relations for the ASE-induced noise after the jth map period

using Egs. (6.90)—6.92) repeatedly as

Q%)) = (Q%)j1+P;, (6.93)
(QT); = (QT)j_1+bx(Q% -1+ Qj, (6.94)
(T?)j = (T?)j_1+b3(Q%)j_1+ 2bx(QT)j_1 +R;. (6.95)

where by = z”a d; isthe net dispersion of each map period and

Na

P = _;<692>i7 (6.96)
Na Na—1 Na
L= 5 (3Q3T); Q) di |, 6.97
Qj i;< )it _;( ) (k IZH k) (6.97)
Na na—1 Na
R =Y (3T?); (5QP); d 25 (3Q3T); de | . 6.98
J |;< i Z\ (k—Zi—l k) i i= > (k:|z_|_1 k) ( )

We can use Egs. (6.90)—(6.92) to calculate the Gordon-Haus jitter by adding the contributions of
N map periods. However, this step requires knowledge of the coefficients in Egs. (6.96)—(6.98).

6.3.1 Soliton Systems

In order to evaluate the coefficients in Egs. (6.96)—6.98), first consider the case of a fundamental
soliton system. The variances and cross correlations are then given by Eq. (6.47). Using Eq. (6.47)

we see that for the case of the fundamental soliton the Egs. (6.96)—(6.98) can be written as

p_ _”Za<mz>, (6.99)
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na—1 Na
= 3Q? de |, 6.100
Q i;( ><k|2+1 k) (6.100)
Ny ng—1 Na 2
R=Y (3T?2 5Q2 de | . 6.101
i;( )+ i;( >(k:|z|-1 k) ( )

The subscript j is dropped because the coefficients depend on the pulse parameters and hence
remain the same after every map period for the soliton case. The variances of 6Q and T are given
by Eq. (6.47). Using Egs. (6.99)—6.101), in Egs. (6.93)—(6.95) and also using the definition of
b= [;"B2(2)dz = Y2, di, we get after N map periods

(Q%)N = NP, (6.102)
(QT)N = boP(N—1)/2+NQ, (6.103)
(T?)n = PBN(N —1)(2N — 1) /6+ QbN(N — 1) + NR. (6.104)

Thus we can write the timing jitter after N map periods each using ny amplifiers as
ocH =Pb3N(N—1)(2N—1)/6+ Qb N(N—1) +RN. (6.105)

The coefficients P, Q and R are given by Egs. (6.99)—6.101). Equation (6.105) shows that our
approach provides an analytic expression of the timing jitter that is valid even when multiple am-
plifiers are used within each map period. This equation also appliesto the case of the DM soliton.

However the coefficients P, Q and R in such a case are given by

P— _2@392), (6.106)
nag—1 Na Na

= 3P d 3Q3T), 6.107

05,09 3 a) s Som 0207

na—

Na Na Na— Na 2
R= iZ<6T2> 42 iZl<6QBT> (k:;ldk> + :(5@ (k =|2+ 1dk> . (6.108)

The variances and cross correlation of 8Q and dT in the above equations are given by Eq. (6.65).
To demonstrate the most interesting features as ssimply as possible, we focus on a 10 Ghit/s

DM soliton system, using two specific dispersion maps with a map period L, of 80 km (typical

value in practice) and consider how the jitter is affected when a second amplifier is placed within

each map period. One map consists of a 76 km anomalous GV D section of dispersion shifted fiber
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(D = 4 pgkm-nm, a = 0.2 dB/km, Aesf = 55 um?), followed by a 3.2 km section of dispersion-
compensating fiber (D = —80 ps/km-nm, a = 0.4 dB/km, Aeft = 55 pm?), resulting in an average
dispersion of about D = 0.2 ps’lkm-nm. For the 30-ps (full width at half maximum) unchirped
pulses used for illustration, the map strength defined as

Smap = |Dala— DnlLnl/Tvam: (6.109)

where D5 and Dy, are the dispersion parameters of anomalous and normal sections of the fiber. The
map strength given by Eqg. (6.109) isameasure of how much the GV D varies between two sections
in amap period. Thus we can see that the pulse width variations are much larger for maps with a
larger map strength. Using the value of the parametersin Eqg. (6.109) we find that the system has
arelatively low value of Sy = 0.62 for this map. An amplifier is placed at the end of each DM
stage of length Ly, = 79.2 km. The spectral density of noise is calculated from ngp = 1.3 (noise
figure of about 4.1 dB for the lumped amplifier). The solid curvein Fig. 6.3 showsthetiming jitter
at the end of each amplifier as a function of transmission distance for 1o = 18.02 ps (full width at
half maximum, Trynm of 30 ps), nsp = 1.3 and hv = 0.8 €V. The input chirp isCo = 0.25 and the
input peak power is Py = 3.04 mW for solitons propagating in such alightwave system.

To see how the jitter is affected by a second amplifier placed in each DM stage, we optimize
the location of the second amplifier such that pulse breathing is minimized. For the map under
consideration this occurs when the amplifier is placed at a transmission distance of 35 km in the
dispersion shifted fiber section of the map. At this location of the amplifier, we can use the evo-
lution equations of energy and chirp obtained using the moment method to get the initial power,
Po = 0.2051 mW, initial chirp, Co = 0.517, and the chirp at the intermediate amplifier to be —0.01.
The dotted curve in Figure 6.3 shows that the GH jitter is reduced considerably when two ampli-
fiers are used within each DM stage. We can understand this result by noting that the gain of each
amplifier islower, resulting in alower value of spectral density of noise, S. In Fig. 6.3 thejitter is
reduced by afactor of 2 when two amplifiers are used.

The second map is designed with a standard fiber and consists of a 66 km anomalous GVD
section of a standard telecommunication fiber (D = 16 ps/km-nm, a = 0.2 dB/km, Aef § = 55 pm?),
followed by a 13 km section of adispersion-compensating fiber (D = —80 pgkm-nm, a = 0.4 dB/km,
Actt = 55 pm?), resulting in an average dispersion of about D = 0.2 ps’km-nm. From Eq. (5.108),
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Figure 6.3: Timingjitter for a 10 Gb/s DM soliton system as a function of distance. A single amplifier is placed at
the end of each map period at 79 km (solid line), where as a second amplifier is placed at a transmission distance of

35 km for the dashed curve. The map strength is 0.62 and the average dispersion is 0.2 ps/(km-nm).

the map strength with Trynum = 30 psiis given by Syap = 2.33, indicating a considerable change
in pulse width in each map period. An amplifier is placed at the end of each DM stage of length
Lm = 79 km. The solid curvein Fig. 6.4 shows the timing jitter at the end of each amplifier as a
function of transmission distance for solitons of the same width used in Fig. 6.3 to ensure a fair
comparison. The input chirp is Co = 0.765 and input peak power is Pp = 7.6 mW for solitons
propagating in such a lightwave system. The dashed curvein Fig. 6.4 shows how jitter is affected
when a second amplifier is placed within each DM stage at a transmission distance of 24 km (lo-
cation optimized to minimize pulse width changes). At this location of the amplifier, we can use
the evolution equations of energy and chirp obtained using the moment method to get the initial
power, Py = 0.944 mW, initia chirp, Co = 2.05, and the chirp at the intermediate amplifier to be
0.534.

A comparison of Figs. 6.3 and 6.4 shows several interesting features. Timing jitter is smaller
for the map made with the standard fiber when one amplifier is used in each stage. Thisis a
consequence of the higher pulse peak powers needed for a map with larger strengths and since
Gordon-Haus timing jitter is inversely proportional to the energy, we can see reduced jitter when
there is increase in energy. The second amplifier may increase or decrease the jitter, depending

on transmission distance. For distances up to 2000 km the Gordon-Haus jitter is greater when
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Figure6.4: SameasFig. 6.3 except herethe map consists of 66km of standard fiber followed by 13 km of dispersion
compensating fiber, resulting in a map strength of 2.33 and an average dispersion of 0.2 ps/(km-nm). The second

amplifier is placed at atransmission distance of 24 km.

two amplifiers are used in each stage. For longer distances the second amplifier reduces timing
jitter by a large amount (as much as a factor of 2 as shown in Figure 6.4). The reason behind
thisis related to the contribution of the Q term in Eq. (6.105). The expression for the Q term in
Eq. (6.107) shows its dependence on the GVD accumulated up to the location of the amplifier.
For an amplifier located at the end of a map period, |dk| in Eq. (6.107) is relatively small. But it
can be quite large for the second amplifier located within the map period. As aresult the Q term
contribution becomes |arge at moderate distances even though this term grows as N2 while P term
grows as L3, thus reducing the timing jitter. This indicates that the use of multiple amplifiersin
each map period can be beneficial for light-wave systems designed with standard fibers but that the
amplifier locations should be chosen judiciously.

Next we consider a dispersion-managed system which uses a fundamental soliton of width,
18.02 ps in a DDF whose dispersion D decreases from 4 to 0.161 ps/(km-nm) over 80 km which
will require aninitial pulse power of 0.1 W, a = 0.2 dB and Aeff = 55 um?, such that an amplifier
isplaced at every 80 km. Since the soliton pul se width remains the same, the location of the second
amplifier isirrelevant. We place the second amplifier in the middle of the map period, at 40 km.
The timing jitter in the presence of 1 and 2 amplifiers are shown in Figure 6.5. A comparison with

the DM soliton system shows that the Gordon-Haus timing jitter in this system is smaller. Thisis
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Figure6.5: SameasFig. 6.3 and 6.4 except here fundamental solitons are used in a DDF whose dispersion decreases

from 4 to 0.161 ps/(km-nm) over 80 km. The second amplifier is placed at a transmission distance of 40 km.

due to the increased input power needed for such asystem. Also the solid (1 amplifier) and dashed
line (2 amplifiers) show that using 2 amplifiers can reduce Gordon-Haus jitter considerably.

To study the multi amplifier case analytically and find the extent of jitter reduction, we consider
the Gordon-Haus jitter in long-haul lightwave systems for which N is so large that the dominant
contribution to the timing jitter comes from the P term in Eqg. (6.105), which exhibits a cubic
dependence on N. Thislimit may require more than 100 amplifiers, depending on the map design.

In thelimit N > 1, the dominant term becomes

N
Oy ~ P§(Nb2)2. (6.110)

The A coefficient is obtained using Egs. (6.96) and (6.65) for DM soliton systems. If we use the
relation in Eq. (6.65) we can rewrite Eq. (6.110) as

2 2 3(1 C(%) fa Gi 1
(0] ~ Ngphvb5N E .
GH Sp 2 3.[% i Ei

The quantities E; and G; represent the pulse energy at the end of the ith amplifier with gain G;.

(6.111)

Equation (6.111) generalizes the previously derived expression for Gordon-Haus timing jit-
ter to the case in which multiple amplifiers are used within each map period. Many lightwave
systems are designed with only one amplifier per stage. In that case the last factor reduces to
[exp(alm) — 1]/Eo, Where Eg isthe energy of pulses launched at the input end. With several iden-
tical amplifiers per map period such that they have the same gain and are spaced apart by Lyn/na,
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Figure 6.6: Reduction in timing jitter when several amplifiers are placed at equal distances in each map period.

Gi = exp(aLm/na) = th/”a, where G; = exp(alLm) is the total gain of al the amplifiers in each
map period of length Ly,. The pulse energy at the output of each amplifier is also the same since
each amplifier isdesigned to recover the input pulse energy. We canthusset E; = Eg in EqQ. (6.111).
The change in timing jitter with the use of multiple amplifiers is then given by a reduction factor

defined as

o2 G/ 1
f = Ta _ 6.112
r(Na) Gﬁazl Na G—1 ( )

Figure 6.6 shows the reduction factor as a function of n, for several values of the map period L.
Although there is a practical limit to the number of amplifiers, the preceding results show that the
use of several amplifiers reduces the timing jitter in the same way that it reduces amplifier noise
[59].

The limit in which n, tends to infinity correspondsto the case of distributed amplification. Our
analysis shows that Gordon-Haus timing jitter is reduced when distributed amplification isused in

place of one lumped amplifier per map period, and the reduction factor is given by

O3 grib _okm  _ InG (6.113)
olzumped exp(alm)—1 Gi—1

where G; is the total gain of the single lumped amplifier. As a simple example, consider a 50-

km map period, G; = 10 and assume total a loss of 10 dB over L, = 50 km, then the Gordon-
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Haus timing jitter is reduced by a factor of 3.9. It should be stressed that this result is based on
the assumption that input pulse parameters remain unchanged in the two cases. In practice, the
periodicity condition requires lower pulse energies in the case of distributed amplification. Since
frequency noise variance scales inversely with E in Eq. (6.65), the reduction in timing jitter, in
practice, is expected to be considerably smaller than that predicted by Eg. (6.113). The same
reduction factor can be derived for the fundamental solitonin DDFsusing Eq. (6.47).

6.3.2 Non-soliton Systems

In this section we focus on the non-soliton system in which the pulse parameters are not periodic.
However the dependence of chirp and width of the pulse on distance is given by Eq. (6.78). We
can rewrite Eq. (6.78) to find the chirp and pulse width at the ith amplifier in the jth map period
when multiple amplifiers are used per map period to be

(14+C5)  (1+C) «

i o (14CP), L
+ 2Cy Z dk+2(j—1) ( +2 o) by Z dx, (6.115)
K=1 1o K=1

where Cy isthe initial chirp. Since in the case of a non-soliton system, the parameter (1+C?) /12
remains unchanged, the variance in frequency fluctuations given by Eqg. (5.78) remain the same for
all the amplifiers. From Eq. (6.96) the coefficient P, also remains the same for al the amplifiers

and the coefficient P can be written as

@ §(1+Cf)
SE 1§

Using the Egs. (6.114) and (6.115) in Eq. (6.97) and (6.98), we can find the coefficients Q; and R;

P=

. (6.116)

asfollows;

From Eq. (6.97) we know

Na

Na—1 Na
Qj = i;(f)QéT)i + i; (8Q%); (k:%—ldk> :
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zag <C0+ (i~ 1)bs (1jTL2CO) 1+C0 zd])
| 0 —
nag—1 1+C2 Na
dk. 6.117
- Z\ Ei ( 3 )k:|2+1 ‘ ( )

Using by = 32 , dk, Eq. (6.117) reducesto

Na (14C3)
Qj= Zlgcwzl ( 0 ) . (6.118)
Similarly using Eq.(6.98) we have
Na na—1 Na 2 Na—1 Na
Rj = _Z<5T2>i + Z (8Q%); (kz dk) +2 Z (0Q3T);i (kz dk> ;
is i= =T+1 i= =T+1

Na 2 i 2
_ Z: (TO+ (J _ ) (1—:;000) b2 (1+ZCO) (kgldk> —|—2C0(] _ 1)b2

10

. . 2
! _ (1+C ! Na g (14C3)

+2C Y dk+2(j—1) by, d) 0 ( dk>
Z Z LE 13 k= |+1

LS ( (1+CO) 1+C0 ) ( Na )
+2 Co+ |(j— Dby e . (6119
ZLE' 16 Z klz+1
Rearranging the termsin Eq. (6.119) and using b, = 2, di, we get
n 2 n
2§ 1+Cf ) 2] 2§
Ri = b 2 b 6.120
i =2 TO"‘ Z\Eu { ( 2 + EICoJ 2. ( )
Using Egs. (6.116), (6.118) and (6.120), in Egs. (6.93)—(6.95), we get
Na 1 CZ
(Q%)) =(Q%);- i+ S <( i °)>, (6.121)
| TO
(QT): = (QT) 1+ by +3 Jeor (1+C2> b (6.122)
= j-1+02(Q J 1 ZEI Zl 2, -

(T2 = (T?)j 1+ b5(Q%) | 1+ 202(QT)j 1+ ZET(Z)
i= i

+ = {j ( +Co)bz]u - SCojbz (6.123)
EI TO -

Comparing Egs. (6.121)—6.123) to Egs. (6.83)—6.85), we see that the multiple amplifier case is

similar to the single amplifier except that there is an additional summation over the amplifiers
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within the map period. Thus carrying out the summation first over the amplifiers and using (1 -+

C?)/12 = 1/13, at the transmitter, and hence P = 51 (S /Eo)1/13, we get

1
Q%)= (Q%)j-1+ ESO (T ) (6.124)
0
. 1+C2
QT)j = <QT>,-1+bz<QZ>11+E§0Co+ J% ( tz 0) by, (6.125)
0
(T2)5 = (T2)-1-+ BB(Q%) 1+ 20o(QT) 11 + 2.3
S [.2 1+C§> 2] S~
+E0 [J ( 2 b3 +2EOConz, (6.126)

where § = ¥, §. Performing the summation over the map periods, we get

1
(Q%)n = N%T—Z, (6.127)
0
by S1 b S (1+C3) .SCo
QT)n = =N(N—1) = 5+ N(N+1)— N 6.128
2 b3 S 1 S 1+C? SGCo
(TN = 6N(N 1)(2N — 1)E—0% Ng 2 0 4 2n, e 2(N 1)
N S b3 [N N N
E(N+1)}+E—T—[6(N+1)(2N+1)+€(N—1)(2N—1)+§(N—1) .
<T2>N:§TON 1+ <C0+b2 ) (6.129)
Eo 5

Hence from Eqg. (6.129) we can write the Gordon-Haus jitter for the multiple amplifier case for

non-soliton systems as

boN

2 2 2 1+ (Co+—> ] (6.130)

OGH = —TON
Eo 5

We can see from Eq. (6.130) that the Gordon-Haus jitter is still cubic in distance and is similar to
Eq. (6.89). Thejitter isproportional to § = zi”il S for the multiple amplifier case. Comparing this
with the one amplifier case we find that in the one amplifier case, the jitter is proportiona to S=
nsphv(G — 1), where G = exp[—aLa] and in the multiple amplifier case, the jitter is proportional
to § = nsphv zi”jl(Gi —1). Since the gain of each amplifier is such that G; = exp[—az], we can
see that using more than one amplifier can reduce timing jitter in non-soliton systems as well.

To show that using more than one amplifier can help reduce timing jitter even in non-soliton

systems, we consider a non-soliton system using the same dispersion map as the one used for figure
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6.4 except the pulse energy is reduced by afactor of 10 to minimize the nonlinear effects and the
initial chirp is0. Figure 6.7 shows the reduction in timing jitter when a second amplifier is placed

at adistance of 24 km.
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Figure 6.7: Same asFig. 6.4 except this system uses one-tenth of the pulse energy used for Fig. 6.4 and the input

pulses are unchirped. The second amplifier is placed at a transmission distance of 24 km.

6.4 Chapter Summary

In this Chapter we used the moment method to analytically derive the timing jitter at the end of
a communication system employing amplifiers at regular intervals. We have extended the theory
to systems using more then one amplifier per map period and shown that such systems can reduce
timing jitter in both soliton and non-soliton systems. Even though using more than one amplifier
per map period can help reduce timing jitter, there are few disadvantagesto the idea. One of them
is that it can cost more money to have more than one amplifier to amplify the signa within one
map period. Also these amplifiers perturb the pulse and hence the soliton pulse may not be able
to recover between the amplifiersif the amplifiers are placed very close to each other. In Chapter
4, we saw that the Q factor decreases when the number of amplifiers increases. Thus the BER
of the system can be degraded. Thus when using more than one lumped amplifiers within a map
period one must keep these things in mind. The above results also show that in the absence of

GVD, thetiming jitter will be due to amplifier fluctuations added into the position of the pulse and
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grows linearly with distance. However in the presence of GVD the timing jitter is mainly due to
fluctuations added into the frequency of the pulse and grows cubic in distance. Also the Gordon-
Haustiming jitter isinversely proportional to the energy of the input pulse. Since generally soliton

systems use higher input energy, they have lower timing jitter in the system compared to the non-

soliton systems.



Chapter 7

Timing Jitter induced by Intrapulse Raman

Scattering

In the previous Chapter we derived an analytical expression for the Gordon-Haus timing jitter
for lightwave systems operating at bit rates less than 40 Gb/s. We saw that the Gordon-Haus
timing jitter grows cubic with distance and can limit the system after several thousand kilometers.
However, for systems operating at bit rates higher than 40 Gb/s, the higher-order effects such as
IRS and TOD cannot be neglected. The TOD effects, can cause additional pulse broadening even
in asoliton system leading to an increased timing jitter. The IRS effects, as seen before in Chapter
4, are responsible for frequency shifts that depend on the energy of the pulse. Any fluctuation in
the pulse energy can be transferred to the frequency and hence to the position in the presence of
GVD leading to another increase in timing jitter. This additional jitter due to the IRS is called
Raman Jitter.

Since the allowed value of timing jitter is inversely proportional to the bit rate of the system,
at high bit rates, the systems will be limited by timing jitter at shorter distances than the systems
operating at lower bit rates. Hence, it becomesimportant to know the exact impact of the additional
jitter induced by IRS and TOD in such systems. In this Chapter we use the moment method
to get analytic expressions for timing jitter due to both the Raman and Gordon-Haus effects for
high bit rate systems. Similar to the Gordon-Haus jitter, the Raman jitter occurs for both soliton

and non-soliton systems. The Raman jitter has been studied in the context of constant-dispersion

104
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fibers [60] and dispersion-decreasing fibers [55]. However, most lightwave systems make use
of dispersion management. In this Chapter, we consider the impact of Raman-induced timing
jitter on dispersion-managed (DM) systems and non-soliton systemsto find how these systems are
inherently limited by timing jitter at bit rates of 80 Gb/s or more.
Lightwave systems that operate at a bit rate of 80 Gb/s or more use very short pulses (=~ 1 ps).
As an example, a 160 Gb/s may require a pulse width as short as 1 ps. For such systems, the pulse
propagation in afiber is governed by the NL S equation given in EqQ. (3.51) and written again here
as
0A a, iBy0°A Bg@ A2

A
JR— J— - :- 2 1 -
5 T oAt 5 a7 s a3 = WAPA- IVTRAZS . (7.2)

Here we have neglected the effect of self-stegpening since they become important only for pulses

shorter than 100 fs. Using the transformation given by Eq. (3.2) we can rewrite Eq. (7.1) as

0B iB20°B PB3d®B  .__,_ . _0|BJ?
2 2o eas  VEIBTVRE TG (72)

where y =y exp[— [§a(2)dZ. Using Eg. (7.2) and the moment definitions of energy, frequency
and position, we derive the evolution equations for the pulse parameters following the method of
Chapter 4.

Using the results obtained in Chapter 4 and neglecting the effects of self-steepeningin Egs. (4.22),

(4.36) and (4.52), we can write the evolution equations for the energy, frequency and position as

dE

5 =0 (7.3)
dT Bs [ |0B|?

g =Pt [ |50 (7.4)
dQ V. [ (3 ,.5\°

E__ETR/_OO <a|B| ) dt. (7.5

The above equations simply describe the evolution of the three pulse parameters. However, we
have to add the ASE-induced fluctuation into these equations in order to account for the effects of
lumped amplifiers. Thus, Egs. (7.3)—7.5) should be modified as follows to include the amplifier

noise:

‘3—5 = 3 SEiS(z-2), (7.6)
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dT B3

o — P02 6t dt+Z5T. (z—2), (7.7)
daQ — y_ r® 2 (77
E__ETR/OO <a|B|> dt+|Z5Q|5(Z 7), (7.8)

where OE;, 0Q;, and dT; are random fluctuations in the pulse energy, frequency, and position,
respectively, introduced by theith amplifier located at a distance z;. We proceed to cal cul ate timing
jitter from the above equations using the same technique we used to calculate Gordon-Haus jitter
in Chapter 6. However, because of the presence of energy, E in the equation for Q dueto IRS, we
need to find the variances and correlations of the E, Q and T. Also, the above equations show that
the evolutions of these parameters are dependent on the pul se shape. Hence, to proceed further we
need to assume a specific pulse shape. In the following sections we consider the cases of soliton

and non-soliton systems one after the other.

7.1 Solitons Systems

As seen in the previous Chapter the soliton systems are periodic after every amplifier, and hence
the evolution of the pulse parameters is aso periodic in every fiber section before the amplifiers.
We have also seen in Chapter 4 that this periodicity of the soliton systemisvalid in the presence of
IRS only if the RIFS remains a small fraction of the pulse spectral width. For pulses whose width
islarger than 100 fsthe RIFS is small enough to satisfy the above condition and hence for systems
under consideration the assumption that a soliton system is periodic remains valid. However when
the pulse width is comparable to or less than 100 fs, one has to include the evolution equations for

chirp and pulse width derived in Chapter 4 in the calculation of timing jitter.

7.1.1 Fundamental solitonsin DDFs

We first consider the case of fundamental solitons propagating in DDFs. The pulse shape in such
systems is given by Eq. (3.7). First let us consider the changes in the soliton position in such

systems. Using Eq. (3.7) in Eq. (7.7) we find that the pul se position evolves from Eqg. (4.90) as

dT [3392 B3

dZ_BzQ+ 5 62+Z6T62 z). (7.9
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Next the evolution of the frequency can be found by using Eq. (3.7) in Eq. (7.8) and can be written
using Eq. (4.99) as
dQ  4yTRE
dz 1513
The evolution of the pulse energy is governed by Eq. (7.6). Now that we know how the energy,

+ Z 0Qid(z—z). (7.10)

position and frequency of a fundamental soliton evolve, we can integrate Egs. (7.6), (7.9) and

(7.10) over one amplifier length to get

E(La) = E(0) + 8Eq, (7.12)
Q(La) = Q(0) + brE(0) + 50y, (7.12)
T(La) = T(0) +b2Q(0) + borE(0) + bg + bga Q?%(0)

+beqE(0)Q(0) + bgeE?(0) + 8T, (7.13)

where the coefficients bg, b, bog, bs, bse bag and bgg are given by

b =PB2(O)Letr, b3 =B3(0)Lest/(67°), (7.14)
br = —4yTrLes/(1513), (7.15)
0) ( 4yTrLett \ 2
bor = —2yTrB2(0)L2 /(1513 bee — 23 ( ) 7.16
2R VTrB2(0) eff/( T0)7 3E 20 15T8 ) ( )
1 _ 4TrYBs(0), 2
bsq = 2|—effB3(O)a beg = 158 L& (7.17)
where L isthe effective length defined as

Leit = [1—exp(—aLa)]/a. (7.18)

The expressions in Egs. (7.14)— (7.17) were obtained by using Y(z) = y(0)exp(—az), B2(z) =
B2(0) exp(—az) and B3(z) = B3(0) exp(—az) for fundamental solitons propagating in a DDF.

For simplicity, we neglect the contribution of higher-order terms containing bsg, bsg and bgg.
These terms involve the product of two small parameters, Tr and 33 and can be neglected in most
cases of practical interest. Hence we can write from Egs. (7.11)—(7.13) the energy, frequency and

position after any ith amplifier as
E = Ei_1+0E, (7.19)
Qi = Qj_1+brE_1+0Q;, (7.20)

Ti =Ti—1+b2Qi_1+borEi_1+ bz +8T,. (7.21)



CHAPTER 7. TIMING JTTER INDUCED BY INTRAPULSE RAMAN SCATTERING 108

The timing jitter induced by the Raman and Gordon-Haus effects can be calculated using the
definition of timing jitter, o = (T2) — (T)?, where the angle brackets indicate average over the
ASE noise. For this purpose, we need to find the variances and cross correlations of dE;, 6Q; and
oT;. Inthe calculation of timing jitter, we are interested in finding how much, on average, the pulse
position has shifted at the end of the system. Since we are interested in finding the shift in 1 bits,
we need OE;, 6Q; and &T; for any given 1 bit. Using the moment method, we have calculated the
variance and average of OE; for 1 bitsin Chapter 5. From Egs. (5.23) and (5.25) we have

BE)i=S  (3E?)i~2SE, (7.22)

where we have neglected the last term, which is due to the beating of noise with itself, sinceit is
small compared to the signal and noise beating with each other.

To find the cross correlations, we use the results obtained in the Chapters 5 and 6 using the
moment method for OE; and dQ; and &T;. Neglecting any terms due to noise beating with itself and
using Egs. (5.22), (6.17) and (6.22) we obtain

5E; — / (Bi3B" + B'3B; ), (7.23)
o 0B . (0B,
50 — _EL [58. (W QB ) _ 5B (Ot IToY B)] dt, (7.24)
5T = é/ (t—T)(BSB; + Bi 5B )dt. (7.25)
i J—o
Using the transformation in Eq. (6.18) we can write the above equationsin terms of Vj(z t) as
3 — [ _(Vidv+ Vvt (7.26)
O NG oV
50 =& / [6\/ Vi } dt, (7.27)
5T == [ (- T) W+ Vidv et (7.28)
i J—o0
From Egs. (7.26)—7.28) we obtain the correlations 0E;0Q; and oE;dT; as
5E; 50 :—'—/ dt/ at’ [avit) M) gy (t’)av'( )
E ot
Vi(t)dVi" (t) + Vi (1) Vi (1)), (7.29)
6E.6T_El/ dt/ dt' (t— T [V (1)3VE* () + Vi* () BV (1)]
i Joo

!

[v.<t’>6v.*<t>+v.*< t)avi(t)]. (7.30)
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Taking the average of Egs. (7.29) and (7.30) and using Eq.(6.25) we get

IS e M
(EBQ); = £ A dt {v, v } , (7.31)
2S [® 5
(SEST); = E/ dt(t —T) M2 (7.32)
| Joo
For the fundamental soliton, the form of V; isgivenin Eq. (6.40) as
t—T .
w@wzawm(7f)amm» (7.33)
|
From Eq. (7.33) the time derivativeis given by
i |4 t—Ti t—Ti .
5 [T—Isech (T—.> tanh (T—.ﬂ exp(i@). (7.34)
Using Egs. (7.33) and (7.34) in Egs. (7.31) and (7.32) we finally obtain
S o a2 _ _
(BEBQY = — 22 [* & o2 (Q> tanh <Q> dt, (7.35)
E Jo T T Ti
(SEBT); = ZES / dt(t — Ti)asech’® (t;—T> (7.36)
| 0o |

Using Table 4.1 and performing the integrations we get
(0ESQ)i =0 (OEST); =0. (7.37)

The variances of dQ; and &T; and their correlation were found in Chapter 6 and are given by
Egs. (6.43), (6.45) and (6.46) for the case of the fundamental soliton. Since we know that soliton
systems are periodic such that the pulse width and energy are recovered after every amplifier, the
variances and cross correlations of dE, 8Q and 8T in the case of fundamental solitons can be

written, after dropping the subscript i, as

(85E?) = 2SEy, (3QBE) = 0, (7.38)
2\ 25 _
(5Q?) = 3ot (SE3T) =0, (7.39)
(3T2) = TS (3Q3T) = 0. (7.40)
6Eo

Now that we have found the second moments of dE, dQ and dT, we can write the recurrence

relations from Egs. (7.19)—(7.21) asfollows. The first moments are given by

N
(B =Eo+ 3 (66) (7.41)
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(Q N—bRZl +216£2 (7.42)
N N
T)n=Dy Z Qi +bor Z Ei+ Z bs + -Z<5T>. (7.43)
Performing the summation using Egs. (6.27), (6.30) and (7.22), we obtain
(E)n=Eo+NS (7.44)
(Q)n = brN(N — 1) S/2+ NbgEo, (7.45)

<T>N = bszN(N - 1) (ZN - l) S/6+ bszN(N - l) S/2+ bzRN(N - l) S/2+ borNEg
+ Nbgz. (7.46)

Next the second moments and correlations are found to be

(E2); = (E?)i_1+ (8E2)i_1+ 2(E)i_1(3E);, (7.47)
(EQ)i = (EQ)i—1+br(E?)i_1+ (SEBQY;, (7.48)
(Q%)i = (Q?)i_1 + bA(E?)i_1 + 2bR(EQ)i_1 + (8Q%);, (7.49)
(ET)i = (ET)i_1+b2(EQ); 1+ bor(E2);i 1+ ba(E)i 1+ (SEST); (7.50)

(QT)i = (QT)i_1+bp(Q?)i 1+ bor(EQ)i_1+b3(Q)i_1+br(ET)i_1
+ bobr(EQ)i_1 + borbr(E?)i_1 4 bsbr(E)i_1 + (3Q3T); (7.51)

(T)i = (T)i1+ b5(Q%)i_1+ BiR(E®)i—1+ b5+ (BT ?)i + 202(QT)i—1 + 20r(ET)i_1

+ 2ba(T)i_1+ bobor(EQ)i_1+ 2babo(Q)i_1. (7.52)

Summing up Egs. (7.47)—7.52) over N amplifiers, we get

(E*N = _i<6E2> + 2i<E>i_1<6E>, (7.53)

(EQ)N = bRE (E?); +_i<6E5Q}, (7.54)
Il\lz—l - N—1 N

(Q%)n = Db -Z (E?)i + 2bR -Z (EQ)i+ _Z<692>, (7.55)
I\Ilil :\l:fl I:Nfl N

(ET)n = b2 ; (EQ)i+bor ; (E?)i +Dbg Z« (E)i + _Z(ZSEEST) (7.56)
ll\lil NI:1 ll\lil - N—1

(QT)n = b2 ; (Q%)i +bor Z« (EQ)i + bs Z« (Q)i+br Z« (ET);
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N—-1 N—-1
+ bobr EQ)i + borbr E2 + ) (0Q0T) (7.57)
3 (€0 babn 3 (€ 3

(T2>N:b§'_\|§(92>i+b Z (E?)i +Zb2+z (3T

N-1

+ 2b2 Z <QT>i —I—ZbgR Z <ET> —I—2b3 Z( >
+ bobor ﬁi(EQ)i + 2bsby NZ‘]-(Q>| (7.58)

Performing the summation using Egs. (6.51), (7.38)—7.40), Egs. (7.44)—7.46) and

N 2 N
Zlis _ (M) , Zlid' — N(N-+1)(2N + 1)(3N2 43N — 1)/30, (7.59)
we obtain the following analytical expressions:

(E?)n = N(BE?) + 2NEy(3E), (7.60)
(EQ)n = brN(N — 1) /2(3E2) + brN(N — 1)Eq(3E) + N(SE5Q), (7.61)

(%) = B35 (N~ 1)(2N — 1)(6E2) + b (N — 1) (2N — 1) Eo(5E)
+ brN(N — 1)(3E3Q) + N<6§22> (7.62)

(ET)x = boty (N~ 1){5ES0) + bary (N — 1) (5E) + brbo.

N (N—1)S+N(sEST)

2
= <5E2>2(N -1 <b2R+ brbz (ZNB_ 1)> b g(N 1S (7.63)
(QT)n = bzg (N—1)(3%%) + (SE3Q) {bZRg(N -1+ bszg(N - 1)2}

N —1)(2N — 1)(3E?)

+ bs

+ (3E2) [bsz S (N=1(N=2)(3N-1)+ bZRbR%(N ~1)(2N-— 1)]

+ b3bR€(
N

= b (N 1)(8Q%) + (3E?) [bszM(N —1)(N=2)(3N—1)

N — 1)(2N — 1)S+ brbsN(N — 1)Ey + N(3Q3T),

+ bszR%(N —1)(2N— 1)} + bgbR%(N —1)(2N — 1)S+ brbsN(N — 1)Eq, (7.64)

oN N

(T?)N =b3— s (N—1)(2N- 1)(8Q?) + N?b% + N(8T2) + (5E?) {b%RE(N —1)(2N — 1)+ baborbr

N _ 1\2 - 2 1h2 N
(N=1)*(N-2)+ bRb5 5

4 (N — 1)(6N® — 20N? + 24N + 1)] + 2bsbobg
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g(N —1)(N-2)S+ g(N —1)%(N - 8)Eo] + bahbgr [g(N ~1)(N-2)S

+N(N = 1)Eqg)]. (7.65)

Using Egs. (7.46) and (7.65) in the definition of the timing jitter we obtain the timing jitter in

the case of afundamental soliton propagating in DDFs with periodic amplification to be
0f = 0+ Ri((3E)%) + R, (7.66)
where 0'(23H is the Gordon-Haus timing jitter evaluated in the previous Chapter and is given by
b2
0%y = EZN(N —1)(2N—1)(3Q?) + N(3T?), (7.67)
and the coefficients R; and R3 are given by

Ry = N(N — 1)[b&b3(N2 — 10N? + 20N — 9) /120
+bybrbor(19N2 — 65N -+ 48) /96 + b3z (2N — 1) /6], (7.68)
R> = N(N — 1)bg[br(N — 1)(N — 2) /6 + bor(N — 2) /3] S (7.69)

The Ry term originates from the RIFS. For this reason, this contribution isreferred to asthe Raman
jitter. The Ry dominates for N > 1 because of its N° dependence. The R, term results from the
combination of TOD and Raman effects and thus becomes important only for pulses much shorter
than 1 ps. In the absence of the Raman and TOD effects, we recover the expression for the Gordon-
Haus jitter obtained in Chapter 6. The leading term in the timing jitter given by Eq. (7.66) is due
to RIFS and grows as N° whereas the Gordon-Haus term given by Eq. (7.67) grows as N°. Both
of these contributions agree with the earlier results of Essiambre and Agrawal [55]. The same
expression applies for constant-dispersion fibers with minor changes. The coefficients b, and b3
require replacing Leit with La because 32 and 33 are constant along the fiber and the coefficient
bor changes to 4yTr(Less — La) /(1501 8) while br remains the same.

As a numerical example we consider a 160-Gb/s fundamental soliton in a 45-km-long DDF
with B2(0) = 1.275 (D(0) = 1.0 ps/(km-nm)). The fiber is assumed to have an effective area of
54 pm?, losses of 0.2 dB/km, Tr = 3 fs, and B3 = 0. Optical amplifiersare spaced 45 km apart. The
spectral noise density was calculated using ngp = 1.3. The pulse width, 1o = 1.25 ps, and hence
the pulse energy, Eg = 0.9 pJ so that it corresponds to a standard fundamental soliton. Figure 7.1
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Figure 7.1: Timing jitter for a 160 Gb/s system using fundamental soliton in DDFs whose dispersion D decreases
from 1 to 0.165 ps/(km-nm) over 45 km.

shows the dependence of timing jitter on distance for such a system. The dashed line shows the
Gordon-Hausjitter obtained from Eq. (7.67), and the solid line shows the sum of Gordon-Haus and
Raman jitter from Eq. (7.66). The effect of TOD isincluded in the dotted line. Since the Raman
contributions from RIFS begins to dominate the jitter after 1000 km, it is evident that the system
performance is mainly limited by the RIFS at high bit rates. Notice that the sum of Raman jitter
and Gordon-Haus jitter is much larger in this case. Thisis due to the relatively large value of the
average dispersion.

If we design the fundamental soliton system with the same average dispersion using a DDFs
whose |B| decreases from 0.24 to 0.04 ps®/km (D goes from 0.188 to 0.03 ps/(km-nm)) over
45 km, with a pulse energy of 0.17pJ, we obtain the results shown in Fig. 7.2. Timing jitter is
now smaller than that of Fig. 7.1. This qualitative change is due to a reduced energy needed for
fundamental solitons. The Raman jitter has its origin in energy fluctuations whose magnitude is
proportional to the pulse energy. In contrast, the Gordon-Haus jitter isinversely proportional to the
pulse energy. Thus, asthe pulse energy decreases, the Gordon-Haus jitter increases but the Raman

jitter decreases.
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Figure 7.2: Timing jitter for a 160 Gb/s system using fundamental soliton in DDFs whose dispersion D decreases
from 0.188 to 0.03 ps/(km-nm) over 45 km.

7.1.2 Dispersion-Managed Solitons

Next we consider the case of DM solitons. The pulse shape of such a soliton is then given by
Eq. (6.56). Using Eq. (6.56) in Egs. (7.6)—(7.8), we get

dE

dQ  TrE P

a2 = yane 2000 )
d 1+C2 Q2

_dz = B2Q + 7&(4:; n Bs + .Z 5Tid(z—z), (7.72)

Integrating Egs. (7.70)—(7.72), over the length of one amplifier we get

E(La)
Q(La)

E(0) + 8Ey, (7.73)
Q(0) +brE(0) + 8 (7.74)
T(La) = T(0) + bQ(0) + barE(0) + bz + b3g Q?(0)

+beqE(0)Q(0) + bgeE?(0) + 8T, (7.75)
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where the coefficients bg, by, bor, bz, bsg, b3q and beqare given by

by — /O MBa(dz bs— OLABS(%CZ) dz, (7.76)
b= | "2z b= / " des(2) A “d7q(7) (7.77)
b= [ Bsdz bea= 2 [Cazms(a) [Ca@)ar, (7.78)
bee = — [z | ["ad)c] - . ™

where we have used Y(z) = yexp(—az). Egs. (7.73)—(7.75) look the same as Egs. (7.11)—7.13)
except for the definitions of the coefficients, br, b2, bor, b3, bsg, bsg and bgg. However in the
case of DM solitons, the situationisquite different. First, the pulse width T isnot constant but varies
in a periodic fashion along the fiber link. It takes its minimum value in the middle of each fiber
section forming the dispersion map. Asaresult, the maximum contribution to the frequency shiftin
Eq. (7.74) comes from thisregion. It is sometimes concluded that RIFS issmaller for DM solitons
if weassumethat T in Eq. (7.77) corresponds to the minimum width of aDM soliton[61]. However,
one should note that the pulse energy is enhanced considerably for DM solitons. Moreover, the
contribution where the pulse width is minimum is reduced because of losses. For these reasons,
the RIFS and hence the Raman jitter of DM solitons can exceed that of fundamental solitons.

For simplicity, we neglect the contribution of higher-order terms containing baq, bsg and bgo
like we did for the fundamental soliton case and write the from Egs. (7.73)—(7.75) the energy,

frequency and position after any ith amplifier as

Ei=E_1+0E, (7.80)
Qi = Qj_1+brE_1+0Q;, (7.81)
Ti = Tic1+ b2Qi_1 + borEi—1 + b3+ 3T;. (7.82)

Next we find the variances and cross correlations of dE;, Q; and dT;. From Eq. (6.57) and (6.58),

we can write

Vi(zt) = & explig — (1+iCi) (t—Ti)?/2tf], (7.83)

M~ aenplion— (141Gt~ T2/ 262 [-(1+1C)(t T/, (789
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From Egs. (5.23), (5.25), (6.60), (6.62) and (6.64), in chapters 5 and 6, we already know that for
DM soliton the variances of 0E, dQ and dT and the cross correlation of dQ and dT at the ith

amplifier are given by

GEY -2, (Ei-s (oo = ST (7.85)
(5T2); = ST?, (5Q)i = (5T) =0,  (3T3Q) = Esq (7.86)
From Egs. (7.31) and (7.32) we have
iS o [V v
(0EBQ); = £ A dt {vi S -vE! } , (7.87)
25 ® NVIT.
(SEST); = EL dt(t —T) M2 (7.88)
Using Egs. (7.83) and (7.84) in Eqgs (7.87) and (7.88), and using Table 4.3, we obtain
eesa)i= S22 "ot W et/
(BESQ); = 0 (7.89)
(oEaT) = 25a [ at(t— T expl— (t— T2/
(SEST); = O. (7.90)

Dropping the subscript i due to periodicity of the DM soliton system we can write the variances

and correlations of the fluctuation in energy, position and frequency added by every amplifier as

(5E?) = 2SEq, (3Q3E) =0 (3E) =S, (7.91)

(502 = > (1+2C3) (BEST) =0  (5Q) =0, (7.92)
Eo 15

(8T2) = E—Soré (3Q8T) = gco (8T) =0. (7.93)

Using the recurrence relations in Egs. (7.80)—7.82), the first momentsof E, Q and T after N

such amplifiers are given by

Epn = Eo+i<5E>a (794
N:I N
(@ =be 3 (B 3 (30 (7.95)

N—1 N—1 N N
(T)n=Db2 i; Qi +bor i; Ei+ i; bs + i;@m. (7.96)



CHAPTER 7. TIMING JTTER INDUCED BY INTRAPULSE RAMAN SCATTERING 117
Performing the summation using Egs. (6.27), (6.30) and (7.22) we get
(E)/n=Eo+NS (7.97)
(Q)n = brN(N — 1) S/2+ NbrEy, (7.98)
(T)N = bobrN(N — 1)(2N — 1) S/6+ bpbrN(N — 1) S/2+brN(N — 1) S/2+ borNEy

+ Nbs. (7.99)

Next we consider the second moments of E, Q, T and find that they evolve as

(E?)i = (E?)i_1+ (BE?)i_1+ 2(E)i_1(BE);, (7.100)
(EQ)i = (EQ)i_1+ br(E?)i_1 + (3E3Q);, (7.101)
(Q2); = (Q?)i_1 + bR(E?)i_1+ 2bR(EQ)i_1 + (3Q2);, (7.102)
(ET)i = (ET)i_1 4+ b2(EQ)i_1+ bor(E?)i_1 4 b3(E)i_1+ (SEST); (7.103)
(QT)i = (QT)i-1+b2(Q?)i 1+ bor(EQ)i 1+ bg(Q)i- 1+ br(ET)i-1

+ bobr(EQ)i— 1—|—b2RbR<E2>| 1+ b3br(E)i_1+ (dQA8T); (7.104)
(T)i = (T)i—1+ b5(Q%)i—1+ b3r(E)i—1+ b3+ (3T 2)i + 2b2(QT)i_1 + 20r(ET)i—1
+ 203(T )i—1 + b2bor(EQ)i_1 + 20302(Q)i 1. (7.105)

Summing up Egs. (7.100)—7.105) over N amplifiers, we get

(E*N = i<5E2> + 2i<E>i_1<6E>, (7.106)

(EQ)N = b;lzll (E?); +_i<5559>, (7.107)
Il\lz—l - N—1 N

(Q%)n = bR _; (E?); +2br _Z (EQ)i + _;<6QZ>, (7.108)
I\Ilil :\|:—1 I:N—l N

(ET)n =Dy Zl (EQ)i+ bar Zl (E?)i +Dbg Zl (E)i+ _Z(ZSEEST) (7.109)
Il\lz—l NI—:1 ll\lz—l - N—1

(QT)n=by ; (Q%)i +bor Z (EQ)i +bs Z (Q)i+br Z (ET);

N—-1 N—1
+ bobr Z(EQ)i + borbR Z (E%)i + Z (5Q3T) (7.110)

N-1

(TN =Db3 _Z<Qz>i+b Z (E?); +Zb§+z (3T?)
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N—1 N—1 N—1
+ 2by Zl (QT); + 2bor Zl (ET); + 2bs Zl (T)i
I_N—l - N-1 "
+ bobor Z (EQ); + 2bzby Z (Q);. (7.111)
Performing the summation u; ng Egs. (6.51), (7?59), (7.91)—~(7.93) and Egs. (7.97)—«7.99), we
finally obtain
(E?)N = N(BE?) + 2NEy(3E), (7.112)
(EQ)N = brN(N — 1) /2(8E2) + brN(N — 1)Eq(3E) + N(3E3Q), (7.113)

(%) = DA (N~ 1)(2N ~ 1)(6E2) +bA (N — 1) (2N — 1)Eo(GE)
+ brN(N — 1)(3E3Q) + N(5Q?), (7.114)
(ET)n = bzg(N — 1)(3E3Q) + b2Rg(N —1)(3E?) + bRbg%(N — 1)(2N - 1)(3E2)

4 bgg(N — 1)S+ N(3E3T)

~ (5E%) (N 1) (b2R+ A

6

)+bgg(N—1)S, (7.115)

(QT)n = bzg(N -1 <6Q2> + (OEdQ) {bgRg(N -1+ beRg(N _ 1)2}

> N

+ (3E?) [bsz2—4(N ~1)(N=2)(3N—-1)+ bZRbR%(N —1)(2N— 1)}
+ b3bR%(N —1)(2N — 1)S+ brbsN(N — 1)Eg + N(3Q3T ),

2 N (N—1)(N—2)(3N—1)+b2RbRN(N—1)(2N— 1)

- bzg (N—1)(30Q% + (3E%) [bsz2—4 6

4 bgbRg(N — 1)(2N — 1)S+ brbsN(N — 1)Eo -+ N(5Q8T), (7.116)
(T?n = bzg(N —1)(2N - 1)(3Q%) + b2N(N — 1)(3Q3T) + N?b5 + N(8T?)

+ (3E?) [b%R%(N —1)(2N—-1)+ bzbszRg(N ~1)%(N-2)

+ b%bg%(l\l — 1)(BN3 — 20N? + 24N + 1)} + 2bsbobr {%(N ~1)(N-2)S
+ g(N —1)2(N— 8)Eo] + babyr [g(N —1)(N-2)S+N(N-1)Ep| . (7.117)

Using Egs. (7.99) and (7.117) in the definition of the timing jitter we obtain the timing jitter in

the case of DM soliton system with periodic amplification and is given by

Ot = 0gn + R1((8E)%) + R, (7.118)
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where 0(23H is the Gordon-Haus timing jitter evaluated in the previous Chapter and is given by
2
03, = %N(N —1)(2N —1)(3Q%) + boN(N — 1) (3Q8T) + N(5T?), (7.119)

and the coefficients R; and R3 are given by

Ry = N(N — 1)[b&b3(N® — 10N? + 29N — 9) /120
+bybrbor(19N2 — 65N + 48) /96 + b3z (2N — 1) /6], (7.120)
R> = N(N — 1)bz[br(N — 1)(N — 2) /6 + bor(N — 2) /3]S (7.121)

As expected, the leading term in timing jitter is due to RIFS and grows as N° whereas the Gordon-
Haus term grows as N3. The R, term gives the jitter due to TOD and Raman effects and becomes
important only for pulses much shorter than 1 ps. Comparing Eq. (7.118) to Eq. (7.66), we see
that the difference in the form of the expression for timing jitter between the DM and fundamental
soliton cases is the presence of the N2 term in the Gordon-Haus timing jitter in the case of DM
soliton. Thisis because the input pulses are chirped in the case of DM solitons. Also the coeffi-
cients by, bs, br and bor used in the timing jitter expressions depends on the evolution of the pulse
width along the fiber and the local dispersion in the DM soliton case. Hence they will have to be
calculated numerically using the moment equation for the pulse width for DM solitons.

To show the importance of the Raman jitter for lightwave systems, we consider a dispersion-
managed system capable of operating at 160 Gb/s. The use of dense dispersion-management is
essential at such high bit rates [62]. The dispersion map consists of 1.0 km of anomalous-GVD
fiber with D = 2.5ps/(km-nm) and 1.0 km of normal-GV D fiber with D = —2.35 ps/(km-nm). Each
fiber section is assumed to have an effective area of 54 umz, losses of 0.2 dB/km, Tr = 3 fs, and
B3 = 0. Optical amplifiers are spaced 40 km apart (La = 40 km, L, = 2 km). The spectral noise
density was calculated using nsp = 1.3. The input Gaussian pulse parameters were found using
the periodicity conditions for solitons on the moment equations for energy, pulse width and chirp,
and have values 1o = 1.25 ps, Co = 1 and Eg = 0.12 pJ. Figure 7.3 shows the dependence of the
timing jitter as a function of distance. The dashed line shows the contribution of Gordon-Haus
jitter obtained from Eq. (7.119). The sum of the Raman and Gordon-Haus jitters is given by the
solid line. The dots show the timing jitter including the effects of Raman jitter, Gordon-Hausjitter

and TOD. Since the Raman contributions from RIFS begin to dominate the jitter after 500 km, it
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Figure 7.3: Timing jitter for a 160 Gb/s system using DM soliton with average dispersion D o, = 0.1275 ps/(km-

nm).

is evident that the system performance is mainly limited by the Raman-induced frequency shift at
high bit rates.

7.2 Non-soliton Systems

Next we consider the case of non-soliton systems. In non-soliton systems, input pulses are pre-
chirped but they do not follow a periodic evolution pattern. In general, the chirp and the pulse
width cannot be calculated analytically because of the nonlinear effects. However, in quasi-linear
linksinwhich the GV D of each fiber section is so large that the pulse spreads over several bit dots,
the pulse evolution is nearly linear along the DM link. The chirp and the pulse width of the pulses
as a function of distance can then be found analytically as shown in Chapter 6. Since the non-
soliton system is not periodic, C and t have different values at different amplifiers. This feature
complicates the calculation somewhat but the procedure is straightforward. At the ith amplifier,

the chirp and the pulse width can then be written from Eq. (6.78) as

1+ C2
G = Cot ibs 1‘2 0) (7.122)

0
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by D3
12 =13 | (1+C8) + 2iCo— +i2-2| . (7.123)
B T
Also from Eq. (6.77) we know that the quantity (1-+C?)/12 remains constant during propagation.
Since at the transmitter end the pulseisunchirped, (1+C?) /12 = (1+C3) /13 = 1/13. Attheend of
each amplifier the energy of the pulsetakesitsinitial value Eg. Using all thesein Egs. (7.91)—7.93)
we can write the variances and correlations of the fluctuation in energy, position and frequency

added by the ith amplifier as

(3E?); = 2SE, (3QBE); =0 (3E)i =S, (7.124)
S1

(5Q?); = 512 (SE8T);i =0 (8Q); =0, (7.125)
S by 03

(3T2); = grg [(1+C§)+2|C0T—§+|2T—§] (3T)i =0,

(HC(Z’)] . (7.126)

S .
(0Q0T); = E [Co+|b2 2
Using the recurrence relations in Egs. (7.80)—7.82), the first momentsof E, Q and T after N

such amplifiers are given by

N
(En=Eo+ 3 (8E). (7.127)
N—Il_ N
@n=br 3 (E)+3 (52) (7.128)
l\llil I7N71 N N
(T)n=Dby Z Qi +bor Z Ei+ Z bs + -Z<5T>. (7.129)
Performing the summation using Egs. (6.27), (6.30) and (7.22) we get
(E\N=Ep+N S (7.130)
(Q)N = brN(N — 1) S/2+ NbrEo, (7.131)

(T)n = bobrN(N — 1) (2N — 1) S/6-+ bobrN(N — 1) S/2+ brN(N — 1) S/2+ borNEg
+ Nbs. (7.132)

Next we consider the second moments and find that

(E?)i = (E?)i 1+ (BE2)i 1+ 2(E);_1(3E)i, (7.133)
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(EQ)i = (EQ)i_1+ br(E®)i_1+ (3EBQ);, (7.134)
(Q2); = (Q2)i_1 + bZ(EZ)i_1 + 2br(EQ)i_1 + (5Q2);, (7.135)
(ET)i = (ET)i_1 +b2(EQ)i_1 + bor(E?)i_1 + b3(E)i_1 + (SEST); (7.136)
(QT)i = (QT)i 1+ b(Q%)i 1+ bor(EQ) 1+ b3(Q)i 1+br(ET)i 1
+ bobr(EQ)i 14 borbr(E?)i 1 + bsbr(E)i 1+ (3Q8T); (7.137)
(T)i = (T)i—1+b3(Q%)i_1 + b3(E2)i_1+ b5+ (5T2) + 2b(QT)i_1 + 2br(ET)i_1
+ 203(T)i—1 + babor(EQ)i—1 + 203b2(Q)i -1. (7.138)

Summing over N such amplifiers we get

(E*)n = i@EZ)i +2_i<E>il<6E>ia (7.139)

(EQ)N = b;lzl (E?); +i(6E6§2)i, (7.140)
lllil " N—1 N

(Q%)n = bR _; (E?); +2br -Zl (EQ)i + _;<692>i, (7.142)
I\Ilil :\|:—1 I:N—l N

(ET)n = b2 Zl (EQ)i +bar Zl (E?)i+bs Zl (E)i+ _Zl(éEGT)i (7.142)
II\|:—1 NI—:1 ll\lz—l - N—1

(QT)n=b ; (Q%)i +bor ;(m)i +bs ;<Q)i +br ;<ET>i

N—-1 N—1
+bobr Y (EQ)i + borbR Z (E%)i + Z (5Q8T); (7.143)
=1

i=1
<T2>N:b%Z<Q2 )i + b Z (E?), +Zb2+25T2

N-1

+2b +2b ET)i+2b i
3T+ 2 3 (ET 25 0
N-1 N-1
+ boby EQ); + 2bsb, Q)i. (7.144)
R i; (EQ); i;( )i
Performing the summation using Egs. (6.51), (7.59), (7.130)—(7.132) and Egs. (7.124)—(7.126)

we finally obtain

(E?)N = 4NSEq (7.145)
(EQ)n = brN(N — 1)(2SEy), (7.146)
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(@) = bR (N— 1) (2N — 1) (2580) + NE%, (7.147)
3 Eo 5

<ET>N = bZRg(N — l)(ZSEo) + bsz%(N — 1) (ZN — 1) (2850) + bgg(N — 1)8

— (ZSEo)g(N ~1) <b2R+ bsz(ZNG_ 1)) +b3§(N ~1)S, (7.148)
(QT)n = by (N- 1)ESO ! (s {bzbﬁ%(N—1)(N—2)(3N—1)+b2RbRN(N—1)(2N—1)]

+b3bR6(N 1)(2N — 1)S-+ brbsN(N — l)Eo++b22N(N+1)ESO(1tOC2) +NSEi°, (7.149)
<T2)N:b§%(N—l)(2N 1)5 1%+ soltoco ZbZSECOO [';'(N—l)

N b3

+ E(N+1)] +E§—% [%(N 1)(2N+1)+%(N —1)(2N-1)+ N

S (N= 1)} + N2p3
+ (2SK) {bZR s(N-1)(2N-1)+ bzbgRbRg (N—1)3(N-2)

+b bzlzo(N—1)(6N3—20N2+24N+1)] +2b3b2bR[N(N 1)(N-2)S

N N

+ E(N—1)2(N—8)Eo] + babyr [g(N ~1)(N-2)S+ N(N—1)Eo] :
2
— ér%N 1+ (Co+ bj—?) + (2SE) [b%R%(N ~1)(2N-1)+ bzbZRb%(N —1)>(N—-2)

+ bib3 1[;0(N — 1)(BN3 — 20N? + 24N + 1)] -+ N2b3 + 2bzhybr [g(N ~1)(N-2)S
+ g(N —1)%(N- 8)50] + babyr [g(N —1)(N-2)S+N(N— 1)50} : (7.150)

Using Egs. (7.132) and (7.150) in the definition of the timing jitter we obtain the timing jitter
in the case of the non-soliton system to be

o? = 04, + R1(2SEp) + Re, (7.151)

where céH is the Gordon-Haus timing jitter evaluated in the previous Chapter and is given by

2
N (COJ’Z_;\') ] (7.152)
o

2 2
ozy — —T15N

GH = g, 'O

and the coefficients R; and R3 are given by

Ry = N(N — 1)[b&b3(N3 — 10N% 4 29N — 9) /120
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Figure 7.4: Timingjitter for a 160 Gb/s nonsoliton system with average dispersion D o, = 0.04 ps/(km-nm).

+bybrbor(19N2 — 65N + 48) /96 + b3z (2N — 1) /6], (7.153)

(N1 N_2) b N=2g (7.154)

Ro = N(N — 1)bs[br 3

Similar to the soliton case, the leading term in the timing jitter in non-soliton systems is due to
RIFS and grows as N° while the Gordon-Haus term grows as N3. The TOD and Raman effects
are given by the R, term. Egs. (7.151) and(7.152) show that both Raman and Gordon-Haus jitter
depends on the average dispersion of the system. Since non-soliton system can have nearly zero
average dispersion, the timing jitter in the case of non-soliton systems can be reduced considerably
compared to the soliton systems. Since in the case of non-soliton systems, the initial chirp of the
pulse does not have to satisfy the periodicity condition, it can be chosen in such away as to reduce
the timing jitter of the system. Thisis called the pre-compensation technique. The next Chapter
givesadetail account of different compensation techniques that can help reduce timing jitter. Even
though this might help reduce Gordon-Haus jitter, this does not help reduce Raman jitter and the
system is soon limited by Raman jitter.

As a numerical example we consider a non-soliton system capable of operating at 160 Gb/s
using dense dispersion-management. The dispersion map is same as the one used for the DM

system in Figure 7.3. The average dispersion of the system is reduced to B4 = 0.05ps/km by
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Figure 7.5: (a) Gordon-Haus timing jitter for a 10 Gh/s DM soliton system with average dispersion D 5 = 0.04
ps/(km-nm). (b) Timing jitter for a 160 Gb/s DM system with average dispersion D 5, = 0.1275 ps/(km-nm).

changing the dispersion of the normal-GVD fiber to be D = —2.4 ps/(km-nm). The parameters
are also the same except that the initial chirp is chosen in such away that it compensates the total
accumulated dispersion along the fiber length, i.e., Co = boN /rg. Thisiscalled pre-compensation,
which will be discussed in the next Chapter. Figure 7.4 shows the dependence of the timing jitter
as afunction of distance. The dashed line shows the contribution of Gordon-Haus jitter obtained
from Eq. (7.152). The sum of Raman jitter and Gordon-Haus jitter is given by the solid line. The
dotted line shows the timing jitter including the effects of Raman jitter, Gordon-Haus jitter and
TOD. The Gordon-Haus timing jitter is reduced to a very low value due to the pre-compensation.

However the Raman jitter still dominates the timing jitter thus limiting the non-soliton system.

7.3 Numerical Results

In this section we compare the resul ts obtained in the previous sections with the results of numerical
simulation obtained by solving the NL S equation Eq. (7.1) using the split-step fourier method. We
first consider a 10-Gb/s dispersion-managed system with 10.5 km of anomalous-GVD fiber with
D = 4 pg/(km-nm) and 9.7 km of normal-GVD fiber with D = —4 ps/(km-nm). Each fiber section
has a loss of 0.2 dB/km, and effective area of 55 um?. The amplifiers spacing is 80.8-km. The
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Figure 7.6: Timingjitter for a 160 Gb/s non-soliton system with average dispersion D o, = 0.04 ps/(km-nm).

spectral noise density was calculated using nsp = 1.3. Sinceat thisbit rate the effects of Raman jitter
can be neglected, Figure 7.5(a) shows the timing jitter obtained by numerical simulation without
the Raman contribution by asterisks and results for Gordon-Haus timing jitter from Eq. (7.119)
by solid line. The timing jitter calculated from Eq. (7.119) closely agrees with those obtained by
solving NL S using the split-step Fourier method.

Next, to verify the results obtained for Raman jitter, we consider the same DM system as the
one used to obtain Figure 7.3. We compare the analytical results obtained in equation Eq. (7.118)
to the results obtained through numerical ssmulationsin Figure 7.5(b). The“stars” show the results
of numerical simulation including the Raman term and the solid line represents the sum of Raman
jitter and Gordon-Hausjitter obtained from the analytical results. The numerical simulation shows
larger value of jitter than predicted by the above equations as the distance increases. Thisis due
to the jitter induced by intra-channel cross phase modulation which is not considered in the above
anaysis.

We finally verify the results obtained for non-soliton systems in the previous section. Since
the nonlinearity is negligible, the numerical analysis of these systems are fairly ssmple and we use

ordinary differential equation (ODE) solvers to solve the moment equations Egs. (7.70)—(7.72) to



CHAPTER 7. TIMING JTTER INDUCED BY INTRAPULSE RAMAN SCATTERING 127

calculate timing jitter directly. Figure 7.6 shows the results obtained through numerical simulation
for the same non-soliton system as the one used for Figure 7.4 in dotted lines and the results of
Egs. (7.152) and (7.153) in solid and dashed line respectively. The figures shows that numerical
simulation agrees perfectly with the theoretical result for Gordon-Haus jitter. However they show
larger jitter than one predicted for Raman jitter. This discrepancy is due to the jitter induced by the

higher order terms which are not considered in the above analysis.

7.4 Chapter Summary

In this Chapter we have derived an analytical expression for Raman-induced timing jitter in high-
speed DM lightwave systems using the moment method. We have applied the general formalism
to three types of lightwave systems corresponding to the use of DM solitons, fundamental solitons
in DDFs, and CRZ pulsesin a quasi-linear configuration. We were able to obtain simple analytic
expressions for the timing jitter in each case. We compared the three configurations for a 160-
Gb/s system and found that Raman jitter increases with the number, N of amplifiers as N°. Unlike
Gordon-Hausjitter the Raman jitter isdirectly proportional to the pulse energy and hence increases
with increased pulse energy.

The Raman jitter begins to dominate after 500 km in the case of DM solitons. In the case of
fundamental solitons propagating inside DDFs, the Raman contribution can be made smaller by
using a reduced pulse energy but the jitter is quite large. In the case of quasi-linear non-soliton
systems, the Raman jitter dominates at large distance but can be reduced by reducing the average
dispersion close to zero. In all cases, jitter can exceed the acceptable value (about 0.5 ps for 8%
of the bit dot) after 1000 km or so, indicating that such systems cannot be operated over long
distances unless ajitter-reduction scheme is implemented. Our expression of the timing jitter can
be used in the case of dense dispersion management realized using multiple map periods between
two neighboring amplifiers. We have included the effects of third-order dispersion as well in our
anaysis.

We have checked the accuracy of this calculation using numerical simulations. In the case of
DM soliton systems, we verify our results by solving the NLS using split-step Fourier method

and for non-soliton systems we use ODE solvers to verify our calculations. In both cases the
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numerical simulations agree well with the analytical results. The minor discrepancies in the case
of DM solitonsis because of the additional timing jitter due to intra-channel interactions between
the pulses. In the case of non-soliton systems the higher-order terms which were neglected during

our analysis can cause additiona jitter leading to increased jitter in the numerical simulations.



Chapter 8

Control of Timing Jitter

In previous chapters we have seen that the timing jitter ultimately limits the performance of al
long-haul communications systems. It is essential to find a solution that can control the growth of
timing-jitter in order to improve the system performance. The use of optical filters for controlling
timing jitter of solitons was proposed as early as 1991 [63]-{65]. This approach makes use of the
fact that ASE occurs over the entire bandwidth of the amplifier but the soliton spectrum occupies
only a small fraction of it. The bandwidth of the filter is chosen such that the soliton bit stream
passes through the filter but most of the ASE is blocked. If the optical filter is placed after each
amplifier, it improves the SNR because of reduced ASE and also reduces timing jitter smulta-
neously. This was verified in an experiment in 1991 but the reduction was only 50% [64]. The
moment method can be used to show that the use of filters after every amplifier can reduce timing
jitter [66]. The filter technique can be improved dramatically by allowing the center frequency of
the successive optical filters to slide slowly along the link. Such dliding-frequency filters avoid
accumulation of ASE within thefilter bandwidth and at the same time, reduce the growth of timing
jitter [67]. As the filter passband shifts, solitons shift their spectrum as well to minimize filter
induced losses while the spectrum of ASE cannot change. The net result is that the A SE noise that
accumulated over afew amplifiersisfiltered out when the soliton has shifted by more than its own
bandwidth.

The filter technique improves the performance of the soliton systems. The two drawbacks of

the filter technique are that it requires the input pulsesto be solitons and that the optical filters have

129
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to be placed after every amplifier and the filter introduces an additional loss for the soliton that
should be compensated by increasing the gain of the amplifier. Hence, it becomes essential to find
a ssimpler method which, can work for both soliton and non-soliton systems. In this Chapter we
discuss two such methods. In the first section we discuss various dispersion compensation tech-
niques in which timing jitter can be reduced by compensating for the total accumulated dispersion
in the system [68]. We show that this technique works for both soliton and non-soliton systems. In
the final section we show that using parametric amplifiersin place of erbium doped fiber amplifiers
(EDFAS), can reduce not only Gordon-Haus timing jitter but also Raman jitter in both soliton and

non-soliton systems.

8.1 Compensation Techniques

The dispersion compensation technique is a simple approach to reduce timing jitter in communi-
cation systems. From Chapter 6 we have seen that the Gordon-Haus jitter depends on the total
accumulated GVD over the total length of the fiber. We can see from Egs. (6.55), (6.72), (6.89),
that for fundamental solitons in DDFs, DM solitons and non-solitons respectively, that the cubic
term that dominates timing jitter at long distances depends on the accumulated GVD through the
factor b, defined as fOLA B2dz. In the dispersion compensation technique, a fiber is added at the
beginning of the system, or at the end of the system, or a combination of both, such that it reduces
the accumulated GV D, thus reducing the timing jitter.

8.1.1 Soliton Systems

In soliton systems, a post-compensating fiber can be added at the end of the fiber link such that
it reduces the accumulated GVD in the fiber link. Using the moment method we can find the
contribution of the post-compensating fiber to the timing jitter. In order to do that, we assume
that the post-compensation fiber is of length L. and has a GVD coefficient B,.. If before the
post-compensation fiber, the frequency and the position of the pulse is given by Qn and Ty, from

Egs. (6.10) and (6.11), we can write the frequency and the position after the post-compensation
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fiber as

QC = QN7 (81)

where be = [5°Bacdz. The variances of Q. and T, are given by

(QF) = (@), (83)
(TZ) = (T?)N +bE(Q%)N + 20c(QT)N. (8.4)

Using the above equations and the results for (Q?)y, (QT )y and (T2)y obtained in Chapter 6 we
can find the timing jitter after the post compensation fiber for both fundamental solitonsin DDF

and DM solitons.

Fundamental solitonsin DDF

For fundamental solitons in DDF we have found the timing jitter after N amplifiers in Chapter
6. Hence using Egs. (6.52)—6.54) in Eqg. (8.4) we get the variance in position after the post-

compensation fiber to be

(T2) = N(3T?) 4+ N(3Q?) [b§+ %%(N —1)(2N — 1) + bebp(N — 1)] : (8.5)

Hence the timing jitter after the post compensation is given by
2
02 = N(8T?) + N(3Q?) {b§+ %(N —1)(2N —1) + bcba(N — 1)} : (8.6)

From Eg. (8.6) the leading term in timing jitter is still cubic. If the dispersion of the post-
compensation fiber is such that b = —yNby, where y is the fraction of post-compensation, we

can write the cubic termin Eq. (8.6) as
0 ~ N3b3(5Q%) [y* —y+1/3]. (8.7)

From Eq. (8.7) we find that the minimum value of 62 occurs when

do?
_— = —1:
dy 2y 0

y=1/2 (8.9)



CHAPTER 8. CONTROL OF TIMINGJTTER 132

@03 ,4"6.
2 &
N <~
-aq—-') 1 ‘o"“.
=2 ra
o g
£
S
1}
o
0 M M M
0 2000 4000 6000 8000

Distance (Km)

Figure 8.1: Effect of post-compensation on timing jitter of a 10-Gb/s fundamental solitonsin DDF system for the

same map as Fig. 6.5. Jitter is plotted as a function of transmission distance for 4 values of y representing the fraction
of post-compensation.

Thus the minimum timing jitter occurs when one half of the accumulated GVD over the fiber link

is compensated, and the minimized Gordon-Haus timing jitter is given by
2
02 = <6QZ>%N[1+ NZ2/2] + N(3T2). (8.9)

To study how post-compensation affects timing jitter, we consider the 10-Gb/s soliton systems
with the dispersion map used for Fig. 6.5. Figure 8.1 shows changes in timing jitter for severa
values of y for the case of asingle amplifier per map period. In the absence of post-compensation
(y=0), jitter becomes quite large with increasing distance (the dotted curvein Fig. 4). Evenasmall
value of post-compensation (y = 0.25) reduces jitter considerably. The three most noteworthy
features are that (i) jitter can be reduced but cannot be eliminated through post-compensation, (ii)
jitter can be minimized with an optimum length of post-compensation fiber (y = 0.5), and (iii)
100% post-compensation makes the situation worse compared with no compensation.

Aninteresting question iswhether post-compensation remains an effective technique for reduc-
ing the timing jitter even when more than one amplifiers are used in each map period. Figure 8.2
shows the jitter under conditions identical to those of Figure 8.1 except that a second amplifier is
placed at a distance of 40 km. The post-compensation reduces the jitter for all valuesof 0 <y < 1.
Jitter isagain minimumwheny = 0.5. Thisresult showsthat post-compensation can reduce timing

jitter even when more than one amplifier is used per map period.
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Figure 8.2: SameasFig. 8.1, except a second amplifier is placed at 40 km.
Dispersion-managed solitons

In the case of DM solitons the timing jitter after N amplifiers can be written from Eq. (6.71) in
Chapter 6. Hence using Egs. (6.69)—6.71) in Eq. (8.4) we get the timing jitter after the post-

compensation fiber to be

02 = N(8T?) + N(3Q3T) [bp(N — 1) + 2b]

+ N(3Q?) %g(N—1)(2N—1)+b§+bcb2(N—1) (8.10)

From Eq. (8.10) the leading term in timing jitter is still cubic. If the dispersion of the post-
compensation fiber is such that b = —yNby, where y is the fraction of post-compensation, we
can write the cubic termin Eq. (8.10) as

0% ~ N3p5(8Q%) [y* —y+1/3]. (8.11)

From Eq. (8.11) we find that the minimum value of a2 occurs when

doz B
v 2y—1=0
y=1/2, (8.12)

and the minimized Gordon-Haus timing jitter can be written from Eg. (8.10) as

0= <6QZ>%%N[1+ N2 /2] + N(8T2) — boN(3QST). (8.13)
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Figure 8.3: a) Effect of post-compensation on timing jitter of a 10-Gb/s DM soliton system for the same map as
Fig. 6.3. Jitter is plotted as a function of transmission distance for 4 values of y representing the fraction of post-

compensation. b) asecond amplifier is placed at a distance of 35 km.

In order to show that post-compensation can reduce timing jitter for DM solitons, we consider
the 10-Gb/s DM soliton systems with the dispersion map used for Fig. 6.3. Figure 8.3 shows
changesin timing jitter for several values of y for the case of a) a single amplifier per map period
and b) when a second amplifier is placed at 35 km. In the absence of post-compensation (y = 0),
jitter becomes quite large with increasing distance (the dotted curve in Fig. 8.3). However post-
compensation can help reduce the jitter. The jitter can be minimized with an optimum length of
post-compensation fiber such that y = 0.5.

To see if these results hold even when the system has a larger map strength, we consider the
DM system with the same dispersion map as the one used for Fig. 6.4. Figure 8.4 shows the jitter
under conditionsidentical to those of Figure 8.3 for the same system as the one used for figure 6.4
except that a post-compensating fiber is added. For the case when there is one amplifier per map
period the optimum compensation still remains 50%. Wheny = —0.5, thejitter ismuch worse than
even when there is 100% post-compensation when the distances are more than 2500 km. Thisis
because the term that depends on N2 in Eq. (8.10) also contributes significantly to the timing jitter
for moderate distances before the cubic term takes over, whereas the relation in Eq. (8.11) is based
on the cubic term. This shows that one can reduce timing jitter whether the average dispersion
in the system is positive or negative by choosing the dispersion of the post-compensation fiber

accordingly.
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Figure 8.4: a) Effect of post-compensation on timing jitter of a 10-Gb/s DM soliton system for the same map
as Fig. 6.4. Jtter is plotted as a function of transmission distance for 4 values of y representing the fraction of

post-compensation. b) a second amplifier is placed at a distance of 24 km.

Next consider the situation shown in Figure 8.4(b) when a second amplifier is placed at 24 km.
Thejitter gets much worse for all positive values of y and for distances up to 5000 km. The lowest
value of timing jitter is achieved for negative values of y. The reason for thisis again related to
the quadratic term in the timing jitter, which in the case of DM systems using multiple amplifiers
per map period is given by the Q term from Eq. (6.105). Hence we conclude that the contribution
of the Q term can be cancelled under some conditions by the use of negative values of the post-
compensation parameter y. The optimum value of y is now given by y = 0.5+ Q/(PNby). Thus
we see that the optimum y in the case of multiple amplifiers depends on the ratio of the P and Q
terms given by Egs. (6.96) and (6.97). These results suggest that even though post-compensation
helps reduce timing jitter, the role of post-compensation requires a careful analysis when multiple

amplifiers are used in each map period.

8.1.2 Non-soliton Systems

Unlike soliton systems, the chirp of the non-soliton pul se does not satisfy any periodicity condition.
Hence the chirp of these pulses can be chosen in such away asto reduce timing jitter. Thusfor non-
soliton systems, the pre-chirp fiber can also act as the pre-compensation fiber. Such a non-soliton

system consists of a pre-chirp (pre-compensation) fiber, the fiber link and a post-compensation
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fiber. The effect of the post-compensation fiber can be found again using the moment method.
Using Egs. (6.86)—6.88) in EQ. (8.4) we get the timing jitter after the post-compensation fiber to
be

S boN S b _S b
2 2 2 2
Oz = =Nt Co+—- ) +—= N +2 Nb { —+c0]
= ( ? Eo Eo | 1
s L be  byN
2 2 2
oz = —Nrt Co . 8.14
C EO 0 i ( _'_ TO _'_ TO ) ] ( )
From Eqg. (8.14) we see that the cubic term in timing jitter can be completely cancelled if
Co+D+ 2~ b2 =0, (8.15)

16
where D = be/t3. This can be achieved by three ways we can make 1) D = 0 and Cp = byN/13
which iscomplete pre-compensation, 2) Co = 0 and D = b,N /13 which is compl ete post-compensation
and 3) D + Co = bpN /13 which is a combination of both.

Any of these three compensation techniques will give minimum jitter at the receiver end which

islinear in distance instead of cubic and is given by
S
02 = =N13. (8.16)

Although the final timing jitter does not depend on the fraction of pre- or post compensation, the
timing jitter within the system does. At the receiver end of the non-soliton system, it does not
matter how Cp and D are chosen aslong asCp+ D = —sz/T(Z). However, in order to minimize
the effects of interaction between neighbouring pulses within the channel during propagation, the
timing jitter must be kept minimum not just at the receiver end but also within the fiber link. In
order to find the optimum compensation technique, we need to find the fraction of pre- and post-
compensation required so that the timing jitter both inside the fiber link and at the receiver end are
minimum. If x is the fraction of pre-compensation, such that x = —Cq13/Nb, and y is the fraction
of post-compensation such that y = —DT% /Nby, we should find the values of x and y such that the
maximum jitter within the fiber link will be equal to the final jitter at the end of the system thus
keeping the jitter within small. The jitter within the fiber link after ith amplifier can be written
using Eq. (6.89) to be

S.
02 = =it}

Eo

1+ <C0+ 22') ] . (8.17)

0
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Multiplying and dividing the above equations on both sides by N2b3 /13 and using the definition of

the fraction of pre-compensation, x Eq. (8.17) can be written as

S b3\ i | t¢ i 2
2 _ 3.2 (2 0 _
(oF EoN TO<T3> N [N2b§+ (N x> ] i (8.18)
Simplifying the above equation by defining z=i /N, where zisthefractional distance, € = 1§/N2b3

and K = N313%03/ (Egtg), we have
o? = KZe+ (z—x)?. (8.19)

In most systems € < 1 and is negligible for very long distances. The fractional distance z
is assumed to be a continuous variable and when x = 0, the jitter is a monotonically increasing
function of z. When 0 < x < 1, the jitter has a local maximum within the system. The local
extremes can be found by setting the first differential of Eq. (8.19) with respect to zto O

do?

- = K[(z—X)?+22z(z—x)] = 0, (8.20)

and solving for zto get

z=xorz=x/3. (8.21)

From Egs. (8.20) and (8.21) we can find that

4207
2% —2kx>0 (8.22)
dzz |,_,

G207

SO = —2kx<0 (8.23)

dz z=x/3

Thus the local maximum in jitter occurs at z= x/3 and is given by
025 (X) = Krsd, (8.24)
mex 27

The optimum fraction of pre-compensation can be found when the maximum jitter within the fiber

link isequal to the maximum jitter at the recelver end when z= 1 and can be written as
K23 = K(1—x)? (8.25)
>7 : :

Solving for x we get Xopt = 3/4. Thus we find that the optimum compensation is found to be 75%

pre-compensation and 25% post-compensation.
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When € cannot be neglected, the optimum compensation can be found using the perturbation

method as follows. The jitter within the fiber link is given by Eq. (8.19). We consider the linear

term in zto be a small perturbation. Thuswe can re-write Eq. (8.19) as

0?2 = K(A+¢B),

(8.26)

where A= z(z—x)? and B = z Similarly z can be written as z= zy -+ £z;. Differentiating Eq. (8.26)

with respect to z to find the local maximum we get

do? dA
9 K4z

=2p+€71 Z=pt+€7g

Expanding A and B in a Taylor series up to thefirst order in € we get

dA +€|7 @ + dB ] =0

dz|,_, dz2 |,_,  dz|,, ’
d_A =0 y4) @ + d_B =
dz|,_,, dz? =z UZ|,—y

From the definitions of A and B we get

dA

il —32 4 20
dz|,, 75— 420X+ X

Z0=X,X/3

Taking the second differential of A with respect to zwe find that

d2A

az| T
Z0=X

d2A

| T
Zp=x/3

Thus the local maximum in jitter occurs when zg = x/3.

Next to find z;, we use the second part of Eq. (8.28) to get

d?A
1 —5 +1=0
dz2 |,_,,
1

Using Egs. (8.29) and (8.31) in the definition of A and B we can write

w38 wo-ik

(8.27)

(8.28)

(8.29)

(8.30)

(8.31)

(8.32)
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Using Eq. (8.32) in Eg. (8.26) we find that the maximum jitter within the fiber link can be written

tothefirst order in g, as

43 ex
2 f— —_— _
crmx_K<27+3>. (8.33)
Equating the maximum jitter to the jitter at the receiver end we get
43 ex 2
E+§ = (1—X) +E,
4 3
2X7_ 2+2X+%‘_(8+1):o:u(x). (8.34)

Now U (x) can be written as U (x) = Ug(x) + €Uz (X), where Ug(x) = 4x3/27 — x? + 2x and Uy =
(x/3) — 1 and the optimum fraction of pre-compensation, Xopt = Xo + €X1. Hence expanding Uy (X)

and U1 (x) in Taylor's series we can write U (x) to first order in € from Eq. (8.34) as

du
U (x) =Ug(xo) +¢ (d—o X1 +U1(XO)> =0,
X |5
du
Ug(X0) =0 d—o x1 +U1(X0) =0 (8.35)
X x=x
Using the definition of Ug in Eq. (8.35) we get
4
2_)§ — X2+ 2X9 =0, Xo = 3/4. (8.36)
Next to find x1, we use Eq. (8.35) to get
du
X1 = ~Us(0)/(—2) (%0)- (8.37)

Using the definition of Ug(x) in Eq. (8.37) we get
Xp = —1. (8.38)

Using Egs. (8.38) and (8.36) we find that the optimum fraction of pre-compensation Xopt = 3/4+¢€
which agrees with our previous result of Xopt = 3/4 when € is negligible. Thus we see that the
optimum compensation is still about 75% pre-compensation and 25% post-compensation.

To verify this prediction numerically, we plot in Fig. 8.5 the timing jitter as a function of
distance for three different compensation techniques for a 40 Gh/s system using chirped Gaussian

pulses of width 6.87 ps. The dispersion map consists of 10 km of anomalous dispersion fiber
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Figure 8.5: Effect of post-compensation on timing jitter of a 40-Gb/s non-soliton system with average dispersion
0.08 pg/km-nm. Jitter is plotted as a function of transmission distance for a) compl ete post-compensation, b) complete

pre-compensation and c) optimum compensation. The dotted line show the result of numerical verification.

D = 4ps/(km-nm) and 9.6 km of normal dispersion fiber of D = —4 ps/km-nm. Each fiber sectionis
assumed to have an effective area of 54 um? and losses of 0.2 dB/km. Optical amplifiers are spaced
80 km apart. The spectral noise density was calculated using nsp = 1.3. The average dispersion in
this case is 0.1ps%/km. To ensure the quasi-linear nature of pulse propagation, the peak power of
each pulseistakento be 1 mW. Theinitial chirp ischosen so asto compensate for the accumul ated
dispersion according to the three different techniques. The curves (a), (b) and (c) show the cases of
complete pre-compensation, complete post-compensation and optimum compensation techniques
respectively. The solid lines represent the analytical result and the dots represent numerically
averaged values over 10% realizations. Our analytical predictions are consistent with the numerical
solutions of the moment equations, on which they are based. Moreimportantly, Fig. 8.5 showsthat
when we choose 75% of pre-and 25% post-compensation, the jitter isindeed minimized along the

entire fiber link.

8.2 Parametricamplifiers

At bit rates of up to 40 Gb/s, we have seen in Chapter 7 that the timing jitter is mainly due to
the Gordon—Haus effect [52]. But at higher bit rates the pul se width becomes so short that timing
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jitter isdominated by the Raman jitter caused by RIFS. We derived the analytic expressionsfor the
timing jitter for systems using bit rates of more than 40 Gb/s in the cases of dispersion-managed
(DM) solitons, fundamental solitons in dispersion-decreasing or constant-dispersion fibers, and
non-soliton systemsin Chapter 7, and showed that for achain of N amplifiers, timing jitter result-
ing from the RIFS grows as N° while the Gordon-Haus jitter grows only as N3. The idea of using
optical phase conjugation (OPC) for compensating the effects of GV D and self-phase modulation
iswell known and was pursued during the 1990s [69]. It has a so been shown that OPC can be used
to cancel the Raman-induced frequency shift [70] induced by the phenomenon of Raman scatter-
ing [1], and hence reduce timing jitter in lightwave systems designed using dispersion-decreasing
fibers [71]. Parametric amplifiers can act as an optical phase conjugator, and the noise figure of
such an amplifier is typically less than that of an EDFA. The basic idea behind the use of para
metric amplifiers for jitter-compensation is to replace the erbium-doped fiber amplifiers (EDFAS)
with the parametric amplifiers, which provide gain through four-wave mixing. In doing so both the
Raman and Gordon—Haus contributions to the jitter can be reduced by a large amount. However
the effects of third-order dispersion (TOD) cannot be compensated by using OPC.

Parametric amplifiers use a four-wave mixing process [1] in which the energy of one or more
pumps is used to amplify a weak signal and to simultaneously generate one or more waves at the
idler frequencies [72]-{74]. The most important feature of a parametric amplifier for our purpose
isthat the phase of theidler wavesisrelated to the phase of the signal wave as ¢ = @ — @s because
of OPC, where ¢y isa constant phase related to the pump phases. For asignal field with amplitude
B(zt), theidler fields can be written as B*(zt) within a constant phase factor. In practice, B and
B* have different wavelengths. In the case of two pumps, the three main idler frequencies are
related to the signal frequency ws as w = w1 + W — Ws, W = 201 — K, G = 20 — Ws, Where wy
and wy, are the pump frequencies [73]. In practice one should choose the idler whose frequency
is close to the signal frequency so that all fiber parameters remain nearly the same for both fields.
The proposed technique can tolerate a mismatch of 2 or 3 nm, especialy if the dispersion slopes
are matched along the DM fiber link but is likely to become unsuitable when the signal and idler
wavelengths differ by more than 5 nm.

Consider aDM system in which parametric amplifiers are used periodically with a spacing L a.

The propagation of an optical pulse in the first fiber section before it is amplified by a paramet-
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ric amplifier is governed by the generalized nonlinear Schrodinger (NLS) equation which can be

written from Eq. (7.2) as
2 3 2

0B B20"B ;P30°B B+ V|B|?B = TyBa|B| , (8.39)
where B(zt) is the slowly varying amplitude of the pulse envelope, B, is the GVD coefficient,
Bs is the TOD parameter, Y=y exp[— [§a(2)dZ] is the nonlinear parameter responsible for self-
phase modulation weakened by fiber losses, and the Raman parameter Tr accounts for the Raman-
induced frequency shift. After the signal is amplified by the first parametric amplifier, the idler
field is proportional to B*(zt) if the pump has anarrow spectrum compared with the signal. If this
field is used in the next fiber section, its evolution is governed by the following equation obtained
by taking the complex conjugate of Eq. (8.39):

0B BB BB’

+ = —i= a|B|2
0z 2 o0t? 6 ot3 '

—V|B|?B* = TryB" (8.40)

After the second amplifier, the signal goes back to B(z,t) and hence would satisfy Eq. (8.39).
It isthus evident that the evolution of each optical pulseis periodic with the period 2L 4 rather than
the amplifier spacing La. Within each period of length 2L, we need to use Egs. (8.39) and (8.40)
in the two neighboring fiber spans of length La. A comparison of these two equations shows that
the GV D parameter 32 and the self-phase modulation parameter y change sign after each amplifier.
Since the Raman term is proportional to y, it also changesits sign. The net result is that the GVD,
self-phase modulation, and the Raman-induced frequency shift are compensated after every two
amplifiers. Thisisthe main advantage of using parametric amplifiers. Since TOD does not change
sign, we can see that OPC does not help in reducing the TOD effects.

Using the results obtained in Chapter 7, in Egs. (7.3)—«7.5) we can write the evolutions of

energy, frequency and position of the pulse along the fiber section before an amplifier as

dE
o (8.41)
dT _ 3 [© |0B 2

" —BzQ-l-i/_w et (8.42)
dQ V. [0 ,,0\°

&= —ETR/OO <E|B| ) dt. (8.43)
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The above equations can be modified as follows to include the amplifier noise:

dE

- Z. SES(2—2), (8.44)
daT Bs [~ |0B|° _ , 45
4 =Pt | o dt+§I 3Tid(z—z), (8.45)
dQ Y. [® (0 .0\’ _ .

== _ETR/OO <6t|B| ) dt + E. 3Qid(z— z), (8.46)

where OE;, 6Q;, and dT; are random fluctuations in the pulse energy, frequency, and position,
respectively, introduced by the ith amplifier located at a distance z;. We proceed to calculate timing
jitter from these above equations like we did in Chapter 7.

8.2.1 Soliton Systems

Since parametric amplifiers can act as optical phase conjugators to restore the field to its original
state after every two amplifiers, in the case of solitons, pulse parameters such as the chirp and
the pulse width are restored to their input values after every two amplifiers. We first consider
the case of systems using the fundamental soliton in DDFs that employ parametric amplifiersin
place of EDFAs and in the following section we consider the case of DM soliton systems that use
parametric amplifiers in place of EDFAS. In both cases we use the moment method to show that

both Raman jitter and Gordon-Hausjitter can be reduced by the use of parametric amplifiers.

Fundamental solitonsin DDFs

When fundamental solitons are launched inside a DDF, the soliton shape and width are pre-
served in spite of fiber losses. The GVD coefficient for DDFs in general decreases as |B2(2)| =
|B2(0) | exp(—az) along the length of the fiber and reaches a value BJ"" at the end of each fiber
section of length La. The pulse shape in such a case is given by Eq. (6.39) to be

Bi(2,t) = a sech (?) expli — iQi(t— ). (8.47)

We used this form for the pulse shape in Chapter 7 to find the variances and cross-correlations

in 0E;, 0Q; and &T; to be the same at every amplifier due to the periodicity of the soliton system.
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From Egs. (7.38)—7.40) we can write the the variances and cross-correlations as

(85E?) = 2SEy, (3QOE) = (8.48)
2 25 _
(5Q?) = 3ot (SE3T) =0, (8.49)
(5T2) = LS (3Q3T) = 0. (8.50)
6Eo

Asdiscussed before, the pulse evolutionis periodic not after every amplifier but after every two
amplifiers. We use this feature to calculate the impact of parametric amplification on the timing
jitter. Consider a set of two amplifiers. Equations (8.44)-(8.46) show how E, Q, and T evolve
along the fiber link before the first amplifier. Integrating these equations over the amplifier spacing
La and including the fluctuations induced by the first amplifier, we obtain from Egs. (7.11)—7.13)
by neglecting the higher order terms

E(La) = E(O) + &y, (8.51)
Q(La) = Q(0) +brE(0) +0Q1 (8.52)
T(La) = T(0) +boQ(0) + borE(0) + bz + &8T;. (8.53)

The parameters by, br, bor and bs are given by Egs. (7.14)—7.17).
We now consider changesin E, Q and T after thefirst amplifier. Egs. (8.44)—(8.46) can till be
used if we change 32 to —[32 and y to —V. Integrating these equations, E, Q, and T after the second

amplifier are given by

E(2La) = E(O) + 8E1 + OE>, (8.54)
Q(2La) = Q(La) — brE(LA) — 8Q2,
Q

0) — brOE71 + 0Q1 — 0Qy, (8.55)

(

(
T(2La) = T(La) —b2Q(LA) + b3 — borE(LA) + T2,

(

T 0) — bszE(O) + 2bz — bpdQ1 — borOE; + &T1 + 87>, (8.56)

where the sign of Q was reversed to account for the phase reversal at the parametric amplifier.
These equations show that after every two amplifiers, the effects of Raman-induced frequency shift

and GVD cancel precisely because of parametric amplification. We consider that the fundamental
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soliton system uses N parametric amplifiers, grouped into M pairs so that M = N/2. Summing
Egs. (8.54)—(8.56) over M such pairs we get

(E)m = Eo+ 2MS, (8.57)
(Q)m = —brMS (8.58)
(T)m = 2Mbg — bobrMEp — borMS (8.59)

In order to find the timing jitter, we have to find the variance of T after N amplifiers. After any jth

pair of amplifiersthe variance of T can be written from Eqg. (8.56) as
(T?)j = (T?)j-1+405 + D3bE(E?) |1 + D3(8Q%) | + D3r(E?) | +2(8T?)j +4ba(T)j-1—
2bobr(ET)j—1+ 2bobrbor(E) j—1(3E) j — 2br(BE) (T )j—1 — 4bobrbs(E)j_1. (8.60)

In order to proceed further we need to find (E2)y and (ET ). Using Egs. (8.54) and (8.56) we
get

(E?)j = (E)j-1+2(3E?%);, (8.61)

(ET)j = (ET)j_1+2b3(E)j_1— bobr(E?)|_1 — bor(BE)(E)j_1 -+ 2(SEST).  (8.62)
Summing Egs. (8.61) and (8.62) over M such pairs we get

(E%)m = 2M(JE?), (8.63)

(ET)m = 2b3M(M1)S— bpbrM (M — 1)(3E2) — boprM(M — 1) S (8.64)

Using Egs. (8.63) and (8.64) in Eq. (8.60) we can find the variancein T after M pairs of amplifiers

to be
(T?)m = 4Mb3 + b3bAM (M — 1) (3E?) 4 b3M (8Q?) + b3M (SE2) + 2M(3T2) + 4b3M (M — 1)
+ %b%b%M (M —1)(M —2)(3E?) + %bszbZRM (M—1)(M—-2)S?
+ bprM(M —1)S? — gbszbgM (M—1)(M-2)S (8.65)
Using Egs. (8.65) and (8.57) and substituting M = N/2 we can find the timing jitter when using
parametric amplifiersin place of EDFAsto be
03 = G4 + [D3R(NZ — 4) /12 + b3]N/2(SE2) + bobsbrSN(N — 2)(N — 4) /3, (8.66)
o0&y = N(b3/2)(3Q2) +N(3T?). (8.67)
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Figure 8.6: Timing jitter for a 160-Gb/s fundamental solitons in DDF system with 45-km amplifier spacing. The
solid and dashed lines show respectively timing jitter with and without the Raman contribution for both EDFAs and
parametric amplifiers. The map parameters are the same as Figure 7.1. The dotted line shows the acceptable val ue of
timing jitter.
Egs. (8.66) and (8.67) show Raman jitter and Gordon-Haus jitter grow cubic and linear in distance
respectively when parametric amplifiers are used instead of EDFAS.

As a comparison we can write the Raman jitter and Gordon-Haus jitter when EDFASs are used

from Egs. (7.66) and (7.67) to be

0f = 0 +Ri((8E)?) + Ry, (8.68)
2
o3 = %N(N —1)(2N —1)(3Q%) + N(3T?), (8.69)

and the coefficients R; and R, are given by

Ry = N(N — 1)[b&b3(N3 — 10N% 4 29N — 9) /120
+bobrbor(19N2 — 65N -+ 48) /96 + b3z (2N — 1) /6], (8.70)
R> = N(N — 1)bz[br(N — 1)(N — 2) /64 bor(N — 2) /3] S (8.71)
We see from Egs. (8.66) - (8.71) that both the Raman jitter and the Gordon-Hausjitter are reduced

considerably by using parametric amplifiers because they scale as N3 and N, rather than N° and

N3, respectively.
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Toillustrate the extent of timing jitter reduction offered by parametric amplifiers, we consider a
dense dispersion-managed system capable of operating at 160 Gb/s using fundamental solitonsin
DDF system with a45-km-long DDF with D(0) = 1.0 ps/(km-nm). The dispersion map isthe same
as the one used to study Raman jitter in Figure 7.1 in Chapter 7. Figure 8.6 shows the dependence
of timing jitter on distance for such a system while using EDFAs and parametric amplifiers. The
solid and dashed lines show respectively the total timing jitter with and without (Tr = 0) the Raman
contribution. The dotted line shows the tolerable value of the jitter for a 160 Gb/s system (8% of
the bit slot). The timing jitter limits the distance to below 500 km when using EDFAs. The use
of parametric amplifiers reduces the jitter to within the tolerable value for distances as large as
8,000 km. Of course, other effects such as soliton collisions and Q-factor degradation may not

allow transmission over 4000 km.

Dispersion-managed solitons

A DM system consists of a periodic sequence of anomalous- and normal-dispersion fiber sections.
To compensate for fiber losses in such a system, an amplifier is placed after one or more map

periods at La. The pulse shape in such acaseis given by Eq. (6.56) to be
Bi(zt) = aexplign —iQi(t — Ti) — (1+iCi)(t - Ti)?/2tf], (8.72)

Using this form of pulse shape we can write the variances and cross-correlations in oE;, Q; and
oT; from Egs. (7.91)—(7.93) in Chapter 7 to be

(8E?) = 2SEy, (3QE) =0 (3E) = S, (8.73)

(502) = = (1+2C3) (BEST) =0  (5Q) =0, (8.74)
Eo 15

(3T2) = E—Sorg (5Q8T) = gco (3T)=0. (8.75)

The pulse evolution again is periodic not after every amplifier but after every two amplifiers. Using
thisfeature for a set of two amplifiers, we calculate the impact of parametric amplification on the
timing jitter. Integrating Egs. (8.73)-(8.75) equations over the amplifier spacing LA and including
the fluctuations induced by the first amplifier, we obtain from Egs. (7.80)—(7.82) by neglecting the

higher order terms

E(La) = E(0) + 8E, (8.76)
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Q(La) = Q(0) + brE(0) +8Q; (8.77)
T(La) = T(0) +b2Q(0) + borE(0) + bz + &T;. (8.78)
The parameters by, br, bor and bz are given by Egs. (7.76)—(7.79).

Integrating Egs. (8.76)—(8.78) and changing 32> to —3> andyto —ywe find E, Q and T after

the second amplifier to be

E(2La) = E(O) + 8E1 + OE>, (8.79)
Q(2La) = Q(0) — brOE; + 6Q1 + 8Qy, (8.80)
T(2La) = T(0) — bobrE(0) + 2bs — b20Q1 — bordE; + 8T + OTo. (8.81)

The above equations show that after every two amplifiers, the effects of the Raman-induced fre-
guency shift and GVD again cancel precisely because of parametric amplification. Next we con-
sider that the DM soliton system also uses N parametric amplifiers, grouped into M pairs so that
M = N/2. Summing Egs. (8.79)—8.81) over M such pairs we get

(E)m = Eg+2MS, (8.82)
(Q)m = —brMS (8.83)
(T)m = 2Mbg — bobrMEg — borMS (8.84)

In order to find the timing jitter, we have to find the variance of T after N amplifiers. After any jth

pair of amplifiersthe variance of T can be written from Eq. (8.78) as
(T?)j = (T?)j-1-+ 405 + b3DR(E?) j_1+ b3(3Q%) | + b3R(BE?)| + 2(8T?),
+ 4bz(T)j_1— 2bobr(ET)_1 + 2bobrbor(E) j_1(3E) ;| — 2br(SE) j(T)j-1
— 4bobrbz(E) 1 — 202(3Q8T);. (8.85)
Using Egs. (8.76) and (8.78) to find (E?)\ and (ET)u we get
(E?)j = (E?)j 1 +2(8E?);, (8.86)
(ET)j = (ET)j_1+ 2b3(E)j_1— bobr(E?)j_1— bor(BE)(E)j_1 +2(3EST).  (8.87)
Summing Egs. (8.86) and (8.87) over M such pairs we get
(E%)m = 2M(JE?), (8.88)
(ET)m = 2bgM(M1)S— bobrM(M — 1)(3E2) — boprM(M — 1)S%. (8.89)
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Using Egs. (8.88) and (8.89) in Eqg. (8.85) we can find the variance in T after M pairs of amplifiers

to be

(T?)\ = 4AMb3 + b3b3M (M — 1) (3E?) 4 b3M (5Q?) + b3sM (SE2) + 2M(3T?) + 4b3M(M — 1)
+ gbgbgm (M —1)(M —2)(3E?) + gbszbZRM (M=1)(M—-2)S

+ borM(M — 1)S* — gbeRbgM (M —1)(M — 2)S— 2b,M (3Q3T). (8.90)

Using Egs. (8.88) and (8.89) and substitutingM = N /2in Eqg. (8.90), wefind the timing jitter when

using parametric amplifiersin place of EDFAsto be

023 = G4 + [D3R(NZ — 4) /12 + b3]N/2(SE2) + bobsbrSN(N — 2)(N — 4) /3, (8.91)
0y = N[(b3/2)(3Q%) — bo(3Q8T) + (5T2)]. (8.92)

Egs. (8.89) and (8.90) show that Raman jitter and Gordon-Haus jitter grow cubic and linear in
distance respectively when parametric amplifiers are used instead of EDFAS. As a comparison we
can write the Raman jitter and Gordon-Haus jitter when EDFASs are used from Egs. (7.118) and

(7.119) to be

0f = 0gn +Ri((8E)?) + Ry, (8.93)
2
o2y = %ZN(N —1)(2N — 1)(3Q%) + bN(N — 1) (3Q3T) + N(3T?), (8.94)

and the coefficients R; and R, are given by

R1 = N(N — 1)[b&b3(N® — 10N? + 20N — 9) /120
+bobrbor(19N2 — 65N -+ 48) /96 + b3z (2N — 1) /6], (8.95)
R> = N(N — 1)bg[br(N — 1)(N — 2) /6 + bor(N — 2) /3]S (8.96)

We see from Egs. (8.89) - (8.94) that both the Raman jitter and the Gordon-Hausjitter are reduced
considerably by using parametric amplifiers because they scale asN3 and N, rather than N°® and N3,
respectively. Toillustrate the extent of timing jitter reduction offered by parametric amplifiers, we
consider a dense dispersion-managed system capable of operating at 160 Gb/s. The map consists
of 1-km section of anomalous-GV D fiber (D = 2.5 ps/km-nm) and another 1-km section of normal-

GVD fiber (D = —2.43 pskm-nm). In both fiber sections, a = 0.2 dB/km, the nonlinear parameter
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Figure 8.7: Timing jitter for a 160-Gh/s DM soliton system with 40-km amplifier spacing. The solid and dashed
lines show respectively timing jitter with and without the Raman contribution for both EDFAS and parametric ampli-

fiers. The dotted line shows the acceptable value of timing jitter.

y = 2.26 W—1/km, the Raman parameter Tr = 3 fs, and Bz = 0.1 ps®/km. Amplifiers are placed
40 km apart. The noise figure for parametric amplifiers depends on the excess noise introduced
by pump power fluctuations. We calculate the spectral noise density using nsp = 1.3 for both
parametric amplifiers and EDFAS (the worst-case scenario) which corresponds to a noise figure of
4.2 dB. The parameters for the input Gaussian pulse were found using the periodicity conditions
for solitons and have values 19 = 1.25 ps, Cy = 1 and Eg =0.12 pJ [7]. Figure 8.7 shows the
increase in timing jitter as afunction of distance in the cases of EDFAs and parametric amplifiers.
The solid and dashed lines show respectively the total timing jitter with and without (Tr = 0)
the Raman contribution. The dotted line shows the tolerable value of the jitter for a 160 Gb/s
system (8% of the bit slot). In the absence of parametric amplifiers, the system performance is
limited by the jitter to the extent that the soliton system cannot operate beyond 500 km. However
when parametric amplifiers are used, the timing jitter is reduced so much that it limits the system
performance only after 4000 km. (Of course, other effects such as soliton collisions and Q-factor
degradation can limit the system before 4000 km.)

Next to verify that the use of parametric amplifiersin place of EDFAs can reduce both Gordon-

Hausjitter and Raman jitter, we consider the same DM system as the one used to obtain Figure 8.7.
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Figure 8.8: Gordon-Haus timing jitter for a 160 Gh/s DM soliton system when using parametric amplifiers and

EDFAs. The'stars' show numerical results and the solid line show the analytical resullts.

We compare the analytical results to the results obtained by numerical ssimulation in Figures 8.8
(@ and (b). The ‘stars’ show the results of the numerical ssmulation and the solid line show
the analytical results. The numerical simulation shows a larger value of jitter than predicted by
the above eguations as the distance increases. This is due to the jitter induced by intra-channel
cross phase modulation which is not considered in the above analysis. Figure 8.8 (a) and (b)
shows Gordon-Haus jitter and Raman jitter as a function of distance respectively. The numerical
simulations agree with the analytical predictions that the use of parametric amplifiersin place of

EDFAs can reduce both Gordon-Haus jitter and Raman Jitter.

8.2.2 Non-soliton Systems

Non-soliton systems uses prechirped pulses of relatively low energy propagating along a DM link
without enforcing a periodic evolution pattern. The chirp and the pulse width cannot be calculated
at the location of each amplifier in the general case in which the nonlinear effects are included.
However, in the case of quasi-linear propagation, the nonlinear term can be neglected, and the
pulse evolutionis nearly linear along the DM link. The chirp and the pulse width of the pulses can
then be found analytically as shown in chapters 6 and 7. From chapters 6 and 7, since the noise

variances and cross-correl ationsin the case of non-soliton systems depend on chirp and pul sewidth
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at each amplifier, they are different at different amplifiers. After the first parametric amplifier, the

chirp changes sign and from Eq. (7.122) can be written as

Cy = —(Co+b2/13), (8.97)

After the second amplifier, the chirp C is restored to Cy. Physically, the effect of dispersion is
canceled for each pair of parametric amplifiers. Similarly, the pulse width after the first and second

parametric amplifiersis given by

T1 = Toy/ l—i—C%, T2 =Tp. (8.98)

We note that from Egs. (8.97) and (8.98) that both the chirp and pulse width are restored to their
original values after every two amplifiers just like in the case of solitons. This feature is quite
different compared with the case of EDFAs for which the width and chirp evolvein anon-periodic
fashion. It results from the fact that even when the average dispersion is not zero, its effects are
canceled for every pair of parametric amplifiers. Using this form of pulse shape we can write the
variances and cross-correlations in dE;j, 0Q; and dT; after any jth pair of amplifiers from Egs.

(7.124)—7.126) in Chapter 7 to be

(8E?); = 2SE,, (8Q8E)j =0 (8E)j =S, (8.99)
(8Q%)) = %(1%2?5) (8E8T); =0 (8Q)j =0, (8.100)
(5T2) )1 = %T%\/?Cf (5Q8T) 1 = g’cl (8T); =0. (8.101)
(8T?)j2 = %T% (8Q8T)j2 = g’co, (8.102)

where j1 and j2 represent the first and the second amplifiers in the jth pair. Since only (8T?2)j;
and (3Q4T )1 depend on the chirp Cy, we can use Egs. (8.97) to rewrite them in terms of Co and
To. We can then drop the subscript 1 and 2 for the rest of the variances and correl ations which have
the same value at al the amplifiers.

Using Egs. (8.76)—«8.78) wefind E, Q and T after the second amplifier to be

E(2La) = E(O) + 8E1 + OE>, (8.103)
Q(2La) = Q(0) — brOE; + 6Q1 + 8Q>, (8.104)
T(2La) = T(0) — bobrE(0) + 2b3 — b20Q;1 — borOE; + 8T7 + 8To. (8.105)
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Summing Egs. (8.103)—(8.105) over M such pairs we get

(E)m = Eg+ 2MS, (8.106)
(Q)m = —brMS (8.107)
(T)m = 2Mbg — bobrMEg — brM S (8.108)

In order to find the timing jitter, we have to find the variance of T after N amplifiers. After any jth

pair of amplifiersthe variance of T can be written from Eq. (8.108) as

(T2)j = (T?)j_1+ 405 + b3DZ(E?) |1 + b5(8Q%) | + b3r(3E?)|
+ 4b3(T)j_1— 202bR(ET)j_1 4 2b2brboRr(E) j—1(OE) j — 20or(0E) j(T) -1
— AbobRrb3(E)j 1 — 202(8Q8T ) j1 + (8T2)j1 + (8T?) 2. (8.109)

Using Egs. (8.103) and (8.105) to find (E2)y and (ET )y we get

(E?)j = (E®)j-1+2(3E?);, (8.110)
(ET)j = (ET)j-1+ 203(E)j-1 — babr(E?) -1 — bor(3E) (E) j—1 + 2(BE3T).  (8.111)

Summing Egs. (8.110) and (8.111) over M such pairswe get

(E%)m = 2M(BE?), (8.112)
(ET)m = 2bgM(M1)S— bobrM(M — 1)(3E2) — boprM(M — 1)S%. (8.113)

Using Egs. (8.112) and (8.113) in Eg. (8.109) we can find the variance in T after M pairs of

amplifiersto be

S1
(T?)m = 4Mb3 + b2bEM (M — 1) (2SEg) + b3M B + b3gM (2SEp) + 4b3M (M — 1)
0

+ %b%bZRM (M —1)(M — 2)(2SEp) + %bszbZRM (M=1)(M—-2)S

+ borM(M — 1) — §b2bRb3M(M ~1)(M-2)S+ 2sz§ Co+ b2 +2§r3
3 Eo T% Eo

1 =1 . 8.114
- oo 3 (8119

Using Egs. (8.112) and (8.113) and substituting M = N/2 in Eq. (8.114), we can find the timing

jitter when using parametric amplifiersin place of EDFAsto be

025 = 08y + [D3bR(N? — 4) /12 + b35]N/2(2SEo) + bpbsbrSN(N — 2) (N — 4) /3, (8.115)
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, S 1 2b, "\ 2
()'(%H:N—T(Z) 1+§<CO+ 2)

c 2) | (8.116)

Egs. (8.115) and (8.116) show Raman jitter and Gordon-Haus jitter again grow cubic and linear
in distance respectively when parametric amplifiers are used instead of EDFAs. When EDFAs are
used the Raman jitter and Gordon-Haus jitter can be written from Egs. (7.151) and (7.152) to be

07 = 04+ Ru(2SEo) + Rs, (8.117)

2
1+ (Co+ sz_ZN) ] : (8.118)

0

S
oy = —T3N

Eo

and the coefficients R; and R3 are given by

Ry = N(N — 1)[b&b3(N3 — 10N% 4 29N — 9) /120

+bobrbor(19N2 — 65N -+ 48) /96 + b3z (2N — 1) /6], (8.119)
(N-2)

Rs = N(N —1)b3[bRL6_1)(N—2)+b2RT]S (8.120)

We see from Egs. (8.117) - (8.120) that both the Raman jitter and the Gordon-Haus jitter are
reduced considerably by using parametric amplifiers in the case of non-soliton system because
they scale as N2 and N, rather than N® and N3, respectively. The Gordon-Haus timing jitter given
by Eq. (8.116) when using parametric amplifiers can be further reduced by using pre-compensation
discussed in the previous section. Since in this case the dispersion in one fiber section is cancelled
in the next fiber section due to phase conjugation the accumulated dispersion can be seen from
Eq. (8.116) to be Cy = —2b2/r§ which is due to the noise variance in the frequency that has
accumulated over the second fiber section. Thus the accumulated dispersion in this case is only
over one amplifier length instead of the entire fiber link like in the case of EDFAS.

Similar to the case of DM solitons, the timing jitter can be reduced using parametric amplifiers
in place of EDFASs. Figure 8.9 showstheimpact of intrapul se Raman scattering on the performance
of a 160-Gb/s non-soliton system using the same dispersion map used earlier for Figure 8.7. The
pulse energy is reduced by a factor of 10 to reduce the nonlinear effects. The average dispersion
is also reduced to Ba = —0.005 ps?/km by changing the normal-GVD to —2.492 ps/(km-nm). In
the case of EDFAS, the input chirp Co was chosen to be |Bay|L/t3, where L is the total distance

of propagation as is the condition for pre-compensation from the previous section. For systems
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Figure 8.9: Timing jitter for a 160-Gb/s non-soliton system with 40-km amplifier spacing. The solid and dashed
lines show respectively timing jitter with and without the Raman contribution for both EDFASs and parametric ampli-
fiers. The map parameters are the same as the one used for Figure 8.7, except the average dispersion is reduced to

Da = 0.004 ps’km-nm. The dotted line shows the acceptable value of timing jitter.

with parametric amplifiers Co was chosen to be 2|Bay|La/T3. As expected, for lightwave systems
designed using EDFAs, precompensation reduces the Gordon—Haus contribution but the Raman
jitter increases with distance and ultimately limitsthe system after 3000 km. The use of parametric
amplifiersreducesthe Raman jitter considerably, and the systemisnot limited by jitter for distances
as large as 10,000 km. Again other degradation factors not included here may limit the length to

much smaller values even when parametric amplifiers are used.

8.3 Chapter Summary

In this Chapter we have studied two methods for controlling timing jitter in lightwave systems.
First we saw that for systems that are limited mainly by Gordon-Haus jitter, dispersion compen-
sation techniques can help reduce timing jitter. We used the moment method to show analytically
that for soliton systems post-compensation can reduce timing jitter, provided that its magnitude
is optimized properly. More specifically, post-compensation of residual dispersion by 50% re-
duces the jitter by a factor of 2 at long distances when a single amplifier is used for each map
period. However, jitter actually increases if the residual dispersion is eliminated completely by

use of a post-compensation fiber. When there are two or more amplifiers within each map pe-
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riod the situation becomes complex to the extent that an increase in the average dispersion may
reduce the jitter for moderate distances. We also showed that for non-soliton systems, both pre-
and post-compensation can reduce timing jitter. In general, 100% compensation of the total dis-
persion in the case of non-soliton systemsis essential for realizing jitter values comparable with
those obtained for DM solitons. However we found that the optimum compensation in thiscase is
75% pre-compensation and 25% post-compensation. We used numerical ssmulationsto verify this
result.

Secondly, we used the moment method to show that both the Raman-induced and the ASE-
induced timing jitter can be reduced considerably for lightwave systems using bit rates more than
40 Gb/s by replacing EDFAs with parametric amplifiers. Our expressions can be used even in the
case of dense dispersion management, realized using multiple map periods between two neighbor-
ing amplifiers. We have included the effects of third-order dispersion aswell. We have applied this
genera formalism to three types of lightwave systems corresponding to the use of DM solitons,
fundamental solitonswith DDFs, and chirped return-to-zero pulsesin a quasi-linear configuration.
We have obtained the analytic expressions for the timing jitter in each case. We compared the three
configurations for a 160-Gb/s system and found that in all casesthetiming jitter at the receiver end
can be reduced by alarge factor by replacing EDFAs with parametric amplifiers. Although para-
metric amplifiers have not yet been used for designing lightwave systems, the situation is likely
to change in the near future in view of the recent advances in designing broadband parametric
amplifiers[72]-{74].

Several assumptions made in our analysis must be satisfied before the jitter-reduction scheme
using parametric amplifiers can be implemented successfully. First, the OPC process must create a
phase-conjugated version of the signal. Thisis possible only if the pump phase does not fluctuate
much. In practice, the line width of semiconductor lasers used for pumping isincreased to ~1 GHz
for suppressing the onset of stimulated Brillouin scattering. This is not of much concern for the
following reason. At high bit rates, each optical pulseis so short (~ 1 ps) that the pump phase
remains constant over its entire width. Thus, as long as the bit rate is much larger than the pump
bandwidth, the OPC process is close to being ideal. The second issue is related to the mismatch
between the signal and idler wavelengths. The main requirement hereisthat the dispersion param-

eter should be the same at both fields. Thisis possible only if they have the same wavelength. In
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practice, the wavelength can differ by a few nanometers especially for fibers with low dispersion

slopes, but larger differences are likely to become intolerable.



Chapter 9

Conclusions

In thisthesis, we use the moment method to study the propagation of optical pulsesin optical fibers.
In particular we apply the moment method to study the effects of noise induced by the optical
amplifiers on the input pulses and the effects of timing jitter on optical communications systems.
The propagation of optical fieldsin fibers is governed by a nonlinear partial differential equation,
called the nonlinear Schrodinger equation which can be derived from Maxwell’s equations. Hence
to understand the evolution of an optical pulse when it propagates through an optical fiber, it
becomes necessary to solve the nonlinear Schrodinger equation. Since the equation is nonlinear
we have to use approximate methods to solve this equation. We show that the variational method
which is usually employed to study the propagation of optical pulse in fibers, cannot be used in
the presence of intra-pulse Raman scattering, due to its dissipative nature. Hence it is necessary
to find another method that will work even in the presence of dissipation in the system. The
moment method which treats the optical pulse as a particle can be used for both dissipative and
non dissipative systems.

First we use the moment method to study the effects of intrapul se Raman scattering on optical
pulses propagating in fibers. Using the moment method we showed that the Raman-induced fre-
guency shift resulting from intrapulse Raman scattering is a general phenomenon that occurs for
al pulses both in the normal and anomalous dispersion regimes of an optical fiber. We apply the
resultsto the cases of “sech” and Gaussian pulse shapes. The results show that the Raman-induced

frequency shift depends not only on the width but also on the frequency chirp associated with
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the optical pulse. The RIFS becomes quite large in the case of ultrashort pulses as it depends on
the cubic inverse of the local pulse width and varies considerably with the history of pulse width
changes. Whenever pulse width remains nearly constant along the fiber, Raman induced frequency
shift can accumulate to relatively large values.

We show that even optical solitonsdo not maintain their width when Raman induced frequency
shift becomes comparable to or larger than the spectral width of the pulse. Our analysis remains
validin thisregime and shows how the Raman induced frequency shift saturatesto a constant value
because of soliton broadening. We give numerical examples of “sech” and Gaussian pulses in
both the normal and anomalous dispersion regime using a 10-m long fiber in which femtosecond
pulses are launched. Although Raman induced frequency shift is generally smaller for normal
dispersion compared with the case of anomalous dispersion, it is large enough to be measurable
experimentally. Weinclude the effects of third-order dispersion and self-steepening in our analysis
and show that it affects the frequency shift through the frequency chirp.

Next we used the moment method to study the effects of amplifier induced noise on commu-
nication system. We show that the amplifier induced noise can degrade the system by reducing
the signal to noise ratio of the system and also can lead to timing jitter which can cause increased
bit error rate there by reducing the signal to noise ratio. The amplifier induced noise affects the
amplitude, the frequency, the position and the phase of the pulse. The fluctuations in pulse ampli-
tude can reduce the signal to noise ratio of the system by reducing the Q factor of the system. We
showed that for a system using N amplifiers periodically to compensate for fiber losses, we were
able to find an analytic expression for the Q factor and show that it isinversely proportional to N.
Thusthe Q factor decreases as the number of amplifiersincreases. We have included the effects of
thermal and shot noisein our calculations to find the Q factor.

The fluctuations added by the amplifier to the frequency and the position of the pul se can cause
timing jitter in the system leading to an increased bit error rate and thereby degrading the system.
We use the moment method to analytically calculate timing jitter in communications systems using
N amplifiers at regular intervals. We show that fluctuationsin the frequency can affect the position
of the pulse due to the presence of group velocity dispersion in system. The resulting timing jitter
is called the Gordon-Haus timing jitter. Using the moment method we show that the Gordon-Haus

timing jitter grows cubic with distance and is inversely proportional to the energy of the pulse.
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For systems using bit rates up to 40 Gb/s, the timing jitter is mainly due to Gordon-Haus jitter.
We apply this method to three types of systems, viz., i) systems using fundamental solitons in
dispersion-decreasing fibers, ii) dispersion-managed soliton systems and iii) non-soliton systems.
For all three cases we extend the theory to see the effects of using more than one amplifier within
amap period. We found that using more than one amplifier within one map period can help reduce
Gordon-Haus timing jitter in al three cases. However when using more than one amplifiersin the
dispersion managed soliton systems to reduce Gordon-Haus timing jitter, the effectiveness of the
technique seem to depend on the position of the second amplifier and on the dispersion map. We
give numerical examplesin all the three cases to show that using more than one amplifier within
each map period can help reduce Gordon-Haus timing jitter. However, as the number of amplifiers
increases, the Q factor decreases.

In the presence of intra-pulse Raman scattering, any fluctuations in the pulse amplitude affects
the frequency of the pulse thus causing additional timing jitter. This jitter is called Raman jitter.
For systems using bit rates more than 40 Gb/s, the intra-pulse Raman scattering and third-order
dispersion effects cannot be neglected. We use the moment method to derive analytic expressions
for Raman jitter for all three systems mentioned above. We show that Raman jitter dominates the
timing jitter for these systems. The Raman jitter grows as fifth power of distance and can limit the
system before the Gordon-Haus jitter limits the system. Since at such high bit rates the acceptable
value of jitter is smaller, the results show that these systems are limited within 1000 km. Unlike
Gordon-Haus jitter the Raman jitter is proportional to the pulse energy and since soliton systems
require larger pulse energies, they have a larger value of timing jitter due to Raman jitter than
non-soliton systems.

We have included the effects of third-order dispersion in our calculations. Our results can be
used even in the case of dense dispersion management which is necessary to achieve such high bit
rates. We have given numerica examplesfor all three systemsto show our results. We have verified
the accuracy of our analytical results using numerical smulations. In the case of soliton systems
we verified our results using the split step Fourier method and for non-soliton systems we used
ordinary differential equations solvers to verify our analytical results. The numerical simulations
agrees well with our analytical results except for a minor discrepancy which is due to intra-pulse

interactions in the case of solitons and due to higher order termsin the case of non-solitons.
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Sincetimingjitter can limit the system considerably, it becomes essential to control timing jitter
in communications systems. We propose a few different techniques for this purpose and show
using the moment method that these techniques can reduce timing jitter in all the three systems
considerably. For systemsthat are mainly limited by Gordon-Haus jitter we show that dispersion
compensation techniques can help reduce timing jitter. In the case of soliton systems we show
that post-compensation can help reduce Gordon-Haus jitter by half. When using one amplifier
per map period, we see that even a small amount of post-compensation can help. However the
optimum compensation turns out to be compensating for 50% of the total accumulated dispersion.
However when using more than one amplifier per map period the optimum compensation seemsto
depend on the dispersion map of the system. We also show that both positive and negative average
dispersion can be used to compensate for the accumulated dispersion in such a case.

For non-soliton systems both pre- and post-compensation techniques can be used to reduce
timing jitter. In this case the timing jitter can be reduced to a linear function of distance rather
than cubic thus reducing jitter by a large anount. There are three ways of accomplishing this, i)
complete pre-compensation, ii) complete post-compensation and iii) a combination of both. We
show that for all the three types of compensation, thejitter at the receiver end isthe same. However
in order to keep the jitter minimum both within the system and at the receiver end, the optimum
compensation is 75% pre-compensation and 25% post-compensation. We verify this result using
numerical simulations and show that the optimum compensation keeps the jitter minimum both
within the system and at the receiver end. We give numerical examples of al three systems to
show that dispersion compensation can reduce Gordon-Haus jitter considerably.

For systems using more than 40 Gb/s, we suggest using parametric amplifiers in place of
erbium-doped fiber amplifiers. Since parametric amplifiers can act as phase conjugators and if
we aternate between the signal and the idler pulses between amplifiers, we can compensate for
group velocity dispersion, intra-pulse Raman scattering and self-phase modulation in the system.
Such atechnigue can reduce both Raman jitter and Gordon-Haus jitter thus reducing timing jitter
by considerable amounts for such high bit rate systems. We show using the moment method that
using parametric amplifiers in place of fiber amplifiers can reduce Raman jitter to cubic depen-
dence in distance instead of fifth power and Gordon-Haus jitter to linear in distance instead of

cubic for al the three systems. Such systems are not jitter limited up to 5000 km. We give numer-
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ical examplesfor each of the three systems to show our results. We have numerically verified our
analytical results using numerical simulations and our numerical results agree with our analytical
results.

Thus we conclude that the moment method is a simple method that can be used for studying
the pulse propagation in optical fibers. This method works even when the system exhibits dissi-
pation. The results we obtained using this method for Gordon-Haus jitter and Raman jitter in the
case of fundamental solitons agrees with the previously obtained results of Gordon and Haus [54]
and Essiambre [55] respectively. In the case of fundamental solitons, our expression for Raman
induced frequency shift reducesto that of Gordon [36] so long as the shift is much smaller than the
spectral width of the pulse. However to use the moment method we have to assume a pul se shape
and that the pulse shape does not change during propagation. Hence results obtained using this
method should be used with caution if the pulse shape changes significantly during propagations.
In conclusion wefedl that using the moment method we can learn agreat deal more about the pulse

evolution both in terms of uncovering new phenomena and better understanding similar systems.
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Appendix A

Acronyms
ASE amplified spontaneous emission
BER bit error rate
CRZ chirped return-to-zero
DDF dispersion decreasing fiber
DM dispersion managed
DMS dispersion managed soliton
EDFA erbium-doped fiber amplifier
fs femto seconds
FWHM  full-width at half maximum
FWM four wave mixing
GH Gordon-Haus
GVD group velocity dispersion
IRS intra-pul se Raman scattering
NLS non-linear Schrodinger equation
fs femto seconds
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APPENDIX A. ACRONYMS

pS
RIFS
RMS
SNR
SPM
SRS
SSFS
TOD
WDM

picoseconds

Raman induced frequency shift
root mean square

signal to noiseratio

self phase modulation
stimulated Raman scattering
soliton self frequency shift
third-order dispersion

wavelength division multiplexing
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